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Abstract— This paper presents a 1-D convolutional and
graph convolutional networks for fault detection in
microgrids. The combination of 1-D convolutional neural
networks (1D-CNN) and graph convolutional networks
(GCN) helps extract both spatial-temporal correlations from
the voltage measurements in microgrids. The fault detection
scheme includes fault event detection, fault type and phase
classification, and fault location. There are five neural
network model training to handle these tasks. Transfer
learning and fine-tuning are applied to reduce training
efforts. The combined 1-D convolutional and graph
convolutional networks (1D-CGCN) is compared with the
traditional ANN structure on the Potsdam 13-bus microgrid
dataset. The accuracy of 99.5%, 98.4%, 99.2%, and 95.5%
are achieved in fault event detection, fault type classification,
fault phase identification, and fault location respectively. The
detailed confusion matrices of fault type and fault phase
classification are provided for validation.

Keywords— Fault detection, fault location, microgrid
protection, deep neural network, graph learning.

L INTRODUCTION

Fault diagnostic plays a key role to determine the
strategy of how to isolate and restore power systems,
especially under the growing integration of distributed
energy resources. The protection and restoration strategy
ensures the system's resiliency and reliability [1], [2]. In
inverter-based distributed energy resources, the traditional
relay protection may become ineffective due to the small
fault current [3], [4], [S]. Moreover, to effectively and
accurately isolate faults and restore normal operation, one
requires the information of fault event, fault type, fault
phase, and fault location [6], [7]. The correct information
about faults significantly enhances the protection and
restoration and also saves time and cost of utilities [8], [9],
[10].

The fault diagnostic schemes existing in literature [11]-
[24] can be loosely divided into model-based and data-
driven methods. The measurements are voltage and
current with different sampling rates from digital relays,
phasor measurement units (PMU), or advance metering
infrastructure (AMI) [25]. Model-based techniques try to
compute quantitative metrics that distinguish fault data
from normal measurements. A comparison between pre-
fault data and fault data is usually evaluated for fault

detection [26], [27]. There are many analytical approaches
are applied such as evaluating the negative and positive
sequences of current [26], assessing the sequential voltage
and current components [28], monitoring the transient of
current [27], computing the Teager-Kaiser energy [29],
analyzing the principal components and fault signatures
[30], and state estimation using mathematical morphology
and recursive least square [31].

Data-driven and machine learning-based approaches try
to derive a fault detection model using statistical
information from the measurement data. There are many
popular machine learning classifiers have been applied to
detect faults such as decision tree (DT) [4], random forest
(RF) [32], k-nearest neighbor (k-NN), support vector
machine (SVM), and Naive Bayes [33]. Model-based and
machine learning can be combined in the way that model-
based techniques do the feature extraction and machine
learning do the classification. In [10], discrete wavelet
transform is applied before the classification process. The
maximal overlap discrete wavelet transform and extreme
gradient boost algorithm are employed in [34]. Pure neural
network structures are employed frequently such as
Taguchi-based artificial neural networks [35], and gated-
recurrent-unit deep neural networks [36].

Most existing works analyze the current measurements
on the line the fault occurs. There is some fault detection
scheme using PMU and pseudo-measurements [37], [38],
[39]. Similarly, the machine learning techniques of SVM,
k-NN, DT algorithms [39], convolutional neural networks
(CNN) [40], [41], semi-supervised [42], and GCN [43] are
implemented to detect faults. However, in these works,
there is a research gap in fault type, fault phase
classification, and fault location on mesh-topology power
distribution systems.

This paper presents a combination of 1-D convolutional
neural networks and graph neural networks on voltage
measurement data to detect fault events, to classify fault
type and phase, and to locate the nearest bus where the
fault occurs. The paper provides a unique contribution
owing to the following bullet points.

e The data input includes voltage measurements in

time series from PMU, AMI, or smart meters. The
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time synchronization for phasors is not necessary.
e The combination of 1-D CNN and GCN can extract
both spatial and temporal correlation in the
measurement data.
e The fault event detection, fault type, phase
classification, and fault location are all resolved.
The remaining parts are organized as follows. Section
II presents the Potsdam microgrids and the graph data
collection procedure. In Section III, the combination of 1-
D CNN and GCN is described. The training, transfer
learning, and fine-tuning processes are also expressed. The
results are discussed in Section IV. Section V concludes
the paper.

