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Key Points:

« Novel application of CNN is capable of revealing both spatial and temporal dy-
namics of volcanic surface deformation.

« CNN automatically mitigates atmospheric noise and facilitates near real-time vol-
cano monitoring.

¢ Results of the application of CNN to the Masaya volcano in Nicaragua, are con-
sistent with continuous GPS data.
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Abstract

Interferometric Synthetic Aperture Radar (InSAR) provides sub-centimetric measure-
ments of surface displacements, which are key for characterizing and monitoring mag-
matic processes in volcanic regions. The abundant measurements of surface displacements
in multitemporal InSAR data routinely acquired by SAR satellites can facilitate near real-
time volcano monitoring on a global basis. However, the presence of atmospheric signals
in interferograms complicates the interpretation of those InNSAR measurements, which

can even lead to a misinterpretation of InNSAR signals and volcanic unrest. Given the vast
quantities of SAR data available, an automatic InNSAR data processing and denoising ap-
proach is required to separate volcanic signals that are cause of concern from atmospheric
signals and noise. In this study, we employ a deep learning strategy that directly removes
atmospheric and other noise signals from time-consecutive unwrapped surface displace-
ments obtained through an InSAR time-series approach using an end-to-end Convolu-
tion Neural Network (CNN) with an encoder-decoder architecture, ““*modified U-net.
The CNN is trained with simulated synthetic unwrapped surface displacement maps, and
is then applied to real InSAR data. Our proposed architecture is capable of detecting

dynamic spatio-temporal patterns of volcanic surface displacements. We find that an ensemble-

average strategy is recommended to stabilize the detected results for varying deforma-

tion rates and signal-to-noise ratios (SNR). A case study is also presented where this method
is applied to InSAR data covering the Masaya volcano in Nicaragua and the results are
validated using continuous GPS data. The results confirm that our network can indeed
efficiently suppress atmospheric and other noise to reveal the noise-free surface defor-
mation.

1 Introduction

Volcanic unrest causes diverse natural hazards that can pose threats to local pop-
ulation, economy, infrastructures, and even trigger air traffic and climate perturbations
globally. However, over 90 percent of volcanoes are not monitored consistently with ground-
based networks (Loughlin et al., 2015). Massive Interferometric Synthetic Aperture Radar
(InSAR) datasets routinely acquired by Synthetic Aperture Radar (SAR) satellites, such
as Sentinel-1 or COSMO-SkyMed, provide an opportunity to globally measure surface
displacements in active volcanic regions. While InSAR has the capacity to obtain sub-
tle (mm to cm) geodetic measurements at volcanoes (Massonnet & Feigl, 1998; Hanssen,
2001), there are a number of challenges that complicate the interpretation of InNSAR mea-
surements. For example, coherent deformation signals that are cause of concern for vol-
canic unrest must be separated from other signals that can otherwise be misinterpreted
as deformation including orbit, topography phase residuals, and atmospheric noise. At-
mospheric phase delay signals in InSAR products are particularly challenging to miti-
gate due to the complex spatial and temporal variations in atmospheric parameters such
as hydrostatic pressure, temperature, and concentrations of water vapor (Hanssen, 2001;
Emardson et al., 2003; Remy et al., 2003). Stratified tropospheric phase contributions
and turbulent atmospheric effects may greatly complicate the interpretation of deforma-
tion signals (Doin et al., 2009; Ebmeier, 2016; K. J. Stephens et al., 2020). In order to
conduct near real-time volcano monitoring on a global basis, an automatic processing
tool for detecting volcanic deformation signals through denoising interferograms and re-
sulting InSAR time-series products is necessary.

Deep learning techniques have drawn significant attention across various fields due
to their demonstrated skill for conducting complex tasks, especially those involving im-
age processing, such as classification (Krizhevsky et al., 2012; Simonyan & Zisserman,
2014) , segmentation(Long et al., 2015; Ronneberger et al., 2015; Haggstrom et al., 2019),
denoising (Zhang et al., 2017), and superresolution (Kim et al., 2016). Efforts have been
made to apply these data-driven methods to natural hazard classification and forecast-
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ing using either seismic events or large numbers of SAR images. For example, Ebmeier
(2016) and Gaddes et al. (2019) demonstrated that atmospheric noise and surface dis-
placements in volcanic regions can be separated using a combination of traditional ma-
chine learning algorithms, independent component analysis (ICA) and cluster analysis.
The advantage of ICA is that it is fully data-driven and thus does not require any prior
information. However, similar to other linear signal separating methods, the order-agnostic
of ICA marginalizes out either the spatial or temporal dynamics of the data depending

on the assumption of independence. Thus, “““either spatial or temporal ICA can only
allow for variability analysis in either spatially or temporally, but not both of them (Calhoun
et al., 2001).%»Spatiotemporal ICA (stICA) is proposed to maximize the degree of
independence of both spatial and temporal by allowing a tradeoff of the mutual in-

dependence of images and their corresponding time courses (Stone et al., 2002; Shi et
al., 2018). S»=Though stICA is powerful, it requires an expensive computational cost
(Boergens et al., 2014).

