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Climate change is driving widespread changes in ecological communities. Warming
temperatures often shift community composition toward more heat-tolerant taxa.
The factors influencing the rate of this “thermophilization” process remain unclear.
Using 10-y census data from an extensive forest plot network, we show that mature
tree communities of the western United States have undergone thermopbhilization.
The mean magnitude of climate warming over the 10-y study interval was 0.32 °C,
whereas the mean magnitude of thermophilization was 0.039 °C. Differential tree
mortality was the strongest demographic driver of thermophilization, rather than
growth or recruitment. Thermophilization rates are associated with recent changes
in temperature and hydrologic variables, as well as topography and disturbance,
with insect damage showing the strongest standardized effect on thermophilization
rates. On average, thermophilization occurred more rapidly on cool, north-facing
hillslopes. Our results demonstrate that warming temperatures are outpacing the
composition of western US forest tree communities, and that climate change may
erode biodiversity patterns structured by topographic variation.
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Global climate change is reorganizing ecological communities (1, 2), often in ways that
are difficult to anticipate. For example, drought-driven tree mortality rates are increasing,
but it remains challenging to predict when, where, and to which species mortality events
will occur (3). Successful natural resource management will depend on improved under-
standing of the factors governing variation in community responses to climate change.

Although community responses to climate change vary, there are likely underlying
commonalities in relation to species’ functional attributes or climatic niches (4). Warming
temperatures often increase the relative abundance of heat-tolerant (“thermophilic”) taxa
(5). This “thermophilization” process has been documented across many taxa, regions,
and spatial scales (6—8). However, thermophilization rates vary widely, and although they
are often associated with warming rates, much variation remains unexplained.

Additional factors beyond warming rates could influence thermophilization rates. For
example, many organisms, such as plants, exhibit physiological links between their water
and temperature regulation mechanisms. Consequently, thermophilization rates may be
associated with changes in hydrologic variables (6). Additionally, in forests, canopy dis-
turbance increases penetration of solar radiation into forest understories, which can accel-
erate changes in climate and community composition (9, 10). Tree species may also be
differentially susceptible to biotic factors, such as insect damage, which could influence
rates of thermophilization.

Topographic features such as hillslope orientation (i.c., slope and aspect) might also
modify thermophilization rates. A site’s hillslope orientation affects the amount of heat
received from the sun, with the warmest climates occurring on equator-facing hillslopes
and the coolest climates on pole-facing hillslopes. In turn, plant community composition
is shaped strongly by hillslope-mediated microclimatic variation (11), with
warmer-associated species occurring on more equator-facing hillslopes. It is less clear how
hillslope orientation might interact with climate change to affect rates of change in com-
munity composition over time.

Another key step toward improved understanding of thermophilization is to examine
the demographic processes underlying shifts in community composition. The average
climatic niche (or “community temperature index”) of a community can be quantified as
the mean of all cooccurring species’ temperature optima, often weighted by a metric of
species’ abundance. When metrics that account for each organism’s size (e.g., basal area)
are used, a community’s temperature index can be changed by losses (mortality), gains
(recruitment), or changes in size (growth) (12, 13). Algebraic decomposition can quantify
the contributions of each of these processes to overall thermophilization (12, 13).
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Quantifying these contributions will be instrumental in predicting
the long-term trajectories of ecological communities responding
to climate change. For example, recruitment-driven thermophil-
ization indicates that warm-associated propagules are recruiting
successfully, which could help stabilize community biomass as
climate change progresses. In contrast, mortality-driven thermo-
philization indicates that cool-associated taxa are being lost and
not necessarily replaced by other taxa.

Here, we analyze 10-y changes in tree community composition
across 44,992 forest subplots in the western United States from
the United States Department of Agriculture Forest Service Forest
Inventory and Analysis (FIA) dataset. Using hierarchical Bayesian
models that account for latent spatial processes (14), we model
the mean temperature indices of tree communities over time as a
function of long-term average climate, recent climate change,
topography, multiple forms of disturbance, and other predictors.
We use these models to address three questions: 1) Are western
US forests undergoing thermophilization? 2) What factors modify
thermophilization rates? 3) What are the separate contributions
of mortality, growth, and recruitment to thermophilization, and
how do these contributions respond to potential thermophiliza-
tion rate modifiers?

