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Key Points:

e We use the convergent cross mapping algorithm (CCM), based on embedding theory, for
causality inference in this study

e CCM is used to detect causal influence in precipitation perturbations among different
climate regions of U.S.

e The Ohio Valley region emerges as a causal gateway of moisture transport and
propagation of regional precipitation anomalies in the U.S.
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Abstract

Identifying regions that mediate regional propagation of atmospheric perturbations is important
to assessing the susceptibility and resilience of complex hydroclimate systems. Detecting the
regional gateways through causal inference, can help unravel the interplay of physical processes
and inform projections of future changes. In this study, we characterize the causal interactions
among nine climate regions in the contiguous United States using long-term (1901-2018)
precipitation data. The constructed causal networks reveal the cross-regional propagation of
precipitation perturbations. Results show that the Ohio Valley region acts as an atmospheric
gateway for precipitation and moisture transport in the U.S, which is largely regulated by the
regional convective uplift. The findings have implications for improving predicative capacity of
hydroclimate modeling of regional precipitation.

Keywords

Causality; Contiguous United States; Convergent cross mapping; Hydroclimate system;
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Plain Language Summary

Successful detection of causality in complex systems is important to unraveling the underlying
mechanisms of system dynamics. The dynamic interactions in Earth’s climate system are often
nonlinear, weakly or moderately coupled, and essentially non-separable, which renders
conventional approaches of causal inference, such as statistical correlation or Granger causality,
infeasible or ineffective. Here we applied the convergent cross mapping method to detect causal
influence among different climate regions in the contiguous U.S. in response to precipitation
perturbations. The results of our study show that the Ohio Valley region, as an atmospheric
convergence zone, acts as a regional gateway and mediator for the long-term precipitation
perturbations in the U.S. The temporal evolution of causal effect and susceptibility exhibits
superposition of climate variability at various time scales, highlighting the impact of prominent
climate variabilities such as El Nifio—Southern Oscillation on the dynamics of causality.

1 Introduction

The Earth system comprises numerous nonlinear subsystems that interact with each other
dynamically in a complex way. Understanding the interactions and the underlying causal
mechanisms of nonlinear components is of crucial importance to tasks such as refining physical
schemes in Earth system models, reducing model biases and uncertainties, and improving
weather predictions and climate projections (Shepherd, 2014). Conventional statistical
approaches such as correlation- and regression-based methods have been widely used to
topology of the Earth system, especially connectivity over long spatial distance, known as
teleconnections (Boers et al., 2019). However, conventional statistics-based methods are often
unable to unravel the true causal mechanisms (Pearl & Mackenzie, 2018; Runge et al., 2019a). In
addition, spurious correlations between variables are common even in simple nonlinear systems
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(Mysterud et al., 2001). As a result, for natural systems ubiquitously governed by nonlinear
dynamics, the causation inferred from linear correlations can be misleading or erroneous (Good
et al., 2015; Sugihara & May, 1990).

In the literature, the classical Granger causality (GC) paradigm has been prevailing for
identifying causation in time series (Granger, 1969). However, the GC approach can be prone to
significant errors (McCann et al., 1998; Sugihara et al., 2012) when applied to dynamics systems
consisting of weakly or moderately coupled subsystems, especially when the interactions are
forced by shared external, strong drivers that can lead to apparent synchrony (Moran, 1953).
Another fundamental difficulty of GC is the requirement of extensive length of time series to
generate meaningful causal inference.

To overcome the limitations of GC, researchers have developed and tested causality
algorithms specifically suitable for nonlinear dynamic systems with moderate coupling, the
convergent cross mapping (CCM) method being a representative one (Jiang et al., 2016;
Kretschmer et al., 2016; Runge, 2018; Runge et al., 2019a, 2019b, 2015; Sugihara et al., 2012).
The CCM method is based on the classic Taken’s delay-coordinate embedding theory for
reconstructing the phase space of the underlying nonlinear system from time series (Deyle &
Sugihara, 2011; Kantz & Schreiber, 1997; Lai & Ye, 2003; Packard et al., 1980; Sauer et al.,
1991; Sugihara & May, 1990; Takens, 1981). The CCM and other similar causal inference
methods have been successfully applied to detect dynamic causality in Earth’s hydroclimate
system (Ombadi et al., 2020; Shi et al., 2022; Wang et al., 2018; Yang et al., 2022b).