There have been recent attempts at detecting volcanic surface deformation using
modern deep neural networks. A large scale benchmark archive for remote sensing
image classification were discussed in Sumbul et al. (2019). To improve the speed of
manually distinguishing the volcanic deformation (i.e., fringes) from wrapped interfer-
ograms, Anantrasirichai et al. (2018, 2019) showed that interferometric fringes can be
classified using a transfer learning strategy with AlexNet (Krizhevsky et al., 2012). How-
ever, atmospheric signals may also appear as “fringes” in wrapped interferograms, which
would then be classified as volcanic deformation signals and lead to false positive iden-
tifications. S*»Using variant combinations of training dataset and applying stratified

atmospheric correction in advance may reduce the risk of false positives to some extent,
and the detailed discusssions can be found in Anantrasirichai et al. (2019). Atmo-
spheric corrections are therefore still required to retrieve the noise-free surface displace-
ments and those corrections remains a significant challenge (K. J. Stephens et al., 2020).

Unlike recent deep learning works applied to wrapped interferograms, in this study,
we design a new approach using a deep neural network to extract the signal of interest,
i.e., volcanic surface deformation, to distinguish the noise-free surface displacements from
atmospheric signals or other sources of noise, and to automatically detect signs of un-
rest from a series of time-consecutive unwrapped surface displacement maps obtained
through conventional InSAR or InSAR time-series. In section two, we briefly discuss the
input InSAR data, the mathematical framework of our deep learning method, and the
architecture proposed for volcanic surface displacements detection. In section three, we
introduce the requirement of data preprocessing, training, and implementation strategy.
In addition, the temporal and SNR dependency of our proposed method are also discussed.
In section four, we implement the proposed architecture on a real InSAR data and ex-
amine our results’ consistency with continuous Global Positioning System (GPS) time-
series data.

2 Methodology
2.1 Input InSAR Data

Conventional differential InSAR computes the phase difference between two com-
plex SAR images spanning the same area but acquired at two different times (Massonnet
& Feigl, 1998). An interesting extension of conventional InSAR are multi-temporal In-
SAR time-series techniques. InSAR time-series techniques involve the processing of mul-
tiple SAR acquisitions over the same area, allowing for the correction of uncorrelated phase
noise terms, and reducing errors associated with the surface deformation measurements.
Two classes of InSAR time-series algorithms are persistent scatterers (Ferretti et al., 2001;
Kampes, 2005; Hooper, 2008) and Small Baseline Subset (SBAS) methods (Lundgren
et al., 2001; Berardino et al., 2002; Lanari et al., 2007). ““"One-of the-products-obtained
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such-productsIn this paper, the InSAR tiem-series is performed using SBAS n
to obtain time-consecutive unwrapped surface displacement maps, which are used as
input of our newly designed Convolution Neural Network (CNN).

1ethods

2.2 Mathematical Framework

In this study, we consider volcanic surface deformation retrievals as a denoising prob-
lem. CNNs has been demonstrated to outperform many other framelets when applied
to denoising problems (Ronneberger et al., 2015; Kim et al., 2016; Zhang et al., 2017)
and is therefore a favorable framework of deep learning techniques to apply for this study.
The deep learning mathematical expression for denoising time-consecutive unwrapped
surface displacement maps can be written as:

Dy = F(0;0) (1)

where ®4.¢ is a time-series of m noise-free surface displacements with a fixed temporal
interval, @ is a time-series of m corresponding unwrapped surface displacement maps,

O delineates all trainable parameters of the neural network that are applied to estab-
lish the nonlinear relationship of the unwrapped maps ® and the corresponded surface
displacements ®4.5, and F represents the projection between the input ® and the out-
put ®4.r using trainable parameters ©. In a deep CNN, F is usually a series of convo-
lution blocks where each block is composed of several operations among convolution, ac-
tivation mapping, batch normalization, dropout, max/average pooling, upsampling, and
transposed convolution.

The convolution process is implemented as an iterative element-wise product of the
input and a set of k trainable convolution kernels. Taking the first convolution layer as
an example, the input contains m time-consecutive unwrapped maps of cumulative sur-
face displacements placed in various channels. Considering k special convolution kernels
of size 1x1, convolutions of inputs ““* (1 x w x h) and k kernels are equivalent to stack-
ing these unwrapped maps in different weights, “““where the result is in size of k x w x h.
Therefore, to a certain extent, the stacking method can be considered as a convolution
process with a special kernel of size 1x1, which could be applied to eliminate most of
temporally-uncorrelated atmospheric noise. However, stacking will not mitigate the ef-
fect of spatially- or temporally-correlated atmospheric noise such as stratified water va-
por signals (Doin et al., 2009; Ebmeier, 2016).

To simultaneously mitigate spatially-correlated atmospheric noise, convolution ker-
nels with receptive fields > 1 (Moody & Darken, 1988) must be adopted. For instance,
convolving time-consecutive unwrapped surface displacement maps with kernels of size
3x 3 can be treated as stacking them in a localized manner. The maximum spatially-
correlated distance can be calculated by the size of convolution kernel and the spatial
resolution of surface displacement maps. Furthermore, challenges remain in conducting
atmospheric phase corrections over topography that varies dramatically over short spa-
tial scales. To fit the complexity of projection between time-consecutive unwrapped sur-
face displacement maps and noise-free deformation signals, the non-linearity of “*»a CNN
is also increased by introducing normalization, dropout, and activation mapping oper-
ations.

