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Key Points: 

• We use the convergent cross mapping algorithm (CCM), based on embedding theory, for 
causality inference in this study 

• CCM is used to detect causal influence in precipitation perturbations among different 
climate regions of U.S. 

• The Ohio Valley region emerges as a causal gateway of moisture transport and 
propagation of regional precipitation anomalies in the U.S. 
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Abstract 1 

Identifying regions that mediate regional propagation of atmospheric perturbations is important 2 
to assessing the susceptibility and resilience of complex hydroclimate systems. Detecting the 3 
regional gateways through causal inference, can help unravel the interplay of physical processes 4 
and inform projections of future changes. In this study, we characterize the causal interactions 5 
among nine climate regions in the contiguous United States using long-term (1901-2018) 6 
precipitation data. The constructed causal networks reveal the cross-regional propagation of 7 
precipitation perturbations. Results show that the Ohio Valley region acts as an atmospheric 8 
gateway for precipitation and moisture transport in the U.S, which is largely regulated by the 9 
regional convective uplift. The findings have implications for improving predicative capacity of 10 
hydroclimate modeling of regional precipitation.   11 

 12 

Keywords 13 
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 16 

Plain Language Summary 17 

Successful detection of causality in complex systems is important to unraveling the underlying 18 
mechanisms of system dynamics. The dynamic interactions in Earth’s climate system are often 19 
nonlinear, weakly or moderately coupled, and essentially non-separable, which renders 20 
conventional approaches of causal inference, such as statistical correlation or Granger causality, 21 
infeasible or ineffective. Here we applied the convergent cross mapping method to detect causal 22 
influence among different climate regions in the contiguous U.S. in response to precipitation 23 
perturbations. The results of our study show that the Ohio Valley region, as an atmospheric 24 
convergence zone, acts as a regional gateway and mediator for the long-term precipitation 25 
perturbations in the U.S. The temporal evolution of causal effect and susceptibility exhibits 26 
superposition of climate variability at various time scales, highlighting the impact of prominent 27 
climate variabilities such as El Niño–Southern Oscillation on the dynamics of causality.  28 

 29 

1 Introduction 30 

The Earth system comprises numerous nonlinear subsystems that interact with each other 31 
dynamically in a complex way. Understanding the interactions and the underlying causal 32 
mechanisms of nonlinear components is of crucial importance to tasks such as refining physical 33 
schemes in Earth system models, reducing model biases and uncertainties, and improving 34 
weather predictions and climate projections (Shepherd, 2014). Conventional statistical 35 
approaches such as correlation- and regression-based methods have been widely used to  36 
topology of the Earth system, especially connectivity over long spatial distance, known as 37 
teleconnections (Boers et al., 2019). However, conventional statistics-based methods are often 38 
unable to unravel the true causal mechanisms (Pearl & Mackenzie, 2018; Runge et al., 2019a). In 39 
addition, spurious correlations between variables are common even in simple nonlinear systems 40 
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(Mysterud et al., 2001). As a result, for natural systems ubiquitously governed by nonlinear 41 
dynamics, the causation inferred from linear correlations can be misleading or erroneous (Good 42 
et al., 2015; Sugihara & May, 1990). 43 

In the literature, the classical Granger causality (GC) paradigm has been prevailing for 44 
identifying causation in time series (Granger, 1969). However, the GC approach can be prone to 45 
significant errors (McCann et al., 1998; Sugihara et al., 2012) when applied to dynamics systems 46 
consisting of weakly or moderately coupled subsystems, especially when the interactions are 47 
forced by shared external, strong drivers that can lead to apparent synchrony (Moran, 1953). 48 
Another fundamental difficulty of GC is the requirement of extensive length of time series to 49 
generate meaningful causal inference.  50 

To overcome the limitations of GC, researchers have developed and tested causality 51 
algorithms specifically suitable for nonlinear dynamic systems with moderate coupling, the 52 
convergent cross mapping (CCM) method being a representative one (Jiang et al., 2016; 53 
Kretschmer et al., 2016; Runge, 2018; Runge et al., 2019a, 2019b, 2015; Sugihara et al., 2012). 54 
The CCM method is based on the classic Taken’s delay-coordinate embedding theory for 55 
reconstructing the phase space of the underlying nonlinear system from time series (Deyle & 56 
Sugihara, 2011; Kantz & Schreiber, 1997; Lai & Ye, 2003; Packard et al., 1980; Sauer et al., 57 
1991; Sugihara & May, 1990; Takens, 1981). The CCM and other similar causal inference 58 
methods have been successfully applied to detect dynamic causality in Earth’s hydroclimate 59 
system (Ombadi et al., 2020; Shi et al., 2022; Wang et al., 2018; Yang et al., 2022b).  60 