In this paper, we adopt the CCM framework to detect and quantify hydroclimatic causal
interactions among different regions over the contiguous United States (CONUS) from long-term
observational precipitation datasets. We find that the Ohio Valley region acts as a causal gateway
for regional precipitation and atmospheric transport in the CONUS, which is largely regulated by
the regional convective uplift. This finding will help to improve the predictive capacity of
hydroclimate modeling by incorporating the causal inference in dynamic processes. In addition,
with the increasing availability of data from measurements and climate models, causal inference
in climate systems will facilitate the development of data-driven and system-based frameworks
for integrated Earth system research (Fan et al., 2021; Wang & Wang, 2020). One example is
that the time evolution of regional causality contains signals resulting from multi-scale climate
variability, which has the potential to serve as early warning signs to presage critical transitions
in complex hydroclimate systems (Yang et al., 2022a).

2 Methods

2.1 Data retrieval and treatment

In this study, we retrieved the monthly mean precipitation over the period 1901-2018
(1416 months) from Climatic Research Unit (CRU) Time-Series (TS) version 4.03
(https://catalogue.ceda.ac.uk/uuid/10d3e3640f004c578403419aac167d82), produced by the
Center for Environmental Data Analysis (CEDA) Archive. The 0.5° x 0.5° spatially gridded
dataset covers the spatial domain of global land surfaces except Antarctica, with in total 3288
grid cells over the entire CONUS. The observational data are anormalized using 1961-1990
monthly averages for each gridcell (Harris et al., 2020). Individual grid points, if there are too
close to each other, often contain similar information (monthly precipitation herein) and may not
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be sufficiently representative to interpret potential propagating perturbations. To better represent
distinct sub-regional processes, we aggregate all grids within each of the nine climatically
consistent regions (or climate regions) in the CONUS following NOAA’s division, as shown in
Fig. 2a to obtain the average regional-scale time series (Kretschmer et al., 2016). These climatic
regions are Northwest (NW), West (WE), Southwest (SW), Northern Rockies and Plains (NRP),
South (SO), Upper Midwest (UM), Ohio Valley (OV), Southeast (SE), and Northeast (NE). The
division of climate regions is defined by the National Centers for Environmental Information of
NOAA (https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php). There
are previous studies revealing that spatial coherence patterns existed after the dimension
reduction of the long-term gridded monthly precipitation based on methods such as principal
components analysis (PCA) (Walsh et al., 1982; Karl and Koscielny, 1982; Vejmelka et al.,
2015). The spatial coherence patterns or the corresponding nine principal components (PC)
identified are consistent with a series of documented cyclone trajectories (Zishka and Smith,
1980; Walsh et al., 1982). In addition, the nine identifiable patterns of drought (calculated from
averaged monthly precipitation and temperature) are delineated in the United States performed
by PCA, with each PC is characterized by a distinct annual oscillation of monthly precipitation
(Karl and Koscielny, 1982). The nine identifiable components are similar to the climatic division
defined by the NOAA. We then removed the seasonal cycle by subtracting monthly averages
from the regional temperature time series during the study period to minimize the impact of
seasonality. The detrended time series of temperature anomalies are used for subsequent
causality analysis.

2.2 Convergent cross mapping algorithm

The CCM is based on simple projection (Sugihara et al., 2012), a nearest-neighbor
algorithm that involves kernel density estimation of nearby points on the reconstructed or
shadow manifolds (Takens, 1981). To assess the potential causation between two climate
regions, we construct two shadow manifolds using time-lagged coordinates of historical
precipitation series (Deyle and Sugihara, 2011; Kantz and Schreiber, 1997; Lai and Ye, 2003;
Packard et al., 1980; Sauer et al., 1991; Sugihara and May, 1990; Takens, 1981) and estimate
precipitation anomalies in one region using information from another region. A shadow manifold
can be reconstructed using the delay-coordinate embedding method. In particular, for a scalar
time series X(7¢) of length L from a specific climate region, an £-dimensional time-delayed vector
x(?) = [X(9), X(t-7), ..., X(t-(E-1)7)] can be formed from ¢ =1 + (E-1)7 to ¢t = L, with rand E the
time delay and embedding dimension, respectively, to construct the shadow manifold Mx (
likewise for y(f) and My for a scalar time series of Y(¢)).

