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Abstract

Atmospheric correction is an essential step in hyperspectral imaging and target detection from spectrometer remote
sensing data. State-of-the-art atmospheric correction algorithms either require filed-measurements or prior knowledge
of atmospheric characteristics to improve the predicted accuracy, which are computational expensive and unsuitable
for real time application. In this paper, we propose a time-dependent neural network for automatic atmospheric cor-
rection and target detection using multi-scan hyperspectral data under different elevation angles. Results show that
the proposed network has the capacity to accurately provide atmospheric characteristics and estimate precise reflec-
tivity spectra for different materials, including vegetation, sea ice, and ocean. In addition, experiments are designed
to investigate the time dependency of the proposed network. The error analysis confirms that our proposed network
is capable of estimating atmospheric characteristics under both hourly and diurnally varying environments. Both
the predicted results and error analysis are promising and demonstrate that our network has the ability of providing
accurate atmospheric correction and target detection in real-time.
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1. Introduction

The electromagnetic radiation characteristics of a material’s absorption and emission are determined by its unique
molecular composition and texture. This provides an opportunity to obtain information necessary for identifying
objects using remote sensing techniques, instead of field measurements. One of such technique is hyperspectral
imaging (HSI), which has been proven to be a powerful tool to identify any given object of interest on the surface

of the Earth, without any direct physical contact, by retrieving their unique spectral signatures (Adao et al., 2017;
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Ghamisi et al., 2017; Manolakis et al., 2019). With recent developments in imaging spectroscopy, vast quantities of
spectrometer data with rich spectral, spatial, and temporal information have been collected by sensors from airborne
and spaceborne platforms (Teke et al., 2013). The collection of hyperspectral remote sensing data is deeply affected
by the absorption and scattering of the atmosphere. For instance, atmospheric water vapor is efficient at absorbing
incoming solar radiation in bands centered at approximately 0.94, 1.14, 1.38, 1.88, and 2.7 pm. Only approximately
half of the 0.4-2.5 um spectrum can be transmitted without absorption from atmospheric gases (Gao et al., 2006).
In addition, the shorter wavelength spectral region below 1 um is also affected by molecular and aerosol scattering.
Thus, to study the spectral properties of the Earth and retrieve its reflectivity, atmospheric effects must be removed
from the spectrometer data.

Atmospheric correction algorithms for hyperspectral imaging data are generally divided into two major classes
based on whether any physical mechanisms of solar transportation are involved, in which delineates the interaction
between environment and surface. The first class consists of scene-based empirical methods, such as internal average
reflectance (Kruse, 1988, or IAR), flat-field correction (Roberts et al., 1986), and empirical line approach (Conel
et al., 1987, or ELA), which are computationally efficient and can be accurate with sufficient information from field
measurements. However, these approaches either may cause unrealistic absorption features in the corrected reflectance
spectra because of their robust assumptions (Clark and King, 1987; DiStasio Jr and Resmini, 2010), or require a prior
knowledge of in-scene elements, i.e., field-measured reflectance spectra, for at least one bright target and one dark
target which does not adapts for some scenarios (Conel et al., 1987; Aspinall et al., 2002).

The other class of atmospheric correction algorithms are radiative transfer approaches (Gao et al., 1993; Gao
and Davis, 1997; Adler-Golden et al., 1999; Siewert, 2000; Mayer, 2009; Duan et al., 2010) that take advantage
of the known physical mechanisms of interactions between environments and surface targets. For instance, with
an assumption of a simple homogeneous layer of atmosphere, the Pstar computational model was built to provide a
discrete ordinate solution that only works under an optically-thin atmospheric condition (Siewert, 2000). The MYSTIC
code is optimized using a Monte-Carlo algorithm that allows a more complex heterogeneous atmospheric profile
and provides the solution with a high accuracy, however, its implementation is much more computational expensive
and may generate statistical noise (Emde et al., 2010; Mayer, 2009). The SOSVRT radiative transfer model uses
successive-order-scattering (SOS) method that leads to improvement in modeling atmospheric scattering, however
challenges remain in its ability to converge when the atmosphere is the optically-thick and the observing angles are
oblique (Duan et al., 2010). These first-principle approaches are capable of retrieving high accuracy reflectance spectra
with prior knowledge of atmospheric characteristics by modeling the absorption and scattering effects of atmosphere.