In this paper, we adopt the CCM framework to detect and quantify hydroclimatic causal 61 
interactions among different regions over the contiguous United States (CONUS) from long-term 62 
observational precipitation datasets. We find that the Ohio Valley region acts as a causal gateway 63 
for regional precipitation and atmospheric transport in the CONUS, which is largely regulated by 64 
the regional convective uplift. This finding will help to improve the predictive capacity of 65 
hydroclimate modeling by incorporating the causal inference in dynamic processes. In addition, 66 
with the increasing availability of data from measurements and climate models, causal inference 67 
in climate systems will facilitate the development of data-driven and system-based frameworks 68 
for integrated Earth system research (Fan et al., 2021; Wang & Wang, 2020). One example is 69 
that the time evolution of regional causality contains signals resulting from multi-scale climate 70 
variability, which has the potential to serve as early warning signs to presage critical transitions 71 
in complex hydroclimate systems (Yang et al., 2022a). 72 

 73 

2 Methods 74 

2.1 Data retrieval and treatment 75 

In this study, we retrieved the monthly mean precipitation over the period 1901–2018 76 
(1416 months) from Climatic Research Unit (CRU) Time-Series (TS) version 4.03 77 
(https://catalogue.ceda.ac.uk/uuid/10d3e3640f004c578403419aac167d82), produced by the 78 
Center for Environmental Data Analysis (CEDA) Archive. The 0.5o × 0.5o spatially gridded 79 
dataset covers the spatial domain of global land surfaces except Antarctica, with in total 3288 80 
grid cells over the entire CONUS. The observational data are anormalized using 1961–1990 81 
monthly averages for each gridcell (Harris et al., 2020). Individual grid points, if there are too 82 
close to each other, often contain similar information (monthly precipitation herein) and may not 83 

https://catalogue.ceda.ac.uk/uuid/10d3e3640f004c578403419aac167d82
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be sufficiently representative to interpret potential propagating perturbations. To better represent 84 
distinct sub-regional processes, we aggregate all grids within each of the nine climatically 85 
consistent regions (or climate regions) in the CONUS following NOAA’s division, as shown in 86 
Fig. 2a to obtain the average regional-scale time series (Kretschmer et al., 2016). These climatic 87 
regions are Northwest (NW), West (WE), Southwest (SW), Northern Rockies and Plains (NRP), 88 
South (SO), Upper Midwest (UM), Ohio Valley (OV), Southeast (SE), and Northeast (NE). The 89 
division of climate regions is defined by the National Centers for Environmental Information of 90 
NOAA (https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php). There 91 
are previous studies revealing that spatial coherence patterns existed after the dimension 92 
reduction of the long-term gridded monthly precipitation based on methods such as principal 93 
components analysis (PCA) (Walsh et al., 1982; Karl and Koscielny, 1982; Vejmelka et al., 94 
2015). The spatial coherence patterns or the corresponding nine principal components (PC) 95 
identified are consistent with a series of documented cyclone trajectories (Zishka and Smith, 96 
1980; Walsh et al., 1982). In addition, the nine identifiable patterns of drought (calculated from 97 
averaged monthly precipitation and temperature) are delineated in the United States performed 98 
by PCA, with each PC is characterized by a distinct annual oscillation of monthly precipitation 99 
(Karl and Koscielny, 1982). The nine identifiable components are similar to the climatic division 100 
defined by the NOAA. We then removed the seasonal cycle by subtracting monthly averages 101 
from the regional temperature time series during the study period to minimize the impact of 102 
seasonality. The detrended time series of temperature anomalies are used for subsequent 103 
causality analysis.  104 