The cross-mapping estimate of Y(¢), denoted as Y (t)| M, , is based on a simple projection

of the E+1 nearest neighbors of vector x(¢) in the manifold Mx. Here E+1 is the minimum
number of data points required for a bounded simplex in the £-dimensional space. The time
indices of those £+1 neighbors x(1), x(£2),..., x(¢te+1) (from closest to farthest) in Mx are used to
identify the corresponding putative neighbors in Y, i.e., Y(#1), Y(#2),..., Y(t£+1). The cross-mapping

estimate of Y(¢) is then determined using the weighted average as
E+l1

()| My =3 w0 Y (1), (1)


https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php

126

127

128

129

130
131
132
133
134
135

136
137

138
139

140

141

142
143
144

145
146
147

148
149

150

151
152
153
154
155
156
157

Confidential manuscript submitted to Geophysical Research Letters

where the weight vector wi(¢) is estimated by

()= ) 2)

E+1

;“z‘(t)
with
() = ex _d[x(t),x(ti)]}
"“) "{ TEOEOI ¥

and d[x(¢), x(¢:)] the Euclidean distance between the two vectors x(¢) and x(#) in Mx, which can be
calculated as the length of the line segment between points x(#) and x(#) in an E-dimensional
Euclidean space.

If X(¢) and Y(¢) are dynamically coupled and causally related, the nearest neighbors of Mx should
identify the time indices of corresponding nearest neighbors on the attractor manifold of My, and

vice versa (Sugihara et al., 2012). Consequently, Y (t)| M, should converge to Y(¢), and
X (t)| M, to X(?). To measure the causality from Y to X, the correlation coefficient Pyiu,

between the original Y(¢) and the cross-mapping estimate Y (t)| M, will be used, which is
defined by

E{[Y(t)-p, || YOI M, —p,
Py, = {[ o ]GY[G:t) - ]} ; (4)

where E, 1, and o are the statistical expectation, average, and standard deviation, respectively.

A stronger causal influence of ¥(¢) on X(¢) indicates that X(7) contains “more” of ¥(¢),
thereby making more accurate the prediction of Y(¢) with information about X(¢). Thus, a larger
value of the correlation coefficient Prinr, signifies a stronger dynamical causal influence of Y(¢)

on X(¢). Practically, an empirical threshold specified with different significance levels using, e.g.,
t-test, can be set to determine if ¥(¢) has causal influence on X(7) (Jiang et al., 2016). If
Py, < 0, then ¥(¢) has no causal influence on X(¢). Likewise, the correlation coefficient Pin,

is a measure of the possible causal influence of X(#) on Y(¥).

2.3 The reconstruction of phase-space dynamical system

To start with the CCM causal inference, the time delay 7 and embedding dimension E are
the two key parameters in reconstructing the phase space of a nonlinear dynamical system.
Empirically, the delay time can be chosen as the average oscillation period of the underlying
times series (corresponding to the unit value in a discrete-time map) (Grassberger and Procaccia,
2004, 1983; Lai et al., 1996; Lai and Lerner, 1998; Lai and Ye, 2003). Here we choose time
delay 7 as 1. The choice is reasonable because, for the precipitation time series, the dependency
among atmospheric interactions typically decays within a month (Storch and Zwiers, 2001). For
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a proper choice of the embedding dimension, we use the standard Grassberger-Procaccia (GP)
correlation integral and dimension algorithm (Grassberger and Procaccia, 2004).