Results

In western US forest subplots, baseline community temperature
index is greater in warmer regions (0.564 °C community temper-
ature index per 1 °C plot mean annual temperature, in a model
containing other climate variables), as well as in regions with
greater climatic water deficit (CWD) and precipitation (Figs. 1

and 2). Because continuous predictors were standardized in our
models (mean = 0, SD = 1), their effect sizes can be interpreted
as °C per SD in the given predictor, thus allowing for comparisons
of effect sizes among predictors with different units.

Forested areas in the western United States have warmed on
average (Fig. 3; mean temperature change = 0.32 °C over 10 y).
Correspondingly, the average subplot-scale tree community has
shifted toward warmer-associated taxa—i.e., undergone thermo-
philization (Figs. 3 and 4). Thermophilization rates are greater in
plots that warmed more (0.112 °C thermophilization per 1 °C
warming), as well as plots that experienced greater drying, as rep-
resented by CWD and precipitation (Figs. 3 and 4). The mean
observed thermophilization rate in western US forests is 0.00391
°Cly, whereas the mean observed rate of macroclimatic warming
over the same interval is approximately 0.032 °Cly.

The dataset comprised 316,519 trees that survived between
censuses (mean = 5.6 per subplot), 64,024 that died (1.1 per
subplot), and 35,836 that recruited (0.63 per subplot). Per-tree
growth and mortality rates are shown in S/ Appendix, Fig. S1.
Mortality contributed most to thermophilization, followed by
growth, with minimal contributions from recruitment (Fig. 4).
In this analysis, recruitment is considered as entry into the 12.7
cm diameter-at-breast-height class. In a separate analysis of sap-
lings in the 2.5 cm to 12.7 cm diameter-at-breast-height class, we
found that the contribution to thermophilization of recruitment
at the 2.5 cm threshold was also negligible (57 Appendix, Fig. S2).

Using data from only the portions of each subplot where saplings
were recorded (diameter-at-breast-height 2.5 to 12.7 cm), we found
that 87% of trees recorded as new 12.7 cm class recruits in the
second census had been recorded as saplings in the baseline census.
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Fig.1. (A)Baseline mean annual temperature at 30-arcsecond (roughly 1 km) spatial resolution. (B) Baseline mean annual precipitation at 30-arcsecond resolution.
(C) Baseline climatic water deficit at 1/24-degree (roughly 4 km) spatial resolution. (D) Tree community temperature index. In A-D, the 4 subplot-scale values
for each plot are summarized by a single mean value per plot. (F) Tree community temperature index vs. baseline mean annual temperature, with hexagons
colored by data density. The red trendline, added for illustrative purposes, is generated by simple linear regression (slope = 0.843). The black “one-to-one” line
has slope 1 and y-intercept 0.
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Fig. 2. Violin plot of 95% credible intervals for standardized effects of fixed
predictors on baseline community temperature index in western US tree
communities. Results come from hierarchical Bayesian regression models
of tree community temperature index over time. Violins can be interpreted
as smoothed, horizontally symmetrical histograms, with the vertical axis
representing parameter values and the horizontal axis representing probability
density. The total area of each violin is set to be equal, so shorter and wider
violins correspond to model parameters for which the posterior probability
density is more concentrated around the mean.

For another 9% of new 12.7 cm class recruits, there was no record
of a matching sapling in the baseline census, but there was at least
one conspecific seedling with diameter-at-breast-height less than
2.5 cm (which are counted but not marked individually). The
remaining 4% of new 12.7 c¢m class recruits had likely not germi-
nated yet at the baseline census.

Mortality-driven and recruitment-driven thermophilization
were greater in plots that warmed more (Fig. 4). Growth-driven
thermophilization was greater in plots that increased more in tem-
perature and CWD, as well as plots that decreased more in pre-
cipitation (Fig. 4).