II.  GRAPH DATASET OF POTSDAM MICROGRID

The power distribution networks can be defined as an
undirected graph G = (V, €, A), where V denotes the set
of vertices, |V| = N, each vertex in the graph represents a
node (bus) in the distribution network, X = {X;, X,, ... Xy}
is the tuple of node features, € denotes the set of edges,
|E] = M, each edge represents a branch connecting two
buses, E = {E;, E;, ... Ey} is the tuple of edge feature, and
A € RV*N denotes the adjacency matrix of the
distribution network. The input data for graph learning are
the node features X;_, y, and the edge features E;_;_p-
Some papers also consider the edge features and the
attributes for each graph data (u) [44]; however, in this
paper, we only consider the node features on a graph.

The temporal graph dataset is constructed by the
ordered set of graph, node feature matrix, and label vector
tuples [45] D=
{(gl’Xl’ yl ): (gzi XZJ yz): (gl’ XI: yl)} > where  the
vertex sets is unchanged V! = V,Vi € {1, ...,1}, i is the
graph data index. The node feature matrices X' €
RN*@XK have 3 dimensions as follows: the number of
nodes |V| = N, the number of features in each node d, and
the time interval K. The label vector includes 3 labels of
the distribution network graph over the time interval K,
yt = {ytype,yphase,yloc}, where y,,. is the node index
where the fault occurs.

The node feature matrix X! = {X;, X,, ... Xy} contains
the bus voltages of all measured buses. In the bus without
voltage measured, the node features are filled with zeros.
The node feature in node i is shown in the form of

Va,l Va,z Va,K r
Xi=|Y1 Vo2 - Vuxl, (D
Vc,l VC,Z o VC,K

where K is the length of the evaluation period.
Specifically, considering the Potsdam microgrid shown

in Fig. 1, we have a graph of 13 nodes and 13 edges. There

are 5 inverter-based generators (IBG) with a primary r
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Fig. 1. 13-bus Potsdam microgrid system diagram with fault locations
and voltage measurements on buses 1, 5, 8,9, 10, and 13.

TABLE L POTSDAM MICROGRID DATASET
Parameters Configuration Count
AG, BG, CG, AB,
Fault type BC, CA, ABG, BCG, 11
CAG, ABC, ABCG
 Fault 0.1,1,10 (@) 3
resistance
Fault location Buses: 1, 2,3, 4,5, 6, 13

7,8,9,10, 11,12, 13.

Load scenario randomly 150

Total fault cases: 64,350 | Train: 55,770 | Test: 8,580

Total load change cases: 10, 000 | Train: 8,580 | Test: 1,420

Train-set: 64,350 samples | Test-set: 10,000 samples

Fault type: ABC, R=1, B1 Fault type: AB, R=0.1, B1
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Fig. 2. Voltage waveform in phases A, B, C at bus 1 with ABC and AB
faults and fault resistance 1 and 0.1 Q occurs at bus 1, respectively, in the
Potsdam microgrid.

droop control strategy [46] and a secondary PI controllefor
frequency and average voltage regulation [47] in the
islanded mode. The voltage level is 13.2 kV line-line at 60
Hz. The loads and IBGS have parameters following those
of [48]. The voltage measurements are placed in the buses
marked with a blue square; the data sampling frequency is
1 kHz. The data is collected via real-time simulation using
Opal-RT.

Load changes are set randomly between 30-130% of the
nominal load profile. Faults are set at each bus in turn with
the fault type of AG, BG, CG, AB, BC, CA, ABG, BCG,
CAG, ABC, and ABCG and fault resistance of 0.1, 1, and
10 Q. The raw data are collected as one second windows
and then are trimmed into 20 ms of 20 samples which
cover about 1.2 cycles of 60 Hz as shown in Fig. 2.
Thereafter, 55,770 graph data of 20-ms windows for the
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4 TABLE IL COMPARISONS OF NEURAL NETWORK STRUCTURES
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X'—> NN [ ) > layers location Fault event binary classification — Dense layers

Fig. 3. Proposed temporal 1D-CGCN structure for fault detection.

fault cases and 8,580 graph data of non-fault cases with
random load changes are gathered as the train set. We also
select 8,580 fault and 1,420 non-fault cases for the test set.
Table I summarizes these configurations for fault cases
and load changes data generation.