 105 

2.2 Convergent cross mapping algorithm 106 

The CCM is based on simple projection (Sugihara et al., 2012), a nearest-neighbor 107 
algorithm that involves kernel density estimation of nearby points on the reconstructed or 108 
shadow manifolds (Takens, 1981). To assess the potential causation between two climate 109 
regions, we construct two shadow manifolds using time-lagged coordinates of historical 110 
precipitation series (Deyle and Sugihara, 2011; Kantz and Schreiber, 1997; Lai and Ye, 2003; 111 
Packard et al., 1980; Sauer et al., 1991; Sugihara and May, 1990; Takens, 1981) and estimate 112 
precipitation anomalies in one region using information from another region. A shadow manifold 113 
can be reconstructed using the delay-coordinate embedding method. In particular, for a scalar 114 
time series X(t) of length L from a specific climate region, an E-dimensional time-delayed vector 115 
x(t) = [X(t), X(t-τ), …, X(t-(E-1)τ)] can be formed from t = 1 + (E−1)τ  to t = L, with τ and E the 116 
time delay and embedding dimension, respectively, to construct the shadow manifold MX ( 117 
likewise for y(t) and MY for a scalar time series of Y(t)).  118 

The cross-mapping estimate of Y(t), denoted as ˆ( ) | XY t M , is based on a simple projection 119 

of the E+1 nearest neighbors of vector x(t) in the manifold MX. Here E+1 is the minimum 120 
number of data points required for a bounded simplex in the E-dimensional space. The time 121 
indices of those E+1 neighbors x(t1), x(t2),…, x(tE+1) (from closest to farthest) in MX  are used to 122 
identify the corresponding putative neighbors in Y, i.e., Y(t1), Y(t2),…, Y(tE+1). The cross-mapping 123 
estimate of Y(t) is then determined using the weighted average as 124 

 
1

1

ˆ( ) | ( ) ( )
E

X i i
i

Y t M w t Y t
+

=

= ⋅∑ ,  (1) 125 
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where the weight vector wi(t) is estimated by 126 
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 , (3) 129 

and d[x(t), x(ti)] the Euclidean distance between the two vectors x(t) and x(ti) in MX, which can be 130 
calculated as the length of the line segment between points x(t) and x(ti) in an E-dimensional 131 
Euclidean space.  132 
 133 
If X(t) and Y(t) are dynamically coupled and causally related, the nearest neighbors of MX should 134 
identify the time indices of corresponding nearest neighbors on the attractor manifold of MY, and 135 

vice versa (Sugihara et al., 2012). Consequently, ˆ( ) | XY t M  should converge to Y(t), and 136 

ˆ ( ) | YX t M  to X(t). To measure the causality from Y to X, the correlation coefficient 
XY Mρ  137 

between the original Y(t) and the cross-mapping estimate ˆ( ) | XY t M  will be used, which is 138 

defined by 139 

 
( ){ }ˆ

ˆ

ˆ( ) |
X

Y X Y
Y M

Y Y

Y t Y t Mµ µ
ρ

σ σ

 − ⋅ −    =
E

 , (4) 140 

where E, µ, and σ are the statistical expectation, average, and standard deviation, respectively.  141 

A stronger causal influence of Y(t) on X(t) indicates that X(t) contains “more” of Y(t), 142 
thereby making more accurate the prediction of Y(t) with information about X(t). Thus, a larger 143 
value of the correlation coefficient 

XY Mρ signifies a stronger dynamical causal influence of Y(t) 144 

on X(t). Practically, an empirical threshold specified with different significance levels using, e.g., 145 
t-test, can be set to determine if Y(t) has causal influence on X(t) (Jiang et al., 2016). If 146 

0
XY Mρ ≤ , then Y(t) has no causal influence on X(t). Likewise, the correlation coefficient 

YX Mρ  147 

is a measure of the possible causal influence of X(t) on Y(t).   148 

 149 

2.3 The reconstruction of phase-space dynamical system 150 

To start with the CCM causal inference, the time delay τ and embedding dimension E are 151 
the two key parameters in reconstructing the phase space of a nonlinear dynamical system. 152 
Empirically, the delay time can be chosen as the average oscillation period of the underlying 153 
times series (corresponding to the unit value in a discrete-time map) (Grassberger and Procaccia, 154 
2004, 1983; Lai et al., 1996; Lai and Lerner, 1998; Lai and Ye, 2003). Here we choose time 155 
delay τ as 1. The choice is reasonable because, for the precipitation time series, the dependency 156 
among atmospheric interactions typically decays within a month (Storch and Zwiers, 2001). For 157 
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a proper choice of the embedding dimension, we use the standard Grassberger-Procaccia (GP) 158 
correlation integral and dimension algorithm (Grassberger and Procaccia, 2004).  159 

