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Abstract18

Interferometric Synthetic Aperture Radar (InSAR) provides sub-centimetric measure-19

ments of surface displacements, which are key for characterizing and monitoring mag-20

matic processes in volcanic regions. The abundant measurements of surface displacements21

in multitemporal InSAR data routinely acquired by SAR satellites can facilitate near real-22

time volcano monitoring on a global basis. However, the presence of atmospheric signals23

in interferograms complicates the interpretation of those InSAR measurements, which24

can even lead to a misinterpretation of InSAR signals and volcanic unrest. Given the vast25

quantities of SAR data available, an automatic InSAR data processing and denoising ap-26

proach is required to separate volcanic signals that are cause of concern from atmospheric27

signals and noise. In this study, we employ a deep learning strategy that directly removes28

atmospheric and other noise signals from time-consecutive unwrapped surface displace-29

ments obtained through an InSAR time-series approach using an end-to-end Convolu-30

tion Neural Network (CNN) with an encoder-decoder architecture, Sun:modified U-net.31

The CNN is trained with simulated synthetic unwrapped surface displacement maps, and32

is then applied to real InSAR data. Our proposed architecture is capable of detecting33

dynamic spatio-temporal patterns of volcanic surface displacements. We find that an ensemble-34

average strategy is recommended to stabilize the detected results for varying deforma-35

tion rates and signal-to-noise ratios (SNR). A case study is also presented where this method36

is applied to InSAR data covering the Masaya volcano in Nicaragua and the results are37

validated using continuous GPS data. The results confirm that our network can indeed38

efficiently suppress atmospheric and other noise to reveal the noise-free surface defor-39

mation.40

1 Introduction41

Volcanic unrest causes diverse natural hazards that can pose threats to local pop-42

ulation, economy, infrastructures, and even trigger air traffic and climate perturbations43

globally. However, over 90 percent of volcanoes are not monitored consistently with ground-44

based networks (Loughlin et al., 2015). Massive Interferometric Synthetic Aperture Radar45

(InSAR) datasets routinely acquired by Synthetic Aperture Radar (SAR) satellites, such46

as Sentinel-1 or COSMO-SkyMed, provide an opportunity to globally measure surface47

displacements in active volcanic regions. While InSAR has the capacity to obtain sub-48

tle (mm to cm) geodetic measurements at volcanoes (Massonnet & Feigl, 1998; Hanssen,49

2001), there are a number of challenges that complicate the interpretation of InSAR mea-50

surements. For example, coherent deformation signals that are cause of concern for vol-51

canic unrest must be separated from other signals that can otherwise be misinterpreted52

as deformation including orbit, topography phase residuals, and atmospheric noise. At-53

mospheric phase delay signals in InSAR products are particularly challenging to miti-54

gate due to the complex spatial and temporal variations in atmospheric parameters such55

as hydrostatic pressure, temperature, and concentrations of water vapor (Hanssen, 2001;56

Emardson et al., 2003; Remy et al., 2003). Stratified tropospheric phase contributions57

and turbulent atmospheric effects may greatly complicate the interpretation of deforma-58

tion signals (Doin et al., 2009; Ebmeier, 2016; K. J. Stephens et al., 2020). In order to59

conduct near real-time volcano monitoring on a global basis, an automatic processing60

tool for detecting volcanic deformation signals through denoising interferograms and re-61

sulting InSAR time-series products is necessary.62

Deep learning techniques have drawn significant attention across various fields due63

to their demonstrated skill for conducting complex tasks, especially those involving im-64

age processing, such as classification (Krizhevsky et al., 2012; Simonyan & Zisserman,65

2014) , segmentation(Long et al., 2015; Ronneberger et al., 2015; Häggström et al., 2019),66

denoising (Zhang et al., 2017), and superresolution (Kim et al., 2016). Efforts have been67

made to apply these data-driven methods to natural hazard classification and forecast-68
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ing using either seismic events or large numbers of SAR images. For example, Ebmeier69

(2016) and Gaddes et al. (2019) demonstrated that atmospheric noise and surface dis-70

placements in volcanic regions can be separated using a combination of traditional ma-71

chine learning algorithms, independent component analysis (ICA) and cluster analysis.72

The advantage of ICA is that it is fully data-driven and thus does not require any prior73

information. However, similar to other linear signal separating methods, the order-agnostic74

of ICA marginalizes out either the spatial or temporal dynamics of the data depending75

on the assumption of independence. Thus, Sun:either spatial or temporal ICA can only76

allow for variability analysis in either spatially or temporally, but not both of them (Calhoun77

et al., 2001).Sun:Spatiotemporal ICA (stICA) is proposed to maximize the degree of78

independence of both spatial and temporal by allowing a tradeoff of the mutual in-79

dependence of images and their corresponding time courses (Stone et al., 2002; Shi et80

al., 2018). Sun:Though stICA is powerful, it requires an expensive computational cost81

(Boergens et al., 2014).82

There have been recent attempts at detecting volcanic surface deformation using83

modern deep neural networks. Sun:A large scale benchmark archive for remote sensing84

image classification were discussed in Sumbul et al. (2019). To improve the speed of85

manually distinguishing the volcanic deformation (i.e., fringes) from wrapped interfer-86

ograms, Anantrasirichai et al. (2018, 2019) showed that interferometric fringes can be87

classified using a transfer learning strategy with AlexNet (Krizhevsky et al., 2012). How-88

ever, atmospheric signals may also appear as “fringes” in wrapped interferograms, which89

would then be classified as volcanic deformation signals and lead to false positive iden-90

tifications. Sun:Using variant combinations of training dataset and applying stratified91

atmospheric correction in advance may reduce the risk of false positives to some extent,92

and the detailed discusssions can be found in Anantrasirichai et al. (2019). Atmo-93

spheric corrections are therefore still required to retrieve the noise-free surface displace-94

ments and those corrections remains a significant challenge (K. J. Stephens et al., 2020).95