The training stage of the network ensures all trainable parameters are learned ap-
propriately to fit a non-linear mapping from the input, i.e., time-consecutive unwrapped
surface displacement maps, to the output, i.e., their corresponding noise-free surface dis-
placements. The optimal weights of the neural network can be obtained by " selvinethe
optimization-eguation:inimizing the descrepancy between the network’s output and its
corresponding ground truth. is-the-ithi i ains-m-time-consecuti
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gfeﬂﬂd-&ﬂi{—h—@'—&ﬂd—p%ed&eted—v&h&es—@w In our case, we adopted [1-norm, i.e., mean-
absolute-error (MAE), to compute the prediction error and to evaluate the performance
of the neural network.

The minimization of the objective function of the neural network is commonly solved

with the backpropagation methods using a gradient-based optimization algorithm, such

as stochastic gradient descent (Bottou, 2010, or SGD) and adaptive moment (Kingma

& Ba, 2014, or Adam). Training this tremendous number of parameters requires a very
large set of input and ground-truth target pairs. This makes the computation of the gra-
dient over the entire training dataset an impracticable task due to the high computa-

tion time and memory cost. As in other deep learning tasks, a minibatch size of n is ap-
plied for obtaining the objective function and for computing the gradient for parame-

ter updates. The [1-norm objective function with a minibatch size of n is expressed as:

n

> @l — F(@50) (2)

i=1

A 1 1
6 = argmi L, = arg mi
TS P ; n e mnP

Suniywwhere @' is the ith input of CNN which contains m time-consecutive unwrapped
surface displacement maps, ®!_, is the ground-truth target, i.e., a set of m corre-

sponding noise-free surface deformations, P is the number of piX(,Ls in an individual

unwrapped map, N is the total number of input and target pairs, £(+) is a measure of

the discrepancy between the ground-truth &% , and predicted values ..

During the training process, the entire training dataset will be shuffled and divided
into batches using the given batch size n at every epoch. ““#For instance, a batch of
10 time series each of 26 interferograms with size 200 x 300 consists of a tensor
in size of 10 x 26 x 200 x 300. One epoch of training is defined as passing the entire
training dataset forward and backward through the neural network a single time. In our
experiments, due to the intricacy of atmospheric signals,the minibatch SGD algorithm
is applied to compute updates of parameters and to prevent the objective function from
converging into local minima (Li et al., 2014). In the prediction stage, m time-consecutive
unwrapped surface displacement maps will be fed into the neural network to extract their
corresponded noise-free displacements of the Earth’s surface. Because of the fixed time-
length of the CNN input (i.e., allowing m time-consecutive unwrapped surface displace-
ment maps only), one can iteratively implement the process with a certain fold if the num-
ber of time-consecutive unwrapped surface displacement maps is larger than m. ““For
the data that has less than m number of temporal series, one can repeat the last tem-

poral series achieved to meet the fixed time-length requirement of the CNN. However,

it is a trade-off between the number of temporal series and the accuracy, which is

discussed in the latter context.

2.3 Architecture of Neural Network

Various architectures of CNN have been designed and proven very effective for im-
age processing tasks. For example, Simonyan and Zisserman (2014) proposed a CNN ar-
chitecture called VGG16 that includes a convolutional encoder and a classifier “““using
three fully connected layers for image recognition of 1000 classes. The encoder net-
work in VGG16 includes 13 convolution layers and 5 max-pooling layers that take the
image dimensional pixels as input “*" with size 224 x 224 x 3 and outputs feature map-
ping representations ““»with size 7 x 7 x 512 in a lower dimension with increased depth.
The classifier, consisting of 4096 neurons in each layer, then 1nterprets these feature rep-
resentations generated by the encoder and outputs " asi ted-classthe
predicted probability for each class of the input image. The Study of VGGIG by Simonyan
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and Zisserman (2014) indicates that the feature representations in a lower resolution can

be generated by the encoder block. Meanwhile, these latent feature maps have abundant
information to represent the input image. As a result of the skill of this architecture, VGG16
has become one of the most frequently applied architectures for image processing using

deep neural networks.

A fully convolution neural network (FCN) was proposed by Long et al. (2015) for
image segmentation that has the capability to produce the output in the same dimen-
sion and resolution of the input image. Instead of adopting a classifier in the image recog-
nition task, Long et al. (2015) designed a decoder network using upsampling operators
to reverse the output feature maps of the convolution encoder. The results showed these
upsampling operations successfully increased the resolution of the final segmented out-
put image. *»One problem with this architecture is that it has a large number of

trainable parameters in the encoder network but a very small amount in the decoder.

This results in a large overall size that makes the training process extremely diffi-
cult on an end-to-end task, such as extracting noise-free deformation signals from the
unwrapped surface displacement maps.

To reduce the large training set requirement and to pursue a more precise segmen-
tation output, a more elegant architecture known as U-net was designed by Ronneberger
et al. (2015). U-net has a symmetric topological architecture to preserve the output seg-
mentation dlmenswn and the upsamphng operator from ““»the FCN was replaced by
a Tiie and-a—e stepsequence of an upsampling layer
and a convolutionla Lm T, Wthh makes the upscale process trainable. The malleable
upscaling strategy can prov1de more precise localization and resolution of the output.
Another important contribution of the U-net architecture is the bridge connection that
allows the direct concatenation of the feature representations from the encoder and the
upscaled feature maps from the decoder. “*The bridge connection is also known as
the skip connection in some of FCNs architectures, for instance, ResNet (He et al.,
2016). In a way, the concatenation operations provided by the bridge connection allows
the CNN to conserve high resolution feature representations from the encoder even af-
ter many pooling layers.