Initial community temperature index was greater on warm,
south-facing slopes (Fig. 2)—i.e., those with high topographic heat
load. Thermophilization was greater on cool, north-facing slopes
(Fig. 4). This pattern was driven primarily by mortality (Fig. 4).

Thermophilization was greater at sites where insect damage was
observed between surveys (Fig. 4). The effect of this binary pre-
dictor on thermophilization rates is stronger than the effect of a
one-SD change in any of our continuous predictors, as well as the
effect of our binary fire predictor. Similar patterns appear for
mortality-driven and growth-driven thermophilization (Fig. 4).

The 95% credible interval for the net effect of fire on thermo-
philization rates overlaps zero substantially (Fig. 4). However, fire
had opposite effects on mortality-driven and growth-driven ther-
mophilization. In subplots that burned between censuses,
mortality-driven thermophilization was stronger than that in
unburned subplots, whereas growth-driven thermophilization was
weaker (Fig. 4).

Thermophilization was greater in conifer-dominated subplots
(Fig. 4). This pattern appears in growth-driven thermophilization,
as well as in the analysis of recruitment to the 12.7 c¢m
diameter-at-breast-height class (Fig. 4).
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All effect sizes are shown in ST Appendix, Tables S1-S3, includ-
ing those not shown in figures. These include the “effects” of fire,
insect damage, and recent changes in climate variables on baseline
community temperature index. It would be incorrect to interpret
these associations as direct causes because the events described by
these predictors occurred after baseline community temperature
index was measured. Instead, they may reflect causal relationships
involving unmeasured covariates (15). Mapped predictions from
fixed effects only are shown in S7 Appendix, Fig. S3, and mapped
random effect values are shown in ST Appendix, Fig. S4.

Discussion

Our analyses reveal widespread, fine-grained patterns of change in
western US forest tree communities. Subplot-scale community com-
position has shifted in favor of tree taxa with higher temperature
niche means (Figs. 3 and 4). We quantified this thermophilization
process using community temperature indices—i.e., weighted aver-
ages of species’ climatic niche means in each subplot at each time
point. Similarly, baseline community temperature indices are higher
in plots with higher multidecadal baseline mean temperatures
(Figs. 1 and 2). These results suggest that the observed changes in
forest composition were driven at least in part by recent warming.

Thermophilization in western US forests is also associated with
drying conditions. This trend is represented in our analyses by the
negative effect of precipitation changes and the positive effect of
CWD changes (Fig. 4), which were modeled alongside the effect
of temperature in our hierarchical Bayesian models. (Variance
inflation factors for all predictors were less than 5, although some
predictors are moderately correlated, with the greatest Pearson’s
correlation of 0.65 occurring between baseline temperature and
baseline CWD.) These patterns are consistent with the hypothesis
that tree species from warmer climate zones are better adapted to
the increased evaporative demands caused by increasing tempera-
tures. This hypothesis is further supported by the positive associ-
ation we find between baseline community temperature index and
baseline CWD in our hierarchical Bayesian regression models.

Although most patterns we found are consistent with warming
and drying as drivers of thermophilization, some associations sug-
gest that more complex processes may have operated during or
before our study’s timeframe. For example, baseline community
temperature index is greater in plots with greater precipitation
(Fig. 2). Additionally, although the effect of baseline temperature
on baseline community temperature index in our data is near the
commonly expected value of 1 in a univariate, ordinary least
squares linear regression (Fig. 1E), the effect is only 0.564 in our
full hierarchical Bayesian regression model, likely reflecting com-
plex causal relationships among community temperature index
and the other climatic variables. While effects of precipitation
require further consideration, the strongest effects in our data
point to warming and drying as the predominant climatic drivers
of thermophilization in western US forests.

