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Abstract 

Maximum stand density index (SDIMAX) represents the 

carrying capacity of a forest stand based on the relationship 

between the number of trees and their size. Plot‐level 

inventory data provided through a collaborative network of 

federal, state, and private forest management groups were 

utilized to develop SDIMAX models for important Pacific 

Northwest conifers of western Washington and Oregon, 

USA. The influence of site‐specific climatic and 

environmental variables was explored within an ensemble 

learning model. Future climate projections based on global 

circulation models under different representative CO2 

concentration pathways (RCP 4.5 and RCP 8.5) and 

timeframes (2050s and 2080s) were utilized in a space‐

fortime substitution to understand potential shifts in 

modeled SDIMAX. A majority of the region showed 

decreases in carrying capacity under future climate 

conditions. Modeled mean SDIMAX decreased 5.4% and 

11.4% for Douglasfir (Pseudotsuga menziesii (Mirb.) 

Franco) dominated forests and decreased 6.6% and 8.9% 

for western hemlock (Tsuga heterophylla (Raf.) Sarg.) and 

Pacific silver fir (Abies amabilis), dominated forests under 

the RCP 4.5 in the 2050s and RCP 8.5 in the 2080s, 

respectively. Projected future conditions often fall outside 

the range of any 
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contemporary climate profile, resulting in what may be 

referred to as extramural conditions. Within the study 

region, 45% and 46% of climate variables included in the 

final model were extramural for the Douglas‐fir and 

hemlock models, respectively, under RCP 8.5 in the 2080s. 

Although extrapolating beyond the range of input data is 

not appropriate and many unknowns remain regarding 

future climate projections, these results allow for general 

interpretations of the direction and magnitude of potential 

shifts in forest carrying capacity. 

Recommendations for Resource Managers 

• These results present forest managers and policymakers 

with the ability to make location‐specific interpretations 

of potential shifts in forest stand carrying capacity under 

potential future climate projection scenarios, which 

show forest communities of the Pacific Northwest may 

be facing a longer, warmer, droughtier growing season. 

• Across the study region, a majority of the landscape is 

seeing a downward shift in the modeled maximum 

carrying capacity under future climate projections. 

• The modeled carrying capacity of mixed species stands 

appear to be more resilient to projected changes in 

climate. 

• Planting and thinning to lower densities may provide 

resilience and capture the projected increases in 

densityrelated mortality. 

• Across all projected future climate scenarios fall into 

extramural conditions, which are a combination of 

climatic conditions not currently experienced in the 

study area. 

KEYWORDS 

carrying capacity, climate change, Douglas‐fir, gradient boosting 

regression, maximum stand density index, Pacific Northwest, western 

hemlock 
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1 | INTRODUCTION 

Forest stands are generally adapted to the environmental conditions that they have been exposed to 

throughout stand development. Changes to temperature, humidity, and timing and amount of 

precipitation are all predicted to occur in the near and distant future (IPCC, 2013). General Circulation 

Models (GCMs) with different greenhouse gas emissions scenarios (representative CO2 concentration 

pathways [RCPs]) project various changes to these important climate variables (Wang et al., 2016). 

These potential changes will impact biogeochemical cycles between forests and the environment, 

which may lead to changes in forest growth, survival, and structure (Chmura et al., 2011). The 

development of adaptive forest management strategies for potential future climatic conditions may 

provide resilience to a changing environment. 

Forests of the Pacific Northwest, in particular, rely on water storage in snowpack and soils during 

summer droughts common to the Mediterranean climate experienced in the region (Franklin & 

Waring, 1980). Even without changes to the total amount of precipitation, earlier snowmelt and a 

decline in precipitation falling as snow (PAS) are reducing this critically important water reservoir, 

and further intensifying water stress (Harpold, 2016). The manipulation and control of growing stock, 

in the form of density management, could be a key silvicultural tool to increase forest resilience to 

environmental change. Reducing stand density increases water and other resources available to the 

residual trees, and in turn, results in increased tree vigor and a greater ability to handle drought, and 

damage from insects and disease (Puettmann, 2011). Tree species and forest types that may be more 

vulnerable to changes in temperature or precipitation patterns, in particular overstocked stands or those 

with high levels of competition, should be targeted for density management manipulations (Chmura 

et al., 2011). 

An understanding of the current and potential future responses of forests is necessary to facilitate 

the development of silvicultural management options for adaptation to any degree of future change 

(Dolanc et al., 2013). The response a forest may have to a changing climate will ultimately depend on 

local, site‐specific conditions. Special concern should be given toward areas where species grow at a 

moisture‐limited range of conditions (Puettmann, 2011). Decision‐makers should target the most 

vulnerable sites, life stages, traits, and processes to increase forest adaptability (Chmura et al., 2011). 

