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A Hitchin connection on nonabelian theta
functions for parabolic G-bundles
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Abstract. For a simple, simply connected complex affine algebraic group GG, we prove
the existence of a flat projective connection on the bundle of nonabelian theta functions on the
moduli spaces of semistable parabolic G-bundles for families of smooth projective curves with
marked points.

1. Introduction

In this paper, we prove the existence of a flat projective connection on spaces of gen-
eralized theta functions on the moduli spaces of parabolic H-bundles for a family of smooth
projective curves with marked points, where H is a connected, complex, simple, affine alge-
braic group. Before stating the precise results, and since it is part of the larger and well-studied
program of geometric quantization, we first provide a brief historical context to this subject.

Quantization as envisioned by Dirac, et al., can be thought of as a deformation of a clas-
sical mechanical system depending on a parameter & that recovers the original classical system
in the limit. Kostant-Kirillov-Souriau developed and generalized this notion of “quantizing a
function”, and Auslander-Kostant [6] used it to construct unitary representations of a connected
Lie group (see also Kirillov [45]).

Geometric Quantization. The starting point of the theory is a symplectic manifold
(M, w) where the symplectic form w is the curvature of a Hermitian line bundle £ with con-
nection V. The quantum Hilbert space .77 is then the L2-completion of the space of global
sections I'(M, L) of this line bundle. The Lie algebra of functions on M, under the Pois-
son bracket given by the form w, acts naturally on .7#°. This process of assigning a function
to this Lie algebra satisfying certain commutativity constraints depending on A is known as
quantization in the present literature. However, it is not possible to achieve these commuta-
tivity constraints in practice. To remedy this, Kostant [46] and Souriau [68] further consider a

I.B. and S.M. are supported in part by a J.C. Bose fellowship and by DAE, India under project no.
1303/3/2019/R&D/IIDAE/13820. S.M. received additional funding from the Science and Engineering Research
Board, India (SRG/2019/000513). R.W. is supported in part by National Science Foundation grant DMS-1906403.



2 Biswas, Mukhopadhyay and Wentworth, Hitchin connection for parabolic G-bundles

compatible almost complex structure I on M such that (M, w, I') is a Kédhler manifold. This
induces a holomorphic structure on the line bundle £ and leads to the notion of geometric quan-
tization, where the Hilbert space .77 is reduced to the space of holomorphic L2-sections of L.
Because the quantization process should arrive at a unique answer, it is natural to investigate
the dependence of the geometric quantization on the choice of almost complex structure I on
M.

In [43], Hitchin analyzes this question in a very important setting (see also [7], [33], [35],
[2]). Here, M = Hom"" (71(X), K)/K, is the moduli space of a class of representations of
the fundamental group 71 (X) to K, where ¥ is a closed oriented surface and K C G is a max-
imal compact subgroup of the earlier mentioned simple, simply connected group GG. The group
K acts by conjugation on a representation p : 71 (X) — K, and p € Hom"" (7 (%), K) if the
stabilizer of p under this action is exactly the center of K. This space has a symplectic form
defined by Atiyah-Bott [5], Narasimhan [54], and Goldman. A choice of a complex structure
I on X endows M with a Kihler structure, and via the Narasimhan-Seshadri-Ramanathan the-
orem this complex manifold, which we call M7, can be identified with the space of regularly
stable holomorphic principal G-bundles on C' := (3, I) (see [61, Prop. 7.7 and Thm. 7.1]).
The role of L is played by a determinant of cohomology line bundle defined via some linear
representation of G, and .#7 := H(Mj, £L®¥) is the space of nonabelian theta functions of
level k. The connection V is the Chern connection of the Quillen metric. Hitchin found a flat
projective connection on the bundle of nonabelian theta functions over a family of curves of
fixed genus. His construction may be interpreted as a natural identification between the spaces
P(HO(My, £L2%) = P(H(Mp, £L2%) via parallel transport along a path connecting I and I’ in
the Teichmiiller space.

TUY/WZW connection. As mentioned above, the vector spaces .77 that appear in
Hitchin’s geometric quantization have a counterpart in the WZNW-model of a 2d rational con-
formal field theory constructed by Tsuchiya-Ueno-Yamada [74], which appears in the quanti-
zation of a 3d-Chern-Simons theory to a 3d-TQFT as considered by Witten [77]. Let g denote
the Lie algebra of G. Given a positive integer k£ and an n-tuple A of dominant weights for g
satisfying a certain integrability condition depending on k, the paper [74] constructs a vector
bundle VL( g, k) on the Deligne-Mumford compactification ﬂg,n of stable n-pointed curves of
genus g. Over the interior M, ;, parametrizing smooth curves, Vg(g, k) admits a flat projective
connection. These vector bundles of conformal blocks satisfy the axioms of a 2d-rational con-
formal field theory. Moreover, due to work of Beauville-Laszlo [12] and Kumar-Narasimhan-
Ramanathan [48], in the case of a single puncture with trivial weight, we get a canonical (up
to a scalar) identification of .77 with the fiber of V;(g, k) at the point C' = (X, I) in Mg,,.
It is natural to ask whether the connections of Hitchin [43] and Tsuchiya-Ueno-Yamada [74]
coincide. That this is indeed the case was proven by Laszlo [49].

A generalization of the identification of .77 with conformal blocks also holds for smooth
C with an n-tuple of marked points p. Consider the moduli space M&™""™ = MZ""(C, p, )
of regularly stable parabolic G bundles on a compact Riemann surface C' with n-marked points
p and parabolic structures A at p. Let Ly ;. be a parabolic “determinant of cohomology” line
bundle on MZ*""®. Then there is a canonical (up to scalars) isomorphism between the finite
dimensional vector space of holomorphic sections H%(ME™"*, L ;) and the fiber of the space
of conformal blocks V;(g, k) | Cp) (see [58] and [50]). This identification between conformal
blocks and nonabelian theta functions is a mathematical analog of the Chern-Simons/WZNW



Biswas, Mukhopadhyay and Wentworth, Hitchin connection for parabolic G-bundles 3

correspondence of Witten [77]. Since the vector bundle of conformal blocks is endowed with
a flat projective connection, it is very natural to ask the following question:

Question. Is there a natural flat projective connection on the family of spaces H*(ME™", L 1)
as the pointed Riemann surface structure of C moves in a holomorphic family?

For parabolic vector bundles, a construction of the projectively flat connection was given
by Scheinost-Schottenloher in [64] for those special cases of weights A such that the canonical
class of the corresponding parabolic moduli space, which depends only on the rank, number of
points, and the flag types of A, admits a square root. This condition often appears in the context
of geometric quantization under the term metaplectic correction (see also [4]) and it produces
a projective connection on the push-forward of the line bundle obtained by modifying £ j
by the square root. The proof in the above reference makes use of a correspondence between
parabolic bundles on a curve with rational weights, and holomorphic bundles on an associated
elliptically fibered complex surface. However, for moduli spaces of parabolic bundles, the
condition on the existence of a square root of the canonical bundle is not always satisfied.

In [26], Bjerre proved the existence of a (unique) flat projective connection for the moduli
space of parabolic vector bundles via a gauge theoretic description of the moduli space. An
important step in the proof was to remove the condition on the existence of a square root by
passing to a different moduli space with altered weights.! 2 The results of Bjerre, Scheinost-
Schottenloher, and Zakaria stated above work only for curves of genus g > 2 and exclude the
important case of genus zero curves with marked points. The connection on conformal blocks
for genus zero curves is known as the Knizhnik-Zamolodchikov connection, and it has been
extensively studied from different perspectives.

The motivation of the present paper is to give an affirmative answer to the above question
for general G and curves of all genus using algebro-geometric methods applied directly to the
moduli spaces in question. To state the result precisely, first note that the curve C' and parabolic
weights A determine an orbifold curve € (cf. Appendix C and Lemma C.1). Our main result
is the following:

Main Theorem. Let C — S be a versal family of n-pointed smooth projective curves,
and let G be a simple, simply connected complex algebraic group. Assume that the genus g(€)
of the orbifold curve determined by the weights X satisfies g(¢') > 2, and if G = SLg or Spy,
g(€) > 3. Let 7 : Mg"’m — S be the relative moduli space of regularly stable parabolic G
bundles on C for some fixed parabolic weights X. Let L, be the determinant of cohomology
line bundle on M gar’rs determined by a choice of representation ¢ : G — SL,.. Then for any
a € Q, for which Eff“ defines a line bundle on MZ'"", the coherent sheaf . (E?“) has a
natural flat projective connection.

Observe that we can allow the genus of C to be zero or one in the above theorem, provided
some inequalities are satisfied (cf. Example B.2 below). It is reasonable to expect that the TUY
connection for conformal blocks and the parabolic Hitchin connection constructed in the Main
Theorem coincide under the identification mentioned above. We postpone this question for a
future work.

D" After the present paper was posted to the arXiv we received a preliminary version of the work of
Andersen-Bjerre attributed here [3].

? Subsequent to the submission of this paper, in May 2023 a draft of the thesis of Zakaria Ouaras [56]
appeared in which the author proves the existence of a unique flat projective connection in the case of moduli
spaces of parabolic vector bundles with arbitrary fixed determinant and genus g > 2.
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Key difference in the parabolic case. Before proceeding further, we describe the key
difference in the parabolic set-up. The moduli space of principal G-bundles satisfies a “mono-
tone” condition: the first Chern class of the moduli space is a multiple of the Chern class of the
prequantum line bundle. This property is an important technical point in Hitchin’s construction
of the connection (cf. [43, egs. (2.8) and (3.9)]), and it leads to a solution to the van Geemen-de
Jong condition in Theorem 2.2 (i) below.

The main new feature in the case of parabolic bundles is the higher rank of the Picard
group of the moduli space, and because of this monotonicity no longer holds.

Main Ideas. The key ideas and methods used this paper to address the lack of mono-
tonicity mentioned above are the following:

* The fiducial symbol coming from the usual construction of Hitchin connection can be
naturally modified to a new condition that now satisfies the van Geemen-de Jong condi-
tion (see (50)).

« This modification is facilitated by another crucial ingredient, which is a categorical equiv-
alence of “m-bundles” on a ramified cover C' — C' with parabolic bundles on C' ([66],
[19], [8] and [67]).

e We prove and use an equivariant analog of a result of Beilinson-Schechtman [16] con-
necting classes of Atiyah algebras obtained as equivariant push-forwards of a differential
graded Lie algebra with those associated to the determinant of cohomology of the uni-
versal bundle.

« Finally we use the fact that the line bundles on moduli space of parabolic bundles adapted
to the parabolic weights correspond exactly to the restriction of the determinants of co-
homology to the locus of orbifold bundles (cf. [24], [28]).

We now discuss some applications of the main theorem mentioned above. Let H be a
simple algebraic group with nontrivial fundamental group, and let H be its simply connected
cover. Let 7 : MP""*" — S be the neutral component of the relative moduli space of regularly
stable parabolic H bundles on C — S for some fixed parabolic weights A, which we assume
lift to weights for H. As before, let £ Ak be the parabolic determinant of cohomology. It is
natural to ask whether the coherent sheaf 7, L j, carries a projectively flat connection. A direct
corollary of the main theorem is the following:

Corollary 1.1. For any simple group H, the coherent sheaf w.L j, is locally free and
carries a flat projective connection whose symbol is the same that for that for the simply con-
nected cover H.

Observe that moduli spaces of parabolic bundles are not necessarily Fano, and hence we
cannot use a Grauert-Riemenschneider type vanishing theorem as in the nonparabolic case to
conclude local freeness via vanishing of higher cohomologies. Furthermore, since H is not
simply connected, we cannot reconstruct these space via affine Lie algebraic methods.

We now briefly recall the earlier constructions of the Hitchin/WZW/TUY connections
in the nonparabolic setting. Hitchin’s construction of a projective connection in the closed
(nonparabolic) case draws parallels with Welters’ work on theta functions for abelian va-
rieties [76]. The starting point is the description of first order deformations of the triple
(My, L%* s), where s € H(Mj, £LZF), in terms of the first hypercohomology group of
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the complex At(L®*) — L®* constructed using s. Here, At(L) denotes the Atiyah alge-
bra of £. Though Hitchin’s methods were differential geometric in nature, in [35] van Geemen
and de Jong reinterpreted the construction in an algebraic manner closer to that of [76]. Us-
ing this framework, along with the fundamental results of Beilinson-Schechtman [16] and
Bloch-Esnault [27], Baier-Bolognesi-Martens-Pauly [59] reproduced Hitchin’s connection for
G = SL,. Moreover, their proof works over fields of positive characteristic, with a few extra
assumptions.

The Hitchin connection for G = GL, bundles had previously been found by Belkale
[15]. Other algebro-geometric constructions of the Hitchin connection are given in [33], [63],
[60], and by Ginzburg in [36]. Ref. [70] uses the results of [16] to extend Hitchin’s connection
for logarithmic connections and the moduli space of semistable torsion-free sheaves on nodal
curves. The approach in the present paper is strongly motivated by [59] and [36].

Further generalizations. In fact, it is possible to work in the general setting of I'-
Aut(G)-bundles. A moduli space of such pairs with a fixed local type has been constructed by
Balaji-Seshadri [9] (in the case of I'-G-bundles in characteristic zero) and by Heinloth [40] (in
the more general settings of Bruhat-Tits torsors in the sense of Pappas-Rapoport [57], and over
fields of arbitrary characteristic). We note that it has been not verified whether the stability
conditions of [9] and [40] coincide. Nevertheless, the results in Section 3 generalize verbatim
to moduli spaces of I'-Aut(G)-bundles. However, in order to produce a Hitchin connection (as
described in Section 5), the following additional information would be required:

« the base of the Hitchin map for the moduli of parahoric Higgs bundles for (', Aut(G))
is affine, and the fibers of the Hitchin map are connected;

« the complement of the cotangent bundle of the moduli space of I'-Aut(G)-bundles in the
parahoric Higgs bundles moduli space has codimension at least 2.