However, the explicit atmospheric spectra simulations are not only computationally expensive, but require accurate
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characterization of the atmosphere and precise characteristics of sensors (Siewert, 2000; Qu et al., 2003; Gao et al.,
2009).

The combination of empirical methods and radiative transfer approach have also been proposed to accelerate the
process of atmospheric correction for multi-channel hyperspectral remote sensing data (Qu et al., 2003; Gao et al.,
2009; Markelin et al., 2017; Katkovsky et al., 2018), however, its performance is a trade-off between computational
efficiency and accuracy. Thus, an accurate, fast, and automated atmospheric correction approach is desired to retrieve
the emitted and reflected radiance of the target at the Earth’s surface from the hyperspectral remote sensing data.

Recent advances in agile collection platforms overcome the fixed nadir looking geometry settings of past instru-
ments, which allow users to measure additional solar and atmospheric radiative components of the radiative transfer
equation (RTE). Additionally, the new generation of agile sensors have the ability to revisit a scene in seconds under
variant looking angles. The rapid multi-scan collecting capacity and the geometric diversity of modern hyperspectral
collecting systems provide a new opportunity to develop a more complete solution to the fundamental RTE because of
their retrieval of full spatial dimensionality and multiple temporal components. Furthermore, the abundant spectral-
spatial information in multi-scan hyperspectral remote sensing data enables the adoption of the fully data-driven
methods, such as deep learning technique, in hyperspectral image analysis.

Deep learning technique, as a branch of machine learning and artificial intelligence methods, has shown research
and operational success across various fields. A representative framework of deep learning is the deep neural network
(DNN). For image processing applications, the convolution neural network (CNN) has demonstrated its superiority
since it can be formulated with a relatively small number of trainable parameters. Various architectures of CNN have
been designed for different imaging tasks such as AlexNet (Krizhevsky et al., 2012), VGG-16 (Simonyan and Zis-
serman, 2014), U-Net (Ronneberger et al., 2015), Inception (Szegedy et al., 2015, 2016), ResNet (He et al., 2016),
and DenseNet (Huang et al., 2017). Beyond that, progresses of applying CNN in discipline of hyperspectral image
analysis have also been made. For instance, Yu et al. (2017) demonstrated the hyperspectral image classification
using a CNN outperforms other state-of-the-art methods. Xu et al. (2020) proposed an encoder-decoder neural net-
work to remove atmospheric effects from long wavelength multi-scan hyperspectral data. These studies have shown
the potential use on DNNS in its application to hyperspectral image analysis. However, seasonal and diurnal cycle
variations of atmosphere were not taken into account in data collection, which limits the performance and feasibility
of deep learning in some realistic scenarios. In addition, deep learning application using the shortwave spectrum of
hyperspectral data remain in an unexplored area because of the complexity of the spectral-spatial nature.

In this paper, we design a time-dependent neural network to solve every radiative component of RTE from the at-

sensor total radiance using shortwave spectra. The proposed network is partially convolution-based, but involves two
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temporal factors, i.e., collection day of the year and time of the day, using the fully connected layers. We expect the
time-dependency of such a neural network to capture the diurnally-and-hourly varying characteristics of atmospheric
environment, which can improve the accuracy of estimating the target’s reflectivity spectra. This paper is organized as
follows: first, we introduce the theoretical deep learning solution of the RTE and discuss the architectural design of the
time-dependent neural network; second, we describe the hyperspectral data simulation, the required pre-processing
of input and labelled data, and the network training process. The performance of our designed neural network is
then evaluated by analyzing the discrepancy between the ground-truth solar and atmospheric radiative components of
RTE and the predicted results. The target’s reflectivity is retrieved as an additional indicator to evaluate the network’s
ability. Finally, the contribution of the two temporal factors and the composition of the training dataset to the network’s

prediction skill are also discussed.

2. Methodology

In this section, we first briefly review the concepts of radiative transfer modeling, and different components of the
RTE. Then, the fully-data driven deep learning solution of the RTE will be introduced following by the discussion of

the neural network architecture to adapt for the diurnal and hourly variations of atmospheric conditions.