For example, the negative impacts of declining snowpack can be exacerbated by high stand density. 

Gleason et al. (2021) recommend reducing stand density as a mitigation strategy to promote resilience 

to snow droughts in ponderosa pine stands and Fernandes et al. (2016) found thinning in pine stands 

increased the resilience to climate variations by increasing water use efficiency and promoted targeted 

(i.e., under appropriate timing) density reduction as an effective adaptive silviculture strategy under a 

changing climate. 

Knowledge of where vulnerable species and forest types are found, such as areas with drought 

concerns, will facilitate where climate adaptation management efforts should be directed. Some 

management adjustments might include modifying harvest schedules and thinning regimes, or 

choosing different species or genetics when replanting (Millar et al., 2007). Capturing mortality before 

the initiation of self‐thinning (i.e., density‐dependent mortality) requires temporal knowledge of when 

limiting conditions will begin to impact stand development. 

It has been demonstrated through empirical statistical analysis that climatic conditions affect the 

carrying capacity (maximum stand density index [SDIMAX]) of a forest stand, which may be predicted 

through modeling efforts (Aguirre et al., 2018; Andrews et al., 2018; Kimsey et al., 2019). Due to the 

climatic sensitivity of SDIMAX, this index may be used to assess climate change adaptation and 
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mitigation efforts (Brunet‐Navarro et al., 2016). One approach to understanding how future conditions 

may affect modeled SDIMAX is to utilize projected climatic conditions in place of historical climate 

data used to build the original models, referred to as space‐for‐time substitution (Yue et al., 2016). 

While these statistical models are correlative, and not necessarily suited to make mechanistic 

interpretations, they do allow the relative importance of climatic predictor variables to be assessed 

(Rehfeldt et al., 2006). 

Statistical analysis techniques such as ensemble learning methods (i.e., random forest and 

stochastic gradient boosting) allow for the effect of many variables and their interactions on the target 

function to be assessed (Friedman, 2001; Iverson et al., 2008). Nonparametric, ensemble learning 

methods are ideal for large data sets with a multidimensional variable space with no prior distribution 

assumed between dependent and independent variables (Andrews et al., 2018). The ability of a model 

to incorporate many variables has proved useful in projecting the effects of climate change on trees 

and forests (Chmura et al., 2011). 

Future scenarios are often outside the range of any contemporary climate profile. These projections 

may be considered extramural (Rehfeldt et al., 2006) or no‐analog conditions (Puettmann, 2011). Thus, 

any predictions made by models relying on future projections are not defensible. Rehfeldt et al. (2006) 

found among most of the biotic communities they examined that the majority of the landscape was 

projected into an extramural condition by the year 2100, with some reaching over 85%. Climate 

conditions were considered extramural if any one of the predictor variables at a location was outside 

the range of contemporary conditions. With this in mind, interpretations regarding the direction and 

magnitude of change may still be valid to consider. Exploring a variety of timescales and emissions 

scenarios can give a summary of the expected range and variability of any future changes. 

The goal of this study is to understand the relationship between SDIMAX and future climatic 

conditions across the Pacific Northwest forest region. Specific objectives are to: (1) utilize linear 

quantile mixed models (LQMMs) to determine the self‐thinning boundary of important forest types 

and tree species, (2) determine climatic variable influence and importance utilizing gradient boosting 

methodology (GBM) to predict SDIMAX, (3) estimate potential future directional shifts in SDIMAX 

under various climate projections using GCMs and different RCPs, and (4) understand what proportion 

of the future projections for the study area falls into extramural or no‐analog conditions. 

2 | MATERIALS AND METHODS 

2.1 | Plot data: Inventory data sets 

Forest inventory plot data for this project were provided by a collaborative network of public and 

private land management agencies, the Intermountain Forestry Cooperative, and the United State's 

Forest Service Forest Inventory and Analysis program. Each plot record contained the important tree 

metrics of quadratic mean diameter (QMD), number of trees per hectare (TPH) and proportion of 

basal area by major species group. Each record contained precise plot coordinates, which allowed for 

the extraction of important site‐specific, environmental variables from geospatial layers. Data 

screening removed plots with less than 2.54 cm QMD and 24.7 TPH to establish a consistent threshold 

of diameter and number of trees. Only trees marked as living were included in plot‐level estimates. 