We adopt a similar topological architecture as U-net for the noise-free surface de-
formation signals retrieval from the time-consecutive unwrapped surface displacement
maps. Our architecture is shown in Figure 1. The only difference between our network
and U-net in Ronneberger et al. (2015) is the upsampling strategy in the decoder, in which
we replace the combination of upsampling and convolution with the transposed convo-
lution (i.e., deconvolution). Compared to U-net, the deconvolution operation allows weighted
re-distributions of the feature representations into higher resolution while improving its
localization ability. Out network architecture also includes two classic subnets, a con-
tracting path (i.e., a convolutional encoder), and an expansive path (i.e., a convolutional
decoder).

As shown in Figure 1, the encoder subnet contains 4 combination blocks where each
block has two convolution layers and one max-pooling layer. In the decoder network, 4
symmetric blocks are also designed where each block has a deconvolution layer followed
by two convolution layers. A bottleneck connection containing two convolution layers
is applied to bridge the encoder and decoder networks. Each convolution layer contains
the convolution computation followed by Parametric Rectified-Linear-Unit (PReLU) ac-
tivation mapping, batch normalization process, and a “'"26-peseentasedropontdropout layer
with a constant probability of retention p = 0.8 for handling surface displacement
maps in different levels of SNR and for improving the generalization capacity of the neu-
ral network. The parameterizations of convolution, max-pooling, and deconvolution lay-
ers are shown in Table 1, respectively.
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Figure 1. The architecture of the modified U-net for noise-free surface deformation signals

separation from the time-consecutive unwrapped surface displacement maps.

Table 1. Summary of parameters used in the architecture shown in Figure 1

Operations Kernel size  Stride Zero-padding
Convolution (3, 3) (1, 1) (1, 1)
Max-Pooling (2, 2) (2,2) (0, 0)
Deconvolution (3, 3) (2, 2) (0, 0)

One of the responsibilities of the encoder network is to reduce the dimensionality
of the input. The encoder takes the unwrapped surface displacement maps as the input
and outputs feature representations in variant and lower °dimensiensspatial dimensions
with enriched depth information. The decoder network will increase the dimensional-
ity of the feature representations created by the encoder and convert them back to the
original input dimension using the deconvolution operation. In addition, to achieve higher
resolution output, the convolution is operated to the concatenation between the result
from deconvolution and its corresponding feature maps from related stage of encoder passed
by the bridge connection.

3 Network Training and Analysis

In this section, we will first discuss the data preparation, including synthetic dataset
simulation and data preprocessing for both unwrapped surface displacement maps (in-
put) and noise-free surface deformation signals (desired output). Secondly, the training
and validation stages are discussed and the performance of the trained network using
simulated data is examined by implementing it on synthetic test dataset. Finally, we an-
alyze both the temporal and SNR dependencies of the trained network.

3.1 Data Preparation

In order to train our neural network, we first simulated sets of simple synthetic un-
wrapped surface displacement maps (interferograms) sharing similar properties to the
Sentinel-1 InSAR data (Ebmeier, 2016). This synthetic data is designed to include sig-
nals of volcanic deformation, spatially correlated atmospheric variability, and errors in
orbital estimation. The spatially correlated atmosphere (Hanssen, 2001; Lohman & Si-
mons, 2005) is randomly generated under a normal distribution assumption with cen-
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tral values of maximum variance=20mm? and characteristic length-scale exponent=0.5
(Emardson et al., 2003). With an average phase delay gradient of lem/km, Shuttle Radar
Topography Mission (SRTM) of footprint 2760km?, randomly cropped from Telica vol-
cano (1061m, Nicaragua) surrounding area was used to mimic the signals of tropospher-
ically correlated atmospheric variations (Remy et al., 2003; Bekaert et al., 2015). We also
simulated the estimation errors of orbits using a linear ramps in form of ax + by + ¢,
where a ~ b ~0.01km~!. For synthetic deformation pattern construction, we simulate
volume changes in spherical sources (Mogi, 1958) at depths ranging randomly from 4km
to 15km. The volume change is randomly selected from on of the following six options:
a) a linear increase over time, b) a linear decrease over time, ¢) sinusoidal variations, d)
cosinusoidal variations, e) a “pulse” episode of source deflation, or f) inflation. Those

six options are employed over a specific period of time such that they are only observed
in a few consecutive unwrapped surface displacement maps. “*Compositions of a time-
series simulated interferograms with 180m pixel size and 12 days interval are plotted

in Figure 2, S“»where the volume change of the Mogi source following a sinusoidal

variation starting from day 40.
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Figure 2. The signals used to simulate a synthetic interferograms following Ebmeier (2016).

a) Spatially correlated atmospheric phase changes, b) topographically correlated atmospheric
delay, c) linear orbital ramps of the form ¢ = ax + by + ¢, where a ~ b ~ 0.01 km™!, d) Synthetic
deformation using a Mogi source at 6km depth, for short-lived sinusoidal varying volume changes
starting on day 40. e) Synthetic interferograms, from the sum of all signals above. Histograms

show the average distribution of values for all interferograms in the sequence (days 0-120).