There are some results in the direction of the first point by B. Wang [75], who extends the
result of Donagi-Pantev [29] to the set-up of parahoric I'-G-Higgs bundles. In full generality,
however, the two items above are not presently available in the literature, and we therefore
restrict ourselves here to the setting of parabolic bundles.

Outlook. The paper [59] cited above argues that it is of independent interest to con-
sider the Hitchin connection over field of positive characteristics from the view point of the
Grothendieck-Katz p-curvature conjecture and the modular representations of the mapping
class group. The constructions in this paper follow those of [59] and are likely to work (af-
ter suitable modifications of the techniques used here) over fields of characteristic p > 0,
unless p € {2,3,h"(g),k,k + h"}. But even given these constraints on p it is not clear
whether ,Ly , is locally free. For this, it would be enough to show that H*(ME"**, Ly 1)
vanishes. However, in the parabolic case the moduli spaces M5"""** are not Fano in general,
even in characteristic zero. Moreover, there is no suitable Grauert-Riemenschneider vanishing
theorem.

A uniform approach to this vanishing result would follow if one can show that M
are Frobenius-split. There is some work in this direction for G = SLy by Mehta-Ramadas
[52] and by Sun-Zhou [71], who show that semistable parabolic bundles of rank r and fixed
determinant are globally F'-regular type. A general result on Frobenius splitting for moduli of
parabolic bundles is presently missing in the literature.
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Organization. This paper is organized as follows: In Section 1, we review the con-
struction of the projectively flat connection in the general set-up following Hitchin [43] and
van Geemen-de Jong [35]. In Section 3, we review the generalizations of Hitchin’s symbol and
Kodaira-Spencer maps in the parabolic bundle context. The important result here is Theorem
3.3, which relates the fiducial Hitchin symbol to the relative extension classes of the Atiyah
algebras of the G-bundle and the determinant of cohomology.

Finally, in Section 5 we prove that the modified Hitchin symbol satisfies the constraint
equations of van Geemen-de Jong. This leads to the proof of the Main Theorem. The last three
sections contains some definitions and technical results on parabolic bundles, invariant push-
forwards, and vanishing theorems, that are used at various points in the paper. In particular,
the determinant of cohomology line bundles L4 associated to a linear representation ¢ of G
are defined there. Parabolic determinant of cohomology line bundles are defined in A.12 and
A.16. We also explain the admissible values of k, how to realize the parabolic determinant
of cohomology bundles via the moduli space of I'-G-bundles, and the invariant push-forward
functor construction.

For the rest of the paper we emphasize that the ground field of varieties and schemes is
always C, and we shall freely go back and forth between Zariski and analytic topologies.

2. Flat projection connection following Hitchin—-van Geemen—-de Jong

Letm : M — S be a smooth surjective proper map of smooth varieties with connected
fibers and £ — M a line bundle. In this section we briefly recall a general approach for
constructing connections on the coherent sheaf 7, £. This is due to Hitchin [43] in the Kéhler
setting (generalizing Welters [76]) and to van Geemen—de Jong [35] in the algebro-geometric
setting.

2.1. Heat operators. From [35, Sec. 2.3] we recall the notion of a heat operator and

associated connections. Fori > 1, let D<%(L) (resp. D]SM,Z , 5(£)) denote the sheaf of differential
operators (resp. relative differential operators) of order at most ¢ on the line bundle L.

Consider the subsheaf Wy, s(£) = D='(L) + fo/ (L) of the sheaf of second order
differential operators on L. It fits into the following short exact sequence:

) Oépil/s(ﬁ) —>WM/S(£) —>7r*7‘SEBSym2TM/S—>O.
Note that Og C Dﬁ/s(ﬁ) C Whys(£).

Definition 2.1. A heat operator D on Lis amap D : ©*Ts — Wy (L) whose com-
position with the natural projection map Wy (L) — 7*Ts, given by (1), is the identity map of
7*Ts. A projective heat operator D on L is an Og-linear map D : Tg — (m:Whai/s(£))/Os
such that any local lifting gives a heat operator.

Given a heat operator D, we can construct a connection V(D) : m.L — m.L ® Q}q on
the coherent sheaf 7. L as follows: Let § € Tg(U), where U C S an open subset. Then by
definition, D(7~10) is a second order differential operator on £(7~1(U)). Let s be a section
of mL(U) and f € Og(U). Then D(7—10)((f o w)s) = f - D(x~10)(s) + 0(f) - s, in
other words, D(7~10) satisfies the Leibniz rule. Indeed, this follows from the requirement in
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Definition 2.1 that the heat operator is the standard first order operator on the base. Hence, we
get a connection V(D).

2.2. Existence of a heat operator. The Kodaira-Spencer map is given by:
KSyys:Ts — Rlﬂ'*TM/S.
On the other hand, we have the coboundary map
e Ty Sym? Trvys — le*TM/S,
occurring in the long exact sequence obtained from the push forward 7, of the fundamental
short exact sequence of differential operators
0 — Tar/s = Dﬁ/s(c) JOn —> ij/s(z) JOn 2 Sym® Thy /s — 0,

where s; is the symbol map. Given p : Tg — m,(Sym? Ty, / 5), van Geemen and de Jong
[35] analyze necessary conditions so that this map p arises as a symbol of a projective heat
operator. More precisely, one seeks a map D : Tg — (m,(D<H(L) + DJSWQ/ 5(£)))/Os, such
the following diagram commutes:

Ts =2 (m.(DS(L) + D})5(£)))/Os — (mD=2(L)) [Os

p

T (Sym?® Tag/s) -

The following theorem is one of the main results in [35] (see [35, Sec. 2.3.7]). It gives an
algebro-geometric perspective on Hitchin’s construction of the flat projective connections for a
family of Kidhler polarizations in [43, Thm. 1.20].

Theorem 2.2 (EXISTENCE CRITERIA). Given a symbol map p : Tg — 7, Sym? Ty, /55
with M, L and S as above, there exists a unique projective heat operator D who symbol is p if
the following three conditions are satisfied:

(i) (Hitchin, van Geemen-de Jong equation): K Sy s + pieop=0inTg;
(ii) (Welters condition) the cup product: U[L] : w.Tyr/s — R'71, Oy is an isomorphism;
@iii) m.Opr = Og.

In particular, if the coherent sheaf 7. L is locally free, then P(7, L) is equipped with a connec-
tion.

In [59], the authors translate Hitchin’s proof of flatness of projective connections into
the abstract formalism of [35]. In the set-up of Theorem 2.2, they prove the following (see
[59, Thm. 4.8.2]):

Theorem 2.3 (FLATNESS CRITERIA). If the following three conditions are satisfied,
then the projective connection that is a consequence of Theorem 2.2 is flat.

(i) For any local sections 01 and 03 of Tg, the symmetric vector fields p(0;) considered as
functions on T]\\//[ /8 Poisson commute (for the standard symplectic structure).

(i1) The map . is injective.
(iii) mTpr/s = 0.
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3. Towards a parabolic Hitchin Symbol

In this section we discuss the parabolic analog of the Hitchin symbol. This will turn out
to be the symbol of a natural second order differential operator. The original case of (non-
parabolic) vector bundles is due to Hitchin. We follow and generalize the discussion in [59].
We begin by recalling the notion of a parabolic Atiyah algebra.

3.1. Parabolic bundles and their Atiyah algebras. Let ¢ : C — S be a family of
smooth projective curves with n marked points given by disjoint sections p1, -+ ,pn, : S — C
of ¢, and let D = p; + - - - + py, be the corresponding relative divisor in C.Let7:C — Sbe
a family of I'-Galois covers of the fibers of C, ramified along D.In particular, this comes with
a natural projection map p : C — C such that p(D) D. In order to analyze parabolic Atiyah
algebras for families of parabolic bundles on C, we shall use the notion of I'-linearized bundles
on the Galois cover C. The reader is referred to Appendix B for more details.

Let P be a family of I'-G-bundles on C, and let P be the family of parabolic G-bundles
obtained by applying the invariant push-forward functor. The relative parabolic Atiyah algebra
is given by:

parAtC/S(P) (Atc/s (P))

and the strongly parabolic Atiyah algebra is given by:
P Atess(P) = pl (Atg,(P)(=D)) .

Similarly, we define the sheaf of parabolic endomorphzsms Par(P) by pL'(ad(P)), and the
strongly parabolic endomorphisms SPar(P) by pL (ad(P)(—D)).

Just as in the case of parabolic vector bundles, these sheaves fit into the following funda-
mental exact sequences

0 — Par(P) — P Ate/5(P) — Teys(=D) — 0

2
@) 0 — SPar(P) — P Ate,5(P) — To/s(—D) — 0.

Also, as in the case of parabolic vector bundles we get the following quasi-Lie algebra:
3) 0 — Qc/g — (P Ate/s(P)(D))Y — (SPar(P)(D))Y — 0.
The Cartan-Killing form x4 on g = Lie(G) gives an identification
4) vy " (SPar(P)(D))" =% Par(P) .

A more explicit description of these bundles in Lie theoretic terms goes as follows: Let n;
be the nilradical of the Lie algebra of the parabolic subgroup P;. Consider the adjoint bundle
ad(P) of the parabolic bundle P. The sheaf of strongly parabolic (respectively, parabolic)
endomorphisms is the subsheaf ad(P) such that the residue at p; lies in the Lie algebra n;
(respectively, in Lie algebra of P;) for each 1 <1 < n.
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3.2. Some canonical maps. Now assume the family C — .S to be versal with respect to
the divisor D. Universal bundles on relative moduli spaces of bundles exist locally in the étale
topology, and moreover both the associated Atiyah algebra and the adjoint bundle glue together
to extend globally. For convenience of exposition we can therefore assume the existence of a
universal bundle P on the family of curves X7 /MZ*""* with parabolic structure supported
on a relative divisor D base changed to M"""*. We have the following useful diagram:

Pi

/\

:{par = X g Mpar ,rs Tn Mpar TS

5) l \ l

pi

The above map 7. : X7y" — S is defined by 7 := ms 0 ™, = 7, 0 my,. Recall the duality in
(4). There is a canonical inclusion map

(6) SPar(P) — Par(P)
whose quotient is supported on D. Composing the evaluation map
T Tns (SPar(P) @ mp Qc/5(D)) — SPar(P) @ s Qc/s(D)
followed by (6) (tensored with 7 Q¢ /5), We obtain the following:
T (SPar(P) @ mp Qc/s(D)) — Par(P) @ w5 Qc/s(D) .

Taking duals and applying Serre duality, and then using the identification via v Lineq. (4),
we get that

(Pax(P))" © w Teys(~ D) — (e (SPar(P) w5 (D))
>~ R Wn*((SPar(P)(D))v> &~y (len* Par(P)) .

This, in turn, gives a map 7}, 7¢/s(—D) — Par(P) @ m}, ((R'mp. Par(P))). Applying R'm,
and the push-pull formula, we obtain a morphism

R'7iTe/s(—D) — R'my, (Par(P)) ® (R'mns (Par(P))) .

Further applying .. and identifying me. Ty par /5, We get a map

(7 Psym * Rlﬂ's*,TC/S(_D) — Tex (TJ\?C%M’TS/S) .

We briefly recall the notion of a strongly parabolic Higgs bundle on the family C — S.
Let P be a parabolic GG bundle on a curve C' with weights «, and consider the sheaf of strongly
parabolic endomorphisms SPar(P). A strongly parabolic Higgs pair (P,#) consists of a
parabolic bundle P and a section 0 of SPar(P) @ Q¢/s(D). We refer the reader to [21, Sec.
3-4] for the notion of semistability and the construction of the moduli space H['/;** (or simply
denoted by HZ'"*) (see also [11, Sec. 5], [34, Sec. 5]).



10 Biswas, Mukhopadhyay and Wentworth, Hitchin connection for parabolic G-bundles

The Hitchin map assigns to a parabolic Higgs pair (P, 6) the evaluation on 6 of a basis
of invariant polynomials on g. Since G is simple, the lowest degree is quadratic; it produces a
map:
Hit : HZ"™ — 71'3*9?/25( ),

where Q?/QS(D) is the space of holomorphic relative quadratic differentials with simple poles
along the divisor D. Now consider the multiplication map

R Taper jpgporrs (= D) @ T (SPar(P) @ Qaper pgparrs (D)) — Rimys Par(P) .
This gives the following map:
\%
Rlﬂn*’]-x%ar/Mgar,rs (—D) —> (7Tn* (SPar(P) ® Q%gaT/Mgar,rs (D))) ® Rlﬂ_n* Par(P) 5

which, by relative Serre duality (4), and after applying 7., (see (5)) together with symmetriza-
tion, gives a map

8) PHit Rlﬁs*’ﬁ;/s(—D) — Tex Sym? TMgams/S )

Observe that the cotangent bundle 7, par.rs /g embeds into HP'"*®. We rewrite the Hitchin map
G
via the following commutative diagram as in the nonparabolic case:

T]\\égar,rs *> Tvpar TS/S ® Tvpa,'r 'rS/

©) \ |n

®2
ﬂ'n*Q par

S

/Mpar s (D) .

Here, A is the diagonal map, and the operator Tr is the pairing given by symmetric form
on SPar(P) defined by the Killing form rgy; recall that 7,/ METTS ) is given by sections of

SPar(P) ® Qypar jpparers (D). Composing with 7., and applylng relative Serre duality we
get that the dual of the vertical map Tr in (9) is ppy;; in (8). The two maps ppy¢ and psym
(constructed in (7)) are hence identified.

Proposition 3.1. The map py;; in (8) coincides with psyy, given in (7).

Proposition 3.1 was proven in the (nonparabolic) vector bundle case in [59, Lemma
4.3.2].