The final data set consisted of 168,220 unique and statistically independent (i.e., no remeasured plots 

or stands) observations representing the varied range of forest ecotypes across the Pacific Northwest. 
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Plot records were subset to fall into one of two categories, the first (n = 155,083) are those plots 

containing at least 10% Douglas‐fir (Pseudotsuga menziesii (Mirb.) Franco) by basal area, and the 

second (n = 13,137) consisting of plots with at least 10% western hemlock (Tsuga heterophylla (Raf.) 

Sarg.) basal area that contained no Douglas‐fir proportion. This second subset of data points was 

concentrated in the more niche environments in the Coast Range, Olympic Peninsula, and Northern 

Cascades where wetter, climax forest conditions with less extreme weather events are found. Whereas 

Douglas‐fir tends to be more generally found across the study area and provides a good basis for the 

average conditions. These data sets will be referred to as DF‐Mix and HemFir, respectively. 

2.2 | Topographic data 

Topographic attributes were derived from the US Department of Agriculture (USDA) and National 

Resource Conservation Service (NRCS) National Elevation Data 30‐m digital elevation models. Slope 

and aspect were derived using the “raster” package (Hijmans, 2020) available through R 4.0 (R Core 

Team, 2020). Trigonometric transformations and interactions of cosine, sine, and tangent on slope and 

aspect were utilized to express the influence of these features on climate factors such as moisture and 

temperature (Roise & Betters, 1981). Spatial maps of soil parent materials were derived from USGS 

1:24,000 geology maps and surficial volcanic ash mantles from the NRCS soil survey geographic 

database (SSURGO). Major geologic groupings and presence/absence of ash influence are broad 

categorical descriptors that serve as proxies of regional nutritional and water‐holding capacity 

features, which are important drivers affecting growth and mortality (Kimsey et al., 2019). These 

categorical groupings included eight major soil parent materials including extrusive, intrusive, glacial, 

metamorphic, metasedimentary, sedimentary, surficial deposits, and sandstone; and a 

presence/absence of categorical variable for surficial ash influence. 

2.3 | Climatic data 

Climate data were obtained through the ClimateNA v6.11 software package using plot‐specific 

latitude, longitude, and elevation. ClimateNA downscales historical and future climate data layers into 

scale‐free (not gridded but directly estimable for any location) point estimates of climate values for 

the entire North American continent (Wang et al., 2016). These climate data contain directly calculated 

and derived variables, as well as various interactions resulting in over 230 climate variables available 

for extraction. Given the typical timeframe needed for a tree to grow to the data set mean of 29 cm 

diameter at breast height, 30‐year (1961–1990) climate normals were utilized to represent the average 

conditions these forests experienced during stand development. Future projections within ClimateNA 

are based on GCMs of the Climate Model Intercomparison Project 5. This analysis utilizes the 15 

CGM ensemble, composed of the following Atmosphere‐Ocean GCMs: ACCESS1‐0 (Australia), 

CCSM4 (National Center for Atmospheric Research, USA), CESM1‐CAM5 (University Center for 

Atmospheric Research, USA), CNRM‐CM5 (France), CSIRO‐Mk3‐6‐0 (Australia), CanESM2 

(Canada), GFDL‐CM3 (Geophysical Fluid Dynamics Lab, USA), GISS‐E2R (Goddard Institute of 

Space Studies, USA), HadGEM2‐ES (United Kingdom), INM‐CM4 (Russia), IPSL‐CM5A‐MR 

(France), MIROC‐ESM (Japan), MIROC5 (Japan), MPI‐ESM‐LR (Germany), and MRI‐CGCM3 

(Japan). The future projections incorporate different greenhouse gas concentration trajectories or 
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RCPs. This analysis selected two RCPS: RCP 4.5, a medium stabilization scenario where emissions 

peak in the 2040s with radiative forcing pathways stabilizing at 6 W/m2 (~650 ppm CO2) after 2100, 

and RCP 8.5, a very high emission scenario with rising radiative forcing pathway leading to 8.5 W/m2 

(~1370 ppm CO2) by the end of the century (Vuuren et al., 2011). Each 15 GCM ensemble and RCP 

scenario were summarized into 30‐year time future periods, referred to hereafter as 2050s (2041–

2070) and 2080s (2071–2100). 

From each of the DF‐Mix and HemFir data sets, four different future climate scenarios were built. 

While keeping the tree and topographic data constant, future climate variables were extracted for each 

plot location for the four climate scenarios RCP 4.5 in period 2050s, RCP 4.5 in period 2080s, RCP 

8.5 in period 2050s, and RCP 8.5 in period 2080s. These additional climate extractions resulted in five 

scenarios for each DF‐Mix and HemFir data sets: the historical data set and four future scenarios. 

Comparisons of predicted SDIMAX between the future and the historical climate scenarios were 

evaluated. 