For scalar time-series data, computations of the correlation can be carried out in the
reconstructed phase space. The correlation integral is taken as the fraction of pairs of points on
the attractor in the phase space of a nonlinear system within a hypersphere of radius & which can
be calculated approximately as:

1 N N
=T 22 2 Ol ®

For N — oo, the correlation dimension is given by

D, = lim lim 1286 (&) (6)
¢>0N->=  Jogg

To resolve the dynamics in the underlying system that generates the scalar time series, the

dimension E of the reconstructed phase space must be sufficiently large. For a given value of the

embedding dimension £, D> can be determined according to Eq. (6). Since the intrinsic

dimension of the underlying attractor is not known a prior, it is necessary to systematically

increase the value of E to calculate a series of values for Dz. For an infinite, noiseless time series,

the estimated dimension value D> increases with £ but plateaus for £ > [Fz] +1. For finite and

noisy time series, the value of £ required for D2 to plateau is likely to be higher. For a
completely stochastic system that is intrinsically infinitely dimensional, the estimated D> will
never plateau, no matter how large £ is. This line of reasoning emphasizes the need to estimate
D: from a systematic set of £ values (Ding et al., 1993).

Results of correlation integrals from the aggregated time series of precipitation anomalies
for the nine climate regions in the CONUS are shown in Fig. 1a. We use the least-squares fitting
method to determine the slope for the most linear part of each curve in Fig. 1a (Lai and Ye,
2003). Slope values of log C, (&) versus loge, as functions of embedding dimension are shown
in Fig. 1b. Statistically, the slope increases with the embedding dimension and plateaus when
E >17, justifying the use of E = 17 in the CCM causality analysis. Note that the £ value for

each climate region is slightly different. To guarantee the complete reconstruction of the attractor
manifolds for all climate regions, we take the value that exceeds the maximum plateau in the
nine climate regions as the embedding dimension E for the underlying climate system in this
study.
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Figure 1. Determination of the embedding dimension from the GP-based correlation integral and
dimension for the hydroclimate system over the CONUS using the aggregated time series of
regional precipitation anomalies. (a) Correlation integral on a logarithm scale with different

embedding dimension £ = 1, ..., 30 for nine climate regions. (b) The slope values logC, (¢)
versus log(¢) as a function of embedding dimension for nine climate regions. The slope
increases with £ and then reaches an approximate plateau value for £ >17, as shown by the two

green solid lines in (b).

2.4 Quantification of causal effect and susceptibility for climate regions in the U.S.

In the directed causal matrices (py‘ i, and Pin, ) among all pairs of climate regions, we

take the mean along each column as a measure of the average causal effect (4CE) to estimate the
causal effect that a climate region R has on all other climate regions, whereas the mean along
each row as the average causal susceptibility (4CS) is used to measure the sensitivity of a climate
region to perturbations from other parts of the system (Runge et al., 2015). For region R, The
ACE and ACS are calculated separately by

ACE,( ZpXR o, Q)

1¢R

ACS

(O (8)

1¢R

where Nk is the total number of climate regions. Furthermore, to investigate the long-term trend
of ACE and ACS, we compute their running averages using a sliding window of size w as
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1 k+(w=-1)/2

ACErx=— Y ACE(j), ©)
W j—k~(w-1)/2
1 k+(w-1)/2

ACSri=— D ACS(j). (10)
W j—k~(w-1)/2

where the time window is [k—(w—1)/2, k+(w—1)/2], with k the center of the window. In a given
region, a larger ACE value means a stronger causal effect of that region to mediate the
precipitation climatology in other regions. Likewise, a higher ACS value signifies that the region
is more susceptible to precipitation perturbations from other regions.

3 Results

3.1 Cross-regional causality in the CONUS

The causal networks constructed based on CCM identify statistically significant causal
effects of precipitation anomalies between various pairs of adjacent nodes (climate regions), as
shown in Fig. 2b, where several indirect and spurious paths/links as revealed by the conventional
cross correlations (e.g., the link between NW and UM) have been removed. The direct causal
interactions are generally much stronger than the indirect ones. Note that, unlike the symmetrical
pairwise association estimated using cross correlation, the causally weighted directed network is
asymmetric. Of particular importance is the causal dependency between climate regions UM and
NRP, which is statistically significant in both directions (with causation strengths greater than
0.4). Albeit being asymmetrically bidirectional, these significant causal interactions suggest
mutually coupled precipitation dynamics in these two climate regions. Climate region NRP is
relatively weakly (but still significantly) connected to NW and SW as indicated by the
unidirectional links running from NW to NRP and those from NRP to SW. As shown in Fig 2,
the estimated causal network is sparser than the pairwise correlation network, as the latter often
includes spurious links, especially teleconnections due to common forcing (e.g., El Nifio-
Southern Oscillation or ENSO) in the coupled climatic system (Runge et al., 2019).