Thermophilization rates in western US forests are lagging
behind macroclimatic warming rates by roughly tenfold. Our
results suggest that western US forests are becoming mismatched
with their environments. Should the observed trends continue,
macroclimatic temperatures will increase by roughly 3 °C on aver-
age by the end of the century, whereas the average community
temperature index will increase by less than half a degree, thereby
adding over 2.5 °C in “climatic debt” (16, 17). This debt will
compound any debt these communities may have already accrued
due to earlier anthropogenic climate change, migration lags fol-
lowing glacial retreat (18), or other factors that may have restricted
species’ realized climatic niches (19). The timeframe of our study

https://doi.org/10.1073/pnas.2301754120 3 of 8


http://www.pnas.org/lookup/doi/10.1073/pnas.2301754120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2301754120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2301754120#supplementary-materials

Downloaded from https://www.pnas.org by UNIVERSITY OF CALIFORNIA DIGITAL LIBRARY on November 28, 2023 from IP address 136.152.215.3.

Temp. change . - Precip. change _ . Climatic water deficit I —

(°Clyr) 000 005 010  (Mm/yr) -30-20-10 0 10  change (mm/yr) -3 0 30 60

Community temp. . _ Log(data density) _

chg. (°Cryr) -003 000 003

Community temp. change (°C/yr)

Temp. change (°Clyr)

Fig.3. (A) Recent 15-y changes in mean annual temperature from gridMET data at 1/24 arcsecond (roughly 4 km) spatial resolution. (B) Recent 15-y changes in
mean annual precipitation from gridMET. (C) Recent 15-y changes in CWD from TerraClimate data at 1/24-degree (roughly 4 km) spatial resolution. (D) Recent
10-y changes in tree community temperature index. In A-D, the 4 subplot-scale values for each plot are summarized by a single mean value per plot. (F) Change
in tree community temperature index vs. change in mean annual temperature. Each point represents one subplot. The red trendline, added for illustrative
purposes, is generated by simple linear regression. The red point represents the mean of the x and y variables. The black “one-to-one” line has slope 1 and
y-intercept 0. In A-E, points below the fifth percentile or above the 95th percentile of change in community temperature index are omitted to improve pattern
visibility and color scale perceptibility.

coincided with severe drought events in the western United States  that the timeframe of our study may provide a reasonable preview
(20), so it is possible that the patterns we observed are more of upcoming climate change (20). Moreover, to the extent that
extreme than future trends will be. However, recently developed ~ drought accelerated mortality, it could have led to higher rates of
climate models indicate that drought is expected to become  thermophilization, notwithstanding the tenfold lag we observed.
increasingly frequent and severe in the western United States, and ~ Disturbances allow for more rapid forest turnover and in some
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Fig.4. Violin plots of 95% credible intervals for standardized effects of fixed predictors on the magnitude of thermophilization in western US tree communities.
Results come from hierarchical Bayesian regression models of tree community temperature index over time. Violins can be interpreted as smoothed, horizontally
symmetrical histograms, with the vertical axis representing parameter values and the horizontal axis representing probability density. The total area of each
violin is set to be equal, so shorter and wider violins correspond to model parameters for which the posterior probability density is more concentrated around
the mean. The interval for mean thermophilization represents the effect size for a binary “T1 vs. T2” predictor that distinguishes between repeat tree censuses.
The interval shown for each other predictor represents the effect size for the interaction between the named predictor and the “T1 vs. T2" predictor.

40f8 https://doi.org/10.1073/pnas.2301754120 pnas.org



Downloaded from https://www.pnas.org by UNIVERSITY OF CALIFORNIA DIGITAL LIBRARY on November 28, 2023 from IP address 136.152.215.3.

circumstances may allow plant communities to better track chang-
ing environments and minimize climate debt (9).

The consequences of climatic debt may be particularly severe
for western US forests because recent thermophilization has been
driven primarily by mortality, with little influence from recruit-
ment to the small-tree size class (Fig. 4) or recruitment of smaller
saplings (SI Appendix, Fig. S2). These patterns indicate that in
most subplots, the tree taxa that recruited over the study interval
have thermal niches that are no warmer on average than the base-
line communities into which they recruited. Instead, thermophil-
ization has mostly resulted from mortality among taxa with the
coolest thermal niches. If thermophilization continues to be driven
by mortality, then climate change may threaten ecosystem services
more strongly than a simple extrapolation of climatic debt might
suggest. In this scenario, not only will 3 °C of warming occur, but
the 0.5 °C of thermophilization that occurs in response will be
due to losses of the most climatically vulnerable species—not
recruitment of warmer-associated species that can cope better with
warming conditions. These increasingly maladapted forests would
likely decline in their ability to provide ecosystem services, such
as carbon sequestration (21).