2.4 | Statistical analysis: LQMM and GBM 

To understand the influence of climate on forest stand carrying capacity, first the maximum size–

density relationship (SDIMAX) must be estimated. Following the findings of Salas‐Eljatib and 

Weiskittel (2018), LQMMs were developed with the “lqmm” package (Geraci, 2014) within the R 

programming environment (R Core Team, 2020) to estimate the random plot‐specific intercepts and 

fixed species‐specific slope of the self‐thinning line based on the Reineke (1933) equation: 

ln TPH = (β0 + ki) + β1 ln QMD, 

where β0 and β1 are fixed effects parameters and ki is the estimated random effect for plot record i. The 

random intercept parameter produced unique individual plot‐level intercept values, thus giving each 

record a unique SDIMAX, where SDIMAX is the maximum number of TPH when QMD is equal to 10 

cm. As in Andrews et al. (2018), values from the 90th through the 99th quantile were compared to 

determine which percentile to utilize. The 95th was chosen as the values produced were reasonable 

while removing the sensitivity of highly influential observations found at the higher quantiles, as well 

as unreasonably low values produced at the lower quantiles. 

The next step introduces site‐specific variables by linking the estimated SDIMAX to climatic and 

other environmental properties found at each plot location. Utilizing the ensemble learning technique 

GBM, variable influence and importance were assessed. Stochastic gradient boosting (GBM) makes 

use of an additive gradient descent “boosting” algorithm that builds successively improved prediction 

trees (Friedman, 2001). Each data set, DF‐Mix and HemFir, was split 70/30 into training and testing 

sets. The test set was held back from model development and used as independent validation of model 

fit. The R packages “gbm” (Greenwell et al., 2020) and “caret” (Kuhn, 2020) were used to determine 

the influence of environmental variables by tuning a GBM model. The GBM model was tuned using 

a grid search method, where the various parameters were optimized toward the best predictive model. 

GBM constructs an ensemble of prediction trees in a “greedy stepwise” manner and is noted for being 

robust to the collinearity of variables (Hastie et al., 2008). A first run included all variables. Then, 

variable importance, the relative influence of variables on prediction, was examined to reduce the 
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number of variables in the model to only the most influential. A relative influence of 0.25 was chosen 

to remove noninformative variables from the first‐run predictor set. Simplifying the predictor set 

results in a more parsimonious model, without degradation of model fit (Elith et al., 2008). Final 

models were selected based on a 5‐fold, cross‐validated mean absolute error (MAE). MAE for both 

training and testing data was assessed to prevent overfitting. The final number of model‐built trees 

producing the lowest error on testing data without overfitting was chosen. 

2.5 | Additional regionwide data sets 

In addition to the inventory plot‐driven data sets, a 1‐km hexagonal grid was placed across the entire 

study region and then clipped to each Douglas‐fir and western hemlock range. Species ranges were 

determined from FIA interpolated basal area maps, where if at least 10% of the total basal area found 

at any given location was of the species of interest, then that location was considered in range. The 

grid across the entire regionwide area was then clipped to the ranges creating two regionwide data sets 

for DF‐Mix (n = 151,299) and HemFir (n = 80,974). 

The same topographic and climate variables were extracted for each plot location, including the 

four future scenarios. The final GBM model for DF‐Mix and HemFir was then applied to the regional 

grid data sets for SDIMAX predictions to allow climate change scenarios to be evaluated across the 

entire study region. Two basal area proportion scenarios were explored, one based on pure (100% 

basal area proportion) Douglas‐fir or western hemlock composition and a second based on species 

averages calculated from the original inventory plot data sets (Table 1). 

TABLE 1 Species basal area proportions from the inventory data sets. 
Variable 

DF‐Mix 

Mean SD Minimum Maximum 

Douglas‐fir 0.77 0.27 0.10 1 

Western hemlock 0.09 0.18 0 0.90 

Red alder 0.05 0.15 0 0.90 

Western red cedar 0.02 0.07 0 0.90 

Other conifer 0.04 0.12 0 0.90 

Other hardwood 0.03 0.11 0 0.90 

HemFir 

Douglas‐fir 
0 0 0 0 

Western hemlock 0.68 0.30 0.10 1 

Red alder 0.13 0.23 0 0.90 

Western red cedar 0.04 0.12 0 0.90 

Other conifer 0.13 0.23 0 0.90 

Other hardwood 0.02 0.09 0 0.90 
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2.6 | Extramural conditions 

Future climate projections under the various scenarios were compared to the historical conditions to 

understand how much of the landscape falls into extramural conditions under future projections. 