Unlike recent deep learning works applied to wrapped interferograms, in this study,96

we design a new approach using a deep neural network to extract the signal of interest,97

i.e., volcanic surface deformation, to distinguish the noise-free surface displacements from98

atmospheric signals or other sources of noise, and to automatically detect signs of un-99

rest from a series of time-consecutive unwrapped surface displacement maps obtained100

through conventional InSAR or InSAR time-series. In section two, we briefly discuss the101

input InSAR data, the mathematical framework of our deep learning method, and the102

architecture proposed for volcanic surface displacements detection. In section three, we103

introduce the requirement of data preprocessing, training, and implementation strategy.104

In addition, the temporal and SNR dependency of our proposed method are also discussed.105

In section four, we implement the proposed architecture on a real InSAR data and ex-106

amine our results’ consistency with continuous Global Positioning System (GPS) time-107

series data.108

2 Methodology109

2.1 Input InSAR Data110

Conventional differential InSAR computes the phase difference between two com-111

plex SAR images spanning the same area but acquired at two different times (Massonnet112

& Feigl, 1998). An interesting extension of conventional InSAR are multi-temporal In-113

SAR time-series techniques. InSAR time-series techniques involve the processing of mul-114

tiple SAR acquisitions over the same area, allowing for the correction of uncorrelated phase115

noise terms, and reducing errors associated with the surface deformation measurements.116

Two classes of InSAR time-series algorithms are persistent scatterers (Ferretti et al., 2001;117

Kampes, 2005; Hooper, 2008) and Small Baseline Subset (SBAS) methods (Lundgren118

et al., 2001; Berardino et al., 2002; Lanari et al., 2007). Sun:One of the products obtained119
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through InSAR time-series are time-consecutive unwrapped surface displacement maps. We will use120

such productsIn this paper, the InSAR tiem-series is performed using SBAS methods121

to obtain time-consecutive unwrapped surface displacement maps, which are used as122

input of our newly designed Convolution Neural Network (CNN).123

2.2 Mathematical Framework124

In this study, we consider volcanic surface deformation retrievals as a denoising prob-125

lem. CNNs has been demonstrated to outperform many other framelets when applied126

to denoising problems (Ronneberger et al., 2015; Kim et al., 2016; Zhang et al., 2017)127

and is therefore a favorable framework of deep learning techniques to apply for this study.128

The deep learning mathematical expression for denoising time-consecutive unwrapped129

surface displacement maps can be written as:130

Φ̂def = F(Φ; Θ) (1)

where Φdef is a time-series of m noise-free surface displacements with a fixed temporal131

interval, Φ is a time-series of m corresponding unwrapped surface displacement maps,132

Θ delineates all trainable parameters of the neural network that are applied to estab-133

lish the nonlinear relationship of the unwrapped maps Φ and the corresponded surface134

displacements Φdef , and F represents the projection between the input Φ and the out-135

put Φdef using trainable parameters Θ. In a deep CNN, F is usually a series of convo-136

lution blocks where each block is composed of several operations among convolution, ac-137

tivation mapping, batch normalization, dropout, max/average pooling, upsampling, and138

transposed convolution.139

The convolution process is implemented as an iterative element-wise product of the140

input and a set of k trainable convolution kernels. Taking the first convolution layer as141

an example, the input contains m time-consecutive unwrapped maps of cumulative sur-142

face displacements placed in various channels. Considering k special convolution kernels143

of size 1×1, convolutions of inputs Sun:(m× w × h) and k kernels are equivalent to stack-144

ing these unwrapped maps in different weights, Sun:where the result is in size of k × w × h.145

Therefore, to a certain extent, the stacking method can be considered as a convolution146

process with a special kernel of size 1×1, which could be applied to eliminate most of147

temporally-uncorrelated atmospheric noise. However, stacking will not mitigate the ef-148

fect of spatially- or temporally-correlated atmospheric noise such as stratified water va-149

por signals (Doin et al., 2009; Ebmeier, 2016).150

To simultaneously mitigate spatially-correlated atmospheric noise, convolution ker-151

nels with receptive fields > 1 (Moody & Darken, 1988) must be adopted. For instance,152

convolving time-consecutive unwrapped surface displacement maps with kernels of size153

3×3 can be treated as stacking them in a localized manner. The maximum spatially-154

correlated distance can be calculated by the size of convolution kernel and the spatial155

resolution of surface displacement maps. Furthermore, challenges remain in conducting156

atmospheric phase corrections over topography that varies dramatically over short spa-157

tial scales. To fit the complexity of projection between time-consecutive unwrapped sur-158

face displacement maps and noise-free deformation signals, the non-linearity of Sun:a CNN159

is also increased by introducing normalization, dropout, and activation mapping oper-160

ations.161

The training stage of the network ensures all trainable parameters are learned ap-162

propriately to fit a non-linear mapping from the input, i.e., time-consecutive unwrapped163

surface displacement maps, to the output, i.e., their corresponding noise-free surface dis-164

placements. The optimal weights of the neural network can be obtained by Sun:solving the165

optimization equation:minimizing the descrepancy between the network’s output and its166

corresponding ground truth. where Φi is the ith input of CNN which contains m time-consecutive167
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unwrapped surface displacement maps, Φi
def is the ground-truth target, i.e., a set of m correspond-168

ing noise-free surface deformations, P is the number of pixels in an individual unwrapped map, N169

is the total number of input and target pairs, L(·) is a measure of the discrepancy between the170

ground-truth Φi
def and predicted values Φ̂i

def . In our case, we adopted l1-norm, i.e., mean-171

absolute-error (MAE), to compute the prediction error and to evaluate the performance172

of the neural network.173

The minimization of the objective function of the neural network is commonly solved174

with the backpropagation methods using a gradient-based optimization algorithm, such175

as stochastic gradient descent (Bottou, 2010, or SGD) and adaptive moment (Kingma176