For scalar time-series data, computations of the correlation can be carried out in the 160 
reconstructed phase space. The correlation integral is taken as the fraction of pairs of points on 161 
the attractor in the phase space of a nonlinear system within a hypersphere of radius ε, which can 162 
be calculated approximately as:  163 

 ( )
1 1

1( )
( 1)

N N

N i j
j i j

C
N N

ε ε
= = +

= Θ − −
− ∑ ∑ x x  , (5) 164 

For N → ∞ , the correlation dimension is given by 165 

 2 0

log ( )lim lim
log

N

N

CD
ε

ε
ε→ →∞

=  . (6) 166 

To resolve the dynamics in the underlying system that generates the scalar time series, the 167 
dimension E of the reconstructed phase space must be sufficiently large. For a given value of the 168 
embedding dimension E, D2 can be determined according to Eq. (6). Since the intrinsic 169 
dimension of the underlying attractor is not known a prior, it is necessary to systematically 170 
increase the value of E to calculate a series of values for D2. For an infinite, noiseless time series, 171 

the estimated dimension value D2 increases with E but plateaus for 2 1E D > +  . For finite and 172 

noisy time series, the value of E required for D2 to plateau is likely to be higher. For a 173 
completely stochastic system that is intrinsically infinitely dimensional, the estimated D2 will 174 
never plateau, no matter how large E is. This line of reasoning emphasizes the need to estimate 175 
D2 from a systematic set of E values (Ding et al., 1993). 176 

Results of correlation integrals from the aggregated time series of precipitation anomalies 177 
for the nine climate regions in the CONUS are shown in Fig. 1a. We use the least-squares fitting 178 
method to determine the slope for the most linear part of each curve in Fig. 1a (Lai and Ye, 179 
2003). Slope values of log ( )NC ε  versus logε, as functions of embedding dimension are shown 180 

in Fig. 1b. Statistically, the slope increases with the embedding dimension and plateaus when 181 
17cE ≥ , justifying the use of E = 17 in the CCM causality analysis. Note that the E value for 182 

each climate region is slightly different. To guarantee the complete reconstruction of the attractor 183 
manifolds for all climate regions, we take the value that exceeds the maximum plateau in the 184 
nine climate regions as the embedding dimension E for the underlying climate system in this 185 
study.   186 
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 187 

Figure 1. Determination of the embedding dimension from the GP-based correlation integral and 188 
dimension for the hydroclimate system over the CONUS using the aggregated time series of 189 
regional precipitation anomalies. (a) Correlation integral on a logarithm scale with different 190 
embedding dimension E = 1, …, 30 for nine climate regions. (b) The slope values log ( )NC ε  191 

versus log( )ε as a function of embedding dimension for nine climate regions. The slope 192 
increases with E and then reaches an approximate plateau value for 17E ≥ , as shown by the two 193 
green solid lines in (b). 194 

 195 

2.4 Quantification of causal effect and susceptibility for climate regions in the U.S.  196 

In the directed causal matrices (
XY Mρ and

YX Mρ ) among all pairs of climate regions, we 197 

take the mean along each column as a measure of the average causal effect (ACE) to estimate the 198 
causal effect that a climate region R has on all other climate regions, whereas the mean along 199 
each row as the average causal susceptibility (ACS) is used to measure the sensitivity of a climate 200 
region to perturbations from other parts of the system (Runge et al., 2015).  For region R, The 201 
ACE and ACS are calculated separately by 202 

 203 

 ( ) ( )|
1

1 R iR X t M
i RR

ACE t
N

ρ
≠

=
− ∑  , (7) 204 

 ( ) ( )|
1

1 i RR X t M
i RR

ACS t
N

ρ
≠

=
− ∑  , (8) 205 

where NR is the total number of climate regions. Furthermore, to investigate the long-term trend 206 
of ACE and ACS, we compute their running averages using a sliding window of size w as 207 



Confidential manuscript submitted to Geophysical Research Letters 

7 
 

 ( )
( )

( )1 /2

,
1 /2

1 k w

R k
j k w

ACE ACE j
w

+ −

= − −

= ∑  , (9) 208 

 ( )
( )