The lack of evidence we find for recruitment-driven thermophil-
ization contrasts with another recent study, which found that hot
spots of fecundity and seedling recruitment for western US tree
species are shifting toward cooler, moister regions at a rate roughly
commensurate with observed climate change (22). This difference
in results between studies might be explained by the difference in
demographic scope, as our study does not examine seedling dynam-
ics directly, instead examining recruitment of saplings and small
trees. If this explanation for the discrepancy in results is correct,
then mature tree communities could be primed for more rapid
recruitment-driven thermophilization in the coming decades as the
current cohorts of seedlings mature. Ackerly etal. (11) predicted
that thermophilization driven by seedling recruitment will occur
faster on pole-facing hillslopes due to shorter dispersal distances
for warmer-associated propagules from communities on adjacent
equator-facing hillslopes. Alternatively, our study’s contrasting find-
ings may be explained by the difference in the spatial grain of
analysis. There may be a lag between the time when the first seed-
ling of a species recruits anywhere within a new macroclimatic zone
and the time when conspecifics have spread to a substantial number
of forest plots within that new zone. If this explanation is correct,
then the species composition of new recruits in western US forests
will likely continue to lag behind climate change.

In addition to climatic predictors, recent thermophilization
rates in western US forests are associated with several nonclimatic
predictors. Thermophilization rates are roughly three times greater
in subplots with recorded evidence of insect damage (Fig. 4). This
is the strongest effect size of all thermophilization “rate modifiers”
we considered. There is likely at least an indirect causal link
between insect damage and thermophilization because some
insects, such as bark beetles, attack drought-stressed trees prefer-
entially (23). Insect damage could be an indicator of drought
patterns occurring at finer spatiotemporal scales than our predictor
variables can capture. Additionally, insect damage may have a
direct influence on thermophilization if insect-driven canopy loss
accelerates microclimatic change in the understory (24, 25).

We find little evidence for a net effect of fire on thermophiliza-
tion rates in western US forests over the 10-y study interval (Fig. 4).
However, fire appears to have exerted opposite effects on
mortality-driven and growth-driven thermophilization. In subplots
that burned between censuses, mortality-driven thermophilization
was stronger than that in unburned subplots, whereas growth-driven
thermophilization was weaker (Fig. 4). A previous study of western

PNAS 2023 Vol.120 No.18 e2301754120

US forests found that cool-associated tree taxa have functional
traits associated with poor fire tolerance (26), suggesting that fire
may disproportionately kill cool-associated taxa. Our results sup-
port this prediction. It is unclear why the pattern might be opposite
for growth-driven thermophilization. This pattern may reflect fea-
tures of the postfire environment that disproportionately benefit
cool-associated taxa, like decreased competition for moisture, or
harm warm-associated taxa, like decreased canopy-mediated ther-
mal buffering during winter (27). It is also possible that the prob-
ability of fire occurring during the census interval was influenced
by the balance between the growth of cool-associated and
warm-associated taxa. Our data on fire occurrence, as well as insect
damage, are coarse, and further study is needed regarding the influ-
ence of these processes on thermophilization.

Our analyses indicate that topography influences thermophili-
zation in western US forests. Thermophilization was strongest on
cool, pole-facing (i.e., north-facing) hillslopes, and this pattern is
driven by mortality and growth (Fig. 4). We also find that warmer,
more equator-facing sites were occupied by warmer-associated tree
taxa at baseline (Fig. 2). For example, our data indicate that at
45°N latitude, the expected difference in community temperature
index between a community on a 30° hillslope facing due north
and a 30° hillslope facing due south is 0.372 °C. However, it is not
clear why thermophilization rates are greatest on pole-facing
hillslopes. This pattern would be expected if the rates of change in
microclimatic conditions—i.e., exposure to climate change (28)—
vary with hillslope orientation (29, 30). Alternatively, thermophil-
ization might be faster on pole-facing hillslopes because tree
community sensitivity to climate change [as opposed to exposure
(28)] varies with hillslope orientation. Hillslope orientation could
have affected historical disturbance regimes (31), which may have
shaped variation in resident tree species’ climatic niches (24) and,
thus, their sensitivity to climate change.