& Ba, 2014, or Adam). Training this tremendous number of parameters requires a very177

large set of input and ground-truth target pairs. This makes the computation of the gra-178

dient over the entire training dataset an impracticable task due to the high computa-179

tion time and memory cost. As in other deep learning tasks, a minibatch size of n is ap-180

plied for obtaining the objective function and for computing the gradient for parame-181

ter updates. The l1-norm objective function with a minibatch size of n is expressed as:182

Θ̂ = arg min
Θ

1

mnP

n∑
i=1

Ln = arg min
Θ

1

mnP

n∑
i=1

‖Φi
def −F(Φi; Θ)‖ (2)

Sun:where Φi is the ith input of CNN which contains m time-consecutive unwrapped183

surface displacement maps, Φi
def is the ground-truth target, i.e., a set of m corre-184

sponding noise-free surface deformations, P is the number of pixels in an individual185

unwrapped map, N is the total number of input and target pairs, L(·) is a measure of186

the discrepancy between the ground-truth Φi
def and predicted values Φ̂i

def .187

During the training process, the entire training dataset will be shuffled and divided188

into batches using the given batch size n at every epoch. Sun:For instance, a batch of189

10 time series each of 26 interferograms with size 200× 300 consists of a tensor190

in size of 10× 26× 200× 300. One epoch of training is defined as passing the entire191

training dataset forward and backward through the neural network a single time. In our192

experiments, due to the intricacy of atmospheric signals,the minibatch SGD algorithm193

is applied to compute updates of parameters and to prevent the objective function from194

converging into local minima (Li et al., 2014). In the prediction stage, m time-consecutive195

unwrapped surface displacement maps will be fed into the neural network to extract their196

corresponded noise-free displacements of the Earth’s surface. Because of the fixed time-197

length of the CNN input (i.e., allowing m time-consecutive unwrapped surface displace-198

ment maps only), one can iteratively implement the process with a certain fold if the num-199

ber of time-consecutive unwrapped surface displacement maps is larger than m. Sun:For200

the data that has less than m number of temporal series, one can repeat the last tem-201

poral series achieved to meet the fixed time-length requirement of the CNN. However,202

it is a trade-off between the number of temporal series and the accuracy, which is203

discussed in the latter context.204

2.3 Architecture of Neural Network205

Various architectures of CNN have been designed and proven very effective for im-206

age processing tasks. For example, Simonyan and Zisserman (2014) proposed a CNN ar-207

chitecture called VGG16 that includes a convolutional encoder and a classifier Sun:using208

three fully connected layers for image recognition of 1000 classes. The encoder net-209

work in VGG16 includes 13 convolution layers and 5 max-pooling layers that take the210

image dimensional pixels as input Sun: with size 224× 224× 3 and outputs feature map-211

ping representations Sun:with size 7× 7× 512 in a lower dimension with increased depth.212

The classifier, consisting of 4096 neurons in each layer, then interprets these feature rep-213

resentations generated by the encoder and outputs Sun:a single value as the predicted classthe214

predicted probability for each class of the input image. The study of VGG16 by Simonyan215
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and Zisserman (2014) indicates that the feature representations in a lower resolution can216

be generated by the encoder block. Meanwhile, these latent feature maps have abundant217

information to represent the input image. As a result of the skill of this architecture, VGG16218

has become one of the most frequently applied architectures for image processing using219

deep neural networks.220

A fully convolution neural network (FCN) was proposed by Long et al. (2015) for221

image segmentation that has the capability to produce the output in the same dimen-222

sion and resolution of the input image. Instead of adopting a classifier in the image recog-223

nition task, Long et al. (2015) designed a decoder network using upsampling operators224

to reverse the output feature maps of the convolution encoder. The results showed these225

upsampling operations successfully increased the resolution of the final segmented out-226

put image. Sun:One problem with this architecture is that it has a large number of227

trainable parameters in the encoder network but a very small amount in the decoder.228

This results in a large overall size that makes the training process extremely diffi-229

cult on an end-to-end task, such as extracting noise-free deformation signals from the230

unwrapped surface displacement maps.231

To reduce the large training set requirement and to pursue a more precise segmen-232

tation output, a more elegant architecture known as U-net was designed by Ronneberger233

et al. (2015). U-net has a symmetric topological architecture to preserve the output seg-234

mentation dimension and the upsampling operator from Sun:the FCN was replaced by235

a Sun:combination of the upsampling and a convolution stepsequence of an upsampling layer236

and a convolutionla layer, which makes the upscale process trainable. The malleable237

upscaling strategy can provide more precise localization and resolution of the output.238

Another important contribution of the U-net architecture is the bridge connection that239

allows the direct concatenation of the feature representations from the encoder and the240

upscaled feature maps from the decoder. Sun:The bridge connection is also known as241

the skip connection in some of FCNs architectures, for instance, ResNet (He et al.,242

2016). In a way, the concatenation operations provided by the bridge connection allows243

the CNN to conserve high resolution feature representations from the encoder even af-244

ter many pooling layers.245

We adopt a similar topological architecture as U-net for the noise-free surface de-246

formation signals retrieval from the time-consecutive unwrapped surface displacement247

maps. Our architecture is shown in Figure 1. The only difference between our network248

and U-net in Ronneberger et al. (2015) is the upsampling strategy in the decoder, in which249

we replace the combination of upsampling and convolution with the transposed convo-250

lution (i.e., deconvolution). Compared to U-net, the deconvolution operation allows weighted251

re-distributions of the feature representations into higher resolution while improving its252

localization ability. Out network architecture also includes two classic subnets, a con-253

tracting path (i.e., a convolutional encoder), and an expansive path (i.e., a convolutional254

decoder).255

As shown in Figure 1, the encoder subnet contains 4 combination blocks where each256

block has two convolution layers and one max-pooling layer. In the decoder network, 4257

symmetric blocks are also designed where each block has a deconvolution layer followed258

by two convolution layers. A bottleneck connection containing two convolution layers259

is applied to bridge the encoder and decoder networks. Each convolution layer contains260

the convolution computation followed by Parametric Rectified-Linear-Unit (PReLU) ac-261

tivation mapping, batch normalization process, and a Sun:20 percentage dropoutdropout layer262

with a constant probability of retention p = 0.8 for handling surface displacement263

maps in different levels of SNR and for improving the generalization capacity of the neu-264

ral network. The parameterizations of convolution, max-pooling, and deconvolution lay-265

ers are shown in Table 1, respectively.266
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Encoder Decoder

Figure 1. The architecture of the modified U-net for noise-free surface deformation signals

separation from the time-consecutive unwrapped surface displacement maps.