2.1. Radiative transfer modeling

In addition to the chemical and physical compositions of the target, the hyperspectral remote sensing data is also
highly affected by the solar-sensor’s geometry settings and the absorption and scattering by atmosphere, including
gases, aerosols, water vapor, and clouds. The physical transportation of radiative energy can be described by the RTE,

and its mathematical expression (Schott, 2007) is written as

coso

Ly = Er(Dt1(D)72(A) + Lrje()12(A) + Lysy + Lyex

ey
+ [F(Lasa + Laea) + (1 = F)(Lpsa + Lpe) r(D)72(2)

where T is the target’s temperature in Kelvin, s represents that the component is solar-related, € denotes the self-
emitted thermal component, d («) is the downwelling (upwelling) component, and b is a reminder that the component
pertains to the background. F is the fraction of hemisphere is obscured by background objects, and is also known as
the shape factor. A denotes the wavelength of the solar radiance. The physical meaning of each RTE component is

listed in Table 1.
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Table 1: Physical meaning of each component in RTE

Components | Units Physical meaning

E;, W/m? Extraterrestrial solar irradiance

o — Incident angle of solar irradiance

r(Ad) — Spectral reflectivity of the target

&) — Spectral emittance of the target

T1(2) — Atmospheric transmission on the sun-target path

72(A) — Atmospheric transmission on the target-sensor path

Ly, Wem™2sr ' um™" | Spectral radiance of a blackbody at temperature T

Lgsy + Lgea Wem™ 2 ~um™! | Sum of solar and atmospheric downwelling spectral radiance
Lpsa + Lpey Wem™2sr™! um ~1'| Sum of background reflected and self-emitted spectral radiance
Lusa + Lue Wem™2sr~ ' um™" | Sum of solar and atmospheric upwelling spectral radiance

In Table 1, Ly, is the emitted radiance of a blackbody, also referred to as the Planck’s Law:

L= 2k A7 (e — 17! 2)

where, / is Planck’s constant, c is the speed of light, and k is the Boltzmann gas constant. To achieve energy balance all
incident flux must be either transmitted, reflected, or absorbed, i.e., (1) +r(1)+a(1d) = 1. Thus, the spectral emittance
of an opaque surface can be calculated by its reflected radiance: (1) = 1 — r(4) because of its zero transmissivity
(i.e., 7(1) = 0) and the equivalence of the absorptivity and the emissivity (i.e., @(1) = &(1)). Assuming the object of

interest is located in an open area, i.e., F = 1, Equation (1) can be reformulated as

cCoSOoO
Ly =r2()r() [TE”““) Ly + Lm] + e()T2(D)Lrs + Lusg + Luex
3)

=0,(Dr(DLY 4 [1 = r( D] 12(D) Ly + LM L+ LY ,+ LY + 1M

'down solar_scat solar_scat ‘path_emit path_scat

where, LY
own

= [%Emn(ﬂ) + Ly + de] describes the downwelling radiance in which the ground reflected ra-
diance received at the sensor can be delineated as 7,()r(A)LY owns LTDE solar scattering components are Ly =

M

M M . .
solar_scait + Lsotar_scarn Where the right hand of equation Lwlar sear @0 Ly .o Tepresent the single- and multiple-

scattering solar radiances, respectively; and L., = LM +IM

path_emit demonstrates atmospheric thermal radiance

path_scat

in and scattered to the light-of-sight (LOS) path.

2.2. Deep learning solution of the RTE

Instead of using a single viewpoint in traditional radiative transfer approaches, the multi-scan hyperspectral ge-
ometry settings allow users to re-evaluate the RTE using a fully data-driven deep learning technique. The desired
input of such a neural network will be multi-scan multispectral remote sensing data collected in a rapid sequence. The

high temporal scanning frequency allows us to consider atmospheric conditions to be constant for the multi-scan data
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collected at specific time and the multiple downlooking angles circumvents the underdetermined problem. The aim of
the neural network is to study all atmospheric characteristics that affect the total radiance observed by the sensors. In
other words, an applicable network should be capable of retrieving all solar and atmospheric coherent radiative com-