Utilizing the regionwide data sets, all climate variables included in the DFMix and HemFir final 

models were evaluated for extramural status by comparing each of the future scenario predictions to 

the historical conditions at the same location. A variable value that falls outside (i.e., greater than or 

equal to the minimum or maximum values) the range of the historical climate data is marked as 

extramural. Two instances were evaluated, first, whether any of the variables at a given point fell 

outside the range, and second, what proportion of the variables at any given point fell outside the 

range. Each was evaluated as falling within the absolute range as well as within 5% and 10% of the 

absolute range. 

3 | RESULTS 

3.1 | Maximum size–density relationship 

The LQMM analysis fits a self‐thinning outer boundary line to the 95th quantile of data points. This 

resulted in a self‐thinning slope of −1.608 and −1.544 for the DF‐Mix and HemFir data sets, 

respectively. The random intercept produced a mean predicted SDIMAX of 1220 TPH (SD = 119) with 

a 1%–99% quantile range from 840 to 1450 TPH for DF‐mix and mean predicted SDIMAX of 1396 

TPH (SD = 151) with a range of 941–1681 TPH for HemFir. 

3.2 | GBM model performance and variable influence on SDIMAX 

The final GBM model for the DF‐mix data set had 4202 model learning trees and included 86 variables 

with a training and testing MAE of 72.5 and 77.5 TPH, respectively. The most influential variable was 

the Douglas‐fir basal area proportion (i.e., how much of the total basal area was made up of Douglas‐

fir vs. other species), followed by other species basal area proportion, in particular western hemlock. 

Topographic variables, elevation, and the latitude and longitude at plot locations were important and 

highly ranked. Influential climate variables included interactions between the various measures of 

precipitation and temperature. 

The final GBM model for the HemFir data set had 1915 model learning trees and included 106 

predictor variables with a training and testing MAE of 77.0 and 104.2 TPH, respectively. The top 

variable was the basal area proportion of western hemlock, followed by the slope and aspect 

transformations, elevation, and latitude and longitude of the plot location. The most influential climate 

variables were similar to those included in the DF‐Mix model and included various measures of 

precipitation timing and amount, as well as interactions of precipitation with temperature. The number 

of degree days above 5°C (DD5) and below 18°C (DD_18) both annually and seasonally were 

common variables included in the model. The summer season Hargreaves climatic moisture deficit 

ranked as a highly influential variable as well. The most influential variables of the chosen final GBM 

models for SDIMAX predictions are shown in Figure 1a and Figure 1b for DF‐Mix and HemFir, 

respectively. 
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FIGURE 1 (a) Relative variable importance for the gradient boosting model for the DF‐Mix data set. 

Important variable acronyms are defined in the appendices. (b) Relative variable importance for the gradient boosting 

model for the HemFir data set. Important variable acronyms are defined in the appendices. 

3.3 | Future GBM model predictions: Inventory data sets 

The future scenario inventory data sets were run through the final GBM model to produce predicted 

SDIMAX under future climate conditions in the 2050s and 2080s. Both the DF‐Mix and 
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FIGURE 1 (Continued) 

the HemFir data sets saw the average SDIMAX value shift downward under all scenarios 

(Table 2). 

Although the majority of SDIMAX projections decreased under future conditions (at least 78%+ of 

records under all scenarios showed negative change), there was a range of positive and negative 

changes (Table 3). A small proportion of sites are projected to have favorable climatic changes, which 

may lead to increases in carrying capacity. Overall, the DF‐Mix locations are 
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TABLE 2 Average ratios of the GBM predicted SDIMAX under each future scenario relative to the current SDIMAX 

predicted with LQMM under past climate conditions for the inventory data set. 

 Ratio of GBM prediction to LQMM 

 

HemFir 

 

 

Predi

ction 

scena

rio Mean SD Mean SD 

Current 1.01 0.09 1.01 
0.1

0 

RCP 4.5—2050s 0.95 0.11 0.93 0.1

2 

RCP 4.5—2080s 0.93 0.11 0.92 0.1

2 

RCP 8.5—2050s 0.92 0.11 0.93 0.1

2 

RCP 8.5—2080s 0.89 0.11 0.91 0.1

2 
Note: For example, a value of 0.92 in the future scenario mean refers to the overall average future prediction in the GBM model was 

8% lower relative to the current predicted in the LQMM model. The 1.01 in the current predicted mean value with the GBM model was 

1% greater relative to the LQMM predicted value. 

Abbreviations: GBM, gradient boosting methodology; LQMM, linear quantile mixed model; RCP, representative CO2 concentration 

pathway; SDIMAX, maximum stand density index. 

TABLE 3 Average percent change in SDIMAX for inventory data sets. 