Because western US tree communities on pole-facing hillslopes
are undergoing thermophilization more rapidly than those of
equator-facing neighbors, community temperature indices are
becoming more similar between adjacent pole- and equator-facing
slopes. In topographically heterogeneous landscapes, this process
could drive biotic homogenization—a reduction in spatial turn-
over of community composition among subplots (11, 32)—as
well as declines in landscape-scale species richness. Fig. 5 shows a
hypothetical example. This trend could be a bellwether of more
pervasive future climate-driven biodiversity loss in topographically
heterogeneous landscapes. When biotic homogenization is driven
by extirpations, the homogenizing effect of each successive extir-
pation grows (33). More work is needed to explore the extent and
consequences of climate-driven homogenization in topographi-
cally heterogeneous forests.

Our study underscores the utility of large datasets with high
spatial replication for early detection of biotic responses to climate
change, such as thermophilization, accrual of climatic debt, and
biotic homogenization. These results could provide a crucial pre-
view of future changes in western US forests that will unfold over
longer timescales. We also demonstrate the importance of analyz-
ing the demographic processes underlying thermophilization,
showing that western US forests are suffering disproportionately
rapid mortality of tree taxa with cool thermal niches, and that new
recruits do not have warmer thermal niches than their recipient
communities. Additionally, we reveal nonclimatic factors that may
modify thermophilization rates, including insect attacks and top-
ographic heat load. Our findings elucidate the mechanisms by
which ecological communities respond to climate change, as well
as highlight concerning trends in western US forest dynamics that
can help inform management strategies.
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Fig. 5. Before (A) and after (B) views of a topographically heterogeneous
landscape occupied by a hypothetical tree community that exemplifies
key trends in our data. Effect sizes are magnified for illustrative purposes.
Three tree species are shown with three different temperature indices: a low
temperature-associated species (five long crown layers shown in yellow, styled
after Abies), a medium temperature-associated species (four short crown
layers shown in orange, styled after Pinus), and a high temperature-associated
species (an icosahedral crown shown in red, styled after deciduous trees).
Trees with black trunks were present at both time points. Trees with gray
trunks were only observed in one time point, due either to mortality (present
in panel A only) or recruitment (present in panel B only). Topographic heat
load ranges from low (yellow) on the pole-facing hillslope (Left) to high (red)
on the equator-facing hillslope (Right).

Materials and Methods

Forest Plot Data. We used the United States Department of Agriculture Forest
Service's FIA Program plot network (34) to quantify changes in western US forest
composition over recent 10-y intervals, with baseline plot censuses occurring
from 2000 through 2008 and resurveys from 2010 to 2018. FIA uses a rand-
omized systematic sampling approach in which plots are randomly located within
hexagonal grid cells of approximately 2,428 ha. We used data collected solely
from Phase 2 FIA plots classified as forested (=10% tree canopy cover), excluding
plots that were only partially covered by forest, in the following US states: NM, AZ,
CA, NV, UT, CO, ID, OR, WA, and MT. (Wyoming plots had not been recensused at
the time of data download.) Each plot comprises four circular subplots, each with
a radius of 7.32 m. Within each subplot, the diameter-at-breast-height of each
tree with a diameter-at-breast-height of at least 12.7 cm was measured. For all
subplots, we disregarded any trees recorded more than 7.32 m from the subplot
center so that all sampling units in our analyses were equivalent. In our main
analyses, we also disregarded saplings with diameter-at-breast-height less than
12.7 cm, which were recorded in 2.07 m microplots within the main plots. We
used the sapling data for supplementary analyses described below. Additional
data-filtering protocols are described in SI Appendix, Supplementary Methods,
and all data filtering and preparation steps are shown with comments in our
publicly available R code. Forest plots are marked, allowing census protocols to be
repeated precisely. Our unit of analysis is the subplot, and our regression models
included random effects to account for nonindependence among subplots within
the same plot (details below). In total, we analyzed data from 44,992 subplots.