( )1 /2

,
1 /2

1 k w

R k
j k w

ACS ACS j
w

+ −
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where the time window is [k−(w−1)/2, k+(w−1)/2], with k the center of the window. In a given 210 
region, a larger ACE value means a stronger causal effect of that region to mediate the 211 
precipitation climatology in other regions. Likewise, a higher ACS value signifies that the region 212 
is more susceptible to precipitation perturbations from other regions.  213 
 214 

3 Results 215 

3.1 Cross-regional causality in the CONUS  216 

The causal networks constructed based on CCM identify statistically significant causal 217 
effects of precipitation anomalies between various pairs of adjacent nodes (climate regions), as 218 
shown in Fig. 2b, where several indirect and spurious paths/links as revealed by the conventional 219 
cross correlations (e.g., the link between NW and UM) have been removed. The direct causal 220 
interactions are generally much stronger than the indirect ones. Note that, unlike the symmetrical 221 
pairwise association estimated using cross correlation, the causally weighted directed network is 222 
asymmetric. Of particular importance is the causal dependency between climate regions UM and 223 
NRP, which is statistically significant in both directions (with causation strengths greater than 224 
0.4). Albeit being asymmetrically bidirectional, these significant causal interactions suggest 225 
mutually coupled precipitation dynamics in these two climate regions. Climate region NRP is 226 
relatively weakly (but still significantly) connected to NW and SW as indicated by the 227 
unidirectional links running from NW to NRP and those from NRP to SW. As shown in Fig 2c, 228 
the estimated causal network is sparser than the pairwise correlation network, as the latter often 229 
includes spurious links, especially teleconnections due to common forcing (e.g., El Niño-230 
Southern Oscillation or ENSO) in the coupled climatic system (Runge et al., 2019).  231 

Additional analyses suggest the robustness of these causal interactions among climate 232 
regions to the selection of spatial aggregation and time lag. For spatial aggregation, we conduct a 233 
state-level causal analysis by aggregating the gridded precipitation (anomaly) data for each state, 234 
and the state-level causal patterns are generally consistent with results for the nine climate 235 
regions (see Supporting Information Fig.S1). For time lag, we perform a similar causal analysis 236 
but with a one-month lag for precipitation time series. The results agree with those in Fig. 2b 237 
(see Supporting Information Fig. S2). In addition to the significance test used in Fig. 2b, we also 238 
evaluate causal interactions using the bootstrap method. Fig. S3 and Fig. S4 in Supporting 239 
Information summarize the causal results based on 50 bootstrap resampling. The consistency 240 
between different trails further demonstrates the robustness of the causal interactions shown in 241 
Fig. 2b.  242 
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 243 

 244 

Figure 2. Detecting and quantifying causal interactions of the hydroclimate system over the 245 
CONUS. (a) The nine climatically consistent regions within the CONUS. (b) CCM results of all 246 
successful detection of significant causal interactions (red dashed squares) among the nine 247 
climate regions. The causal interactions are represented by a causally weighted directed network 248 
(no self-links) with embedding parameter values E = 17 and τ = 1. (c) The reconstructed directed 249 
causal network from the results in (b), where the solid arrows indicate the directed links while 250 
the gray dashed lines represent the spurious unidirectional links due to a common driver or 251 
transitivity effect from pairwise association as determined by the cross correlation. The colors of 252 
the solid arrows specify the strength of the causal interactions as defined by the color bar in (b). 253 
The statistically significant spurious links are determined by comparing the undirected network 254 
from the pairwise cross correlation with the CCM inferred causal networks.  255 

 256 

3.2 Regional causal effect and susceptibility 257 

To quantify the importance of various climate regions in spreading and mediating 258 
perturbations in the reconstructed causal, weighted, and directed network, we measure the causal 259 
influence of precipitation anomalies in one region on another using ACE and ACS indices 260 
defined in Eqs. (7) and (8). Figures 3a and 3b show the values of ACE and ACS averaged using 261 
15-year sliding windows for the nine CONUS climate regions. Note that the size of the moving 262 
window cannot be too small or too large, as the cross-mapping causality estimate generally 263 
increases with time-series length (library) until reaching a plateau (Fig. 3 in Sugihara et al., 264 
2012). A 15-year sliding window is selected in this study mainly because it reveals robust 265 
structures of causality interaction among climate regions, as suggested by our sensitivity analysis 266 
(see Fig. S5 in Supporting Information).  267 