3.3. Deformation of MZ*"" via pointed curves. Recall that we have an isomor-
phism between the moduli space of parabolic bundles with fixed parabolic weights A on a
curve C' and the moduli space of I-G-bundles on a Galois cover C — Cof type 7. Here, the
cover C and type are related to the parabolic weights. We refer the reader to Appendix B for
more details. We will need the following lemma, the proof of which is straightforward.

Lemma 3.2. There is a natural isomorphism 7., 7¢/5(—D) = 7362‘" JMEETT (-D),
where T, is the map in (5). Furthermore:
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() RV en (Tagor g (~ D)) = Rl (Te s(~D);
(ll) Rl']Tn* (Egar/Mgar,rs (—D)) = W:Rl’ﬂ'c* (%gar/Mgar,rs (—D)),

where the maps are as in (5).

Consider the relative parabolic Atiyah algebra:

~

T
pa”‘Atx;éar/Mgar,rs (P) = Py (AtéXSMgar,TS/Mgar,rs (7))) ,
and the fundamental exact sequence (cf. (2)) known as the relative Atiyah sequence:
(10) 0 — Par(P) — p”Atxzéar/Mgams (P) — Egar/Mgams(—D) —0.

Now since 7, Tgrar pparrs (—D) = 0 and R%*m,,, Par(P) = 0, applying R, to the above
we get the short exact sequence

(11

0— Rlﬂ'n* Par(P) — Rlﬂ'n* (parAtx;éar/Mgar,rs (7))) — Rl’]'{'n*E;éar/Mgar,rs (—_D) —0.
The relative extension class of the exact sequence in (11) is an element

(P, A) € R'Teu((R T Taper jpgperrs (—D))Y @ R'mn Par(P))
(12) > R'Tes(m}(R'moi T s(— D)) ® Ry, Par(P))
= Rlﬂ'e*(W:(Rlﬂc*E%aT/Mgahrs(—D))V ® R'mp. Par(P)) .

The last two isomorphisms are constructed using Lemma 3.2. The exact sequence of tangent
sheaves induced by the map 7 : MZ"" — S'is:

(13) 0 — TMgar,rs/S —_— TMgar,rs — 7'[':7-5 — O .

Since by assumption the family of pointed curves is versal, the Kodaira-Spencer map gives an
isomorphism KS¢ /g : Ts = les*Tc/S(—D), which, pulling back via 7, and using Lemma
3.2, gives

(14) 1 Ts 2w R o (Teys(—D)) = R (Taper jpgporrs (= D)) -

The identification in (14) and the equivariant version of [70, eq. (3.10)] together produce the
following commutative diagram, which relates (11) and (13):

R Par(P) «— R'm P Atgpar yarrs (P) ——» R'm, (7;%(” /Mgm(—D))

] | ;

TMgar,rs/S < TMgar,Ts 7T:7TS'

The Kodaira-Spencer class for the family 7. : MZ™"™ — S gives a map

KSyperrs st Ts — RimesTygperrs s = Ri7ex (R s Par(P)) .
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The cup product by a := «(P, A) produces maps

R7es (Tpar jygparrs(— D))
Ua

RV (Tazer pgperrs(=D)) & R on (3 (R¥res Tagor gy (D)) © Ry Pax(P))

[~23

\
(Rl’n’c* (Eg@r/Mgar,rs (—D)) ® ((Rl’]'(‘c*,]-xgar/Mgar,Ts (—D))) ® Rlﬂ'e* (Rlﬂ-n* Pal"(P))

R?7e, Par(P) = R'7e, (R 'y Par(P)) .

The isomorphism in the last step uses the identification R'7,,, Par(P) = 7}zéar JMETT along
with the facts that M7 has no global tangent vector fields relative to S (cf. Lemma 5.6)
and 7, Par(P) is zero. This forces the Grothendieck spectral sequence to collapse.

We may summarize the discussion and identifications above with the following commu-
tative diagram:

5)

(o)

KS,
Ts S Rir(Tes(—D) Rimee (T g (=)

Km} l‘b %

Rlﬂe*TMgam-S/S &~ R'7es (R 'mp Par(P)) .

Here @ is the map induced by the cup product with the class a(P, A) (see eq. (12)) preceded
by the isomorphism of R'7. (T¢/s(—D)) with R'm, (73625“" JMpens (—=D)) given in Lemma
3.2.

3.4. A fundamental commutative diagram. Consider R!7,, of the sequence (2) ap-
plied to P4" Atxgar MBS (P), where 7, is the map in (5):
(16)
0 R'mun(mQys) ———— Ru (7 Atgpar jypporrs (P)(D))Y) )

L R, ((SPar(P)(D))V) — 0.

Let 8 := B(P, A) be the relative extension class with respect to 7. (see (5)) of the extension
(16). Then we have a diagram:

Rlﬂ's*’]zj/s(—D) 7—¢)> Rlﬂ'e*TMgar,TS/s

(17) S, o

Tex (Sym? Typares ) -
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We have the following key result which relates all three maps. In the (nonparabolic) vector
bundle case, this was proven in [59, Prop. 4.7.1].

Theorem 3.3. The diagram (17) commutes. In other words,
P +UB(P,A) 0 psym =0
as a morphism Rlﬂs*Tc/S — Rlﬂ'e*TMgar,TS/S.

par

Proof.  Pull back the short exact sequence in (16) to X ;" via the map 7, in (5). Tensor-
ing the resulting sequence with Par(7) we obtain the following exact sequence

Par(P) @ m, (R' 1y Qeys) > Par(P) @ myy (R s (P Atgrar ppares (P)(D))Y))

|

Par(P) ® mj; (R 7 ((SPar(P)(D))V)) .

Using kg, we can rewrite this as

Par(P) @ 7 (Rlﬂn*wfuﬂc/s) —— Par(P)®@ (Rlﬂ'n* ((SparAtx;léaT/Méar,rs (P)(D))v))

!

Par(P) @ 7 (R'my (Par(P))) .
The assumptions ensure that R'7y.7,Qc s = Opgparrs. Dualize (10) to get
0— W;QC/S(D) — (parAtxzéar/Mgar,rs (P))V — Par(p)v —50.

Tensoring by Par(P) @ ;,7¢c/s(—D) and taking the duals (outside bracket) we get the short
exact sequence

0 — Par(P) Par(P)@((P*" Atgper jppparrs (P)) @ i Qcs(D))" j

L Par(P)®(Par(P) @ TrjjJQC/S(D))V —0.

Now observe that the dual of the evaluation gives maps

(parAtxléaT/Mgaﬂm (73) ® W;Qc/s(D))v — (W:?Tn* (parAtxléflT‘/Mgar,rs (73) ® WZQc/S(D)))V

=7 (s (pa’"Atx’Z;”/Mé’;”’” (P)® WZQC/S(D)))V
o (R o (M7 Atgpar p o (P)(D)) )
— (Rlﬂn* ((SpmAtx’é“T/Mé”’” (P)(D))Y)) -

I

In the above equation we have used the isomorphism

R0 (P Atager agpones (P)(D))”) 2 (e (P Abigper gz (P)(D) @ 15, 0))



14 Biswas, Mukhopadhyay and Wentworth, Hitchin connection for parabolic G-bundles

coming from relative Serre duality and the dual of the natural inclusion map
SpaTAtxz&ar/Mgams (P) — pa’l"At%gar/Mgar,rs (P) .
We now reverse engineer the construction of the Hitchin morphism py,:
* 4 * * Vv
(Par(P) ® WwQC/S(D)) — T T ((Par(P)(D) ® wwﬂc/s))

— s ((SPar(P)(D) @ mQess))
=~ 1% (R'mp. ((SPax(P)(D))Y)) (by relative Serre duality)
>~ 7% (R'my. (Par(P))) (by trace pairing).

Consider the natural inclusion map 7}, 7¢,s(—D) < Par(P) @ Par(P)" @y, Te/s(—D), and

pull back the short exact sequence
Par(P) = Par(P) @ (P Atgper jyyoerrs (P))" @73, o 5(~D) — (Par(P) @, Qs (D))"
Finally, by [59, Lemma 4.5.1], we obtain an isomorphism of the extensions:
(18)
Par(P) POr At ggar pgpones (P) w2, Te)s(~D)

| I l

Par(P) —— Par(P) @ (" Atgrar pyperes (P)) @7, Teys(—D) — Par(P)@(Par(P) @ m,Qc/s(D))"

Par(P) < Par(P)@ (""" Atgrar pyperrs (P) @ m,Qc/5(D))" — Par(P)@(Par(P) @ m,Qc/s(D))".

(=1

Here, the minus sign (—1) indicates the negative of the projection map. Following the case of
vector bundles in [59], after composing we arrive at a commutative diagram
(19)
ar (=1 *
Par(P) Por At gpor p g (P) 74 Te/s(~D)

l

Par(P) < Par(P) @ (s mna (M7 Atgpor jpgoorrs (P) @ w50 5(D)))
\» Par(P) @ (7} mps Par(P) @ W;QC/S(D))V

Par(P) —— Par(P)@7}; (R mps ((SparAtxgm/Mgm,rs (P)(D))Y))

\» Par(P)@m}; (R T (Par(P))).

Now we take R'T,, of the exact sequences in the first and third rows in (19) to obtain
(20)
Rz Par(P) —————— Rlm,. (P7 Atpor ppporirs (P)) R (3, Te/s(—D))

| ! !

R'my Par(P) < R'my, Par(P)OR mys (P Atgper jpppores (P)(D))Y ——# R'mn, Par(P)@ R my.(Par(P)).

(=1
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The connecting homomorphism for (7). gives

Rlﬁs*%/s(_D) 7—CI)> Rlﬂ-e*TMg"‘T’T‘S/S

[ H

1
ﬂ'e* (TMgaT,TS/S ® TMgaT,rs/S) _— R We*T]VIgaT,TS/S .

The negative sign —® appears above due to the factor (—1) in (18); recall that ® (see eq. (15))
is the connecting homomorphism for the direct image by 7, of the exact sequence in (11). The
proof of the theorem will be complete if we can show that the underlying map is U 5(P, A).
But this follows from the fact that the bottom row of (20) is just the exact sequence

O R OMgar =~ Rlﬁn*széar/Mgar,rs _— Rlﬂn*(sparAtx%ar/Mgar,rs(P)(D))v U

L R'7,, Par(P) — 0

tensored with Typer /ppar.rs, and B(P,A) is the relative extension class of the above with re-
spect to 7. o

4. Cupping with the parabolic determinant of cohomology

In this section, we state and prove a key result that compares the cupping map by the
class of the parabolic determinant of cohomology to that of the usual determinant of cohomol-
ogy. This will be crucial for later arguments. Let P= (P, ..., P,) be an n-tuple of standard
parabolic subgroups, and consider the stack Parg(C, ﬁ) of quasi parabolic bundles on a curve
as recalled in Definition A.2 and let Det()) (or simply Det) denote the determinant of coho-
mology line bundle on a scheme 1" parametrizing a family V of vector bundles on a smooth
projective curve C. Recall (cf. Proposition A.5) that any line bundle on Parg(C, ﬁ) is of the
form Det(E(V))®* @ ¢, where (V) is a vector bundle associated to a chosen representation
¢:G—SL(V),a € Qand # € Pic(G/P, x ---x G/P,) ® Q. We will refer to the rational
number a as the level (see Definition A.16).

Theorem 4.1. Let I be an element of Pic(Mgagm) ® Q of level a. Then as linear
maps e, Sym? TMZ“;;’TS/S — Rlﬂe*TMg“g”/S’ we have: U[L] = Ua[Det], where Det is
the determinant of céhomology ( nonparabdlic ) line bundle.

Theorem 4.1 is proved in several steps. The strategy of the proof is to reduce to the
case of parabolic vector bundles with full flags and apply the technique of abelianization by
restricting to generic fibers of the Hitchin map.

4.1. Reduction to the SL, case. Since G is simple (hence semisimple), any short ex-
act sequence of finite dimensional G-modules splits. In particular, for a faithful irreducible
G-module V, the G-module End(V') decomposes as g & Wj. Fix a complement Wy of the
G-submodule g. Given an injective homomorphism G < SL,(C), we have an embedding
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ME'E™ — M5 which restricts to amap f : Mg's"™ — M7, Using the splitting of

the G-module sl (C), the tangent bundle f*Mg"", splits as f*Typars /g = Tapesre s @ W.

This gives splittings of tensor powers, duals etc. We have the following commutative diagram:
L

2 ) 1
T Sym TM&ITTE/S — 3 R TI'*TMé’Cl::;/S

l 1

2 UL 1
ye® Sym TMgﬂ, /S — R WG*TMgﬁ’ /S

where 7 © M§"™ — Sand g @ Mg "® — S are the projections (this was earlier
denoted by ., but here we simply write m and 7g); the vertical maps in (21) are given by
the above mentioned splittings. Here, L is an element of the rational Picard group of Mé’l‘_l:;
and 7 = f o m. The homomorphism 7, Sym? TMgf:;Z /8~ TGx Sym? TMng;,rs /s in (21) is
surjective. Thus we have proved the following proposition:

Proposition 4.2. Consider two elements 1Ly and 1Ly in Pic(Mgf:’sa) ® Q. If the maps
U[L4] and U[Ls] agree on m, Sym? Thagzers /s» then they also agree on mg. Sym? TM@“E’” /8

4.2. Reduction to the SL, with full flags. In this step, we will show that in order to
prove Theorem 4.1 it is enough to assume that o corresponds to weights for full flags. This
step is only required when r > 2.

Changing weights without changing stability. Let D = {p;, ---, p,} C C be the
parabolic divisor. Consider parabolic vector bundles of rank r. Forany 1 < ¢ < n, let

(22) @i =mijfl, 1 <j <,

be the parabolic weights at p;, where m; ; and £ are nonnegative integers. Note that for any 4,
the integers m; j, 1 < j < r, need not be distinct and the weights are assigned to full flags.
We will reformulate a general notion of parabolic bundles for which the quasiparabolic flags
are not necessarily complete in the following way: We will set the quasiparabolic flag at each
p; to be complete flags, but two different terms in the filtration can have same parabolic weight.
This reformulation does not alter any of the stability and semistability conditions.