Quantifying Community Temperature Index. We quantified temperature index
values for each of the 110 species in the dataset using three approaches, which are
described in S/ Appendix, Supplementary Methods: modeled niche means, mod-
eled niche optima, and simple niche means. These values are calculated in °C and
reflect a measure of the mean or optimal value of mean annual temperature for
each species across its geographic range in the western United States. The mgev R
package (35) was used for thermal niche modeling, and CHELSA (Climatologies at
high resolution for the Earth's land surface areas) (36, 37) was used for climate data.
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To quantify the mean community temperature index in each subplot's tree
community at each timepoint, we calculated the mean temperature index value
across all species using each of the three niche modeling methods detailed in
Sl Appendix, Supplementary Methods, weighted by the basal area of each species.

Regression Models of Thermophilization. Our regression models were built
in a Bayesian framework using R-INLA. We used community temperature index
in one subplot at one time point (either "T1" or "T2") as a response variable (Y,j ).
The subscript “i" denotes the ith plot, *j" denotes the jth subplot, and "k" denotes
our binary timescale (T1 orT2). We tested for changes over time (i.e., thermophil-
ization) using a binary "T1 vs.T2" indicator variable as one of our predictors (x;,).
Its coefficient (B,) represents the mean change in community temperature index
between censuses, which are 10y apart for all sites in our dataset. Azero value of
Xy represents T1, and a one value represents T2.

Fixed effects representing climate in our regression models include baseline
mean annual temperature, baseline mean annual precipitation, baseline mean
annual CWD, and temporal changes in the same three variables. These six plot-level
variables are denoted by x,;.. .x;;with coefficients 8,.. .8, respectively. Topographic
heat load for each subplot is denoted by xg; with coefficient 4, and the binary fire
and insect damage variables are denoted by xy;...x;q; with coefficients Bo...f1o,
respectively. x;;, with coefficient #;, denotes the subplot's baseline percent basal
area of conifers, which have distinctive temperature and water regulation physiology
and represent a large component of western US forests. Each subplot is represented
by two observations in the dataset (one at T1 and one at T2), and the values for
each of the above predictors are equal in each set of paired T1 and T2 observations.
Only the value of x, (the binary T1 vs. T2 indicator) differs, with the T1 observations
receiving azero value. Consequently, the coefficients g,...8,,0n their own represent
their associations with baseline (T1) community temperature indices. Similarly, the
y-intercept (B,) represents the mean of the T1 observations-i.e., the mean baseline
community temperature index.

We also included interactions between x,, (the T1 vs. T2 predictor) and each
other predictor to test the modifying effects of these predictors on temporal
changes in community temperature index (i.e., thermophilization rates). These
interactions are denoted by xy Xy, ... XqXqqwith coefficients fy,... By, For exam-
ple, in the interaction between x; (the T1 vs. T2 variable) and xg; (topographic
heat load), the coefficient (8,4) represents the mean effect of topographic heat
load on thermophilization rates.

Random effects in our regression models include a subplot-level normally
distributed random effect (v;), as is typically used in linear mixed-effects mode-
ling, and a plot-level spatially covarying random effect u;. The plot-level spatial
random effect is modeled using a Matérn covariance structure in a Gaussian
Markov Random Field, which is computed as the solution to a stochastic partial
differential equation using the finite element method (38).

The full model structure is written below:

~ 2
Yijk N(p'ijkl G )r
Wi = Bo + B1Xy + BoXoi + B3Xay + Xy + fsXs;

win
I

+ BeXoi+ By + BeXej + BoXoj + BroXagy + BriXan

+ BrXuKoit o By Xy Xy U+ Yy

u;~ GMRF(0, %),
v;~ N(O, d?).

We used R-INLA's default uninformed (i.e., “flat") prior probability distributions
for all parameters.

Changes in forest composition (including size distributions) over time reflect
three distinct demographic processes: mortality, growth, and recruitment
of small individuals into the minimum censused size class. In our analyses,
"recruitment” denotes entry into the 12.7 cm and above size class, as smaller
individuals were not recorded. Consequently, recruitment rates reflect the com-
bined effects of reproduction (both in situ and dispersal from outside the plot),
germination and seedling establishment, and seedling and sapling growth to
reach this size threshold.