III. 1-D CONVOLUTIONAL GRAPH CONVOLUTIONAL

NETWORKS MODELS FOR FAULT DETECTION.

The proposed temporal 1D-CGCN structure for fault
detection is depicted in Fig. 3. We utilize the 1-D CNN to
extract the temporal correlation in time series data of
voltage measurement in each bus. Thereafter, the GCN
layers are used to generalize the spatial correlation on
graph of the Potsdam microgrid. This combination
considers the spatial-temporal correlation in the
measurement data. The global pooling operation
concentrates all hidden features from nodes and finally, the
dense layers are trained to classify the fault type and fault
phase. The fault location is performed based on all hidden
features from all the nodes without using the pooling
operation. The formulation of 1-D CNN and GCN layers
is presented as follows.

1-D Convolutional Neural Network:
The 1D CNN layer [49] is expressed as

ok = o[XM ConviD(wlt, oY) + b], ()

where 0}! is the input of 1-D CNN layer [, 00 = X; is the
input feature, o} is the output of 1-D CNN layer [, w};*
are the trainable weights at layer [, b} is the biases of 1-D
CNN layer I, ConvlD is the valid cross-correlation
operator, o(-) is the activation function.
Graph Convolutional Network:

The node feature at each time index is processed by the
GCN layers [50], which can be expressed as

Dense

[32]

Dense

[16]

Dense

(1]

Dense

_
Fault location — Dense layers

(1]

Fault phase class

Dense [64] Dense [13x8]
Dense [13] Dense [13]
Fault type classification— Dense layers
Dense [64] Dense [32]
Dense [6] Dense [6]

ification— Dense layers

Dense

[64]
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Dense

(3]

(3]

Learning rate tuning in fault event binary classification
T T :

110

—ANN —1D-CGCN

-
o
o

90
80

70

Training accuracy

60
50

Learning rate 0.01

1

Learning rate (.00

40

50

Epoches

150

Fig. 4. The training accuracy curves with ANN and 1D-CGCN structures
under the change of learning rate from 0.01 to 0.001 at epoch 120.

where

i met e Lo
Hiyy =0 (D 24D ZH(DW(D),

&)

A=A+1Iy is the adjacent matrix with self-

0!, Wy is the weight matrix of layer [, a(-) is a nonlinear
activation function. This graph propagation formula can be
derived as a first-order approximation of localized spectral
filers [44].

The detail structures of ANN and 1D-CGCN are
compared in Table II, where we have shared layers for
feature extraction and dense layers for classification
models (classifiers). Reshaping and flattening operations
are applied appropriately to condition the dimension
compatibility between layers. There are 4 classifiers for
fault event detection, fault location, fault type
classification, and fault phase identification.

The outputs of fault event detection are fault and no-
fault. The fault types are classified into six types included
1) no-fault (NF), 2) single-phase-to-ground (LG), 3) two-
phase (LL), 4) two-phase-to-ground (LLG), 5) three-

connection, Iy is the identity matrix, D is the agree matrix
from A with Dy; = ¥; A;; and Dy; = 0, Hfy,,y is the output
of GCN layer [, H(il) is the input of GCN layer [, H(io) =

phase (3L),

and 6)

three-phase-to-ground (3LG).

Therefore, ytype € B¢ with the i-th element of .y, :
Yeypeli]l = 1 indicates the i-th fault category occurred
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Fig. 5. Fault detection accuracy of Potsdam Microgrid system using
proposed 1D-CGCN in comparison with ANN structure.
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Fig. 6. Confusion matrix for fault type classification using 1D-CGCN of
Potsdam microgrid test set.

while all other yi,.[i] =0 . The fault phases are
determined by Yppese € BY® , where Yppgseli] =1
indicating the fault occurs in phase 4, B, C, or AB,BC,CA
when the fault types are asymmetrical i.e. LG, LL, and
LLG, respectively. The fault location is indicated by y; =
1, where i = 1, 2, 3, ... N if the fault occurs in the i-th bus,
otherwise y; =0 . The fault location detection is
performed at node-level classification, where the faulty
bus is labeled as 1 and the non-fault bus is labeled as 0.

