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Abstract— This paper presents a 1-D convolutional and 

graph convolutional networks  for fault detection in 

microgrids. The combination of 1-D convolutional neural 

networks (1D-CNN) and graph convolutional networks 

(GCN) helps extract both spatial-temporal correlations from 

the voltage measurements in microgrids. The fault detection 

scheme includes fault event detection, fault type and phase 

classification, and fault location. There are five neural 

network model training to handle these tasks. Transfer 

learning and fine-tuning are applied to reduce training 

efforts. The combined 1-D convolutional and graph 

convolutional networks (1D-CGCN) is compared with the 

traditional ANN structure on the Potsdam 13-bus microgrid 

dataset. The accuracy of 99.5%, 98.4%, 99.2%, and 95.5% 

are achieved in fault event detection, fault type classification, 

fault phase identification, and fault location respectively. The 

detailed confusion matrices of fault type and fault phase 

classification are provided for validation. 

Keywords— Fault detection, fault location, microgrid 

protection, deep neural network, graph learning. 

I.  INTRODUCTION 

Fault diagnostic plays a key role to determine the 

strategy of how to isolate and restore power systems, 

especially under the growing integration of distributed 

energy resources. The protection and restoration strategy 

ensures the system's resiliency and reliability [1], [2]. In 

inverter-based distributed energy resources, the traditional 

relay protection may become ineffective due to the small 

fault current [3], [4], [5]. Moreover, to effectively and 

accurately isolate faults and restore normal operation, one 

requires the information of fault event, fault type, fault 

phase, and fault location [6], [7]. The correct information 

about faults significantly enhances the protection and 

restoration and also saves time and cost of utilities [8], [9], 

[10].  

The fault diagnostic schemes existing in literature [11]–

[24] can be loosely divided into model-based and data-

driven methods. The measurements are voltage and 

current with different sampling rates from digital relays, 

phasor measurement units (PMU), or advance metering 

infrastructure (AMI) [25]. Model-based techniques try to 

compute quantitative metrics that distinguish fault data 

from normal measurements. A comparison between pre-

fault data and fault data is usually evaluated for fault 

detection [26], [27]. There are many analytical approaches 

are applied such as evaluating the negative and positive 

sequences of current [26], assessing the sequential voltage 

and current components [28],  monitoring the transient of 

current [27], computing the Teager-Kaiser energy [29], 

analyzing the principal components and fault signatures 

[30], and state estimation using mathematical morphology 

and recursive least square [31]. 

Data-driven and machine learning-based approaches try 

to derive a fault detection model using statistical 

information from the measurement data. There are many 

popular machine learning classifiers have been applied to 

detect faults such as decision tree (DT) [4], random forest 

(RF) [32], k-nearest neighbor (k-NN), support vector 

machine (SVM), and Naïve Bayes [33]. Model-based and 

machine learning can be combined in the way that model-

based techniques do the feature extraction and machine 

learning do the classification. In [10], discrete wavelet 

transform is applied before the classification process. The 

maximal overlap discrete wavelet transform and extreme 

gradient boost algorithm are employed in [34]. Pure neural 

network structures are employed frequently such as 

Taguchi-based artificial neural networks [35], and gated-

recurrent-unit deep neural networks [36]. 

Most existing works analyze the current measurements 

on the line the fault occurs. There is some fault detection 

scheme using PMU and pseudo-measurements [37], [38], 

[39]. Similarly, the machine learning techniques of SVM, 

k-NN, DT algorithms [39], convolutional neural networks 

(CNN) [40], [41], semi-supervised [42], and GCN [43] are 

implemented to detect faults.  However, in these works, 

there is a research gap in fault type, fault phase 

classification, and fault location on mesh-topology power 

distribution systems. 

This paper presents a combination of 1-D convolutional 

neural networks and graph neural networks on voltage 

measurement data to detect fault events, to classify fault 

type and phase, and to locate the nearest bus where the 

fault occurs. The paper provides a unique contribution 

owing to the following bullet points. 

• The data input includes voltage measurements in 

time series from PMU, AMI, or smart meters. The 
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time synchronization for phasors is not necessary. 

• The combination of 1-D CNN and GCN can extract 

both spatial and temporal correlation in the 

measurement data. 