To quantify the contributions of each demographic process to thermophilization,
we repeated the regression analysis described above with three additional versions
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Fig. 6. Schematic of our approach to isolating each demographic process's
contribution to changes in tree community temperature index. Circles
represent trees of two species (red and blue) as considered by each of the
four analytical methods, which are represented by the four columns. The
T1 community is considered the same way in all columns, whereas the T2
community differs. Trees marked with “F” are considered to have remained
at fixed size between censuses. In the “All” column, all demographic processes
(mortality, growth, and recruitment) are considered. In this example, one
individual dies, three grow, and one recruits into the community. In the
“Mortality” column, the effects of growth and recruitment are excluded,
such that any trees present at both time points are held at constant size,
and any trees that recruited are ignored. In the “Growth” column, the effects
of mortality and recruitment are excluded, such that all trees that died are
considered to have survived (but not grown) and all trees that recruited are
ignored. In the “Recruitment” column, the effects of mortality and growth are
excluded, such that all trees present at the first time point are considered to
have remained present at constant size.

T1

[ ] ®

of the community temperature index response variable (12, 13), ¥;;. The predictors
and the T1 values of ¥, are unchanged in all models, whereas the T2 values of ¥,
represent the effects o# different demographic processes. In the recruitment model,
allindividuals that recruited between censuses are included at their observed diam-
eter-at-breast-height values, any trees that died are treated as still alive using the
diameter-at-breast-height observed in the first census, and any trees that survived are
fixed atzero net growth-i.e., their diameter-at-breast-height for the second census is
equal to the value observed in the first census. In the "growth” model, all individuals
that recruited between censuses are omitted in the second census, all individuals
that survived are included with their observed T1 and T2 diameter-at-breast-height
values, and mortality is ignored as described above. In thef “mortality” model, new
recruits are ignored as described above, net growth for surviving trees is fixed at zero
as described above, and any trees that died are recognized as absent in the second
census. Fig. 6 shows a visual example of our analytical approach to isolating the
effects of the three demographic processes.

We built a separate version of the recruitment model for the sapling data
(diameter-at-breast-height 2.5 cm to 12.7 cm) to explore the sensitivity of
our results to the 12.7 cm diameter-at-breast-height recruitment threshold.
Community-weighted niche means were computed as described above, except
onlytreesin the sapling class were considered. The model structure was identical
to that described above.

All continuous predictors were centered and scaled (mean 0, SD 1). Each model
was built twice; once with dummy coding for binary predictors (presence orabsence
of fire and insect damage), and once with weighted effect coding for these predictors.
Weighted effect coding of categorical predictors produces, for each category, an esti-
mate of the deviation from the population mean, while accounting for differences in
numbers of observations among categories (39). We included this second coding
scheme to obtain estimates of population mean thermophilization.

Among the three versions of community temperature index we generated
(SI Appendix, Supplementary Methods), Pearson's correlation values are all
greaterthan 0.95 (S/Appendix, Fig. S5). For simplicity, the main results presented
here represent only the "modeled niche mean.”
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high resolution for the Earth's land surface areas) 1981 to 2010 climatologies
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Baseline CWD, as well as recent changes in CWD, was computed from TerraClimate
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Inthe publicly available FIA dataset, plot geographic coordinates are subject to
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software. We used R software for all data processing, analysis, and visualization,
including the following packages: raster (44), R-INLA (45), mgcv (35), ggplot2
(46), patchwork (47), ncdf4 (48), foreach (49), doParallel (50), rgdal (51), spData
(52), sf (53), adehabitatHR (54), rgeos (55), usdm (56), and rcartocolor (57). All
R scripts and data are available at https:/doi.org/10.6078/D1RX4X.

Data, Materials, and Software Availability. Forest inventory, climate, and R
code data have been deposited in Rosenblad, Baer, and Ackerly (2023) Code and
Data (https://doi.org/10.6078/D1RX4X) (58).
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