 DF‐Mix 
 
 HemFir 

 
 

Scenario Overall (%) If+ (%) If− (%) Overall (%) If+ (%) If− (%) 

RCP 4.5—2050s −5.4 9.4 −9.7 −6.6 10.8 −11.4 

RCP 4.5—2080s −7.2 9.5 −11.0 −7.5 10.9 −12.0 

RCP 8.5—2050s −7.8 9.6 −11.5 −7.1 10.8 −11.7 

RCP 8.5—2080s −11.4 9.8 −14.2 −8.9 10.9 −12.9 

Note: Overall is the mean percent change; If+ is the average change for records that showed positive change; If− is the average change 

for records that showed negative change. 

Abbreviations: RCP, representative CO2 concentration pathway; SDIMAX, maximum stand density index. 

projected to be slightly more resilient under the RCP 4.5 scenarios compared to the HemFir sites, but 

under the RC P8.5 scenarios, it is the reverse, with HemFir fairing marginally better overall compared 

to the DF‐Mix sites. Not unexpectedly, the 2080s under RCP 8.5 saw the most dramatic shifts in 

SDIMAX relative to the current with an average 11.4% and 8.9% shift downward in the mean predicted 

SDIMAX for DF‐Mix and HemFir scenarios, respectively. 

   



 

12 of 23 | Natural Resource Modeling HEIDERMAN and KIMSEY 

3.4 | Future GBM model predictions: Regionwide data sets 

The regionwide data sets under future scenarios followed similar patterns of results as the inventory 

data sets. Both the DF‐Mix and HemFir data sets under the 100% pure basal area and the average 

species basal area scenarios saw overall majority decreases in SDIMAX under all future climate 

projections (Table 4). The scenarios with 100% basal area of Douglas‐fir and western hemlock had 

greater magnitude in both positive and negative shifts in SDIMAX compared to the average basal area 

scenarios. The pure basal area scenarios had a greater 

TABLE 4 Average ratios (mean, 1, and 99 percentiles) and standard deviations of predicted SDIMAX under each future 

climate scenarios relative to the current SDIMAX under past climate conditions for the regionwide data set. 

 DF‐Mix HemFir 

Prediction 

scenario 

100% 

Douglas 

Mean 

‐ 

 

SD 

fir basal area 

1% 

99% 

100% Western hemlock basal area 

 

Mean SD 1% 99% 

Current 1 0 1 1 1 0 1 1 

RCP 4.5—2050s 0.93 0.07 0.79 1.09 0.94 0.07 0.80 1.09 

RCP 4.5—2080s 0.91 0.07 0.77 1.10 0.93 0.07 0.80 1.08 

RCP 8.5—2050s 0.90 0.07 0.77 1.10 0.93 0.07 0.80 1.08 

RCP 8.5—2080s 0.86 0.07 0.72 1.07 0.91 0.07 0.78 1.08 

 Average 

sp 
ecies basa l 

proportion 
     

Current 1 0 1 1 1 0 1 1 

RCP 4.5—2050s 0.97 0.04 0.88 1.06 0.96 0.04 0.87 1.05 

RCP 4.5—2080s 0.96 0.04 0.87 1.06 0.95 0.04 0.86 1.04 

RCP 8.5—2050s 0.95 0.04 0.87 1.06 0.95 0.04 0.87 1.04 

RCP 8.5—2080s 0.93 0.05 0.83 1.05 0.94 0.04 0.85 1.04 

Abbreviations: RCP, representative CO2 concentration pathway; SDIMAX, maximum stand density index. 

proportion of sites seeing a downward shift of SDIMAX compared to the average species basal area 

scenarios under all future climate projections. 

3.5 | Extramural conditions 

Extramural, or no‐analog conditions, were found within all future scenarios. The percent of locations 

that had at least one variable falling outside the absolute range found in the historical climate 

conditions ranged from 49% of locations in the 2050s under RCP 4.5 scenario to 97% in the 2080s 

under RCP 8.5 scenario for the DF‐Mix regionwide data set, and 38% to 99% for the HemFir mix 

under the same scenarios, respectively (data not shown). For the same time period and RCP scenarios, 

the average percent of all variables at each location falling outside the absolute range of historical 
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climate conditions ranged from 7% to 45% for the DF‐Mix and 7% to 46% for the HemFir, with these 

percentages dropping by roughly half when expanding the absolute range by 10% (Table 5). 

Projections of future climate are impacting modeled stand carrying capacity in significant ways. 