The simulated interferometric phase is then obtained by summing all atmospheric
signals, orbit contributions, and synthetic Line-Of-Sight (LOS) deformation signals. 20,000
groups of unwrapped surface displacement maps are simulated, and each group contains
20 time-consecutive pairs of unwrapped surface displacement maps and noise-free sur-
face deformation signals ““#with 180m spatial resolution. To be consistent with deep
learning terminology, the number of time-consecutive pairs feeding into CNN will sub-
sequently be referred to as the “number of input channels”.

Instead of feeding the neural network with raw simulated unwrapped surface dis-
placement maps, data preprocessing is generally required before the training stage of “*"a
neural network because of data inconsistency, incompleteness, and unpredictable range.
Previous studies have demonstrated several advantages of using data preprocessing tech-
niques (Kotsiantis et al., 2006), such as a simpler relationship between input and tar-
get, improvement of the stability, and enhancement of the generalization capacity of the
neural network. In our experiments, a simple preprocessing is required for transform-



320 ing both time-consecutive unwrapped surface displacement maps and noise-free surface

31 deformation signals into a comparable range.

32 First, outlier pixels, which are defined as those with a Z-score with an absolute value
323 greater than 3, are replaced by a neighborhood value from unwrapped surface displace-

324 ment map. Time-consecutive unwrapped surface displacement maps are then normal-

325 ized by their maximum and minimum values, i.e., ®;;, = (? — Ppin)/ (Prnaz — Prnin)-

326 Thus, all the input value fed into the neural network are in the range of [0, 1].The noise-
327 free surface deformations are normalized using the pair of minimum and maximum val-

328 ues from their corresponding time-consecutive unwrapped surface displacement maps with-
320 out subtracting their minimum, i.e., ®out = Pyes/(Prmaz—Pmin). As a result, smaller

330 deformation signals will have a smaller influence on the objective function when back-

331 propagating the neural network for weight parameter updating.

332 3.2 Training and SNR Dependency Analysis

333 All preprocessed data are randomly divided into training (80 percent of the total

334 number of time-consecutive unwrapped surface displacement maps a total of 16,000) and
335 test (the remaining 20 percent a total of 4,000) datasets for training and evaluation.

336 To increase the quantities and improve the diversity of training and test datasets,

337 data augmentation, through random rotation, horizontal, and /or vertical flipping, was

338 performed on both input unwrapped surface displacement maps and coherent noise-free

339 surface deformation signals on training dataset during training stage. The designed encoder-
340 decoder neural network (Figure 1) was trained using minibatch SGD optimization al-

3m gorithm with /1-norm discrepancy evaluation (equation 2) on the PyTorch platform (Paszke
32 et al., 2019). To determine an appropriate time series length for the input unwrapped

343 surface displacement maps, we trained the neural network eight times separately with

344 different number of input channels. “*»Thus, we have eight trained network models

35 accepting [6, 8, 10, 12, 14, 16, 18, 20] number of input channels, respectively. The aver-

346 age training time over all the neural networks is approximately 150 minutes for 30 epochs

347 with 20 NVIDIA Tesla P100 GPU accelerators.
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Figure 3. The normalized mean-absolute-errors (MAE) of predictions using networks with

variant numbers of input channels during the training stage.

s To visualize difference in the performance between the eight trained neural network
349 models, we applied each of them to the entire test dataset after each training epoch and
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raitios (SNRs), using networks with variant numbers of input channels after 30 epochs training.

computed their normalized mean-absolute-errors (MAE) (Figure 3). As the training pro-
gresses, the normalized MAEs of all eight networks are reduced with only small oscil-
lations. That is to say, it is conceivable to build an end-to-end architecture of neural net-
work for retrieving the interested (i.e., noise-free) surface deformation signals directly
from time-consecutive unwrapped surface displacement maps.

In experiments of separating atmospheric noise from deformation signals, the SNR,
is a key limiting factor for the traditional methods. Therefore, the analysis of SNR de-
pendency of the trained neural network is requisite to evaluate the generalization capac-
ity and the stability of the trained network. We split the test dataset into 10 subsets with
SNR ranging from 5 : e 0.20.1 to 2.0 with interval of 0.2. Then the pre-
dicted ““#normalized MAEs of each subset are computed using each of the eight trained
networks. The results are plotted in Figure 4. For each trained network, the predicted
surpormalized MAE decreases as the SNR of the input time-consecutive unwrapped sur-
face displacement maps increases. However, it is worth noting that all predicted “**nor-
malized MAE for SNR in range of [0.1,2.0] are reasonably small.

3.3 Implementation and Temporal Dependency Analysis

To further intuitively examine the performance of these eight network models, in
Figure 5, we plotted the predicted surface deformation signals from 20 time-consecutive
unwrapped surface displacement maps (from left to right) associating with its noise-free
deformation signals. ““"RewAThe first row of Figure 5 shows 20 time-consecutive un-
wrapped surface displacement maps at 12 day intervals with a SNR of 0.95 as inputs.
Their coherent noise-free surface deformation feature maps are arranged in the second
row in the same order. From this comparison, it is clear that partial deformation signals
can be observed from some unwrapped surface displacement maps, while others are dis-
torted by atmospheric noise.