The graph dataset is trained with Adam optimizer and
cross-entropy losses. The random dropout of 10% is added
in dense layers to reduce overfitting. The learning rate is
started at 0.01 and then is reduced to 0.001 at epoch 120
as shown in Fig. 4. The training accuracies become
saturated with the learning rate of 0.01 after 120 epochs.
As can be seen, the training accuracies of ANN and 1D-
CGCN achieve 98.35% and 99.48%, respectively after
reducing the learning rate to 0.001.

After training the fault event classification 120 epochs,
the shared feature extraction layers are transferred into 3
other models: fault type classifer, fault phase classifier and
fault location. Specific dense layers are added to train
again for fault type, fault phase classification, and phase
location. However, the fault phase classification is only
trained with unbalanced faults data. Firstly, transfer
learning is performed since we freeze the transferred
layers and only do training for the additional dense layers.
After 120 epochs, we unfroze those transferred layers and
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Fig. 7. Confusion matrix for fault phase A, B, and C classification using
1D-CGCN of Potsdam microgrid test set.
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Fig. 8. Confusion matrix for fault phase AB, BC, and CA classification
using 1D-CGCN of Potsdam microgrid test set.

train again the entire models with 0.001 learning rate for
the fine-tuning process.

IV. RESULTS AND DISCUSSION

The training and test results are collected on a personal
computer with Intel Core 17-8700, 32 GHz, 32 GB RAM,
and NVIDIA GTX 1080 GPU. The machine learning
framework is Pytorch with Pytorch-geometric library for
graph learning [51].

The fault detection accuracies of ANN and the proposed
1D-CGCN are compared in Fig. 5. As can be seen, for the
fault event detection, ANN achieves 98.71% while 1D-
CGCN can achieve 99.5%. For the fault type
classification, 1D-CGCN have 1% higher than ANN since
the two structures achieve 97.4% and 98.4% respectively.
The 1D-CGCN is outperformed in fault phase
identification with 99.2% compared to 97.6% of the ANN.
Similarly, the 95.5% accuracy with 1D-CGCN in fault
location compared to only 88.4% of ANN.

The detailed confusion matrix of fault type
classification is shown in Fig. 6. There are 780 samples for
each 3L and 3LG faults, 2340 samples for each LG, LL
and LLG faults, and 1420 samples for non-fault in the total
of 10,000 samples of the test set. As can be seen, the 3L
and 3LG faults have less accuracy compared to other fault
types.

The detailed confusion matrices of fault phase
identification are shown in Figs. 7 and 8. There are 780
graph data for each phase (AG, BG, CG) in the total 2340
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line-ground (LG) fault. There are 1560 graph data for each
cases of AB/ABG, BC/BCG, and CA/CAG in the total of
2340 line-line (LL) fault and 2340 double line-ground
(LLG) fault. The values in those confusion matrices are
consistent with the testing accuracy in Fig. 5. Those results
prove the high performance of the proposed fault detection
models using 1D-CGCN.

V. CONCLUSION

In this paper, we propose a combination of 1D-CNN
and GCN named 1D-CGCN for fault detection in
distributed energy systems. The voltage measurements are
inputs of the fault detection models. The detection models
handle fault event detection, fault type and phase
classification, and fault location. The real-time simulation
graph data from the Potsdam microgrid using Opal-RT are
collected and trained for the models. Transfer learning and
fine-tuning techniques are applied to reduce training
efforts. The performance of 1D-CGCN is compared with
the traditional ANN to prove its superiority. The detailed
confusion matrices of the classification tasks are shown for
validation.The high accuracies are achieved with proposed
1D-CGCN classification models.

Although the proposed 1D-CGCN can achieve high
accuracies, however, the effects of measurement noises
and the lack of measurement data are not considered.
Those issues would be tackled in future work.
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