Across the study region, a majority of the landscape is seeing a downward shift in the SDIMAX (Figure 

2a,b). This change is driven by changes in temperature (Appendix A1) and precipitation (Appendix 

A2). While the total amount of mean annual precipitation is projected to remain fairly constant or 

increase slightly under all future scenarios, the timing of precipitation is shifting away from the 

growing season. The balance of precipitation in the growing season relative to the entire year 

(PRATIO) is declining across the region, while at the same time, the frost‐free period and both summer 

and winter temperatures are increasing. 

TABLE 5 Average percent of explanatory variables for each record that falls outside the range of historical climate 

conditions. 

 DF‐Mix HemFir 

 Average percent of explanatory variables 

falling outside… 

 

Average percent of explanatory 

variables falling outside… 

 

Scenario 

Abs current 10% of current 

range range 

Abs current 10% of range current range 

RCP 4.5—2050s 7% 1% 7% 1% 

RCP 4.5—2080s 15% 3% 14% 4% 

RCP 8.5—2050s 17% 4% 16% 5% 

RCP 8.5—2080s 45% 21% 46% 25% 

Note: Two categories of extramural are shown: Abs is the percent of variables outside the absolute range of current climate and 10% is 

the average percent of variables outside 10% of the absolute range. 

Abbreviations: RCP, representative CO2 concentration pathway. 

Average temperatures in both the coldest and warmest months are projected to increase by 2–3°C 

under the RCP 4.5—2050s projection, and by as much as 4–6°C under the RCP 8.5— 2080s projection. 

Forests are being exposed to an earlier, longer, warmer growing season with access to a smaller 

amount of precipitation. Water storage in the form of snowpacks is extremely important for forests 

growing in droughty summer conditions (Gleason et al., 2021; Waring & Franklin, 1979). The amount 

of PAS is projected to dramatically decline (Klos et al., 2014), further exacerbating the limited amount 

of water these forests have access to during the low‐precipitation summers. Stand carrying capacity is 

almost exclusively determined by competition for water resources while under severe drought (Deng 

et al., 2006) and with future conditions expected to become more water‐limiting for Pacific Northwest 

forests, a drop in SDIMAX is expected. 

4 | DISCUSSION 

Higher elevation sites and those closer to the Pacific Northwest coast are not seeing as dramatic a shift 

in predictions compared to the lower elevation, inland sites found in the Willamette Valley, which are 
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almost exclusively in the negative direction. The magnitude of change projections in temperature, 

precipitation timing, and precipitation as snow is buffered by higher elevation. Competition for water 

resources will not be as extreme in these areas and in fact, may see an increase in stand carrying 

capacity due to the increase in growing season length. Way and Oren (2010) suggest that high‐altitude 

tree communities may benefit from some degree of warming as opposed to warm‐adapted species 

often found at the edges of moisture‐limited environments. The results found in this study seem to 

agree with this and other projections of general range shifts upward in elevation with anticipated 

changes in climate (Parmesan, 2006; Reheldt et al., 2006). The impact of future climate changes on 

stand carrying capacity will be location dependent and any management decisions need to account for 

the specificity. 

 

FIGURE 2 (a) Percent change in maximum stand density index (SDIMAX) for regionwide DF‐Mix range under future 

climate scenarios relative to current. Resolution of 1 km hexagonal raster tiles. (b)Percent change in SDIMAX for 

regionwide HemFir range under future climate scenarios relative to current. Resolution of 1 km hexagonal raster tiles. 

BA, basal area; RCP, representative CO2 concentration pathway. 
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The impact of future climate on stand carrying capacity is shown to be greater in pure stands of 

Douglas‐fir and western hemlock relative to mixed species stands. Species mixing in general has been 

shown to lead to increased packing density within a canopy space due to complementary ecological 

traits and crown geometry (Pretzsch & Biber, 2016). The modeled carrying capacity of mixed species 

stands appear to be more resilient to projected changes in climate. Exploring the inventory data sets, 

records showing projected increases in SDIMAX had more diversity of species basal area proportions. 

For example, under RCP 8.5—2080s scenario, the DF‐MIX data set showed average Douglas‐fir basal 

area was 78% for plots with a decrease in SDIMAX and 71% for plots with an increase, and for the 

HemFir data set, the average western hemlock basal area was 69% for records with a decrease in 

SDIMAX and 62% for those with an increase. This relationship held for all future climate scenarios. 

While this in part may be 

 

FIGURE 2 (Continued) 

attributed to the GBM model, which showed more diverse plots as having overall higher SDIMAX, it 

also shows that given changes in important climate variables, more diverse stands have a greater 

resiliency to the impact of these changes compared to purer stands. 
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That said, exploring the regionwide data sets, the pure basal area scenarios showed the greatest 

magnitude shifts in SDIMAX relative to the mixed species in both the positive and negative direction. 