Suni_Surface deformations were predicted using the eight trained networks by it-
eratively feeding 20 preprocessed time-consecutive unwrapped surface displacement
maps until finished if the time length N of input required by the network is shorter
than 20. For instance, using a network with the number of input channels of 8, 20
time-consecutive unwrapped surface displacement maps are required to be split into
three temporal segments, i.e., 1-8, 9-16, and 13-20, and then are fed into the network,
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respectively. Note that the temporal segment from 13 to 16 are repetitively predicted,
and therefore the average prediction is adopted as the final results. The results are
illustrated in rows C-XX (XX refers to the number of input channels and XX € [6, 8,
10, 12, 14, 16, 18, 20]) of Figure 5. 5#»In row C-06, the network is capable of retrieving
the surface deformations at both the initial and the last stage, but fails to detect them
during the middle phase (indicated as the blue dashed-rectangle). Similar behavior is
seen in row C-08 (shown as the pink dashed-rectangle) when extraction is performed
using network with input channel of 8. This demonstrates that the stability of the
neural network for detecting the pattern of phase changes of deformation signals, is
limited when the number of channels fed into the neural network is shorter than the
time scale of the deformation.

One possible solution is to apply a multi-coverage strategy during the prediction
stage. In other words, the time-step moving forward in prediction must be much shorter
than the time length required by the neural network, which ensures most of the unwrapped
surface displacement maps are fed into the network multiple times. The drawback of this
approach is that it smooths the time-series plot of deformation signals, and it does not
work when the network feeding time period is much shorter than the temporal period
of deformation phase changes.

Another 5" formulasolution is to expand the time length covered by the network.
Rows C-10/18/20 of Figure 5 shows the surface deformation predictions using networks
with input channels of [10, 18, 20], respectively. The reconstructed signals capture all de-
tailed phase changes of surface displacements. However, when increasing the number of
input channels for the neural network there is a trade-off because it not only enhances
the quality of interested signals, but introduces undesired noise which is destructive es-
pecially when SNR < 1. For example, with the input channels of [12, 14, 16], the detected
surface deformations were also incomplete (shown as green, red, and black dashed-rectangles)
because of the high impact of stratified atmospheric signals at bottom-left corner of the
area. To get an intuitive observation, the residuals between the ground-truth surface de-
formation and all predictions using networks with different number of input channels are
calculated and plotted in Figure 6.

—@— Truth
@~ Pred_C06
@ Pred_C08
8- Pred_C10
~@— Pred_C12
@ Pred_C14
~0— Pred_C16
@ Pred_C18

Pred_C20
8- Pred_Avg

o

o
o

0.0

LOS Surface Deformation [cm]
s
o

-1.0

Figure 7. Time-series plots of surface deformations above the source location extracted from

the ground-truth and all predictions in Figure 5.

We extracted the surface deformation above the source location from the second
row in Figure 5 and plotted the time-series phase changes in black in Figure 7, which
is acting in place of the noise-free continuous data collection from ground-based GPS sta-
tion. The detected deformation signals using the neural networks with different input
channels are also extracted at the same location from rows C-XX and C-avg in Figure 5,
and plotted in Figure 7 to compare their abilities to extract the signal. As discussed, net-
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works with input channels of [6, 8] fail to extract signals of interest during the middle

of the time period, and networks with input channels of [12,14, 16] fail to extract the sig-
nal at end of the time period. Predictions using networks with 10 and 20 input chan-
nels provide a good fit to the noise-free time-series plot. This suggests that the match-
ing score of time-series plots between the prediction and reachable noise-free continu-
ous GPS data may be a great indicator of finding the optimal number of input channels
for network model on related InSAR data.

Without noise-free continuous GPS data for validation, to improve the stability of
network, we recommend implementing the prediction with several networks using a vari-
ant numbers of input channels and then computing the average of them as the final pre-
dicted result. in this case we calculated the average prediction over networks with poor
prediction skill (channels [6, 8, 12, 14, 16] or rows [C-06, C-08, C-12, C-14, C-16] in Fig-
ure 5) are plotted in the last row (row C-avg) Figure 5. Row C-avg shows that the av-
eraged prediction signal still lack precision but successfully captured all primary phase
changes of the surface displacements. In Figure 7, the extracted time-series plot of av-
eraged predictions is not perfectly recovered, but well enough to be an indicator for de-
tecting major volcanic unrest. As a result, to improve the stability of network in the ab-
sence of noise-free continuous GPS validation data, we recommend implementing the pre-
diction with several networks using variant numbers of input channels and then comput-
ing the average of them as the final predicted result.

Figure 8 shows the cross-plots of noise-free surface deformations (the second row
of Figure 5) compared to predictions using 10 input channels (row C-10 of Figure 5) and
the average of predicted signal (row C-avg of Figure 5). The optimal relationship (i.e.,
Dger = Dye ¢ ) of predicted and ground-truth signals is plotted in the black dashed line.
The distribution of predictions using 10 input channels are plotted as bright blue dots
in Figure 5. The best-fit line, shown in dark blue, is very close to the optimal fitting line
indicating that the 10 input channel prediction has high skill. The cross-mapping of av-
erage predictions and the ground-truth signals are plotted as orange dots with its best-
fit line drawn in red. As expected, due to the smoothing influence, the absolute values
of average predictions are smaller than the noise-free surface displacements.