Table 1. Summary of parameters used in the architecture shown in Figure 1

Operations Kernel size Stride Zero-padding

Convolution (3, 3) (1, 1) (1, 1)
Max-Pooling (2, 2) (2, 2) (0, 0)
Deconvolution (3, 3) (2, 2) (0, 0)

One of the responsibilities of the encoder network is to reduce the dimensionality267

of the input. The encoder takes the unwrapped surface displacement maps as the input268

and outputs feature representations in variant and lower Sun:dimensionsspatial dimensions269

with enriched depth information. The decoder network will increase the dimensional-270

ity of the feature representations created by the encoder and convert them back to the271

original input dimension using the deconvolution operation. In addition, to achieve higher272

resolution output, the convolution is operated to the concatenation between the result273

from deconvolution and its corresponding feature maps from related stage of encoder passed274

by the bridge connection.275

3 Network Training and Analysis276

In this section, we will first discuss the data preparation, including synthetic dataset277

simulation and data preprocessing for both unwrapped surface displacement maps (in-278

put) and noise-free surface deformation signals (desired output). Secondly, the training279

and validation stages are discussed and the performance of the trained network using280

simulated data is examined by implementing it on synthetic test dataset. Finally, we an-281

alyze both the temporal and SNR dependencies of the trained network.282

3.1 Data Preparation283

In order to train our neural network, we first simulated sets of simple synthetic un-284

wrapped surface displacement maps (interferograms) sharing similar properties to the285

Sentinel-1 InSAR data (Ebmeier, 2016). This synthetic data is designed to include sig-286

nals of volcanic deformation, spatially correlated atmospheric variability, and errors in287

orbital estimation. The spatially correlated atmosphere (Hanssen, 2001; Lohman & Si-288

mons, 2005) is randomly generated under a normal distribution assumption with cen-289
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tral values of maximum variance=20mm2 and characteristic length-scale exponent=0.5290

(Emardson et al., 2003). With an average phase delay gradient of 1cm/km, Shuttle Radar291

Topography Mission (SRTM) of footprint 2760km2, randomly cropped from Telica vol-292

cano (1061m, Nicaragua) surrounding area was used to mimic the signals of tropospher-293

ically correlated atmospheric variations (Remy et al., 2003; Bekaert et al., 2015). We also294

simulated the estimation errors of orbits using a linear ramps in form of ax + by + c,295

where a ∼ b ∼0.01km−1. For synthetic deformation pattern construction, we simulate296

volume changes in spherical sources (Mogi, 1958) at depths ranging randomly from 4km297

to 15km. The volume change is randomly selected from on of the following six options:298

a) a linear increase over time, b) a linear decrease over time, c) sinusoidal variations, d)299

cosinusoidal variations, e) a “pulse” episode of source deflation, or f) inflation. Those300

six options are employed over a specific period of time such that they are only observed301

in a few consecutive unwrapped surface displacement maps. Sun:Compositions of a time-302

series simulated interferograms with 180m pixel size and 12 days interval are plotted303

in Figure 2, Sun:where the volume change of the Mogi source following a sinusoidal304

variation starting from day 40.305
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Figure 2. The signals used to simulate a synthetic interferograms following Ebmeier (2016).

a) Spatially correlated atmospheric phase changes, b) topographically correlated atmospheric

delay, c) linear orbital ramps of the form φ = ax + by + c, where a ∼ b ∼ 0.01 km−1, d) Synthetic

deformation using a Mogi source at 6km depth, for short-lived sinusoidal varying volume changes

starting on day 40. e) Synthetic interferograms, from the sum of all signals above. Histograms

show the average distribution of values for all interferograms in the sequence (days 0–120).

The simulated interferometric phase is then obtained by summing all atmospheric306

signals, orbit contributions, and synthetic Line-Of-Sight (LOS) deformation signals. 20,000307

groups of unwrapped surface displacement maps are simulated, and each group contains308

20 time-consecutive pairs of unwrapped surface displacement maps and noise-free sur-309

face deformation signals Sun:with 180m spatial resolution. To be consistent with deep310

learning terminology, the number of time-consecutive pairs feeding into CNN will sub-311

sequently be referred to as the “number of input channels”.312

Instead of feeding the neural network with raw simulated unwrapped surface dis-313

placement maps, data preprocessing is generally required before the training stage of Sun:a314

neural network because of data inconsistency, incompleteness, and unpredictable range.315

Previous studies have demonstrated several advantages of using data preprocessing tech-316

niques (Kotsiantis et al., 2006), such as a simpler relationship between input and tar-317

get, improvement of the stability, and enhancement of the generalization capacity of the318

neural network. In our experiments, a simple preprocessing is required for transform-319
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ing both time-consecutive unwrapped surface displacement maps and noise-free surface320

deformation signals into a comparable range.321

First, outlier pixels, which are defined as those with a Z-score with an absolute value322

greater than 3, are replaced by a neighborhood value from unwrapped surface displace-323

ment map. Time-consecutive unwrapped surface displacement maps are then normal-324

ized by their maximum and minimum values, i.e., Φin = (Φ− Φmin)/(Φmax − Φmin).325