Locations under pure basal area scenarios had the greatest increases and decreases in predicted SDIMAX 

relative to mixed species scenario. For example, under RCP 8.5—2080s, the average positive shift was 

2.9% and 1.1% greater for the DF‐Mix and HemFir data sets, respectively, under the pure basal area 

scenarios relative to the average basal area scenarios. Conversely, the average negative shift was 

−6.7% and −3.8% greater for the pure basal area scenarios relative to the average basal area scenarios 

for the DF‐Mix and HemFir data sets, respectively. 

Moving toward mixed species management could allow for greater resilience to a changing 

climate. Under projected future conditions, mixed stands may be able to carry a greater density longer 

into the rotation before the impact of density‐dependent mortality. Puettmann (2011) describes this as 

the “insurance hypothesis” (attributed to Yachi & Loreau, 1999) under which a diversity of species 

and vegetation conditions may buffer the impact of a changing climate. A more diverse forest allows 

for complementary facilitation, where the presence of one species increases the availability of a 

limiting resource, and resource portioning, with more efficient sharing of limited resources between 

different species (Pothier, 2019). 

Projected future climate scenarios fall into extramural conditions across all scenarios. Utilizing 

any statistical model to extrapolate or predict outside the range of the input data is not appropriate. 

Nonetheless, general interpretations of the overall direction and magnitude of these shifts should be 

considered to understand what impact future climate may have on stand carrying capacity. The impact 

of environmental conditions is reflected in the underlying physiographical processes of these forest 

communities. While it is understood that climate influences carrying capacity (Andrews et al., 2018; 

Kimsey et al., 2019), general interpretations of the model projections are justified with the 

acknowledgment of the uncertainties involved in climate projections. In particular, the consistency of 

the modeled relationship between climate variables and SDIMAX beyond the range of input data, as 

well as the unknown impact of elevated CO2 concentrations on plant growth. 

5 | CONCLUSION 

Climate projections show forest communities of the Pacific Northwest may be facing a longer, warmer, 

droughtier growing season in the future. Snowpack to provide water in some more precipitation‐

limited areas will be both increasingly significant and inadequate. Spatial knowledge of where these 

impacts will be felt the most is important for silvicultural planning. Management approaches need to 

consider the impacts of these changes on the forest stand's ability to handle the increase in density‐

dependent competition, in particular for what may be an even more limited water supply. Planting and 

thinning to lower densities may provide resilience and capture the projected increases in density‐

related mortality. Given the amount of forests at or near maximum density limits across the United 

States has steadily increased over the last 20 years (Woodall & Weiskittel, 2021), density management 

strategies need to be considered in any current and future planning. Although many unknowns remain, 

for example, the impact of global change on disease and insect patterns (Bentz et al., 2010) or wildfire 

behavior (Loehman et al., 2020), density management guidelines need to consider the influence a 

changing environment will have on density‐driven interactions among forest communities. These 

results present forest managers and policy‐makers with the ability to make location‐specific 

interpretations of the magnitude and variability of potential shifts in forest stand carrying capacity. 
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TABLE A1 Absolute change in temperature (°C) under future climate scenarios relative to historical for the current 

range of DF‐Mix and HemFir. 

  DF‐Mix 
 

HemFir 
 

Scenario 

Variable 

Min 1% Med Mean 99% Max Min 1% Med Mean 99% Max 

RCP 4.5—2050s MCMT 1.6 1.7 2.0 2.0 2.5 2.6 1.6 1.8 2.1 2.1 2.5 2.6 

 MWMT 2.2 2.3 2.7 2.7 3.1 3.2 2.2 2.3 2.9 2.8 3.1 3.2 

RCP 4.5—2080s MCMT 2.0 2.1 2.5 2.5 3.0 3.2 2.0 2.1 2.5 2.6 3.0 3.1 

 MWMT 2.8 2.9 3.4 3.4 4.0 4.1 2.8 2.9 3.6 3.5 4.0 4.1 

RCP 8.5—2050s MCMT 2.0 2.1 2.4 2.5 3.1 3.2 2.0 2.1 2.5 2.6 3.1 3.2 

 MWMT 2.9 3.0 3.6 3.6 4.2 4.3 2.9 3.0 3.8 3.7 4.2 4.3 

RCP 8.5—2080s MCMT 3.4 3.5 4.0 4.0 4.9 5.1 3.4 3.6 4.1 4.2 4.9 5.1 

 MWMT 4.6 4.9 5.8 5.8 6.8 6.9 4.7 4.9 6.2 6.0 6.8 6.9 

Abbreviations: Max, maximum; MCMT, mean coldest month temperature; Med, medium; Min, minimum; MWMT, mean warmest 

month temperature. 
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