Fix a vector bundle E of rank » on X. Let E, be a parabolic structure on E of the above
type. Let E, be another parabolic bundle satisfying the following conditions:

(i) The underlying holomorphic vector bundle for F’, is F itself,

(ii) the quasiparabolic flag for F, coincides with that of E, at each p; (recall that the quasi-
parabolic flags are complete but two different subspaces of E),, can have same parabolic
weight), and

(iii) for any term F; ; C E,, of the quasiparabolic flag at p;, if o; ; and «; ; are the weights
of F; ; in E, and E’, respectively, then

_ 1
(23) Qig = Qig| < g3
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Proposition 4.3.  The parabolic vector bundle E, is stable if the parabolic vector bundle
E, is stable. Moreover, the parabolic vector bundle E, is semistable if the parabolic vector
bundle E. is semistable.

Proof. Assume that F, is parabolic stable. Take any subbundle 0 # F C E. Let F
denote the parabolic structure on it induced by F,. Since F, is parabolic stable, we have

(24) par-deg(F,)r < par-deg(E.)r’,

where 7' = rank(F’). From (22) it follows that par-deg(E,)r’ — par-deg(F)r is an integral
multiple of 1/¢, and hence (24) implies that

(25) par-deg(FE,)r’ — par-deg(F,)r >

| =

Let F denote the parabolic vector bundle defined by F equipped with the parabolic structure
induced by E’. From (23) we have

/

par-deg(F)) — par-deg(F,) < 32;2 and par-deg(FE,) — par-deg(E.) < 32;2 .

These imply that
1 1

(par-deg(F)) — par-deg(F}))r < 37 and (par-deg(E,) — par-deg(E.))r" < R

Adding these
2
(par-deg(FE,)r" — par-deg(F)r) — (par-deg(E.)r’ — par-deg(F.)r) < 3
and hence using (25),
ar-deg(E",)r’ — par-deg(F.)r > b2 1 > 0

Therefore, F., is parabolic stable. Now assume that F’, is parabolic semistable. So we have
(26) par-deg(F.)r < par-deg(E.)r’,

From (23) we have

/

, nr , nr
par-deg(F,) — par-deg(F,) < 2 and par-deg(F,) — par-deg(E,) < TR
These imply that
1 1
(par-deg(Fy) — par-deg(F,))r < 37 and (par-deg(E.) — par-deg(E,))r’ < 3
Adding these
2
(par-deg(E.)r" — par-deg(F,)r) — (par-deg(E.)r’ — par-deg(Fi)r) < 3
So using (26),

2
par-deg(E,)r’ — par-deg(F,)r > ~3

But this implies that par-deg(E. )r’ —par-deg(F.)r > 0 because par-deg(E,)r’ —par-deg(F})r
is an integral multiple of 1/¢. Hence E, is parabolic semistable. i
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Let o be a set of weights defining the parabolic structure. We choose a refinement of
«, denoted by &, such that for each point p;, the weight-tuple «; consists of distinct weights.
The weights « are a choice of weights for full flags such that the corresponding weights for
the given partial flags is a. By (23), we can always find a by choosing the missing weights
small enough such that the natural forgetful map preserves stability with respect to & and c.
In particular by Proposition 4.3 , we get a natural regular map F' : Mé’f:gf — Mgy fitting
in the following commutative diagram:

par,ss F par,ss
Mg 5 —— Mg o

27) Ny g

Let Mg := F~1(ME'™?). Again, by Proposition 4.3, Mg C M™% The map F is fibration
by product of flag varieties. By Lemma C.1, the codimension of the complement of Mg in
M™% is at least three. Hence, we have the following isomorphisms (via Hartogs’ Theorem):

(28) Rl%*TMgf:’g/S = R17~T*TM&/S , T Sym2 TM?&T;/S = Sym2 TM&/S-
The differential of F', along with the isomorphisms (28), induces natural maps

~ DF ~ *
RIW*TM&ITT,’;/S — R, (DF (TMézlizTT;i/S))j

~ Sym?DF .
Tk Sym2 TMSPST,;/S L} Ty Sym2 (DF*(TMSPI?T;/S)) .

We have the following lemma:
Lemma 4.4. The Leray spectral sequence gives natural isomorphisms:
1~ * ~ 1
R T s (DF <TM§|?:,’CS>¢/S)) =~ R Tx (TMé)Iir:;/S)7
T Sym2 (DF* (TMér&r;/S)) = T, Sym2 (TMg’L“f;/S) .

Proof.  For the map F'in (27), space M is a fiber bundle over the moduli space M¢"”?,,
and moreover, the fibers are products of flag manifolds. Hence, we have

(29) F.Oy, = Oppors and R'F,On_ =0

for all k > 1. Given any vector bundle W on M’ , using (29) and the projection formula
we have

(30) F,F*W =W and R'F.F'W =0
for all £ > 1. From (30) it follows that
(31) R, F*W = Rfm, W .

Now take W = Sym? (T, per

]
SLy,x

/5) in (31). o
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As before, let I be an element of the rational Picard group Pic(Mg["";,) ® Q. Using the
isomorphisms in Lemma 4.4 we have the following diagram:

(32)
1
R (Taagres)
Rl%*TMéjlizr,i/S ; Rl%*TMa/S L Rl%* (DF* (TMgL”‘T’Z/S))
U]LT UJLT UL UL
- 9 o~ ~ 2 Sym? DF 2 %
Ty Sym TM&"’E/S — Ty Sym TM&/S — Tk Sym <DF <TM§L(W’;/S>>

2
ot (i)
We note that we have used the same notation I for a line bundle on both Mé’ﬁr’g and also on

Mg, The isomorphisms in Lemma 4.4, composed with the differential maps, give natural
maps

1~ 1 .
49 Bx Ty s — Rom (Tzigs)

~ 2 2
34) T Sym TM?S::;/S — 7 Sym (TMSL“Z;/S) .
With the above notation we have the following proposition:

Proposition 4.5. The maps in (33) and (34) are isomorphisms, and the diagram in (32)
is commutative.

Proof. Consider the differential DF' : TMchmg/s — F*Typers g, and its second
symmetric product ’

Sym?(DF) : SmeTMgf:; s — sym2(F*TM§€:Z /s) = F*sme(TMgm /s) -

Let 3 := (DF)* : F*TYpars ;o — T:'par.s o be the dual of the above homomorphism DF'.
Mg "o /S Mg 5 /S

Note that Sym? (Tagzers /s) (respectively, Sym?*(F “Tagzars /) defines fiberwise quadratic func-
tions Tz&g’f;;g /s (respectively, F*T J\Ylé’f:ji /s Takeany z € Mé’f:z For any w € Sym? (TMSPZ’,S& /8)z

and v € (F*T,/par.s /S)Z’ we have: (Sym?(DF)).(w)(v) = w((DF)%(v)). From this we
SLy,cx
have the following commutative diagram of homomorphisms (recall (5)):

T« Sym2(DF)

7. Sym?( TMgf:; s /s) T Ty, syl S
(35) |= =

Rimo Toys(~D) — s Rz Te/s(-D)
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in which 7,Sym?(DF) is an isomorphism, because all other homomorphisms in (35) are iso-
morphisms. This proves that the map in (34) is an isomorphism. The proof that the map in (33)
is an isomorphism is very similar to the proof of it for (34). Now it is evident that the diagram
in (32) is commutative. m]

Thus we have proved the following proposition:

Proposition 4.6. Consider two elements 1Ly and Ly in Pic(Mg'"}) ® Q. If the maps
U[L4] and U[Ls] agree on 7, Sym? TMétu-,g/S, then they also agree on T, Sym? TMg’f"”'s /s

4.3. Reduction to abelian varieties. This step is essentially the same as in [43, Prop.
5.2] generalized to the parabolic set-up with the additional information about spectral data with
one node. For completeness, we include the details by following the exposition in [59].

Hitchin Map. Let 7, : C — S be a family of n-pointed curves, and let D be the
divisor of marked points. Consider the vector bundle B := @;_, 7. K, / (1 —=1)D), and let

75 : B — S be the natural projection map. Let 13 : HZ'sy. — S be the relative strongly
parabolic Higgs moduli space parametrizing pairs (P, 6), where P is a parabolic bundle and 6
is a strongly parabolic endomorphism of P twisted by K (D). We refer the reader to [21] for
notions of stability and semistability for strongly parabolic Higgs bundles. Recall the Hitchin
morphism Hit : H%agff — B from Section 3.2. We have the following commutative diagram

par,ss Hit
i -
H a.SL, B

(36) \ JWB
™

S.

Let B° denote the collection of points in B such that the corresponding spectral curve (as
described in [13, Sec. 3]) is smooth. The complement of B° in B is a divisor, since we are
in the case of SL,-Higgs bundles with full flags. This follows from the fact ([37, Lemma 3.1]
and [13, Remark 3.5]) that K" D"~ is very ample and has sections without multiple zeros in
either of the following cases: g > 2; g = 1 and degree of D > %; g = 0 and degree of
D >2+ T%l But this is implied by the assumption that the orbifold genus g(%) > 2 (see
Definition B.1 and also Appendix C). Then via abelianization, it is well-known that the fibers
of Hit~1(b), b € B, are families of abelian varieties Az over S.

Consider the divisor D := B\B° C B. As in [1, Prop. 4.1], for x € D let D, to be the
set of characteristic polynomials whose spectral curves are singular over z, and let Dy to be
the set of characteristic polynomials whose spectral curves are smooth over each x € D, but
singular over some y ¢ D. Then D = Dy U, p D

Now ([1, p. 28]) D, = @/—, HO(K'D*"') @ H°(K"D"~(—x)), and hence is irre-
ducible. By the assumption, K" D"~! is very ample, which implies that dim D, < dim D.
Similarly, the remaining part of the proof of [1, Prop. 4.1] also goes through under this as-
sumption. We obtain that Dy, is the surjective image of an affine bundle over C'\ D whose fiber
at y is given by

@::—IQHO(KZszl) @ HO(Krler72(_y)) o HO(KrDrfl(_zy)) )
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Hence, Dy; is also irreducible.

Thus Dy is the unique irreducible component of highest dimension in D. Now by
Bertini’s theorem, a generic point of Dy has an irreducible spectral curve with exactly one
node over a point y ¢ D.

Now we let BY denote the subspace of 3 consisting of all points such that the spectral
curve is irreducible and has at most one node outside the divisor D. By the previous discussion,
we get that the codimension of the complement of B in B is at least two. The following lemma
determines the fibers of the Hitchin map over points of BY.

Proposition 4.7. The fiber of the Hitchin map ’Hgfgff — B over any point beBYisa
quasi-abelian variety.

Proof. Fix a n-pointed Riemann surface (X, D). Let B be the base of the strongly
parabolic Hitchin map. For any b€ B, let Cy C Kx (D) be the corresponding spectral curve;
let p;; : C; — X be the natural projection. By assumptions b is such that C5 is a nodal curve
with a single node z which is not contained in p= ' (D). Moreover since the curve Cj, is integral,
we get that the pushforward of a torsion free sheaf to X is locally free.

Consider the compactified Jacobian 76(05) consisting of rank one-torsion free sheaves
L such that degree of pg’*L is zero. Since the node is not a marked point, we get a natural
filtration of sheaves with quotients supported on the divisor D.

37 pl_,"*(L@OCE(_(T_l)R)) c - C pg’*(L®OCg(_(T_Z)R)) c - C pEV*La

where R is the ramification divisor. As in [13], pushing forward a section ¢ of pE(K xD)
induces a map ¢ : pg’*L — pl;,*L ® Kx (D). Now since the node and the marked points are
disjoint, the section ¢ gives the required Higgs field as in the case of smooth spectral curves
[37]. This gives the spectral correspondence in the case of degree zero Higgs bundles. Consider

the closed variety of j(S(Cg) defined as follows:
Prym(Cy, C) = {M € J(C}) |p5’*M =0Ox}.

Clearly the variety M(C’g, (') gives the Hitchin fiber at be BO\BO (cf. [38, Thm. 6.1]). To
complete the proof we need to show that M(Cg, () is semi-abelian.

Letn : Y — Cf} be the normalization and f = pyon the projection of Y to X. The points
of Y over z are a and b, respectively. Let P C J°(Y) be the Prym for f. Let L — Y x P be
a Poincaré line bundle which is just the restriction of a Poincaré bundle on Y x J%(Y'). For
any point i of Y, the line bundle in P (resp. also on J°(Y)) obtained by restricting L to 3y x P
(resp. also on y x J(Y')) will be denoted by L,. Consider the line bundle A := L} ® L,
on P (resp. J°(Y)); it is independent of the choice of the Poincaré bundle L. Now consider
the projective bundle P(A ® Op) — P (also on J°(Y) ) and identify the two sections of it
given by A and O4. The resulting varieties Bp C Bjs are semi-abelian. By [18, Thm. 4],
B s is identified with 36(05). Moreover, by the choice of 6, we get Bp C Prym(Cy, C). The
equality follows from the fact that the dimensions of both Bp and m(q;, (') are the same.
This completes the proof. i
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7,88

Vector fields tangent to fibers of Hit. We get natural functions on HZ'¢)" obtained by

T,88

pulling back sections of B* to HX: aSL via the Hitchin map Hit in (36). Since TMpaT s C HEIOS

SL >
SLp,& @
and the natural Liouville symplectic form on TM"‘” . extends to HZ agf , we get Hamiltonian
SLy,&
vector fields on HEZ agf tangent to the fibers of the parabolic Hitchin map. As the codimension

of the complement of TMpar s In ’Hllagfs is at least two, we conclude that any class L in the ra-

tional Picard group of M p i, SLS extends to entire H2'c;’ . Now the cup product with the relative

Atiyah class of IL gives a natural map

1
(38) WH*THgagLS /S — R WH*OHWTS .

a,SLy

Since the map 7 in (36) is affine, it follows that Rlﬂ'H*OHQagLS is isomorphic to the locally
free sheaf mg, (R* Hity Oypar.ss ). We also have the inclusion e, Tppar.s B WHit*THPW s /g

o,SLy a,SLy SLy
Now consider the map obtained by restricting (38), which on pushing forward gives

39 g, (WHIt*THPMS /B) — Ty, THpars /B T TBx (R Hit, (’)Hpar ss) .

a,SLy

fu

We have the following proposition:

Proposition 4.8. The coherent sheaves Ty, ’THgag,Ls /B and R' Hit, (’)Hgag,Lss are both
trivial and isomorphic of same rank, where the fibers are just the vector spaces H O(Ag, ’7?45)

and H' (Ag, o AE>’ respectively, for any for b € B the isomorphism is given by cup product
by a Kdhler class on Ay.