Additional analyses suggest the robustness of these causal interactions among climate
regions to the selection of spatial aggregation and time lag. For spatial aggregation, we conduct a
state-level causal analysis by aggregating the gridded precipitation (anomaly) data for each state,
and the state-level causal patterns are generally consistent with results for the nine climate
regions (see Supporting Information Fig.S1). For time lag, we perform a similar causal analysis
but with a one-month lag for precipitation time series. The results agree with those in Fig. 2b
(see Supporting Information Fig. S2). In addition to the significance test used in Fig. 2b, we also
evaluate causal interactions using the bootstrap method. Fig. S3 and Fig. S4 in Supporting
Information summarize the causal results based on 50 bootstrap resampling. The consistency
between different trails further demonstrates the robustness of the causal interactions shown in
Fig. 2b.
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Figure 2. Detecting and quantifying causal interactions of the hydroclimate system over the
CONUS. (a) The nine climatically consistent regions within the CONUS. (b) CCM results of all
successful detection of significant causal interactions (red dashed squares) among the nine
climate regions. The causal interactions are represented by a causally weighted directed network
(no self-links) with embedding parameter values £ = 17 and 7 = 1. (¢) The reconstructed directed
causal network from the results in (b), where the solid arrows indicate the directed links while
the gray dashed lines represent the spurious unidirectional links due to a common driver or
transitivity effect from pairwise association as determined by the cross correlation. The colors of
the solid arrows specify the strength of the causal interactions as defined by the color bar in (b).
The statistically significant spurious links are determined by comparing the undirected network
from the pairwise cross correlation with the CCM inferred causal networks.

3.2 Regional causal effect and susceptibility

To quantify the importance of various climate regions in spreading and mediating
perturbations in the reconstructed causal, weighted, and directed network, we measure the causal
influence of precipitation anomalies in one region on another using ACE and ACS indices
defined in Egs. (7) and (8). Figures 3a and 3b show the values of ACE and ACS averaged using
15-year sliding windows for the nine CONUS climate regions. Note that the size of the moving
window cannot be too small or too large, as the cross-mapping causality estimate generally
increases with time-series length (library) until reaching a plateau (Fig. 3 in Sugihara et al.,
2012). A 15-year sliding window is selected in this study mainly because it reveals robust
structures of causality interaction among climate regions, as suggested by our sensitivity analysis
(see Fig. S5 in Supporting Information).

The distribution of ACE and ACS over all 15-year moving windows is shown in Fig. 3e,
where region OV and NRP have the largest ACE and ACS. The results indicate that the Ohio
Valley region has manifestly the most significant causal effect on other regions and susceptibility
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among all CONUS regions, signaling that it acts as a regional gateway for propagating
precipitation perturbations in the CONUS. The fact that Ohio Valley is a critical region in
influencing hydrological processes and moisture propagation is consistent with the previous
findings (Karl and Koscielny, 1982; Konapala and Mishra, 2017; Walsh et al., 1982). There are
several plausible underlying mechanisms. First, the Ohio Valley is characterized by the leading
principle component of winter precipitation (Walsh et al., 1982) and the third principle
component of drought severity index (Karl and Koscielny, 1982), exhibiting the highest winter
moisture variability in the United States. Second, the Ohio Valley has the strongest geostrophic
wind components (Walsh et al., 1982). Third, the Ohio Valley is significantly affected by ENSO
conditions in terms of precipitation (Zhang et al., 2010) and temperature extremes (Gershunov
and Barnett, 1998). As a result, the high climate variability in Ohio Valley and its teleconnection
with ENSO events are likely to be responsible for the strong causal effect and large susceptibility
observed in this region (Konapala and Mishra, 2017).