Thus, all the input value fed into the neural network are in the range of [0, 1].The noise-326

free surface deformations are normalized using the pair of minimum and maximum val-327

ues from their corresponding time-consecutive unwrapped surface displacement maps with-328

out subtracting their minimum, i.e., Φout = Φdef/(Φmax−Φmin). As a result, smaller329

deformation signals will have a smaller influence on the objective function when back-330

propagating the neural network for weight parameter updating.331

3.2 Training and SNR Dependency Analysis332

All preprocessed data are randomly divided into training (80 percent of the total333

number of time-consecutive unwrapped surface displacement maps a total of 16,000) and334

test (the remaining 20 percent a total of 4,000) datasets for training and evaluation.335

To increase the quantities and improve the diversity of training and test datasets,336

data augmentation, through random rotation, horizontal, and/or vertical flipping, was337

performed on both input unwrapped surface displacement maps and coherent noise-free338

surface deformation signals on training dataset during training stage. The designed encoder-339

decoder neural network (Figure 1) was trained using minibatch SGD optimization al-340

gorithm with l1-norm discrepancy evaluation (equation 2) on the PyTorch platform (Paszke341

et al., 2019). To determine an appropriate time series length for the input unwrapped342

surface displacement maps, we trained the neural network eight times separately with343

different number of input channels. Sun:Thus, we have eight trained network models344

accepting [6, 8, 10, 12, 14, 16, 18, 20] number of input channels, respectively. The aver-345

age training time over all the neural networks is approximately 150 minutes for 30 epochs346

with 20 NVIDIA Tesla P100 GPU accelerators.347
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Figure 3. The normalized mean-absolute-errors (MAE) of predictions using networks with

variant numbers of input channels during the training stage.

To visualize difference in the performance between the eight trained neural network348

models, we applied each of them to the entire test dataset after each training epoch and349
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Figure 4. The normalized MAE of predictions, for InSAR data with different signal-to-noise

raitios (SNRs), using networks with variant numbers of input channels after 30 epochs training.

computed their normalized mean-absolute-errors (MAE) (Figure 3). As the training pro-350

gresses, the normalized MAEs of all eight networks are reduced with only small oscil-351

lations. That is to say, it is conceivable to build an end-to-end architecture of neural net-352

work for retrieving the interested (i.e., noise-free) surface deformation signals directly353

from time-consecutive unwrapped surface displacement maps.354

In experiments of separating atmospheric noise from deformation signals, the SNR355

is a key limiting factor for the traditional methods. Therefore, the analysis of SNR de-356

pendency of the trained neural network is requisite to evaluate the generalization capac-357

ity and the stability of the trained network. We split the test dataset into 10 subsets with358

SNR ranging from Sun:[0.1, 2.0] every 0.20.1 to 2.0 with interval of 0.2. Then the pre-359

dicted Sun:normalized MAEs of each subset are computed using each of the eight trained360

networks. The results are plotted in Figure 4. For each trained network, the predicted361

Sun:normalized MAE decreases as the SNR of the input time-consecutive unwrapped sur-362

face displacement maps increases. However, it is worth noting that all predicted Sun:nor-363

malized MAE for SNR in range of [0.1, 2.0] are reasonably small.364

3.3 Implementation and Temporal Dependency Analysis365

To further intuitively examine the performance of these eight network models, in366

Figure 5, we plotted the predicted surface deformation signals from 20 time-consecutive367

unwrapped surface displacement maps (from left to right) associating with its noise-free368

deformation signals. Sun:Row AThe first row of Figure 5 shows 20 time-consecutive un-369

wrapped surface displacement maps at 12 day intervals with a SNR of 0.95 as inputs.370

Their coherent noise-free surface deformation feature maps are arranged in the second371

row in the same order. From this comparison, it is clear that partial deformation signals372

can be observed from some unwrapped surface displacement maps, while others are dis-373

torted by atmospheric noise.374

Sun: Surface deformations were predicted using the eight trained networks by it-375

eratively feeding 20 preprocessed time-consecutive unwrapped surface displacement376

maps until finished if the time length N of input required by the network is shorter377

than 20. For instance, using a network with the number of input channels of 8, 20378

time-consecutive unwrapped surface displacement maps are required to be split into379

three temporal segments, i.e., 1-8, 9-16, and 13-20, and then are fed into the network,380
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respectively. Note that the temporal segment from 13 to 16 are repetitively predicted,381

and therefore the average prediction is adopted as the final results. The results are382

illustrated in rows C-XX (XX refers to the number of input channels and XX ∈ [6, 8,383

10, 12, 14, 16, 18, 20]) of Figure 5. Sun: In row C-06, the network is capable of retrieving384

the surface deformations at both the initial and the last stage, but fails to detect them385

during the middle phase (indicated as the blue dashed-rectangle). Similar behavior is386

seen in row C-08 (shown as the pink dashed-rectangle) when extraction is performed387

using network with input channel of 8. This demonstrates that the stability of the388

neural network for detecting the pattern of phase changes of deformation signals, is389

limited when the number of channels fed into the neural network is shorter than the390

time scale of the deformation.391

One possible solution is to apply a multi-coverage strategy during the prediction392

stage. In other words, the time-step moving forward in prediction must be much shorter393

than the time length required by the neural network, which ensures most of the unwrapped394

surface displacement maps are fed into the network multiple times. The drawback of this395

approach is that it smooths the time-series plot of deformation signals, and it does not396

work when the network feeding time period is much shorter than the temporal period397

of deformation phase changes.398

Another Sun:formulasolution is to expand the time length covered by the network.399

Rows C-10/18/20 of Figure 5 shows the surface deformation predictions using networks400

with input channels of [10, 18, 20], respectively. The reconstructed signals capture all de-401

tailed phase changes of surface displacements. However, when increasing the number of402

input channels for the neural network there is a trade-off because it not only enhances403

the quality of interested signals, but introduces undesired noise which is destructive es-404

pecially when SNR < 1. For example, with the input channels of [12, 14, 16], the detected405

surface deformations were also incomplete (shown as green, red, and black dashed-rectangles)406

because of the high impact of stratified atmospheric signals at bottom-left corner of the407

area. To get an intuitive observation, the residuals between the ground-truth surface de-408

formation and all predictions using networks with different number of input channels are409

calculated and plotted in Figure 6.
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Figure 7. Time-series plots of surface deformations above the source location extracted from

the ground-truth and all predictions in Figure 5.