Proof. Cupping with the first Chern class of the pull back of the ample line bundle L
from Mgfff; induces a map between coherent sheaves WHit*THgagi_S s and R! Hit, OHE“gfs~

Over B, the fibers of the coherent sheaf R! Hit. OHE‘”S"’L” have constant dimension which

equals dim A;. Similarly over B°, because the fibers of the map m;; are abelian varieties
and the sheaf WHit*THI}ZgLS /g 18 locally free and trivial. Moreover, there is an isomorphism
between WHit*THga;i—s /B and R! Hit, OHE“;“’LSS induced by the natural isomorphism between
H°(A;, Ta;) arid H'(A;, Oa;) given by a Kihler class.

Now for b € BY\B°, by Proposition 4.7, we know that the fibers are quasi-abelian
varieties Ay and in particular dim H 1(Ag, Oz.) = dim A;. Since the codimension of the
b
complement of B in B is at least two and the Hitchin map is flat [11, Corollary 11], [10, The-
orem 1.17], it follows that R! Hit, OHgang is locally free on B. As in the case of Abelian
varieties, the cup product by a Kihler form induces an isomorphism of Ext’ (Z~ 01 ) with
H'(A;, 04 ) This shows that the coherent sheaf let*THpm ° /B is trivial over B w1th fibers

given by functlons on 3. Moreover cupping with the first Chern class of Lg induces an isomor-
phism of WHlt*THgagf /B With R! Hit, (’)Hgagfs. Thus the proposition follows from Hartogs’

theorem and the fact that codimension of the complement of B is at least two. i

The following result is a direct consequence of Proposition 4.8.
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Corollary 4.9. Let 1Ly and Ly be two rational line bundles on M gagfj, and let b be a

generic point of the Hitchin base. Then f1,, = fL, (see (39)) if and only zf the two homomor-
phisms H° (45, 7:45) — Hl(AB, OAE) induced by cupping with the first Chern class of the
restrictions of L1 and Ly are the same.

Now the composition of fi, with the natural Hamiltonian vector fields produces a homo-
morphism

(40) h]L . WB*OB®B* — Rlﬂ"H*OerngLs .

Observe that this map hr, is equivariant with respect to the natural C* action on 75,0 ® B*
and the natural action of C* on Rlﬂ}t*oﬂzygi—s is of weight —1. Since H° (45, 7?45) is given
by vector fields coming from B*, we have the following lemma:

Lemma 4.10. The two homomorphisms hy,, and hy,, (see (40)) coincide if and only if
fu, = fu, (see (39)).

Finally, we would like to relate the map U[L] : 7, Sym?* (7, mpers g) = R (Tygpars /) with

the map Ay, in (40). Observe that 7, Sym? (TMSP.?T‘,% / S) injects into my, OHZ“QLS as the degree
two part. Since the Hitchin map is proper (Lemmrai 5.7), and its fibers are conhez:ted, functions
on the Higgs moduli spaces are all pull-backs of functions on the Hitchin base. As described
earlier, these functions give Hamiltonian vector fields and hence we have a map

41 s Sym? arys 1qg — . Oqpar,s —— T ar,s
(1) * DY TMgLr,a/S HaHESS H*THZ,SLT

Cupping with any section y of RIWH*QHgagLS produces a map
(42)
2 Uy 1
Ty Sym TMgagLS /8 — TTH, OHgagLs — WH*TH?;LS /S — R WH*OH?QLS .

Consider the inclusion of RIW*TMQGSTLS /s into RIWH*OHE“gf . On the other hand, we have the
following exact sequence ’ 1

2
0 — Typars — Oypar,s [T s — Oypars — 0
Ma,SLr/S H&,SLr / Mgﬁ:; MSLT,a 5

where Ty pars is the ideal sheaf of M™% in the moduli of parabolic Higgs bundles. Since

Ly,

there are no global tangent vector field on Mg"7 , it follows from the long exact sequence of
cohomology that R'r, (TMétw,; / S) ~ Rlg, (Oerar,s /112‘453:’2)' Now the restriction induces

) a,SLy

another map

a

1 ar,s 1 ar,s
43) Rimy,Opgere —— Rim(Oppey IT3per
T

a,SLy

)

@

which restricts to the identity map on R'r, (TM&IT,E / S). Hence, combining eqns. (42) and
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(43), we have the following diagram

(44)
2 . Uy 1 )
e Sym” Taggers /s R (Tagras)
/ ) |
Oy~ " Tgeys > T ys B Oy

The same proof as in Hitchin [43, p. 379] (see also [59, Prop. C.2.4]) shows that the above
diagram commutes up to a scalar, and, by construction, the horizontal map at the bottom is the
map h (cf. (40)). Thus we proved the following.

Proposition 4.11. Consider two elements 1Ly and Lo in Plc(Mgfjg) ® Q and let Ay
be as in Corollary 4.9. If the maps between HO(AB, 7?45.) — H! (45, OAE) induced by cupping
with the first Chern classes of restrictions of L1 and Lo are the same, then they also agree on
7. Sym? TMs_aTr,; /8

4.4. Abelianization and determinant of cohomology. It is enough to consider the
case of parabolic Higgs bundles of degree zero and rank r with full flag and arbitrary parabolic
weights a. Consider a generic point b of the Hitchin base for the parabolic Higgs moduli space
HZ"* with full flag and weights &, and let p : CN’E — C be the spectral cover of C' determined
by the chosen point b of the Hitchin base. The map p is of degree 7 and is fully ramified at the
points p = (p1, -+, pn). Letq@ = (q1, --- , q») be the inverse image p~!(p) of the points
p- Itis known [33,51] that the generic fiber A; of the Hitchin map at bis exactly the Jacobian
J (5’5) Let L be a line bundle on C giving a point of Ay and consider the push-forward p. L on
C'. Consider the divisor D = p; + - - - + p,,. There is a natural inclusion of sheaves

@5) Bl ®Og (~(r—DR) € -+ C Fu(L® Og (~(r=)R) -+ C L

with quotients supported on D giving a quasiparabolic structure on 7, L at the points p. Here
R is the ramification divisor (p* D) .q. Hence, this gives a rational map from Ay to the M2
The fiber of the pull-back of the the parabolic determinant of cohomology ParDet(cx) to the
abelian variety at the point . € Aj is a rational linear combinations of elements of the form

X(mx L)

(i) H(C;, L)Y @ H'(C;, L) @ det(p:L)p, *
(ii) det G/ F (p,L)p, @ det ! (piL)p, forall 1 < i < n.

However, observe that the second expression for each p; is independent of L and is equal to the

line 053(—%)‘ uw = K 65\ . Indeed, this follows from the facts that
4

o det Gr? ﬁ(ﬁ*L)pi = L4 ® 055(—jqi)‘qi ® Oég<_(j — 1)q2)|?121
. det(ﬁ*L)pl = LQi

together with the natural flag structure given by (45).

The calculations above show that the pull-back of ParDet(cx) to the abelian variety only
depends on the factors of type (1). The map U[L] : H%(A;, Ta;) — H 1(4;,0 ;) thus depends
only on the level for all L. € Pic(M, gar) ® Q. Thus we have proved the following proposition:
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Proposition 4.12. LetLL € Pic(Mgf:’S&) ® Q, then the natural map induced by the first

Chern class of the restriction of L. between H° (Ap Tay) = H 1 (A, Oa,) depends only on the
level of L.

4.5. Proof of Theorem 4.1. For the convenience of the reader let us recall the statement
of Theorem 4.1 from the beginning of the section.

Theorem 4.13. Let L be an element of Pic(Mgagm) ® Q of level a. Then as linear
maps Te Sym? TMg"g”/S — RITFC*TMSGETS/S, we have: U[L] = Ua[Det], where Det is

the determinant of céhomology ( nonparabdlic ) line bundle.

Proof. The proof follows from Propositions 4.2, 4.6, 4.11, and 4.12 and fact that any
line bundle on M¢ g is obtained as pulled back of a rational multiple of a line bundle on the
moduli space of parabolic bundles for G = SL,.. |

5. The parabolic Hitchin connection

In this section we will use Theorem 2.2 and the results from [23] on Ginzburg dglas and
the class of the parabolic determinant of cohomology £ to construct a flat projective connection
on the vector bundle 7., L*, where 7. : ME""* — S is the projection.

5.1. Definition of the symbol. We first seek a candidate for the symbol map

2
Ppar * Ts — Tex Sym TM@”‘”/S'

As in the nonparabolic case, set p := psym © KS¢/g. Let k > 1 be a positive integer, and
let L be a line bundle on MZ""* constructed via its identification with I'-G-bundles of fixed
local type, a representation ¢ : G — SL,, and the restriction of determinant of cohomology
from Ms . We first recall the main result [23, Cor. 4.13 and Prop. 4.12] that relates the class
B(P, A) with the Atiyah class of [Ly] of the line bundle L.

Theorem 5.1. Let m, be the Dynkin index of the map ¢ : G — SL,.. Then

1
Mg

(46) BP,A) = —I[Ly] .

Now we further expand (1 ok © m%bkﬁ and get the following:
¢

1 1 1 1
Hegh © kP = @-((U (K[Lo] = 5 [Qagperrss])) © 5 psym © KSe/s)
1 1
= @(U [£¢] o ,Osym [¢] KSC/S — U ﬁ[QMgaT’TS/S] o psym [©] KSC/S)
1

=UB(Ly) © psym 0 KSc/s —U W[QMS‘"’”/S] ° psym © KS¢/s
1

=-—PoKS¢/5—U W[QM(%”“/S] ° psym © K Sc/s
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1
= —KSMgz;grs — U W[QMgar,rs/s] Opsym o) KSC/S .

In the above, we have used the fundamental equalities
1
Thus we get the following equation:

1
2m¢k7

1
@7)  KSypgerss + pger o mok” +U [Qpgzarrs js] 0 psym © KSeys =0

We now have a key result.

Proposition 5.2. The map p 8k ¢ Mex Sym? T, MESTTS 15 = Rt T, MparTs g 1S an iso-

morphism.

Proof. Let Y™ = qﬁ_l(]\/f\&s) C MZ™"™, where ¢ : M — ]\755 is the natural
forgetful map. By Lemma C.3, the codimension of the complement of Y2*"" in MZ™"™ is
at least three, so it enough to show that jiz, is an isomorphism over Y£"""*. Now by Theo-
rem 4.1, it follows that it suffices to show that U[L] is an isomorphism. Observe that in the
nonparabolic case, the canonical class is a multiple of the ample generator of the Picard group
of M¢. Hence, for the nonparabolic case jiz, is a nonzero multiple of U[Lg]. By construc-
tion, the map Uﬁfk ! Tex Sym? Egar,rs /s = lee*Tygams /s 1s first obtained by restricting
the map Uﬁgk : Tex Sym? TM&S s lee*Tﬁg /s to TYGpar,m /s and then taking invariants.
Consequently, we will be done if we can show that the following map is an isomorphism:
Uﬁgfk : Tex Sym? Tﬁgf /s Rlﬂe*Tﬁg /s This is proved in [43] and also in [59] in the
algebro-geometric set-up for G = SL,, where L is the determinant of cohomology line bundle.
For an arbitrary G, we can choose a faithful irreducible representation ¢ : G — SL, and get a
map f : Mg — Ms,, which restricts to a map f : M7 — M¢, . Since any short exact se-
quence of G-modules splits, this induces a splitting of the tangent bundle of the moduli spaces:
f*TM\SfLT/S = TM\ES/S @ W, along with the diagram

27 UL P
e Sym? Tz W —— R'm, T WL

24 UL 1 -
TG * Sym TMgs/S —— R WG*TM&S/S’

where 7 : Mg~ — Sand7g : Mg — S are the natural projections. Thus, we are again
reduced to the case of G = SL,. o

Since the map (1 ek is an isomorphism, from (47) we get that
¢
(49)

1 _
KSyggerosjs +tigge© (o poum + iz o [Qaggerres]) © paym ) © KSess = 0.

U—
2m¢k‘
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Motivated by (49), we define the parabolic Hitchin symbol pp, to be:

1 1 1
(50) Ppar = <W + Mﬁfk © (U W[QMS‘"’”/S])) © Psym © KSC/S'

Remark 5.3. By Theorem 4.1, we see that yiz, is a nonzero multiple of U[Ly] and
hence MZ% w0 (U m [Q MEaTTS ) g/ is a nonzero multiple of identity. This is essentially akin to
the nonparabolic situation. In the case of the moduli space of rank r vector bundles with trivial
determinant, it turns out that the class of the canonical bundle is [€2y;5 . 5] = —QT[L}, where
L is the ample generator of the Picard group. Hence, ,uZé R= k( [Q Mg/ s)7L, and ppar

in this case is just TJ%,C psym © K Sc/g as in [43]. Our results also recover and generalize those
of [64].

By construction, we get the following:

Lemma 5.4. The parabolic Hitchin symbol p,., defined in (50) satisfies the condition
in Theorem 2.2 (i).