•   The fault event detection, fault type, phase 

classification, and fault location are all resolved.  

The remaining parts are organized as follows. Section 

II presents the Potsdam microgrids and the graph data 

collection procedure. In Section III, the combination of 1-

D CNN and GCN is described. The training, transfer 

learning, and fine-tuning processes are also expressed. The 

results are discussed in Section IV. Section V concludes 

the paper. 

II. GRAPH DATASET OF POTSDAM MICROGRID 

The power distribution networks can be defined as an 

undirected graph   , ℰ, , where  denotes the set 

of vertices, ||  , each vertex in the graph represents a 

node (bus) in the distribution network,   , , …  

is the tuple of node features, ℰ denotes the set of edges, |ℰ|  , each edge represents a branch connecting two 

buses,   , , …  is the tuple of edge feature, and  ∈ ℝ  denotes the adjacency matrix of the 

distribution network. The input data for graph learning are 

the node features …, and the edge features …. 

Some papers also consider the edge features and the 

attributes for each graph data ( [44]; however, in this 

paper, we only consider the node features on a graph.  

The temporal graph dataset is constructed by the 

ordered set of graph, node feature matrix, and label vector 

tuples [45]  , ,  , , , , …  ,  ,  , where the 

vertex sets is unchanged   , ∀ ∈ 1, … , ,   is the graph data index. The node feature matrices  ∈ℝ  have 3 dimensions as follows: the number of 

nodes ||  , the number of features in each node , and 

the time interval . The label vector includes 3 labels of 

the distribution network graph over the time interval ,    ,  ,  , where   is the node index 

where the fault occurs.  

The node feature matrix   , , …  contains 

the bus voltages of all measured buses. In the bus without 

voltage measured, the node features are filled with zeros. 

The node feature in node  is shown in the form of 

   , , ⋯ ,, , ⋯ ,, , ⋯ ,



, (1) 

where  is the length of the evaluation period. 

Specifically, considering the Potsdam microgrid shown 

in Fig. 1, we have a graph of 13 nodes and 13 edges. There 

are 5 inverter-based generators (IBG) with a primary r  

1 12 11 10 9 8
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~ ~ ~ ~

~

DGU 1 DGU 2 DGU 3 DGU 4

DGU 5 : Fault locations : Voltage measurements

 
Fig. 1.  13-bus Potsdam microgrid system diagram with fault locations 
and voltage measurements on buses 1, 5, 8, 9, 10, and 13. 

TABLE I.  POTSDAM MICROGRID DATASET 

Parameters Configuration Count 

Fault type 
AG, BG, CG, AB, 

BC, CA, ABG, BCG, 
CAG, ABC, ABCG 

11 

Fault 
resistance 

0.1, 1, 10 (Ω 3 

Fault location 
Buses: 1, 2, 3, 4, 5, 6, 

7, 8, 9, 10, 11, 12, 13. 
13 

Load scenario randomly 150 

Total fault cases: 64,350 | Train: 55,770 | Test: 8,580 

Total load change cases: 10, 000 | Train: 8,580 | Test: 1,420 

Train-set: 64,350 samples | Test-set: 10,000 samples 

 

 
Fig. 2. Voltage waveform in phases A, B, C at bus 1 with ABC and AB 

faults and fault resistance 1 and 0.1 Ω occurs at bus 1, respectively, in the 
Potsdam microgrid. 

 

droop control strategy [46] and a secondary PI controllefor 

frequency and average voltage regulation [47] in the 

islanded mode. The voltage level is 13.2 kV line-line at 60 

Hz. The loads and IBGS have parameters following those 

of [48]. The voltage measurements are placed in the buses 

marked with a blue square; the data sampling frequency is 

1 kHz. The data is collected via real-time simulation using 

Opal-RT.  

Load changes are set randomly between 30-130% of the 

nominal load profile. Faults are set at each bus in turn with 

the fault type of AG, BG, CG, AB, BC, CA, ABG, BCG, 

CAG, ABC, and ABCG and fault resistance of 0.1, 1, and 

10 Ω. The raw data are collected as one second windows 

and then are trimmed into 20 ms of 20 samples which 

cover about 1.2 cycles of 60 Hz as shown in Fig. 2. 