In addition to ENSO, other climatic variability may also play some roles in regulating the
causal links in the CONUS precipitation network through teleconnection, such as the potential
Arctic amplification on mid-latitude summer circulation (Coumou et al., 2018) or the influence
of Northern Pacific Oscillation (NPO) on the circulation and precipitation in the CONUS
(Gershunov and Barnett, 1998). Moreover, a previous analysis of monthly precipitation
identified a strong association between geostrophic wind components and sea-level pressure
anomalies in the central and eastern United States where spatial coherence is manifest in Ohio
Valley, Great Lake regions, and Northern Plains (Walsh et al., 1982). This is also supported by
more recent causality analysis showing that regions with large ACE and ACS values correspond
to major atmospheric convergence zones (Runge et al., 2015). Regions with strong geostrophic
wind generate strong uplifts that integrate incoming perturbations at the surface and transport
them vertically into the higher troposphere, which can influence other regions via atmospheric
downdrafts, signaling strong causal effect and susceptibility, as shown in Fig. 2a and 2b (the
brighter zones).



298

299
300
301
302
303
304
305
306

307

308

309
310
311
312
313
314
315
316
317
318

Confidential manuscript submitted to Geophysical Research Letters

ACS

0 001 002 003 004 005 006 007 008 009 0.1
‘ I ]

e 025 T T . r -
e NE e SE e SW //
e UM e SO e WE ,’
© OV e NRP e NW .,
0.20
0 L L L L L 015 [
1900 1920 1940 1960 1980 2000 2020
Time
0.6 ; ‘ . : ; & 010
d —S0t0 OV 2
. i 0.05F
<
QL o2t
0.0
0.00 0.25
0 . 3 A : .
1900 1920 1940 1960 1980 2000 2020
Time ACE

Figure 3. Measuring causal effect in the dynamical network of precipitation in the CONUS. (a)
and (b) Long-term averaged causal effect (4CE) and averaged causal susceptibility (4CS) for
each climate region. (¢) Evolution of the strength of the CCM causality over time (with a 15-year
sliding window) between two adjacent regions: NRP (Northern Rockies and Plains) and UM
(Upper Midwest). (d) Time evolution of the CCM causality strength between the South and Ohio
Valley. The horizontal dashed lines in red or blue in (c¢) and (d) represent the mean values of
CCM causality strength. (e) ACE versus ACS over all 15-year sliding windows for each climate
region.

3.3 Temporal variability of causality between pairs of climate regions

We further evaluate the temporal variability of causality strength of all climate
components to assess if the causal dependencies are contemporaneous or cyclic). Fig. 3c and d
exemplify the causality strength over time (calculated from a sliding window) for the climate
components with a strong ability to spread perturbations and with a high susceptibility to be
causally influenced by others (NRP, UM, SO, and OV). Further analysis about the frequency or
the periodicity of the time-varying causality is carried out using the method of empirical mode
decomposition (EMD), which is a data-adaptative technique that decomposes a time series signal
into rotational components of different frequencies, or the intrinsic mode functions (IMFs),
where each IMF represents an oscillation mode embedded in the data (Huang et al, 1998; Huang
and Wu, 2008).

10
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For illustration, we apply the EMD method to the causality variability for two regions in
Fig. 3¢, and the collection of IMFs after decomposition is shown in Fig. 4. c1, ¢2, ¢3, and c4 are
the four locally non-overlapping time scale components, while the residue time series signifies
the general trend of the causality variability. It is noteworthy that the temporal variability of
causality strength exhibits a strong periodicity from interannual (c1 and ¢2) to interdecadal
recurrence (c3 and c4). Interannual periodicity can be attributed to the influence of the low-
frequency variability inherent in the climate system (Ghil and Lucarini, 2020). Examples of such
low-frequency oscillations, e.g., ENSO or NPO, and their connection to the causality inference in
CONUS precipitation are discussed above. In comparison, interdecadal periodicity appears to be
linked with the oscillations in the global ocean’s thermohaline circulation and its coupling to the
atmosphere (Ghil and Lucarini, 2020)
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Figure 4. The collection of intrinsic mode functions (IMFs) decomposed by the EMD method
for the time-varying causality in two regions in Fig. 3¢. The top panel in (a) is the causality
variability from the region NRP to UM. The top panel in (b) is the causality variability from
region UM to NRP. The four components from c1 to c4 correspond to the four IMFs with varying
frequencies. The residue represents the general trend of the time-varying causality.