5.2. Welters’ condition. In this subsection, we show that for M = MZ™"*, the condi-
tion in Theorem 2.2 (ii) is satisfied. In fact, we will prove a stronger statement in the set-up of
parabolic G-bundles.

Lemma 5.5. Let Mg"’rs be the moduli space of regularly stable parabolic G-bundles
on a curve C. Then H*(ME"™", Opgperrs) = 0.

Proof. It suffices to show that the Picard group of the moduli space M5 is discrete,
since the space H' (M2, O mperrs) can be considered as the Lie algebra of the Picard group
of MZ™"®. Hence, it is enough to show that the Picard group of the corresponding moduli
stack Parg? (C, P) is discrete. By [50], it is known that the Picard group of the moduli stack
Para(C, P) of quasiparabolic G-bundles is discrete. Thus, we will be done if we can show
that the codimension of the complement of the regularly stable locus has codimension at least
two, as the inclusion will then induce an isomorphism on the Picard groups (cf. [22, Lemma
7.3]). But this is the content of Lemma C.1 below. O

Lemma 5.6.  With the notation of Lemma 5.5, H°(ME""* T, Mgar,rs) = 0.

Proof. The proof follows the steps given in [43]. Firstly, TA\}par,rs embeds into the
G

moduli space of strongly parabolic G-Higgs bundles Hp %%, Now given a global vector field
on MZ'"*, pairing it with the cotangent bundles produces a function on TMpar »s, which via

Hartogs’ theorem extends to a function of degree one (with respect to the standard C*-action)
on the Higgs moduli space H},"**. Since the Hitchin fibration is proper (Lemma 5.7) with
connected fibers ([42, Sec. 5], [33, Cor. II1.3] and [29, Claim 3.5] for nonparabolic Higgs
bundles; [33, Cor. V.5] for strongly parabolic with full flags; [69, Sec. 4.5], [75, Thm. 1.2] for
all strongly parabolic cases) it descends to a function on the Hitchin base. This is impossible
since the degree of homogeneity is one. Thus we are done. i
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The following result is well known ([11, Thm. 13], and also [78] for G = GL,), but for
completeness we include a brief proof of it.

Lemma 5.7. The Hitchin map Hit : H%M’SS — B is proper.

Proof. In [21] strongly parabolic Higgs bundles on a curve C' are constructed as I'-
G-Higgs bundles on a I'-cover C' of C. Let H¢(C) denote the moduli of semistable Higgs

bundles on C, with Hitchin base B, and Hitchin map Hits. Note that in the strongly parabolic

setting, we have an inclusion ¢ : B < B. Then we have a commutative diagram:

/Hpar ,88 H 61)

o

B——m

Here, F' is the forgetful map sending a I'-G-bundle on C to the underlying G-bundle. Since F
and the Hitchin map Hit» are proper, and the map ¢ is a closed embedding, we conclude that
Hit is also proper. i

Finally, we are in a position to prove the main theorem.

Proof of the Main Theorem. For the conditions in Theorem 2.2: (i) is the statement of
Lemma 5.4, (ii) follows from Lemma 5.5 and Lemma 5.6, and (iii) is the connectedness of the
moduli space. For the conditions in Theorem 2.3: (i) follows as in [43], using integrability
results in [51], [11] and [75] (ii) follows from Proposition 5.2, and (iii) is the statement in
Lemma 5.6. This completes the proof. i

We now apply the main theorem to extend the result to case of the simple groups which
are not necessarily simply connected.

Proof of Corollary 1.1. Take s € S and let Cy be the corresponding smooth n-pointed
curve. Consider the moduli space M%""*°(Cy) = 7~(s) for a connected, simple group
H. Let G be the simply connected cover of H and M}""*(C;) the corresponding moduli
space. Consider the map between moduli spaces M&"""*(Cs) and M I”{“T’TS’O(CS) induced by
the quotient map G — G. This map is étale on the base with Galois group I which is a
subgroup of the center Z(G) of G. Any element v € T, acts on MZ""*(C) by twisting.
This action of ~y evidently commutes with the Hitchin map. Hence, if we consider the same
symbol as in the simply connected case, the same arguments in [14, Cor. 5.2 and Lemma 4.1]
tell us that the projective connection constructed for simply connected group commutes with
the action on I'. Thus we see that m, Ly j, is a twisted D-module, and so it is locally free. o

A. Parabolic G-bundles

Let G be a simple, simply connected complex algebraic group and (C, p) an n-pointed
smooth projective curve of genus g. Let h be a Cartan subalgebra of the Lie algebra g of the
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group GG. We further let A denote the set of simple positive roots «;, and let 6 denote the
highest root of g. Define the fundamental alcove

By :={h € b| a;i(h) >0, and O(h) < 1V o} .

For h € ®(, we denote by P(h) the standard parabolic subalgebra of g, and p(h) will denote
the corresponding Lie subalgebra of g. The following result is standard and can be found in
[41, Thm. 7.9]:

Lemma A.l. Let K be a maximal compact subgroup of G. The exponential map

h — exp(27wv/—1h)

induces a natural bijection between ®g and the set of K orbits for the adjoint action of K on
itself.

For any one parameter subgroup ¢ : G,, — G, the Kempf’s parabolic subgroup is
defined as: P(p) :={g € G | limy_0¢(t)gp(t)~! exists in G}. Every 7 € ® determines a
1-parameter subgroup of G and hence by above a parabolic subgroup P(7). It directly follows
that the Lie algebra of P(7) is the Kempf’s parabolic subalgebra

p(r)={X eg | tliglo Ad(exptr) - X existsin g} .

We now recall the definition of the moduli stack of quasi-parabolic bundles. We refer the
reader to [47, Ch. 5.1]

Definition A.2. The quasi parabolic moduli stack Parq(C, 13) is the stack parametriz-
ing pairs (E,7), where £ is a principal G-bundle on a smooth curve C x T, with T being any
scheme, and o; are sections over T of E,, .7/ P; while P = (P1,...,P,) are an n-tuple of
standard parabolic subgroups of G.

We now recall the definition of a parabolic G-bundle on a smooth pointed curve (C, p).

Definition A.3. A parabolic structures on a principal G-bundle E — C'is given by the
following data:

s A choice of parabolic weights T = (11,...,T,) € ®f, where T; is the parabolic weight
attached to the point p; € C.

* a section o; of the homogeneous space E,,, | P(1;), where P(T;) is the standard parabolic
associated to ; € Py

A family of parabolic G-bundles parametrized by a scheme T is defined analogously. of
a section o; for every 1 < ¢ < n. Similarly extend the definitions of parabolic structures when
G is connected and reductive.
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A.1. Uniformization of quasiparabolic bundles. Most of the results in this section
can be easily modified for semi-simple groups, however for simplicity we restrict ourselves to
the case when G is simple and simply connected.

For any simple, simply algebraic group G, let Lg be the corresponding loop group and
Lg C Lg the subgroup of positive loops. The affine Grassmannian Q¢ is defined to be
Lg/ ng. Let ¢ be a point on a the curve C.

Consider the functor . o\, from the category of k-algebras Alg to the category Sets
that assigns to an k-algebra R, isomorphism classes of pairs (Er, o), where E, is a principal
G bundle over X x Spec R and o is a section of Er over (C'\q) x Spec R (cf. [50, Sec. 3.5]).
The following statement, which uses a crucial uniformization result of Drinfeld-Simpson [31],
gives a geometric realization of the affine Grassmannian Q.

Proposition A.4. The affine Grassmannian Q¢ represents the functor g o\ g More-
over, there is a universal principal G-bundle U — C x Qg and section og,,, such for any
[ERr,0R| € S ,0\q and any morphism f : Spec R — Qg,

[(id x f)*U, (id x f)*oo.] = [ER,0R] -

Let L ;5(G) be the punctured loop ind-group Mor(C'\p, ) that parametrizes morphisms
C\p — G from the punctured curve. The following result of Laszlo-Sorger [50] expresses the
moduli stack of principal G-bundles as a quotient stack.

Proposition A.5. The stacks Parc(C, P) and Loqg(G\ (Qa x [1ie, G/ F;) are iso-
morphic, where q is a point on C\p and L¢ 4(G) acts on G/ P; by evaluation at the point p;.
Moreover, Pic(Parg(C, P)) 2 Z x [T, Pic(G/P,) if G is simply connected.

We now describe another uniformization of the moduli stack Parg(C, 15) that connects
directly to the moduli stack of I'-equivariant bundles of fixed topological type that will be
discussed in Appendix B. For an n-tuple of points p' = (p1,...,pn), We choose formal
parameters t; at p;, i.e., @C,pi = C((t;)). Consider the natural evaluation map at t; = 0,
evy : G[t;]] — G, from the Iwahori subgroup G[¢;]]. For any standard parabolic subgroup
P; C G, we denote by P; := ey, ! P, the standard parahoric subgroup of the loop group. Now
consider the reduced ind-scheme L¢ 5(G) as discussed above. Then any element of L¢ 5(G)
acts on G((t;))/P; via Laurent expansion at the point p; in the local parameter ¢;. As in Propo-
sition 2.8 of [48], we have a family of principal G-bundles Up,, on C x [ ; G((t;))/G][t:]]
such that the following three hold:

(i) The bundle U,q, is Lo 5(G) equivariant.
(ii) There is a section opq, Of Upg,r over (C\p) x [, G((t;))/G][t:]] which extends to a
section on a formal disc around the punctures p;.

(iii) The section oy, satisfies the condition v-o(q, [g1], .-, [gn]) = 0(q, [91], - - -, [gn])V(q).
where [g;] is the class of an element g; € G((;)), ¥ € Lo z(G) and ¢ € C'\p. Moreover,
the pair (U,,, o) is unique up to an unique isomorphism satisfying the above properties.

Now pulling back U, via the natural L¢ (G )-equivariant projection

n

[Tawwn/P— H G((t:))/ Gl

i=1
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we obtain a natural L 5(G)-equivariant principal G-bundle on C' x [[;" | G((t;))/P;. Hence,
using this G-bundle Uy, and the section o, we obtain the following well known result
([47, pp. 181-182], and also [9, Prop. 3.3], [50, Thm. 1.3]):

Proposition A.6. The stack Parq(C, P) is isomorphic to Lo s(G\ T, G((t:))/ P

A.2. Parabolic bundles and associated constructions. Let P C G be a standard
parabolic subgroup with Levi subgroup L p containing a maximal torus H. Consider the set Sp
of simple roots of the Levi subalgebra Lp of the parabolic P. If P = P(h) for some h € P,
then Sp := {a; € A4 | a;(h) = 0}. The group of characters X (P) of the parabolic subgroup
P can be identified with the subset of the dual Cartan subalgebra

brp:={reb’ | Ma}) € Z, Yoy, and A(e)') = 0, Voy; € Sp}.

In terms of the fundamental weights wy, . . ., w, of the Lie algebra g, we get that
b\Z/, p = @ Liw;.
a; #Sp
Let T = (71,...,7y) € @ be a choice of parabolic weight.

We further assume that each 7; € @y is rational , i.e., we can write 7 = 7;/d; for some
positive integers d; and exp(27rﬁﬂ) = 1, so d; - T is in the coroot lattice (i.e. in the lattice
spanned by the set of coroots ®¥ C h). The integers d; are not unique.

If G = SL, and consider the standard representation of SL,, then a choice of a rational
T € ®¢ via the normalized Killing form « is the same as the choice of an integer k¥ < 7, a

sequence of integers r := (r1,...,7x) such that Zle r; = r and a nondecreasing sequence
0 < aj <--- < a < 1. Hence a rational parabolic structure on a vector bundle ¥ on a curve
C associated to a parabolic SL,.-bundle at the points p1, . . ., p, is equivalent to the following:

(i) A choice of a flag of the fiber ¥, associated to the k;-tuple ; foreach 1 <i <n

Fop = (0 < Fki+1(4//|pi

Pi

)g”'gF1<7/\pi):7/|pi)

such that dim Gr? %, ,,, = 7,

(i1) For each p;, a sequence of rational numbers c),
on 03041,@ < <O < 1.

We refer the reader to Mehta-Seshadri [53] (for parabolic vector bundles), Ramanathan [62],
Biswas ([20] and [19]), Balaji-Seshadri [9] and Balaji-Biswas-Nagaraj [8] for the notions of
stability and semistability which is essential in defining the corresponding moduli spaces.

The following theorem is due to Mehta-Seshadri [53] for parabolic vector bundles of
rank 7 and weight data o and we will denote the moduli space by M&"**(C'). It was proven
for arbitrary semi-simple groups by Bhosle-Ramanathan [17]. Following the work of Seshadri
([66] and [67]), Balaji-Biswas-Nagaraj [8], Balaji-Seshadri [9], we will discuss an alternative
realization in the following section.
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Theorem A.7. Let (C,p) be a n-pointed smooth projective curve of genus g, and let
T = (71,...,Tn) be a choice of rational parabolic weights in the fundamental alcove ®.
We further assume that 0(1;) < 1, where 0 is the highest root of g. Then, the parabolic
semistable G-bundles with a choice of rational parabolic weights T admit a coarse moduli
space Mg 2> (C') which is a normal irreducible projective variety with rational singularities.
Moreover, if 1 : G — G’ is an embedding of connected simple, simply connected groups, then

the corresponding map between the moduli space Mg > — Mg, "5 is finite. Here T/ = (7).

For notational convenience, when the context is clear we will often suppress the subscript
7 and use M5""" instead.

Definition A.8. A parabolic G-bundle P with weights T is said to be regularly stable if
it is stable and the automorphism group of P is the center Z(G) of G.