410

We extracted the surface deformation above the source location from the second411

row in Figure 5 and plotted the time-series phase changes in black in Figure 7, which412

is acting in place of the noise-free continuous data collection from ground-based GPS sta-413

tion. The detected deformation signals using the neural networks with different input414

channels are also extracted at the same location from rows C-XX and C-avg in Figure 5,415

and plotted in Figure 7 to compare their abilities to extract the signal. As discussed, net-416
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works with input channels of [6, 8] fail to extract signals of interest during the middle417

of the time period, and networks with input channels of [12, 14, 16] fail to extract the sig-418

nal at end of the time period. Predictions using networks with 10 and 20 input chan-419

nels provide a good fit to the noise-free time-series plot. This suggests that the match-420

ing score of time-series plots between the prediction and reachable noise-free continu-421

ous GPS data may be a great indicator of finding the optimal number of input channels422

for network model on related InSAR data.423

Without noise-free continuous GPS data for validation, to improve the stability of424

network, we recommend implementing the prediction with several networks using a vari-425

ant numbers of input channels and then computing the average of them as the final pre-426

dicted result. in this case we calculated the average prediction over networks with poor427

prediction skill (channels [6, 8, 12, 14, 16] or rows [C-06, C-08, C-12, C-14, C-16] in Fig-428

ure 5) are plotted in the last row (row C-avg) Figure 5. Row C-avg shows that the av-429

eraged prediction signal still lack precision but successfully captured all primary phase430

changes of the surface displacements. In Figure 7, the extracted time-series plot of av-431

eraged predictions is not perfectly recovered, but well enough to be an indicator for de-432

tecting major volcanic unrest. As a result, to improve the stability of network in the ab-433

sence of noise-free continuous GPS validation data, we recommend implementing the pre-434

diction with several networks using variant numbers of input channels and then comput-435

ing the average of them as the final predicted result.436

Figure 8 shows the cross-plots of noise-free surface deformations (the second row437

of Figure 5) compared to predictions using 10 input channels (row C-10 of Figure 5) and438

the average of predicted signal (row C-avg of Figure 5). The optimal relationship (i.e.,439

Φdef = Φ̂def ) of predicted and ground-truth signals is plotted in the black dashed line.440

The distribution of predictions using 10 input channels are plotted as bright blue dots441

in Figure 5. The best-fit line, shown in dark blue, is very close to the optimal fitting line442

indicating that the 10 input channel prediction has high skill. The cross-mapping of av-443

erage predictions and the ground-truth signals are plotted as orange dots with its best-444

fit line drawn in red. As expected, due to the smoothing influence, the absolute values445

of average predictions are smaller than the noise-free surface displacements.446

To further investigate the influence of the number of input channels for the CNN,447

we compute the normalized MAE of surface deformation detection using the networks448

with different numbers of input channels on InSAR data with various SNR. In Figure 9,449

Sun:the normalized MAE with respect to the number of input channels on test subsets450

with SNR: [0.1, 0.3, 0.5, 0.7, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1] are plotted. For a very small SNR451

of 0.1 the mean absolute error remains high regardless of the number of input chan-452

nels, consistent with our discussion above. As the SNR increases from 0.3 to 1.3, the453

MAE of the prediction reduces as the number of input channels increases. However,454

the number of input channels has limited impact on deformation detection when SNR455

> 1.5 as shown in Figure 9. This is reasonable because, for high SNR, the neural net-456

works are able to extract enough information within a short time period of unwrapped457

surface displacement maps.458

4 Case Study: Masaya Volcano Unrest459

4.1 Background on Masaya and Period of Study460

Surface deformation maps of volcanic regions within the Central American Volcanic461

Arc are often plagued by atmospheric phase delays from the troposphere, and this dis-462

torts measurements of noise-free surface deformation associated with volcanic activity463

(Ebmeier et al., 2013; K. J. Stephens et al., 2020). For this study, we focus our efforts464

on Masaya caldera, a basaltic caldera located approximately 20 km SE of Managua City465

in Nicaragua. The summit is approximately 600 m in elevation, and consists of several466
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Figure 8. Cross-plots of noise-free surface deformation signals compared to the prediction

using networks with 10 input channels and the averaged prediction, respectively. The dots are

pixels of predictions C-10 of Figure 5 (blue dots) and pixels of the average prediction C-avg of

Figure 5 (orange dots), respectively, with respects to the ground-truth signals (the second row of

Figure 5). Their best-fit lines are plotted in dark-blue and red respectively.

Sun:nesternested pit craters, of which the Santiago pit crater has been the most active since467

its formation in 1858-1859 (Global Volcanism Program, 2013; McBirney, 1956; Rymer468

et al., 1998). Masaya has exhibited a variety of explosive and effusive activities, includ-469

ing phreatomagmatic to Plinian episodes, lava flows, and lava lakes hosted within the470

summit pit craters (Bice, 1980; Global Volcanism Program, 2013; Kutterolf et al., 2007;471

McBirney, 1956). Since December 2015, a lava lake has been hosted within the Santi-472

ago pit crater at the summit (Global Volcanism Program, 2013). Various geodetic ob-473

servations spanning the appearance of the lava lake captured 8cm and 5.5 cm of ver-474

tical uplift using InSAR (K. Stephens & Wauthier, 2018) and precision levelling (Murray,475

n.d.; Rymer et al., n.d.) observations respectively. Additionally, since November 2015,476

one GPS station within the caldera (MAVC) has been operating continuously.477

4.2 Data Processing and Time-series Analysis478

We obtained 60 ascending SAR images from the Italian Space Agency COSMO-479

SkyMed (CSK) constellation to create surface deformation maps, spanning from August480