The distribution of ACE and ACS over all 15-year moving windows is shown in Fig. 3e, 268 
where region OV and NRP have the largest ACE and ACS. The results indicate that the Ohio 269 
Valley region has manifestly the most significant causal effect on other regions and susceptibility 270 
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among all CONUS regions, signaling that it acts as a regional gateway for propagating 271 
precipitation perturbations in the CONUS. The fact that Ohio Valley is a critical region in 272 
influencing hydrological processes and moisture propagation is consistent with the previous 273 
findings (Karl and Koscielny, 1982; Konapala and Mishra, 2017; Walsh et al., 1982). There are 274 
several plausible underlying mechanisms. First, the Ohio Valley is characterized by the leading 275 
principle component of winter precipitation (Walsh et al., 1982) and the third principle 276 
component of drought severity index (Karl and Koscielny, 1982), exhibiting the highest winter 277 
moisture variability in the United States. Second, the Ohio Valley has the strongest geostrophic 278 
wind components (Walsh et al., 1982). Third, the Ohio Valley is significantly affected by ENSO 279 
conditions in terms of precipitation (Zhang et al., 2010) and temperature extremes (Gershunov 280 
and Barnett, 1998). As a result, the high climate variability in Ohio Valley and its teleconnection 281 
with ENSO events are likely to be responsible for the strong causal effect and large susceptibility 282 
observed in this region (Konapala and Mishra, 2017).  283 

In addition to ENSO, other climatic variability may also play some roles in regulating the 284 
causal links in the CONUS precipitation network through teleconnection, such as the potential 285 
Arctic amplification on mid-latitude summer circulation (Coumou et al., 2018) or the influence 286 
of Northern Pacific Oscillation (NPO) on the circulation and precipitation in the CONUS 287 
(Gershunov and Barnett, 1998). Moreover, a previous analysis of monthly precipitation 288 
identified a strong association between geostrophic wind components and sea-level pressure 289 
anomalies in the central and eastern United States where spatial coherence is manifest in Ohio 290 
Valley, Great Lake regions, and Northern Plains (Walsh et al., 1982). This is also supported by 291 
more recent causality analysis showing that regions with large ACE and ACS values correspond 292 
to major atmospheric convergence zones (Runge et al., 2015). Regions with strong geostrophic 293 
wind generate strong uplifts that integrate incoming perturbations at the surface and transport 294 
them vertically into the higher troposphere, which can influence other regions via atmospheric 295 
downdrafts, signaling strong causal effect and susceptibility, as shown in Fig. 2a and 2b (the 296 
brighter zones).  297 
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 298 

Figure 3. Measuring causal effect in the dynamical network of precipitation in the CONUS. (a) 299 
and (b) Long-term averaged causal effect (ACE) and averaged causal susceptibility (ACS) for 300 
each climate region. (c) Evolution of the strength of the CCM causality over time (with a 15-year 301 
sliding window) between two adjacent regions: NRP (Northern Rockies and Plains) and UM 302 
(Upper Midwest). (d) Time evolution of the CCM causality strength between the South and Ohio 303 
Valley. The horizontal dashed lines in red or blue in (c) and (d) represent the mean values of 304 
CCM causality strength. (e) ACE versus ACS over all 15-year sliding windows for each climate 305 
region. 306 

 307 

3.3 Temporal variability of causality between pairs of climate regions  308 

We further evaluate the temporal variability of causality strength of all climate 309 
components to assess if the causal dependencies are contemporaneous or cyclic). Fig. 3c and d 310 
exemplify the causality strength over time (calculated from a sliding window) for the climate 311 
components with a strong ability to spread perturbations and with a high susceptibility to be 312 
causally influenced by others (NRP, UM, SO, and OV). Further analysis about the frequency or 313 
the periodicity of the time-varying causality is carried out using the method of empirical mode 314 
decomposition (EMD), which is a data-adaptative technique that decomposes a time series signal 315 
into rotational components of different frequencies, or the intrinsic mode functions (IMFs), 316 
where each IMF represents an oscillation mode embedded in the data (Huang et al, 1998; Huang 317 
and Wu, 2008).  318 
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For illustration, we apply the EMD method to the causality variability for two regions in 319 
Fig. 3c, and the collection of IMFs after decomposition is shown in Fig. 4. c1, c2, c3, and c4 are 320 
the four locally non-overlapping time scale components, while the residue time series signifies 321 
the general trend of the causality variability. It is noteworthy that the temporal variability of 322 
causality strength exhibits a strong periodicity from interannual (c1 and c2) to interdecadal 323 
recurrence (c3 and c4). Interannual periodicity can be attributed to the influence of the low-324 
frequency variability inherent in the climate system (Ghil and Lucarini, 2020). Examples of such 325 
low-frequency oscillations, e.g., ENSO or NPO, and their connection to the causality inference in 326 
CONUS precipitation are discussed above. In comparison, interdecadal periodicity appears to be 327 
linked with the oscillations in the global ocean’s thermohaline circulation and its coupling to the 328 
atmosphere (Ghil and Lucarini, 2020) 329 