A.3. Line bundles on parabolic moduli spaces. In this section, we first recall the
determinant of cohomology line bundle associated to a family of vector bundles £ on a curve
C parametrized by a connected Noetherian scheme 7. Let 7 : T x X — T be the projection
to the Noetherian scheme, and consider R7r £ as an object of the bounded derived category
DPCoh(T). We can represent Rrr & by a complex & — & — 0 of vector bundles on 7.
We define the determinant line bundle up to a unique isomorphism to be the following:

top top

Det&r = N & @ N\ &

We often drop 7' in the notation of Det &7 when the context is clear. For any closed point
t € T, the fiber of Det & over t is A" (H(C,&)) @ NP (HO(C, Et))v . The determinant
bundle has the following important properties:

(i) For any morphism f : 7" — T, we have Det(f x id)*E) = f* Det Ep.

(ii) For any line bundle L — T, we have Det(€)r ® LX) = Det (€ ® 7%L)7, where
X(&o) is the Euler characteristic of the vector bundle &, ¢ for any point ¢t € T'.

(iii) For any short exact sequence of bundles 0 — & — & — & — 0on T x C, we have
Det 517T ® Det 52”]“ = Det &p.

Let % ¢(r, £) be the moduli space of semistable vector bundles of rank r on a curve C' with
determinant £ of degree m. It was proved by [30] that the Picard group of % ¢(r,£) isZ- O,
where O is the ample generator. The following result of Drezet-Narasimhan [30] connects the
determinant of cohomology with this ©-line bundle.

Proposition A.9. Let g : T — S Uc(r,§) be the morphism corresponding to a
SJamily & of semistable bundles of rank r and determinant & parametrized by a scheme T. Then
the pullback of © via ¢ is isomorphic to (Det ET)ﬁ ® (det 5|Txp)ﬁ, where p is any
point on the curve C, m is the degree of the line bundle £, (r,m) is the greatest common divisor
and x = x(Fisxc) =m +7r(1 - g).

Motivated by the above proposition, we define the following:
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Definition A.10. For any family £ of vector bundles of rank r and determinant & of
degree m, parametrized by a connected Noetherian scheme T', we define the theta-bundle

(52) O(€) := (Det Er) ™ @ (det Eipyy) T

where x as in Proposition A.9 is the Euler characteristic.

Note that for any line bundle £ over 7', we have an isomorphism ©(€) = ©(£ ® 7}.L).
Similarly for any simple, simply connected algebraic group GG and any family £ of principal
G-bundles on C' parametrized by a scheme 7', we can associate a natural line bundle on T" as
follows: Let (¢, V') be a representation of the group G. Then the associated vector bundle

E(V):=ExPV

is a family of vector bundles on C parametrized by 7. Observe that since G is simple, and
hence G does not have any nontrivial character, it follows that £(V") has trivial determinant
over T' x C'. We define a line bundle on T’

(53) Det(&, ¢)r := Det(E(V)) .
It follows from (52) that ©(E(V')) = Det (&, ¢)r.

The parabolic determinant of cohomology in the SL,. case. We follow the notation
and conventions as in [24]. Let £ be a family of quasiparabolic SL, bundles on a pointed curve
(C, p) parametrized by a scheme T considered as a parabolic vector bundle via the standard
representation. Let o := (av,,,..., 0, ) be a n-tuple of sequence of rational numbers as

in (51) associated to each marked point p;, 1 < ¢ < n. Consider the following element in
Pic(T) ® Q,

n k;
(54) Det &y + Z Z ;i det Gr? (g-,pi (5|T><pi)) ’
i=1 j=1
where the rational number 0 < a1 ; < ag; < -+ < g, ; < 1define ay,,. Write o ; = bji/q;.,

where b, ; and ¢ ; are relatively prime integers.

Definition A.11. Let N be the least common multiple of all {g;;}:;, 1 < i < n and
1 < j < k;. Wereferto N as the level of the weight c.

Consider the integers a;; := N - ;. Thenforeach1 < <nand1 < j <k;,

Ogal,i<a2,i<~--<akm§N—1.

Definition A.12. Let £ be a family of degree zero parabolic vector bundles on T x C
with parabolic data {(r;, ;) }7_,. The parabolic determinant bundle on T is defined to be

Detpar E(er) 1= (Det 7)™ (R) (D1 (@, det Gr? Fu p, (Er5p,) ™)) -

This is just eq. (54) multiplied by N. When the context is clear, we will simply denote
Detpar E7(ax) by Detpgr E7. The line bundle Det,,q, (E7) may not descend to the moduli space,
so we consider the following modification.
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Definition A.13. The parabolic © p.-line bundle on T’ is defined to be the following
twist of parabolic determinant of cohomology

N~Xpar

Opar (€, @) := (Detper E7) ® (det E|Txp0)

(just as in the nonparabolic case), where Xpar = X — Z” a1 is the parabolic Euler
characteristic (see [24, p. 60]), x is as in Proposition A.9 and py is any point on the curve

C\p.

We remark that the definition of ©,, (&, a) differs from the definition of parabolic de-
terminant [24, Def. 4.8] by a multiplicative factor of . The following proposition can be found
in Biswas-Raghavendra [24], Pauly [58], and in Narasimhan-Ramadas [55] for G = SLo.

Proposition A.14. Let g : T — ME'7**(C) be a map from a scheme T to the Mehta-
Seshadri moduli space Mb'y**(C) of parabolic bundles corresponding to a family € equipped

with parabolic data c.. Then there exists an ample line bundle O, () on ME'7**(C) such
N.xpar

that ¢ Opa, () is isomorphic to the line bundle Detp,, E7 ® (det 5\TXpo)

As discussed, the choice of the standard representation gives a map of the moduli stacks
£ MYTE(C) — Mg™**(C), the map )¢ factors through Mg"?’ and we will use the
notation Oy, () to also denote the pull back £* O, (x).

The case of general groups. We first recall the notion of Dynkin index of an embed-
ding. Let ¢ : 51 — s9 be a map of two simple Lie algebras, and let x5, (respectively, xs,) be
the normalized Killing form of s; (respectively, s2).

Definition A.15. The Dynkin index my of a map of simple Lie algebras ¢ is the ratio of
their normalized Killing forms, in other words, ks, ( , )js;, = Mehs, (5 ).

Let G be a simple, simply connected group, and let £ be a principal G bundles on 7" x C'.
Let (¢, V) be a representation of G, and consider the associated vector bundle £(V) := ExEV
on T x C. Since GG does not have any nontrivial character (it is simple), it follows that
det E(V) = Orxc. This implies O(E(V)) = Det(E(V))r. Let (£, ) be a family of quasi-
parabolic G-bundles of type P = (P}, ..., P,) on a n-pointed curve (C, 5) parametrized by a
scheme 7.

Definition A.16. For any positive integer d (usually it will be determined by the weights
1), a finite dimensional representation (¢,V') of the group G and a character y; of the
parabolic P;, define a line bundle on T' by the following formula:

(55) Detpar (E(V), d, 1) := (Det(E(V))r)* Q) (@)=105 (€ x T C,1))

J

(see [50]), where p = (u1,..., 1) and C,UW—I is the one dimensional representation of the
J

parabolic subgroup P; corresponding to the character ,uj_l of it. This line bundle will be
called the quasiparabolic determinant bundle. We will refer to the integer d as the level of the
quasiparabolic determinant bundle.
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Now let 7 = (71, ..., 7,) be an n-tuple of rational parabolic weights such that 6(7;) < 1
for all 1 < ¢ < n, where 0 is the highest root of g. Consider a representation of G of V' such
that

(i) the representation (¢, V') is faithful;
(ii) the topological local type ¢(7) of the associated bundle is rational;
(iii) Ogvy(@(7)) < 1forall 1 < i < n, where gy is the highest root of s((V/).

We now recall the definition of the parabolic theta bundle for any simple group G. Using
the Killing form x4 we will identify vy : b = Y and realize T in the weight lattice of P of
G. Let (¢, V) be a faithful representation of G satisfying the above conditions, and let d be
any positive integer such that

(56) exp(2my/ = 1vgv)(d - §(7:))) = 1

for all 1 < ¢ < n. This d is not unique but usually one choose a minimal such d and denote it
by N.

Definition A.17. The parabolic theta bundle ©pqr (V,T) — ME"" is defined to be

the pull-back of © g, s1(v)(9(T)) — M§S€§;7¢(T) via the map ¢ : Mg'f:’ss — Mgﬁ{;i(ﬁ(,’_)

induced by the representation (¢, V') of G, i.e., Oparc(V,T) := $*@par75|_(v)(¢(7')).

The following well known result analogous to the SL,. case (cf. [47, Lemma 8.5.5]) relates
the parabolic determinant of cohomology for arbitrary simple, simply connected groups G to
the parabolic theta bundle.

Proposition A.18. Let £ be a family of parabolic G-bundles parametrized by a scheme
T with parabolic data T € ®f satisfying the condition 6(7;) < 1 forall 1 < i < n, and let
Ye: T — M, gj:’ss be as before the map induced by &.

Further, let (¢, V') be a representation of G satisfying the above conditions. Then the
pull-back % (Opar,(V, T)) equals Detpar(E(V), N - my - v4(T)), where mg is the Dynkin
index of the map ¢ : g — sl(V'), Detpa,(E(V), N - my - v4(7)) is as in Equation (55) and N
is the minimal positive integer satisfying (56) in Definition A.17.

B. I'-equivariant G-bundles

In this section, we recall the correspondence between parabolic bundles on a curve C
and equivariant bundles on a ramified Galois cover C — C with Galois group I'. Throughout
this section G' will be a simple, simply connected (or more generally simple but not simply
connected) algebraic group. We start with the well-known genus computation of an orbifold
curve. Let 7 = (py,...,pn) be points in C, and choose positive integers d = (dy, . .., dy),
respectively.

-

Definition B.1. The orbifold genus associated to (C, p,d) is
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where g(C') be the genus of the curve C.

If C is a quotient of C by I' with ramification locus p1, . .., p, of degrees (diy...,dp),
then by the Riemann-Hurwitz formula the genus of C is given by the formula:
2—29(C) =|T)(2 -29(C) + >4 ( —1)). The genus of the quotient stack ¢ := [C/T)

is related to g(C)) by the formula g(C’) —1 = |I'|(9(¥¢) — 1), and so we see that this is the
orbifold genus defined above.

Conversely, given p'and d, then provided g(%) > 1 we can find a branched cover C—C
as above. For example, if g(%") > 1 (we shall only be interested in this case), then C' can be
realized as a quotient of the upper half plane H by a Fuchsian group II (cf. [73, Sec. 3.2]). The
action of II is not free: it contains elliptic elements of order d; in the points over p;. Applying
the Selberg lemma to II C Aut( ) (cf. [65]), we obtain a normal subgroup IIj of finite index
that acts freely on Hl. Let C=H /Iy. Since the action of I, is free, we get that C is a smooth
projective curve. If we set I' = II /Iy, then the natural map C — C is a ramified Galois cover
with Galois group I'.

Example B.2. Assume that g(C) = 0, dy = --- = d,, = d and d divides n. Then
the super-elliptic curve C given by the equation y® H?:l(iv — p;) is a ramified Galois
covering of C = P!, The Galois group is 7./dZ with ramifications of order d exactly at the
points p1, . .., pn, and étale on the complement. Then we have g(¢') = n(d — 1)/2d. Hence,

g(€¢)>1ifn>2d/(d—1).

Definition B.3. Let p : C - Chbhea ramified Galois cover with Galois group I'. A
I-G-bundle E on C is a principal G bundle on C together with a lift of the action of I on C
to an action of T on the total space of E as bundles automorphism (meaning the actions of I’
and G on E commute ).

Let R denote the set of branch points of C'. For each point p € R, we choose a point
p € C in the preimage of p, and let I'; C I" denote the stabilizer of the point p.

Definition B.4 (Balaji-Seshadri [9]). The type of a homomorphism p : I' — G is the
set of isomorphism classes of the local representations p; : I's, — G, or equivalent, it is the
set of conjugacy classes in G given by the images of p;(7i), where ~y; is a generator of the
cyclic group I's, = (7;). The type of a homomorphism is denoted by T = (71, . ..,Ty), where
n=|R|

Let p; be any branch point of 6’ and let ¢; be a special formal parameter at the point
@, such that 7 - ¢; := (exp(27r\ﬁ /d;)t;, where 7 is a generator of the stabilizer I';, and

= |I'5,|. Any (F G)-bundle E is trivial as a G-bundle on a formal disk D;, = Spec[[ il]s
and in particular E‘ Dy, 182 (I's,, G) bundle. So any (I'5,, G)-bundle on D, is determined by a
homomorphism p; : I';, — G such that «y - (u, g) = (v - u, p;(7)g), where v € Dj,. Moreover
such an homomorphism is unique up to conjugation. We refer the reader to [72, Lemma 2.5]
and [47, Thm. 6.1.9].

Let 7 = (71,...,7,) be the unique element of the Weyl alcove ®( such that p;(7;) is
conjugate to exp(2my/—17;) as described by Lemma A.1. We define the local type of a T-G-
bundle E to be the n-tuple 7 = (71, ..., 7,) and consider the following stack:
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Definition B.5. Let C be a ramified Galois cover of C. Choose points p; for each point
p; in 'R, and let T be an n-tuple of elements in ®y. We define the moduli stack BunEG(C) to

be the groupoid parametrizing I'-G-bundles on C of local type T.

B.1. Uniformization of I'-G-bundles of fixed local type. We will now discuss a uni-

~

formization theorem for Bunf. ,(C') under the further assumption that 6(r;) < 1for1 <i <mn.

We will show that the stack BunF’G(é ) is isomorphic to Parg(C, P), where P = (Py, ..., P,)
are standard parabolic subgroups of G determined by 7 = (71, ..., 7).

As in the case of parabolic bundle we consider the functor ./ : Alg — Sets that assigns
to a finitely generated k-algebra R the isomorphism classes of pairs (ER, OR), where

« Egpisa (T, G) bundle over C x Spec R of local type 7; at the points p;, and
» Op is a I'-equivariant section of ER over p~1(C\p) x Spec R.