4 Discussion

Climate changes in recent years have resulted in extreme weather in many regions
worldwide. The western U.S. has been experiencing extremely severe drought, with no ending in
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sight. A key to mitigating the unprecedented drought lies in accurate knowledge about the causal
links in the precipitation climatology and identification of the major climate regions, i.e.,
regional gateways, that exhibit significant causality. Physically, such gateways are due to strong
climate variability, atmospheric convergence, and/or pressure anomalies. Applying the CCM
algorithm to the monthly precipitation time series for more than a century enables us to obtain an
unambiguous network picture of the causal relations among the major climate regions in the
CONUS. A quantitative assessment of the causal relations reveals that the Ohio Valley region
effectively serves as a regional mediator for precipitation in other regions, where its bidirectional
causal influence is regulated by the regional convective uplift. This finding has identified, for the
first time, the possible dynamical driving force of the precipitation activities in the CONUS.

The time evolution of causality influence and susceptibility among different climate
regions of the CONUS uncovered here helps reveal the long-term trend of the precipitation
dynamics. It is plausible, from the findings of this study, that the temporal variability of causality
is a result of the synthesis of climate variability on multiple scales, ranging from annual cycles
(e.g., trade winds) to decadal variation of planetary oscillators (e.g., ENSO and NPO). While
much research effort has been devoted to investigating the relationship between low-frequency
oscillators and the regional and global hydrological processes (e.g., precipitation, drought, and
evaporation), research remains scarce in identifying the direct causal inferences of these
contributions and their relative roles/strength in modulating the complex hydrologic dynamics.
Our work partially fills this knowledge gap.

An ongoing challenge in the field is that time series based on causality inference in the
Earth system science often assumes Gaussian noise (Runge et al., 2019a), whereas the
distributions of precipitation in climate are often non-Gaussian. Another outstanding issue is that
attractors constructed from real-world data are only low-dimensional approximations of the
dynamics occurring in higher dimensions, while the degree of convergence is also limited as a
result of observational error and process noise (Sugihara & May, 1990). The “curse” of high
dimensionality in the complex hydrological system could lead to a less accurate causal detection
(Runge et al., 2019b). For example, the CCM framework assumes causal sufficiency, which
requires the absence of unobserved common drivers. In practice, with the technical assumptions
being relaxed, the method may result in unreliable estimates of causations (Runge et al., 2019a).
Previously, it was found that introducing proper noises, especially asymmetric noises, into the
time series has the benefit of enhancing the detectability of directed dynamical influences in
complex systems (Jiang et al., 2016). Exploiting this beneficial role of noise in detecting and
characterizing causality from various climate data is worth pursuing.

5 Concluding remarks

Our results of causality analysis of CONUS precipitation are promising as it not only
identifies the regional mediators of the dynamics and propagation of moisture (anomalies) in the
United States, but also has the potential to be extended to analyzing other hydroclimatic
variables, especially those which are subject to anthropogenic influence and modulate the
emergence of future climate patterns. Examples include using the CCM method to unravel the
causal impact of anthropogenic emissions of heat, moisture, and greenhouse gases on the future
evolution of complex hydroclimate systems with a focus on the occurrence of climatic extremes
such as flooding, droughts, or mega heatwaves. For instance, the observed decrease in drought
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severity over the central United States during the second half of the twentieth century seems to
be primarily driven by variability associated with tropical sea surface temperature (Shin &
Sardeshmukh, 2011), which is largely attributable to the anthropogenic carbon emission.
Detection of such causal relations is of paramount importance to informing and helping policy
makers to develop and implement more sustainable strategies for mitigating climatic risks and
extreme events faced by the humanity (Eyring et al., 2019). Causal inference also stands out as a
powerful tool for detecting the potential critical, and often catastrophic, transitions in Earth and
climate systems as both are believed to evolve towards unprecedented and irreversible changes
due to anthropogenic stressors. Finding the causal relationship in the Earth system could enable
us to pin down the crucial players, i.e., tipping elements, of future critical transitions, as well as
to help decision makers to find countermeasures to mitigate or even reverse the system tipping
(Lenton et al., 2008).
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