2015 to October 2016. Potential interferogram pairs were evaluated using the criteria481

that the perpendicular baseline between potential pairs is less than 300 m, and the tem-482

poral spacing is less than 180 days. Following these criteria, 281 interferograms were pro-483

cessed using the GAMMA software (Werner et al., 2000), with topographic phase con-484

tributions removed using a 12 m spatial resolution TanDEM-X digital elevation model485

(Rizzoli et al., 2017; Wessel et al., 2018). An adaptive spectral filter was used to smooth486

interferograms (Goldstein & Werner, 1998) and unwrapping was performed using the min-487

imum cost flow technique and triangular irregular network (Costantini, 1998). Unwrapped488

interferograms were converted from LOS phase radians to centimeters with respect to489

the ground, and re-referenced to a region Sun:in within the town of Masaya that was as-490

sumed to have minimal deformation. The interferograms were then downsampled to 90491

m pixel spacing to reduce computational time. No coherence masks were applied to the492

interferograms in order for the full atmospheric noise field to be examined.493
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Figure 9. The normalized MAE of predictions with respect to the number of input channels

for datasets with different SNRs.

The SBAS time-series technique creates LOS surface displacement maps between494

each acquisition date using a pixel-by-pixel linear least squares inversion method (Berardino495

et al., 2002; Lundgren et al., 2001). The first acquisition date (August 10th 2015) was496

Sun:typically set tochosen to be zero as the reference, and thus all surface displacement497

maps are with respect to this date, shown in Figure 10. All surface displacement maps498

were further downsampled to 180 m pixel spacing to match the input size requirement499

of the CNN. These time-consecutive unwrapped surface displacement maps generated500

by the time-series analysis are then used as the input to our CNN.501

4.3 Implementations502

Our pre-trained CNN requires time-consecutive unwrapped surface displacement503

maps with a constant date interval, which was 12 days during out training procedure.504

However, the ascending images obtained for the Masaya volcano have different date in-505

tervals. The date interval is calculated using dates between the current image and sub-506

sequent image, as shown in Figure 11. The majority of the time intervals are 4 or 8 days,507

which we will assume are consistent enough for our purposes. However, there is a large508

temporal gap in the measurements of 48 days from late January 2016 to March 2016.509

This gap divides the 60 images into two segments of roughly equal length. Therefore,510

instead of treating all 60 images as one Sun:piecegroup of time-consecutive deformation511

maps, we implement the deformation detection using the neural network for each half512

of the Masaya dataset. The first 26 images spanning from August 2015 to January 2016513

in Figure 10 are considered the first sub-dataset, and the remaining 34 spanning from514

March 2016 to November 2016 are considered the second sub-dataset. Sun:The varying515

and inconsistent time intervals of Masaya time series, as well as different deformation516
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LOS Surface Deformation [cm]

Figure 10. 60 consecutive CSK surface displacement maps obtained from SBAS time-series

analysis, spanning from 10 August to 15 October 2016.

Aug-10-2015

Nov-01-2015

Feb-01-2016

May-01-2016

Aug-01-2016
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5-2016

4 8 12 14 16 48
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Figure 11. Time intervals among all 60 consecutive CSK acquisition dates, where the time-

consecutive unwrapped deformation maps are shown in Figure 10.
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LOS Surface Deformation [cm]

Figure 12. The average prediction of LOS surface deformation at Masaya, where the Masaya

caldera is indicated in the dashed-line.

rates, may lead to varying suitable number of input channels for achieving the best517

prediction. Therefore, to stabilize the prediction of our network, as disscussed in previ-518

ous section, an ensemble-average startegy can be adopted to compensate their effects519

to some extent. A comprehensive analysis of the relationship among the network’s520

performance, varying deformation rates, and inconsistent time intervals is our ongoing521

research.522

In order to evaluate the performance of our approach and compare it to the pro-523

cessed continuous GPS data, we implement the average-ensemble prediction strategy dis-524

cussed previously. Each sub-dataset is fed into a set of 8 networks with varying num-525

ber of input channels of [6, 8, 10, 12, 14, 16, 18, 20]. The average detection result is cal-526

culated a posterior. The final surface displacements detection results for all images are527

plotted in Figure 12. Sun:Comparing to the original SBAS time-series (Figure 10), the528

surface deformations at Masaya obtained with the CNN (Figure 12) are able to more clearly529

identify volcanic surface deformations as .530

4.4 Time-Series Analysis531

The GPS station MAVC is located within the Masaya caldera at the Masaya Vis-532

itor’s Center (location is shown in Figure 13) and is used as a validation tool in this study.533

In order to compare the GPS time-series data to that of the InSAR LOS results, the three534

vertical and horizontal components of the continuous GPS data were converted into the535

satellite LOS using the satellite incidence angle (θ) and azimuth of the satellite head-536

ing vector(α), as well as the LOS vector components of the surface displacement field537

dN (north-south horizontal), dE (east-west horizontal), and dU (vertical) (Fialko et al.,538

2001):539
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Figure 13. The average prediction of LOS surface deformation on 15 October 2016, extracted

from the last time segment in Figure 12. The blue star represents the location of MAVC GPS

station within Masaya caldera indicated in the dashed-line.

dLOS = (dN sinα− dE cosα) sin θ + dU cos θ (3)