M and LM

path_emit’ path_scat’®

LM

solar_scat2’

ponents of the RTE, including 7>(2), LY . LM

own® ~solar_scat1’

which will subsequently be
referred to as the six solar and atmospheric RTE components. However, due to the rapidly changing environment and
the varying incident angles between the Sun and target, it is still unrealistic to directly decompose the total radiance
Ly, into all atmospheric components using a single equation without any prior knowledge, even with the assistance
of the multi-scan hyperspectral data. To take into account the diurnal and hourly variability of atmosphere and their
impacts on the incoming solar radiation and climatological atmospheric conditions, two temporal factors, day of the
year and time of the day, need to be considered in the network design. With all these information having been correctly
placed, the fundamental formulation of the desired neural network for atmospheric correction on hyperspectral data is

written as

o), LY LM

own® ~path_emit>

M M M = Q(Ly, day, time) 4)

path_scat® *~solar_scat1® ~solar_scat2 —

where the label 0 represents the elevation angle in the observation geometry, L,y is the total radiance under multiple
elevation angles received at a certain time and day by the sensor. Q) represents a sequence of input preprocessing, net-
work implementation, and output postprocessing. After obtaining the final estimations using €, the target’s reflectivity

can be calculated as

(Lag = Lysa — Lyea)/m2(A) — L1a
M L

down

r(d) = &)

2.3. Network architecture

Various neural network architectures have been developed for different types of tasks. Here, similarly to general
image processing, we adopt the encoder-decoder CNN as the major framework for the atmospheric correction prob-
lem. However, as previously discussed, the encoder-decoder architecture needs an adjustment to incorporate the two
temporal factors (i.e., two scalar values) to adapt to both the diurnal and variability in atmospheric conditions and the
varying incident angles.

In Figure 1, we plot the architecture for our time-dependent neural network for atmospheric correction on multi-
scan hyperspectral data. There are three primary blocks including an encoder, the fully-connected layers in latent
space, and a decoder. All detailed parameterizations in each layer are listed in Table 2. Our neural network accepts a

total radiance relieved at the sensor with 150 wavelength bands (height) from 0.4 pum to 3.0 um under 13 elevation
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Figure 1: The architecture of the proposed time-dependent neural network.

Table 2: Detailed parameters of the proposed time-dependent CNN shown in Figure 1.

Operation Layer (I:Ifu;illlziz Eascllf eF?lier Stride  Padding ?:;pﬁtxs‘f;
Input total radiance - - - - 1x150x13
Conv_layer_1 64 4x3x1 2x2 1x1 64x75x7
Encoder Conv_layer_2 128 5x3x64 2x2 1x1 128x37x4
Conv_layer_3 256 5x3x128 2x2 1x0 256x18x1
Conv_layer_4 64 18x1x256 1x1 0x0 64x1x1
FC_day - - - - 64
Fully FC_time - - - - 64
Connected | FC_1 - - - - 64
Layers FC 2 - - - - 64
FC_3 - - - - 64
Conv_trans_1 256 18x1x64 1x1 0x0 256x18x1
Decoder Conv_trans_2 128 5x4x256 2x2 1x0 128x37x4
Conv_trans_3 64 5x3x128 2x2 1x1 64x75x7
Conv_trans_4 6 4x3x64 2x2 1x1 6x150x13

The encoder in our architecture is designed to remove repetitive information from the multi-scan hyperspectral
data by analyzing the invariance of the target’s reflectivity with different elevation angles. To preserve the detailed
information while reducing spatial dimensionality of the inputs, instead of using the max pooling layer, we adopt stride
convolution in the encoder to compress the input into a latent space vector. The global convolutional filters with size
of 18 X 1 X 256 are applied in the last convolution layer of the encoder (see in Table 2) to avoid vast parameterizations
in the latent space. Each convolution layer in the encoder is followed with a batch-normalization layer and a leaky
rectifier unit (LeakyReLU) activation layer.

In the latent space, we use two independent fully connected layers to handle the two temporal factors: day of the
year and time of the day, in which the outputs of these two layers are added into the encoder generated latent space

vector. Then, three fully connected layers with 64 neurons in each are employed to decompose the summarized latent

7
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space vector into a RTE involved vector which will be expanded by the decoder into the same readable dimension as
the input. A LeakyReLU transformation is carried out after every fully connected layer. Transposed convolutions are
also applied as the upsampling strategy in the decoder, and a combination of a batch-normalization and a LeakyReLU
are implemented after each transposed convolution layer, except for the last one which is followed by a ReLU acti-
vation. The outputs of the final ReL.U layer are the solved six RTE components stored in different channels with the

same order of as illustrated in the left hand of Equation (4).