Thereafter, 55,770 graph data of 20-ms windows for the  
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Fig. 3.  Proposed temporal 1D-CGCN structure for fault detection. 

 

fault cases and 8,580 graph data of non-fault cases with 

random load changes are gathered as the train set. We also 

select 8,580 fault and 1,420 non-fault cases for the test set. 

Table I summarizes these configurations for fault cases 

and load changes data generation. 

III. 1-D CONVOLUTIONAL GRAPH CONVOLUTIONAL 

NETWORKS MODELS FOR FAULT DETECTION. 

The proposed temporal 1D-CGCN structure for fault 

detection is depicted in Fig. 3. We utilize the 1-D CNN to 

extract the temporal correlation in time series data of 

voltage measurement in each bus. Thereafter, the GCN 

layers are used to generalize the spatial correlation on 

graph of the Potsdam microgrid.  This combination 

considers the spatial-temporal correlation in the 

measurement data. The global pooling operation 

concentrates all hidden features from nodes and finally, the 

dense layers are trained to classify the fault type and fault 

phase. The fault location is performed based on all hidden 

features from all the nodes without using the pooling 

operation. The formulation of 1-D CNN and GCN layers 

is presented as follows. 

1-D Convolutional Neural Network: 

The 1D CNN layer [49] is expressed as 

   ∑ 1,  +  , (2) 

where  is the input of 1-D CNN layer ,    is the 

input feature,   is the output of 1-D CNN layer ,  

are the trainable weights at layer ,   is the biases of 1-D 

CNN layer  , 1  is the valid cross-correlation 

operator, ∙ is the activation function. 

Graph Convolutional Network: 

The node feature at each time index is processed by the 

GCN layers [50], which can be expressed as  

     , (3) 

where     +   is the adjacent matrix with self-

connection,  is the identity matrix,  is the agree matrix 

from  with   ∑   and   0,   is the output 

of GCN layer ,   is the input of GCN layer ,   

TABLE II.  COMPARISONS OF NEURAL NETWORK STRUCTURES 

ANN 1D-CGCN 

Shared feature extraction layers 

Input [780] Input [13×3×20] 

Dense [512] 1D-CNN [13×3×5] 

Dense [128] GCN [13×8] 

Fault event binary classification – Dense layers 

Dense [32] Dense [16] 

Dense [1] Dense [1] 

Fault location – Dense layers 

Dense [64] Dense [13×8] 

Dense [13] Dense [13] 

Fault type classification– Dense layers 

Dense [64] Dense [32] 

Dense [6] Dense [6] 

Fault phase classification– Dense layers 

Dense [64] Dense [32] 

Dense [3] Dense [3] 

 

 
Fig. 4.  The training accuracy curves with ANN and 1D-CGCN structures 
under the change of learning rate from 0.01 to 0.001 at epoch 120. 

 ,  is the weight matrix of layer , ∙ is a nonlinear 

activation function. This graph propagation formula can be 
derived as a first-order approximation of localized spectral 
filers [44].  

The detail structures of ANN and 1D-CGCN are 

compared in Table II, where we have shared layers for 

feature extraction and dense layers for classification 

models (classifiers). Reshaping and flattening operations 

are applied appropriately to condition the dimension 

compatibility between layers. There are 4 classifiers for 

fault event detection, fault location, fault type 

classification, and fault phase identification.  

The outputs of fault event detection are fault and no-

fault. The fault types are classified into six types included 

1) no-fault (NF), 2) single-phase-to-ground (LG), 3) two-

phase (LL), 4) two-phase-to-ground (LLG), 5) three-

phase (3L), and 6) three-phase-to-ground (3LG). 

Therefore,  ∈   with the  -th element of  :   1 indicates the -th fault category occurred  
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Fig. 5.  Fault detection accuracy of Potsdam Microgrid system using 
proposed 1D-CGCN in comparison with ANN structure. 

 

 
Fig. 6.  Confusion matrix for fault type classification using 1D-CGCN of 
Potsdam microgrid test set. 

 

while all other   0 . The fault phases are 

determined by  ∈  , where   1 

indicating the fault occurs in phase , , , or , ,  
when the fault types are asymmetrical i.e. LG, LL, and 

LLG, respectively. The fault location is indicated by   1, where   1, 2, 3, …  if the fault occurs in the -th bus, 

otherwise    0 . The fault location detection is 
performed at node-level classification, where the faulty 
bus is labeled as 1 and the non-fault bus is labeled as 0. 