With the GPS, CSK InSAR time-series and CNN prediction all in the same units,540

time-series of surface displacements at the GPS location can be extracted from average-541

ensemble detected maps and the InSAR time-series for direct comparison. Figure 14 shows542

the LOS displacements in the GPS (blue dots), CSK InSAR time-series (green triangles),543

and CNN prediction (red diamonds).544

The GPS data shows changes in LOS displacement within the region of the offset545

magma reservoir, which is associated with the appearance of the lava lake at the sum-546

mit. Over the first 6 months of lava lake activity, the offset magma reservoir continued547

to inflate, however the magnitude of LOS displacement is less than that observed at the548

centre of the deforming region (K. J. Stephens et al., 2020). The InSAR time-series closely549

follows the GPS LOS displacement within the first two months of lava lake activity whereas550

the CNN over-estimates the LOS displacement. These initial errors in the CNN may be551

caused by poor spatial sampling. Beginning around April/May 2016, the InSAR time-552

series under-estimates the LOS displacement. This may be due to the large temporal gap553

in the InSAR data from late January to March 2016 or the poor temporal sampling of554

the InSAR data compared to the daily GPS solutions. However, The CNN LOS displace-555

ment becomes more consistent with the GPS station starting from March 2016, demon-556

strating that our proposed approach has the capacity of revealing the Masaya volcano557

unrest.558

5 Conclusions559

Abundant routine acquisitions of SAR using satellites make global near real-time560

volcano monitoring a reality. However, two major questions need to be answered before561

its practical application: 1) how to build a straightforward tool for mitigating atmospheric562

noise and detecting surface displacements signals, 2) is this tool fast enough to accom-563

modate near real-time volcano monitoring on a global basis. In this paper, we discussed564

the possibility of directly detecting volcanic surface deformation without atmospheric565

noise from time-consecutive unwrapped surface displacement maps (interferograms) us-566

ing neural network. We demonstrated the use of an end-to-end CNN with an encoder-567
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Figure 14. Time-series comparison between the LOS displacement observed from MAVC GPS

station (blue), CSK InSAR time-series analysis (green), and the average-detected deformation

(red) using CNN extracted from Figure 12. Orange background indicates temporally when the

lava lake is present at the summit.

decoder architecture as a potential tool for practical near real-time volcano monitoring568

on a global scale. We trained the proposed CNN with simulated unwrapped surface dis-569

placement maps only, but it may be further optimized with more realistic InSAR datasets.570

Analysis using synthetic benchmark shows that the CNN is capable of revealing571

noise-free surface deformation signals from unwrapped surface displacement maps with572

variant SNRs. However, the precision of detected results depends on the time scale that573

time-consecutive unwrapped surface displacement maps covered. Depending on data avail-574

ability we recommended one of two options to determine the best number of input chan-575

nels for the CNN: 1) ground-based continuous GPS data can be used as an indicator if576

available, or 2) an ensemble of CNN detections with various input channels can be com-577

puted where the the final detected result is the average over all members.578

A case study is conducted where the CNN ensemble average approach is applied579

to detect surface displacements at the Masaya volcano. The results demonstrate much580

more distinct surface deformation patterns than in the raw images. Time-series from the581

CNN detection extracted at the same location as available GPS observation are used to582

validate the CNN detection, showing that the CNN is able to detect Masaya volcano un-583

rest. The performance of our proposed CNN on both synthetic and real InSAR datasets584

shows great potentials of automatic noise-free surface deformation detection for Sun:glob-585

allyglobal near real-time volcano monitoring.586
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B., . . . others (2017). Generation and performance assessment of the global723

tandem-x digital elevation model. ISPRS Journal of Photogrammetry and724

Remote Sensing , 132 , 119–139.725

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for726

biomedical image segmentation. In International conference on medical image727

computing and computer-assisted intervention (pp. 234–241).728

Rymer, H., de Vries, B. v. W., Stix, J., & Williams-Jones, G. (1998). Pit crater729

structure and processes governing persistent activity at masaya volcano,730

nicaragua. Bulletin of Volcanology , 59 (5), 345–355.731

Rymer, H., Williams-Jones, G., Murray, J., Delmelle, P., Reid, K., & Cara-732

vantes Gonzalez, G. (n.d.). Precursors to the current activity at masaya733

volcano, nicaragua. In IAVCEI 2017 Scientific Assembly: Fostering Integrative734

Studies of Volcanoes; IAVCEI: Portland, Oregon , 939.735

Shi, Y., Zeng, W., Wang, N., & Zhao, L. (2018). A new constrained spatiotempo-736

ral ica method based on multi-objective optimization for fmri data analysis.737

IEEE Transactions on Neural Systems and Rehabilitation Engineering , 26 (9),738

1690–1699.739

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-740

scale image recognition. arXiv preprint arXiv:1409.1556 .741

Stephens, K., & Wauthier, C. (2018). Satellite geodesy captures offset magma sup-742

ply associated with lava lake appearance at masaya volcano, nicaragua. Geo-743

physical Research Letters , 45 (6), 2669–2678.744

Stephens, K. J., Wauthier, C., Bussard, R. C., Higgins, M., & LaFemina, P. C.745

(2020). Assessment of mitigation strategies for tropospheric phase contribu-746

tions to insar time-series datasets over two nicaraguan volcanoes. Remote747

Sensing , 12 (5), 782.748

Stone, J., Porrill, J., Porter, N., & Wilkinson, I. (2002). Spatiotemporal independent749

component analysis of event-related fmri data using skewed probability density750

functions. NeuroImage, 15 (2), 407–421.751

Sumbul, G., Charfuelan, M., Demir, B., & Markl, V. (2019). Bigearthnet: A large-752

scale benchmark archive for remote sensing image understanding. In Igarss753

2019-2019 ieee international geoscience and remote sensing symposium (pp.754

5901–5904).755

–23–



manuscript submitted to JGR: Solid Earth

Werner, C., Wegmüller, U., Strozzi, T., & Wiesmann, A. (2000). Gamma sar and in-756

terferometric processing software. In Proceedings of the ers-envisat symposium,757

gothenburg, sweden (Vol. 1620, p. 1620).758

Wessel, B., Huber, M., Wohlfart, C., Marschalk, U., Kosmann, D., & Roth, A.759

(2018). Accuracy assessment of the global tandem-x digital elevation model760

with gps data. ISPRS Journal of Photogrammetry and Remote Sensing , 139 ,761

171–182.762

Zhang, K., Zuo, W., Chen, Y., Meng, D., & Zhang, L. (2017). Beyond a gaussian de-763

noiser: Residual learning of deep cnn for image denoising. IEEE Transactions764

on Image Processing , 26 (7), 3142–3155.765

–24–