3. Numerical examples

In this section, synthetic multi-scan hyperspectral data are simulated using MODTRAN (Adler-Golden et al., 1999;
Berk et al., 2014) to train and validate the ability of the time-dependent neural network. After obtaining six predicted
solar and atmospheric radiative components of the RTE using the trained network, the target’s reflectivity can also be

calculated using Equation (5) to further examine the performance of the proposed network.

3.1. Data simulation

MODTRAN software is chosen for synthetic hyperspectral data simulation. We assume that the target is located
at (40.7934 N, 77.86 W) in an open area, i.e., the shape factor F = 1, which lies at the Pennsylvania State University,
University Park, PA, USA. These synthetic data were used to plan a data collection campaign, Nittany Radiance 2019,
that occurred on the premises of the Pennsylvania State University, University Park campus on April 2019 to collect
aerial hyperspectral remote sensing scenes as well as ground truth measurements. The at-sensor total radiance is
collected by an airborne sensor with a constant range 5000 m and a fixed azimuth. The temperature of the target is
set to 350K. In every data recording process, the total radiance is measured under 13 elevation angles starting from
30° to 90° at 5° intervals. Additionally, for each target, the data is collected eight times a day from 6:00am to 8:00pm
(represents local time subsequently) at 2 hours intervals all year.

The airborne sensor has a spectral resolution of 17.5 nm to record radiative signals at 150 wavelength bands
between 0.4 um and 3.0 um. With such a parameterization setting, for every material, we have 365 X 8 radiance maps
of size 150 x 13. The simulations are performed on 48 target materials, including 42 MODTRAN builtin materials,
and six opaque Lambertian gray bodies with different constant reflectivities across the spectrum, which are 0.05, 0.1,
0.3,0.5, 0.8, 1.0.

In Figure 2, the total radiances with 13 elevation angles for two different materials received at 2:00pm on January
10" and their corresponding targets’ reflectivity spectra are plotted. Figure 2a shows the total radiance for a Lam-

bertian gray with a 0.3 constant reflectivity shown in Figure 2b. For the target with a constant reflectivity, prominent
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Figure 2: The at-sensor spectra for a Lambertian gray body with a 0.3 constant reflectivity and an evergreen needle forest received at 2:00pm on
January 10™. a) the total radiance for the gray body, b) the gray body’s reflectivity spectra, c) the total radiance for an evergreen needle forest, d)
the reflectivity of the evergreen needle forest.

contributions of the elevation angle in sensor-received total radiance are only observed in the visible and near-infrared
bands. The elevation angle’s influence vanishes as the wavelength increases.

To study the elevation angle’s influence on the total radiance for different materials, the simulated total radiances
under 13 elevation angles for an evergreen needle forest collected at the same time and date (2:00pm on January 10"")
are shown in Figure 2c, with the coherent target’s reflectivity shown in Figure 2d. Compared to the total radiance
spectrum for the gray body, the elevation angle caused distinction of the total radiance for the vegetation target
manifests strongly in the visible spectrum, which is likely caused by the unique strong chlorophyll absorption. In
addition, we find that, as the elevation angle increasing (i.e., shorter transmitting path in atmosphere), there is a
decrease in the total radiance received at the sensor. This is due to the decrease in solar scattering with increasing
elevation angle, as will be confirmed later in Figure 3.

During the MODTRAN simulation, the six solar and atmospheric spectra are also preserved, which after prepro-
cessing are considered as the ground-truth labeled data for the neural network. These six RTE radiative components
for the evergreen needle forest are plotted in Figure 3, and the corresponding total radiance is shown in Figure 2c.
Figure 3a shows that atmospheric transmission is directly proportional to the elevation angle. There are three atmo-
spheric complete absorption bands centered at 1.38 um, 1.88 um, and 2.7 um, respectively. As expected, Figure 3b
shows that the elevation angle has no impact on the downwelling radiance. Figure 3c and 3d show that atmosphere

self-emitted thermal and scattering radiances are negligible in the visible and near-infrared regions. On the contrary,

9



12 the solar scattering radiances are only observed in the visible and near-infrared regions shown in Figure 3e and 3f.
11s  Furthermore, the atmospheric emitted and scattering as well as the solar single and multiple scattering all decrease

1.+ with increasing elevation angle (Figure 3c,d,e,f), consistent with the total radiance shown in Figure 2c.
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Figure 3: Six solar and atmospheric radiances for an evergreen needle forest simulated at 2:00pm on January 10”. a) atmospheric transmission