By [9, Prop. 3.1.1] and [47, Thm. 6.1.12], the functor ./ is represented by the ind-scheme
112, G((t:))/P;, where t; = (t;)% are local parameters at the points p; and P; are parabolic
subgroups of the loop group G((t;)). The following theorem is due to Balaji-Seshadri [9, Prop.
3.1.1] and it can also be found in Kumar [47, Thm. 6.1.15].

Theorem B.6. Let n > 1 and T as above Then there is an isomorphism of the stacks

~

Bunf. (C) and the quotient stack Lo 5(G)\ (IT=; G((t:))/Pi)-

Remark B.7. We emphasize that Balaji-Seshadri [9] work without the assumption that
6(7;) < 1. In this general set-up the groups P; C G/((t;)) that appear in [9, Prop. 3.1.1] are not
necessarily contained in G[[t;]].

B.2. Invariant direct image functor. Letp : W — T be a finite flat surjective mor-
phism of Noetherian integral schemes (as in [9, Sec. 4]) such that the corresponding extension
of function fields is Galois with Galois group I'. It follows that I" acts on W and 7" = W/T". Let
¢ be a smooth affine group scheme on W. Following Balaji-Seshadri [9], Pappas-Rapoport
[57], and Edixhoven [32], we define:

Definition B.8. The invariant direct image of ¢, namely pL(9) = (p«(¥))', where
P« is the group functor Weil restriction of scalars-Resyy7(¥) and (p« (¥4 N is the smooth

closed fixed point subgroup scheme of the I'-scheme p.(9). In particular for any T-scheme S,
we get that pL (4)(S) := (4(S x7 W)L

In our present set-up we consider C — C to be a ramified Galois covering with Galois
group I', and let R be the ramification locus. Let GG be a connected, simple algebraic group and
p: ' = G and we fixed the local type T = (71, ..., 7,) such that f(r;) < 1 forall 1 <i < n.
Consider the invariant push forward .77 := p£(6 x @) of the constant group scheme Cx@
to get a Bruhat-Tits type group scheme on C' with the following property:

(i) The geometric fibers of .7# are connected.
(ii) On the punctured curve C'\ R, the group scheme .77 is split.

(iii) For p; € R, the group scheme .#(Oc,p,) is the subgroup P; := ev, 1(P;) C G[[ti]],
where P is a standard parabolic subgroup in G given by 7;.
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Pappas-Rapoport [57] considered the moduli stack Bun - (C') of J#-torsors on a curve C,
where J7 is a parahoric Bruhat-Tits group scheme. A uniformization theorem for such tor-
sors was proved by Heinloth [39]. Using [9, Thm. 4.1.6] and the discussion above, we can
reformulate the correspondence in Theorem B.6 by the following:

Proposition B.9. The stacks BunFG(a) and Parc(C, P) are isomorphic under the
invariant push-forward functor. In particular if Eisa family of I'-G-bundles of type T on the
curve C parametrized by a schemes T, the pL (£) is a family of quasiparabolic G-bundles with
parabolic structures at the ramification points determined by T. R

Moreover, by Proposition A.6 and Theorem B.6, both the stacks Bunf. (C) and Parg(C, P)
are isomorphic to Le 5(G)\ (IT;—, G((t:))/P;), where P=(P,...,P,)) and P; = P(r;) are
Kempf parabolic subgroups determined by ;.

Let C7 — T be a family of smooth projective curves parametrized by 7" and py, . .., py,
are disjoint sections. Recall that given integers d, . . ., d;, and a n-points curve (CosD15- -+, Pn)s
we can find a Galois cover (C,p1,...,p,) with Galois group I" and isotropy of order d; at

Di- _Fixing such a I', we can find a family of curves Cr — 1" along with a finite map
p : Cp — C7p such that

e T"acts on éT preserving p inducing a Galois covering 7 : 6T — Cr.
« Section p1, . .., pp, such that isotropy at p; is of order d; for all 1.
 The cover just depends on the choice of I" and the integers d, . . . , dy.

We refer the reader to [25, Sec. 4d] for the construction of such families. These covers are
called pointed admissible covers, and a moduli stack for these objects has been constructed in
[44].

Now given a I'-Galois covering éT — C'7, the parabolic orbifold correspondence as
described in Proposition B.9 works verbatim for families of parabolic and orbifold bundles
parametrized by 7.

B.3. Determinant of cohomology for C and invariant pushforward. Let £ be a

family of I'-G-bundles on C of local type T parametrized by a scheme 7. By Proposition
B.9, we get a family £ of quasiparabolic G-bundles on C' with parabolic structures at the
points 7 = (p1,...,pn) in the ramification locus. Observe that we have an n-tuple integers
d = (dy,...,dy) which encodes the order of ramification at the points (p1, ... ,pn). More-
over exp(2my/—1d;7;) = 1 for all < i < n. Now ignoring the I'-action, we get a family of
principal G-bundles on C and hence by (53), we get a line bundle on 7" subject to the choice
of a representation (¢, V') of G. On the other hand, we also get a line bundle on T by starting
with a family of quasiparabolic bundles £ obtained from the invariant push forward of £ and
then applying the construction in (55). The following proposition, which is minor variation of

[24, Prop. 4.5], compares these two line bundles on 7'

Proposition B.10. Let ¢ : G — SL(V) be a representation of G. Choose a local-type
T such that Og vy ((7:)) < 1forall 1 < i < n, where Oy is the highest root. Then for any

family 3 of I'-G-bundles on c parametrized by a scheme T’ of local type T, we have:

Det(£(V)) = Det((idy xp)*(£(V))) @ (@1 (@}, det Gr/ Fop, (Eprsp)*V 7))
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where

(i) the filtration F, ,, and the weights o = (atp, , . . ., up,, ) are determined by the associated
topological type ¢(T),

(i1) N > 0 is the smallest integer such that N o ; are integers, and

(iii) C — C is a Galois T-cover such that the isotropy of order N at all points p;.

__Proof.  We will be done by [24, Prop. 4.5] once we can show that PL(E) x? (V) equals
pL (5 x® V) as a family parabolic vector bundles on C' parametrized by 7". This follows from
the definition directly. i

Now following [24], we will construct a curve C from the data 7 and compare the de-

~

terminant of cohomology line bundle on BunEG(C’ ) with the parabolic determinant of coho-
mology on C via the functor pL. Mimicking the set-up of [24, Def. 4.10], given 7 in the Weyl
alcove ®q choose an integer N such that exp(27v/—1Nvg vy (¢(7))) = L forall 1 <i < n.

By the Selberg lemma, [65], we can find a ramified cover p : C — C with ramification exactly
over the points p; with cyclic isotropy group of order N at all the fixed points. Let I" be the
Galois group. With these assumptions, [24, Prop. 4.11] generalizes to the following:

Proposition B.11. Ler £ = pl,:é’\ be as in Proposition B.10. Then the line bundles
~ r|

|
Det(E(V)) and (Detpar(E(V), N - my - 7))*F on T are canonically isomorphic.

C. The properness condition and codimension estimates

In this section, we will show that the moduli space M{"""* of regularly stable parabolic
G-bundles on a curve admits no nonconstant functions. This will imply Theorem 2.2 (iii).
Throughout this section we assume that G is simple and simply connected (or more generally
semisimple, but we do not need it for applications). We have the following key codimension
estimate, which essentially follows from the same argument as in Faltings [33] and Laszlo [49].
Fix n > 1, and let 7 = (7q,...,7,) be a n-tuple of weights in the Weyl alcove for a group
G, and let d be the minimum positive integer such that exp(2m/—1d - v4(7;)) = 1 for all
1 < ¢ < n. Choose a curve C that is a Galois cover over C ramified exactly over the points
P1, - - -, Pn, With the same ramification order d and étale on the complement.

Lemma C.1. Let Parg(C, P) (respectively, Parg (C, P)) be the moduli stack parametriz-
ing parabolic G-bundles (respectively, regularly stable parabolic G-bundles) given by a choice
of weights T on a n-pointed curve C of genus g(C). Further assume that Parg:(C, P) is
nonempty. Then the codimension of the complement Par(C, ﬁ)\Parg (C,P) C Parq(C, P)
is at least two provided g(¢') > 3, and g(¢) > 2 if G does not have an SL factor. Moreover,
if G = SL, for r > 2, the codimension of the complement is at least 3.

Proof. Let T be the choice of the weights determining the stability conditions and the
parabolic subgroups P = (P1,...,P,). Consider an n-tuple of Borel subgroups B and the
the moduli stack of quasi parabolic bundles with full flags Parg(C, é) There is a natural
forgetful map Parg(C, B) — Parg(C, P) whose fibers are product of flag varieties. Now
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consider the substack Parg (C, B)) (respectively, Pard(C, B))) parametrizing semistable
(respectively, stable) parabolic bundles with respect to the same weight data 7. This pre-
serves stability (hence also regular stability) and hence the forgetful map restricts to a map
Parg (C, B)) — Parg (C, P)) that preserve both the stable and the regularly stable loci.
Consequently, without loss of generality assume that we are in the case of full flags.

It is enough to show the following:

(i) The codimension of the complement of Parg (C, B) (respectively, Pard(C, B))) in
Par,(C, é) is at least two: We will freely use the parabolic orbifold correspondence.
Let £ be a parabolic G bundle admitting a reduction to parabolic bundle £g with structure
group (), where () is a parabolic subgroup of G with its Levi subgroup Lg. Consider
the sheaf nf)" (ad £) given by the cokernel of map SPar(Er,) — SPar(£), where €7,
is the induced parabolic bundle with structure group Lg. If £ is in the complement
of the Pars (C, B) (respectively, Pargs(C, B)), then deg ng," (ad ) is strictly positive
(respectively, nonnegative). Let By, be the Borel of Lq; then the complement has di-
mension

dim Parg(C, B) — (dim Pary,, (C, Br,) + h' (C,nly" (ad £)))
= (9(C) = )(dim G — dim Q) +n(dim G/B — dim Lg/BL,)
+ deg(ngy" (ad £)) — h(C,n)" (ad £))

> (9(C)+n—1)dimng — 1,
since we may assume h°(C,nf)" (ad€) < 1. Now notice that g(¢') > 2 implies that
g(C)+n—12>2,and g(¢) > 3 implies that g(C') +n — 1 > 3. Further observe that if
G = SL,, thendimng > 1ifr > 2.

(i) The codimension of the complement of Par¢: (C, B )inParg,(C, B ) is at least two: Here

we can assume G # SL,. If P is a stable orbifold bundle on 4" which has a noncentral

automorphism, then by [49, Lemma 11.1] P has an L-structure where L is a reductive
subgroup of G with Borel By,. Then the required codimension is at least

dim Parg(C, B) — dim Par,(C, Br,)

= (g(C) —1)(dimG — dim L) + Zn:(dim G/B —dim L/By)
i=1
= (¢9(C) = 1)(dimG —dim L) + n(dimG/B —dim L/By,) .

Now dimG/B — dim L/By, > 1 and dimG — dim L > 2, so if g(C) > 1, then the
codimension is at least 2g(C') — 2 + n > 3, by the assumption that (%) > 2. Thus, we
are left to consider the case where g(C') = 0.
Since (%) > 2, we have n > 5. Suppose first that L is not a torus. Then n dim L/By—dim L
is an increasing function of L. This implies that n(dim G/B—dim L/By,)—(dim G—dim L)
is decreasing function of L. Hence, the codimension is at least

Lm'}:n (n(dimG/B —dim L/By) — (dimG —dim L)) ,

=Lq

where L ranges over the Levi subgroups L of proper maximal parabolics () in G. Thus
we get that the codimension of the complement is at least

LmiLn (n(dimG/B —dim L/By) — (dim G —dim L)) = mén((n —2)dimng) > 3.
=+tQ
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Now suppose L is a torus. In this case, the codimension is simply
n(dimG/B) — (dimG — dim L) > n(dimG/B) —dim G > (n — 3)dimng > 2.
This completes the proof of the Lemma. |

Let ME"** (respectively, Pargs (C, P)) be the moduli space (respectively, moduli stack)
of semistable parabolic G-bundles on C' with parabolic structures at n-marked points. It is
well-known that M2 (respectively, the regularly stable part M5""®) is a GIT quotient (re-
spectively, good quotient) of a smooth scheme RPY"™** (respectively, Rby"""”) by a reductive
group (cf. [8,9]). Moreover, MZ""** is a seminormal projective variety with rational singulari-
ties. Now Lemma C.1 implies that codim(Rp,**\ Ry"™"*) > 2, provided Ry is nonempty.
Hence, by Hartogs’ theorem we get the following:

Corollary C.2. The natural inclusion map MF""" — MZ'™*" induces isomorphisms
between HO(ME™", O ypperirs) and HO (M, O pppor.ss).

Recall YZ*""* from the proof of Proposition 5.2. Then we have the following lemma, the
proof of which is analogous to that in [49, Prop. 11.6].

Lemma C.3. The codimension of the complement of ng’rs in M gaf;’rs is at least 3 if
g(€) > 3 for arbitrary g, or g(¢') > 2 when g has no factor of type Ay or Cs.

Proof. Suppose £ be a regularly stable I'-G-bundle which is not stable as a G-bundle.
Then we can realize it as the image of a rational map from the moduli space of I'-L-bundles on
é, where L is a Levi subgroup of a parabolic subgroup ) of G. If £ is stable we can realize
it as the image of rational map M L(é ), where L is a reductive subgroup ([49, Prop. 11.6]) of
G. Thus, the complement of YA in M{'"" is dominated by union of the moduli spaces

of T-L-bundles on the curve C. of type T, where L is a reductive subgroup. Now as in the
proof of Lemma C.1, without loss of generality assume that 7 corresponds to a tuple of Borel
subgroups. Then the required codimension is at least

(9(C) — 1)(dim G — dim L) + n(dim G/B — L/By) — dim Z(L) .

Now dim G — dim L is at least 4 unless g has a factor of type A; or C5. Thus, we are done by
the assumptions on g(%’) and the calculations as in the proof of Lemma C.1. i
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