To further investigate the influence of the number of input channels for the CNN,
we compute the normalized MAE of surface deformation detection using the networks
with different numbers of input channels on InSAR data with various SNR. In Figure 9,
Sun:ithe normalized MAE with respect to the number of input channels on test subsets
with SNR: [0.1,0.3,0.5,0.7,1.1,1.3,1.5,1.7, 1.9, 2.1] are plotted. For a very small SNR
of 0.1 the mean absolute error remains high regardless of the number of input chan-

nels, consistent with our discussion above. As the SNR increases from 0.3 to 1.3, the
MAE of the prediction reduces as the number of input channels increases. However,

the number of input channels has limited impact on deformation detection when SNR
> 1.5 as shown in Figure 9. This is reasonable because, for high SNR, the neural net-

works are able to extract enough information within a short time period of unwrapped
surface displacement maps.

4 Case Study: Masaya Volcano Unrest
4.1 Background on Masaya and Period of Study

Surface deformation maps of volcanic regions within the Central American Volcanic
Arc are often plagued by atmospheric phase delays from the troposphere, and this dis-
torts measurements of noise-free surface deformation associated with volcanic activity
(Ebmeier et al., 2013; K. J. Stephens et al., 2020). For this study, we focus our efforts
on Masaya caldera, a basaltic caldera located approximately 20 km SE of Managua City
in Nicaragua. The summit is approximately 600 m in elevation, and consists of several
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Figure 8. Cross-plots of noise-free surface deformation signals compared to the prediction
using networks with 10 input channels and the averaged prediction, respectively. The dots are
pixels of predictions C-10 of Figure 5 (blue dots) and pixels of the average prediction C-avg of
Figure 5 (orange dots), respectively, with respects to the ground-truth signals (the second row of

Figure 5). Their best-fit lines are plotted in dark-blue and red respectively.

Surpesternested pit craters, of which the Santiago pit crater has been the most active since
its formation in 1858-1859 (Global Volcanism Program, 2013; McBirney, 1956; Rymer

et al., 1998). Masaya has exhibited a variety of explosive and effusive activities, includ-
ing phreatomagmatic to Plinian episodes, lava flows, and lava lakes hosted within the
summit pit craters (Bice, 1980; Global Volcanism Program, 2013; Kutterolf et al., 2007;
McBirney, 1956). Since December 2015, a lava lake has been hosted within the Santi-
ago pit crater at the summit (Global Volcanism Program, 2013). Various geodetic ob-
servations spanning the appearance of the lava lake captured 8cm and 5.5 cm of ver-
tical uplift using InSAR (K. Stephens & Wauthier, 2018) and precision levelling (Murray,
n.d.; Rymer et al., n.d.) observations respectively. Additionally, since November 2015,
one GPS station within the caldera (MAVC) has been operating continuously.

4.2 Data Processing and Time-series Analysis

We obtained 60 ascending SAR images from the Italian Space Agency COSMO-
SkyMed (CSK) constellation to create surface deformation maps, spanning from August
2015 to October 2016. Potential interferogram pairs were evaluated using the criteria
that the perpendicular baseline between potential pairs is less than 300 m, and the tem-
poral spacing is less than 180 days. Following these criteria, 281 interferograms were pro-
cessed using the GAMMA software (Werner et al., 2000), with topographic phase con-
tributions removed using a 12 m spatial resolution TanDEM-X digital elevation model
(Rizzoli et al., 2017; Wessel et al., 2018). An adaptive spectral filter was used to smooth
interferograms (Goldstein & Werner, 1998) and unwrapping was performed using the min-
imum cost flow technique and triangular irregular network (Costantini, 1998). Unwrapped
interferograms were converted from LOS phase radians to centimeters with respect to
the ground, and re-referenced to a region °**in within the town of Masaya that was as-
sumed to have minimal deformation. The interferograms were then downsampled to 90
m pixel spacing to reduce computational time. No coherence masks were applied to the
interferograms in order for the full atmospheric noise field to be examined.
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Figure 9. The normalized MAE of predictions with respect to the number of input channels
for datasets with different SNRs.

The SBAS time-series technique creates LOS surface displacement maps between

each acquisition date using a pixel-by-pixel linear least squares inversion method (Berardino

et al., 2002 Lundgren et al., 2001). The first acquisition date (August 10** 2015) was
Sun: g, set—t (110\(\117971)(‘ zero as the reference, and thus all surface displacement
maps are w1th respect to this date, shown in Figure 10. All surface displacement maps
were further downsampled to 180 m pixel spacing to match the input size requirement
of the CNN. These time-consecutive unwrapped surface displacement maps generated

by the time-series analysis are then used as the input to our CNN.