 The graph dataset is trained with Adam optimizer and 

cross-entropy losses. The random dropout of 10% is added 

in dense layers to reduce overfitting. The learning rate is 

started at 0.01 and then is reduced to 0.001 at epoch 120 

as shown in Fig. 4. The training accuracies become 

saturated with the learning rate of 0.01 after 120 epochs. 

As can be seen, the training accuracies of ANN and 1D-

CGCN achieve 98.35% and 99.48%, respectively after 

reducing the learning rate to 0.001.  

After training the fault event classification 120 epochs, 

the shared feature extraction layers are transferred into 3 

other models: fault type classifer, fault phase classifier and 

fault location. Specific dense layers are added to train 

again for fault type, fault phase classification, and phase 

location. However, the fault phase classification is only 

trained with unbalanced faults data. Firstly, transfer 

learning is performed since we freeze the transferred 

layers and only do training for the additional dense layers. 

After 120 epochs, we unfroze those transferred layers and  

 
Fig. 7.  Confusion matrix for fault phase A, B, and C classification using 
1D-CGCN of Potsdam microgrid test set. 

 
Fig. 8.  Confusion matrix for fault phase AB, BC, and CA classification 
using 1D-CGCN of Potsdam microgrid test set. 
 

train again the entire models with 0.001 learning rate for 
the fine-tuning process. 

IV. RESULTS AND DISCUSSION 

The training and test results are collected on a personal 

computer with Intel Core i7-8700, 32 GHz, 32 GB RAM, 

and NVIDIA GTX 1080 GPU. The machine learning 

framework is Pytorch with Pytorch-geometric library for 

graph learning [51].  

The fault detection accuracies of ANN and the proposed 

1D-CGCN are compared in Fig. 5. As can be seen, for the 

fault event detection, ANN achieves 98.71% while 1D-

CGCN can achieve 99.5%. For the fault type 

classification, 1D-CGCN have 1% higher than ANN since 

the two structures achieve 97.4% and 98.4% respectively. 

The 1D-CGCN is outperformed in fault phase 

identification with 99.2% compared to 97.6% of the ANN. 

Similarly, the 95.5% accuracy with 1D-CGCN in fault 

location compared to only 88.4% of ANN. 

The detailed confusion matrix of fault type 

classification is shown in Fig. 6. There are 780 samples for 

each 3L and 3LG faults, 2340 samples for each LG, LL 

and LLG faults, and 1420 samples for non-fault in the total 

of 10,000 samples of the test set. As can be seen, the 3L 

and 3LG faults have less accuracy compared to other fault 

types.  

The detailed confusion matrices of fault phase 

identification are shown in Figs. 7 and 8. There are 780 

graph data for each phase (AG, BG, CG) in the total 2340 
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line-ground (LG) fault.  There are 1560 graph data for each 

cases of AB/ABG, BC/BCG, and CA/CAG in the total of 

2340 line-line (LL) fault and 2340 double line-ground 

(LLG) fault. The values in those confusion matrices are 

consistent with the testing accuracy in Fig. 5. Those results 

prove the high performance of the proposed fault detection 

models using 1D-CGCN. 

V. CONCLUSION 

In this paper, we propose a combination of 1D-CNN 
and GCN named 1D-CGCN for fault detection in 
distributed energy systems. The voltage measurements are 
inputs of the fault detection models. The detection models 
handle fault event detection, fault type and phase 
classification, and fault location. The real-time simulation 
graph data from the Potsdam microgrid using Opal-RT are 
collected and trained for the models. Transfer learning and 
fine-tuning techniques are applied to reduce training 
efforts. The performance of 1D-CGCN is compared with 
the traditional ANN to prove its superiority. The detailed 
confusion matrices of the classification tasks are shown for 
validation.The high accuracies are achieved with proposed 
1D-CGCN classification models. 

Although the proposed 1D-CGCN can achieve high 
accuracies, however, the effects of measurement noises 
and the lack of measurement data are not considered. 
Those issues would be tackled in future work. 
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