72(1), b) downwelling radiance L% on® ¢) atmospheric self-emitted thermal radiance L%t h_emit® d) atmospheric scattering radiance Lg’z h_scar’ e) solar
M M

single scattering radiance L, 1> f) solar multiple scattering radiance Lioiar sear:

3.2. Input and labeled data preparation

Before feeding the simulated total radiance maps into the designed network with architecture shown in Figure 1,
we observe that the radiance dramatically decreases as the spectral band moves from the visible to the shortwave
infrared region. For such a skewed input a large number of convolutional layers would be required to balance the
contribution of different spectral bands and to reduce the risk of losing significant features in the shortwave infrared
band due to the weight sharing in the CNN. Increasing the number of convolutional layers, however, not only incurs a
heavy computational burden, but significantly increases the degrees of the freedom between the input and the output

of the network making it harder to train.
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An alternative approach is preprocessing the data to reduce the degrees of freedom of the network’s input and
output, while keeping the simplicity of the network. To do so, we calculated the Sun’s blackbody spectrum at 5778K
using Planck’s Law (Equation (2)) as shown in Figure 4. To preprocessing the total radiance, we divide the total
radiance by the blackbody spectrum for every spectral band then multiply by a constant value of 103 to re-scale the
value into the range of [0, 1]. This preprocessed data will subsequently be referred to as the normalized total radiance
map or the input of the network. The total radiance maps and their normalization for a gray body with a constant
reflectivity of 0.3 and an evergreen needle forest are shown in Figure 5.

The maximum spectral values along every wavelength band and observation time are computed for each solar and
atmospheric radiance to prepare the labeled data for the network’s training stage. Each component is then divided
by its corresponding maximum spectrum along each wavelength band and observation time. The final outputs of the
network are six normalized solar and atmospheric radiance maps, which can be converted into the correct magnitude
by multiplying by their corresponding maximum spectra at each wavelength and observation time. The matrix view

of these six RTE components and their nomalizations are shown in Figure 6.
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Figure 4: The spectrum of a blackbody at Sun’s temperature 5778K.

3.3. Training and validation

The total radiance for 48 materials are simulated, which includes 42 MODTRAN builtin materials and six Lamber-
tian gray bodies with different constant reflectivities. We chose hyperspectral simulations for 15 builtin vegetations
and six gray bodies with varying constant reflectivities and randomly selected at different collecting time for each
material as training (80 %) and validation (20 %) examples. The data simulated using the remaining 27 materials are
treated as the test dataset. Thus, we have 49056 training examples in total, 12264 validation examples, and 78, 840
examples in the test dataset. During the training stage, an £2-norm objective function is applied to measure the dis-
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body with a 0.3 constant reflectivity. b) the normalized total radiance for the Lambertian gray body, c) the total radiance for an evergreen needle
forest, d) the normalized total radiance for the evergreen needle forest.

crepancy between the output of the network and its corresponding normalized ground-truth. In addition, the adaptive
momentum estimation, or Adam, algorithm (Kingma and Ba, 2014) with an initial learning rate 5 X 107 is adopted
to optimize all trainable parameters in the network by minimizing the objective function. The training process is
implemented with 10 Nvidia Tesla P100-PCIe GPUs.

After training for 300 epochs, the network is evaluated using the simulated data for the 27 withheld materials
from the test dataset. We applied the trained network to the evergreen needle forest extracted from the test dataset.
The predicted results of six ground-truth solar and atmospheric radiances simulated at 2:00pm on January 10" are
plotted in Figure 7. From left to right in columns, they are six ground-truth atmospheric and solar radiances, predicted
results using the proposed network, and the residuals of the first two columns, respectively. The results show that
the residuals are at least one order of magnitude smaller than their corresponded ground-truth components. It is fair
to say that the proposed network has the capacity of accurately estimating atmospheric characteristics from the at-
sensor total radiance with the two temporal factors. The instantaneous evaluation of the neural network provides an
opportunity for real time atmospheric correction and target detection.