4.3 Implementations

Our pre-trained CNN requires time-consecutive unwrapped surface displacement
maps with a constant date interval, which was 12 days during out training procedure.
However, the ascending images obtained for the Masaya volcano have different date in-
tervals. The date interval is calculated using dates between the current image and sub-
sequent image, as shown in Figure 11. The majority of the time intervals are 4 or 8 days,
which we will assume are consistent enough for our purposes. However, there is a large
temporal gap in the measurements of 48 days from late January 2016 to March 2016.
This gap divides the 60 images into two segments of roughly equal length. Therefore,
instead of treating all 60 images as one “““pieccegroup of time-consecutive deformation
maps, we implement the deformation detection using the neural network for each half
of the Masaya dataset. The first 26 images spanning from August 2015 to January 2016
in Figure 10 are considered the first sub-dataset, and the remaining 34 spanning from
March 2016 to November 2016 are considered the second sub-dataset. ““»The varying
and inconsistent time intervals of Masaya time series, as well as different de formation
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Figure 12. The average prediction of LOS surface deformation at Masaya, where the Masaya

caldera is indicated in the dashed-line.

rates, may lead to varying suitable number of input channels for achieving the best
prediction. Therefore, to stabilize the prediction of our network, as disscussed in previ-
ous section, an ensemble-average startegy can be adopted to compensate their effects
to some extent. A comprehensive analysis of the relationship among the network’s
performance, varying deformation rates, and inconsistent time intervals is our ongoing
research.

In order to evaluate the performance of our approach and compare it to the pro-
cessed continuous GPS data, we implement the average-ensemble prediction strategy dis-
cussed previously. Each sub-dataset is fed into a set of 8 networks with varying num-
ber of input channels of [6, 8, 10, 12, 14, 16, 18, 20]. The average detection result is cal-
culated a posterior. The final surface displacements detection results for all images are
plotted in Figure 12. S“»Comparing to the original SBAS time-series (Figure 10), the
surface deformations at Masaya obtained with the CNN (Figure 12) are able to more clearly
identify volcanic surface deformations as .

4.4 Time-Series Analysis

The GPS station MAVC is located within the Masaya caldera at the Masaya Vis-
itor’s Center (location is shown in Figure 13) and is used as a validation tool in this study.
In order to compare the GPS time-series data to that of the InNSAR LOS results, the three
vertical and horizontal components of the continuous GPS data were converted into the
satellite LOS using the satellite incidence angle (0) and azimuth of the satellite head-
ing vector(a), as well as the LOS vector components of the surface displacement field
dyn (north-south horizontal), dg (east-west horizontal), and dyy (vertical) (Fialko et al.,
2001):
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dros = (dysina — dg cos @) sin 0 + dy cos 6 (3)

With the GPS, CSK InSAR time-series and CNN prediction all in the same units,
time-series of surface displacements at the GPS location can be extracted from average-
ensemble detected maps and the InSAR time-series for direct comparison. Figure 14 shows
the LOS displacements in the GPS (blue dots), CSK InSAR time-series (green triangles),
and CNN prediction (red diamonds).

The GPS data shows changes in LOS displacement within the region of the offset
magma reservoir, which is associated with the appearance of the lava lake at the sum-
mit. Over the first 6 months of lava lake activity, the offset magma reservoir continued
to inflate, however the magnitude of LOS displacement is less than that observed at the
centre of the deforming region (K. J. Stephens et al., 2020). The InSAR time-series closely
follows the GPS LOS displacement within the first two months of lava lake activity whereas
the CNN over-estimates the LOS displacement. These initial errors in the CNN may be
caused by poor spatial sampling. Beginning around April/May 2016, the InSAR time-
series under-estimates the LOS displacement. This may be due to the large temporal gap
in the InSAR data from late January to March 2016 or the poor temporal sampling of
the InSAR data compared to the daily GPS solutions. However, The CNN LOS displace-
ment becomes more consistent with the GPS station starting from March 2016, demon-
strating that our proposed approach has the capacity of revealing the Masaya volcano
unrest.

5 Conclusions

Abundant routine acquisitions of SAR using satellites make global near real-time
volcano monitoring a reality. However, two major questions need to be answered before
its practical application: 1) how to build a straightforward tool for mitigating atmospheric
noise and detecting surface displacements signals, 2) is this tool fast enough to accom-
modate near real-time volcano monitoring on a global basis. In this paper, we discussed
the possibility of directly detecting volcanic surface deformation without atmospheric
noise from time-consecutive unwrapped surface displacement maps (interferograms) us-
ing neural network. We demonstrated the use of an end-to-end CNN with an encoder-
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decoder architecture as a potential tool for practical near real-time volcano monitoring
on a global scale. We trained the proposed CNN with simulated unwrapped surface dis-
placement maps only, but it may be further optimized with more realistic InNSAR datasets.

Analysis using synthetic benchmark shows that the CNN is capable of revealing
noise-free surface deformation signals from unwrapped surface displacement maps with
variant SNRs. However, the precision of detected results depends on the time scale that
time-consecutive unwrapped surface displacement maps covered. Depending on data avail-
ability we recommended one of two options to determine the best number of input chan-
nels for the CNN: 1) ground-based continuous GPS data can be used as an indicator if
available, or 2) an ensemble of CNN detections with various input channels can be com-
puted where the the final detected result is the average over all members.

A case study is conducted where the CNN ensemble average approach is applied
to detect surface displacements at the Masaya volcano. The results demonstrate much
more distinct surface deformation patterns than in the raw images. Time-series from the
CNN detection extracted at the same location as available GPS observation are used to
validate the CNN detection, showing that the CNN is able to detect Masaya volcano un-
rest. The performance of our proposed CNN on both synthetic and real InSAR datasets
shows great potentials of automatic noise-free surface deformation detection for " sleb-
alizolobal near real-time volcano monitoring.
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