With the predicted six components shown in Figure 7, the reflectivity of the evergreen needle forest is retrieved
using Equation (5), which is conceived as an additional indicator to evaluate the performance of the proposed network.
Figure 8 shows the comparison of the actual reflectivity spectra of the evergreen needle forest and our predicted
results. The three atmospheric complete absorption bands approximately centered at 1.38 pwm, 1.88 wm, and 2.7 pm,
respectively, are colored in white in Figure 8. In these three atmospheric absorption bands, the target’s reflectivity is
not retrieved as expected. Other than that, the orange dots represents the mean of the 13 predicted reflectivity spectra

using various elevation angles, while the green error bar delineates the standard deviation of the 13 predictions. It
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in the second column.

shows that the predicted reflectivity is well matched with the ground-truth (indicated in black dashed line). In addition,
the small standard deviation demonstrates the high stability of the proposed network under multi-scan geometry

setting.

4. Discussion

Our analysis shows that the proposed time-dependent network is capable of accurately providing atmospheric

characteristics and target’s spectral signature from multi-scan hyperspectral data with two temporal factors; its results
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Figure 7: The comparison of six solar and atmospheric radiances of an evergreen needle forest collected at 2:00pm on January 10” and our predicted
results. From left to right in columns,they are the ground truth of six RTE components, our predicted results, and the residuals, respectively.

can be used to obtain a precise prediction of the target’s reflectivity, which can be applied to real time atmospheric
correction and target detection by comparing the predicted reflectivity with spectral signatures in database library.
However, more studies need to be made to understand the time dependency of the network. To study the contributions
of two temporal factors in the final prediction, two experiments are carried out: 1) feeding the well trained network

with a wrong day and a correct time factors for a specific target; 2) feeding the well trained network with a correct
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and the green error bar is the standard deviation of 13 predictions.

day and a wrong time factors for a specific target.

In the first experiment, we test the impact of the day factor on the network prediction. The hyperspectral at-sensor
radiance map collected at 2:00pm on the 178" day of the year (June 27"*) is chosen as an example. The collected
total radiance map and a correct time factor (2:00pm) are repeatedly fed into the well trained network but with a
day factor selected starting from 1 to 365. After every evaluation, the mean absolute residuals between the predicted
results and six normalized ground-truth components are calculated, and the result is plotted in Figure 9, where the
orange line represents the mean absolute error (MAE) of residuals using 13 elevation angles with light blue colored
area denoting the standard deviation of residuals with different elevation angles. In Figure 9, we observe that the mean
error of the prediction reaches a minimum when the correct day factor, i.e., the 178 day of the year, is fed into the
network. However, as the input day factor moves away from the correct date, the predicted error increases, as well as
its standard deviation. Furthermore, an approximately symmetric about the 178" day is shown in Figure 9, which can
be explained by the approximate symmetrical atmospheric characteristics about summer. Therefore, it is reasonable
to conclude that the proposed network has the ability of adapting to a diurnal changing atmospheric environment.

In the second experiment, we select eight total radiance maps for the evergreen needle forest collected at different
times on the 178" day of the year as input of the network, respectively. The correct day factor is imported with a
randomly selected time value, from 6:00am to 8:00pm with a two hour interval. Similarly to the first experiment,
after each evaluation, the mean absolute errors of the predicted results and six normalized ground-truth components
are calculated along wavelength and elevation angle axes. The confusion matrix of MAE is displayed in Figure 10.
As expected, the smallest predicted errors at each time are located on the main diagonal, and the largest errors are
appeared at the farmost way of the correct time. The prediction error also increases as the coordinate moves away
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Figure 10: The error analysis of the time temporal factor by feeding a random time value into the network with data collected from 6:00 to 20:00
with two hour intervals on the 178" day of the year.
from the main diagonal. These results suggest that our network is capable of accurately predicting atmospheric
characteristics with an diurnally-and-hourly varying atmospheric environments. In addition, we observe that the
MAE increases as the collection time moves away from noon along the main diagonal. This is possibly caused by
the weak radiation at sunrise times which leads to the relative higher percentage errors comparing to data collected
at noon. Though our experiment is conducted at the Pennsylvania State University, University Park, PA, USA, it is
straightforward to be generalized to diurnally collected hyperspectral data at other locations.

To understand the importance of the ‘mixed’ training dataset, the proposed network is also trained separately with
15 vegetations and six gray bodies with varying constant reflectivities. These three networks are then applied to the
test dataset including 27 materials separately. We extracted the predicted results for 24 materials at 2:00pm on January
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Figure 11: The comparison of the ground-truth reflectivities and predicted results using networks trained by three different datasets, with dashed-
black line showing the ground-truth reflectivity spectra of the targets, blue showing predictions using network trained with six gray bodies, green
showing predictions using network trained with 15 vegetations, orange showing predictions using network trained with a mixture of both. The dot
(vertical line) represents the mean (standard deviation) of 13 predictions using different elevation angles.
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10™ from the test dataset, and calculated the estimated reflectivities. The comparisons of the retrieved reflectivities
and their ground-truths are shown in Figure 11. The dot represents the mean of 13 predicted reflectivity spectra with
variant elevation angles and the vertical line is corresponding to the standard deviation of 13 predicted results. The
dot/line color represents the estimated results from the network used, with blue showing the network trained with
six gray bodies only; green showing the network trained with 15 vegetations only, and orange showing the network
trained with a mixture of vegetation and six gray bodies.

The comparison shows that the network trained with six gray bodies is capable of retrieving the spectral signatures
of the target that does not dramatically changes. However, it fails to predict most of vegetations’ reflectivity spectra
because of their complex spectral signatures. On the contrary, the network trained with 15 vegetations is able to
precisely predict the spectral signatures of vegetations and most of other materials. However, its prediction for the
materials with smoothly varying spectra, for instance, aluminum, sea ice, and burnt grass, has a very high standard
deviation which implies a lower stability of the network’s performance for these materials. In other words, for those
with smooth spectral signatures, the prediction accuracy using the network trained with 15 vegetations is highly
dependent to the elevation angle. The network trained with the ‘mixed’ training dataset outperforms both of these
two separately trained networks on both vegetation and other materials with a negligible standard deviation. Thus, a
mixture of vegetations and six gray bodies with different constant reflectivities is essential to improve and stabilize
the performance of the network on a wide variety of targets.

Though the accuracy and capacity of our designed network is promising, one important practical consideration
is that it only accepts a multi-scan hyperspectral data with no missing elevation angle (30°-t0-90°) or wavelength
band (0.4 um-to-3.0 um). The standard deviation of the predicted error using different elevation angles is marginal,
which is a positive indicator that the network may be stable for applications using data with missing elevation angles.
The detailed investigation and compensation of applying the network with incomplete data is an ongoing research.
Furthermore, settled geometry settings are assumed through our entire experiments and analysis, such as the unitary
spatial resolution of the airborne sensor and the fixed observation range and azimuth. However, the application on the
hyperspectral remote sensing data collected with different geometry settings can be implemented by finetuning our

trained network based on a strategy of transfer learning.

5. Conclusions

The multi-scan hyperspectral remote sensing data collected by the new generations of agile sensors contains
multiple spectral and temporal information within the full spatial dimensionality. This provides an opportunity for

real time atmospheric correction and target detection by taking advantages of deep learning methods. In this paper,
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we designed a time-dependent neural network to estimate atmospheric characteristics and solar scattering radiances
at a given time and day from the at-sensor total radiance. The results of our analysis show that the proposed network
is able to accurately provide atmospheric characteristics at given times and precisely retrieve the reflectivity spectra
of various materials, including vegetation and ocean. In addition, the retrieved reflectivity spectra using multi-scan
hyperspectral data provide an approximation of the estimated error from perspectives of varying elevation angles.
This approach is fully data-driven and well-suited for real time applications.

To investigate the time dependency of the proposed network, we introduce two experiments by feeding the net-
work with incorrect temporal factors separately. The first experiment shows that the predicted error increases as the
day factor moves away from the correct date. The prediction error has an approximate symmetric behavior which is
consistent with the approximate symmetry of atmospheric characteristics about summer. With the first experiment, we
may conclude that our network is able to precisely providing atmospheric characteristics and target detection under
a daily changing environment. In the second experiment, our analysis shows that the predicted error significantly in-
creases and its minimum located at the main diagonal corresponding to the correct time input. The second experiment
confirms that the proposed network has the ability of accommodating a hourly varying atmospheric condition and
providing precise predictions. In addition, the sensitivity tests have shown that in order to make accurate predictions
for a wide variety of targets, it is critical to train the network with a mixture of targets including both vegetations
and gray bodies with varying constant reflectivities. Though assumptions have been made on the geometry settings,
real-time applications of such a time-dependent network on hyperspectral data from different collecting systems are
possibly implemented by finetuning the network with a transfer learning strategy. In our future work, applying the

network with incomplete data and real data will be discussed and analyzed.
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