 330 

Figure 4. The collection of intrinsic mode functions (IMFs) decomposed by the EMD method 331 
for the time-varying causality in two regions in Fig. 3c. The top panel in (a) is the causality 332 
variability from the region NRP to UM. The top panel in (b) is the causality variability from 333 
region UM to NRP. The four components from c1 to c4 correspond to the four IMFs with varying 334 
frequencies. The residue represents the general trend of the time-varying causality.  335 

 336 

4 Discussion 337 

Climate changes in recent years have resulted in extreme weather in many regions 338 
worldwide. The western U.S. has been experiencing extremely severe drought, with no ending in 339 
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sight. A key to mitigating the unprecedented drought lies in accurate knowledge about the causal 340 
links in the precipitation climatology and identification of the major climate regions, i.e., 341 
regional gateways, that exhibit significant causality. Physically, such gateways are due to strong 342 
climate variability, atmospheric convergence, and/or pressure anomalies. Applying the CCM 343 
algorithm to the monthly precipitation time series for more than a century enables us to obtain an 344 
unambiguous network picture of the causal relations among the major climate regions in the 345 
CONUS. A quantitative assessment of the causal relations reveals that the Ohio Valley region 346 
effectively serves as a regional mediator for precipitation in other regions, where its bidirectional 347 
causal influence is regulated by the regional convective uplift. This finding has identified, for the 348 
first time, the possible dynamical driving force of the precipitation activities in the CONUS.  349 

The time evolution of causality influence and susceptibility among different climate 350 
regions of the CONUS uncovered here helps reveal the long-term trend of the precipitation 351 
dynamics. It is plausible, from the findings of this study, that the temporal variability of causality 352 
is a result of the synthesis of climate variability on multiple scales, ranging from annual cycles 353 
(e.g., trade winds) to decadal variation of planetary oscillators (e.g., ENSO and NPO). While 354 
much research effort has been devoted to investigating the relationship between low-frequency 355 
oscillators and the regional and global hydrological processes (e.g., precipitation, drought, and 356 
evaporation), research remains scarce in identifying the direct causal inferences of these 357 
contributions and their relative roles/strength in modulating the complex hydrologic dynamics. 358 
Our work partially fills this knowledge gap.  359 

An ongoing challenge in the field is that time series based on causality inference in the 360 
Earth system science often assumes Gaussian noise (Runge et al., 2019a), whereas the 361 
distributions of precipitation in climate are often non-Gaussian. Another outstanding issue is that 362 
attractors constructed from real-world data are only low-dimensional approximations of the 363 
dynamics occurring in higher dimensions, while the degree of convergence is also limited as a 364 
result of observational error and process noise (Sugihara & May, 1990). The “curse” of high 365 
dimensionality in the complex hydrological system could lead to a less accurate causal detection 366 
(Runge et al., 2019b). For example, the CCM framework assumes causal sufficiency, which 367 
requires the absence of unobserved common drivers. In practice, with the technical assumptions 368 
being relaxed, the method may result in unreliable estimates of causations (Runge et al., 2019a). 369 
Previously, it was found that introducing proper noises, especially asymmetric noises, into the 370 
time series has the benefit of enhancing the detectability of directed dynamical influences in 371 
complex systems (Jiang et al., 2016). Exploiting this beneficial role of noise in detecting and 372 
characterizing causality from various climate data is worth pursuing. 373 

 374 

5 Concluding remarks 375 

Our results of causality analysis of CONUS precipitation are promising as it not only 376 
identifies the regional mediators of the dynamics and propagation of moisture (anomalies) in the 377 
United States, but also has the potential to be extended to analyzing other hydroclimatic 378 
variables, especially those which are subject to anthropogenic influence and modulate the 379 
emergence of future climate patterns. Examples include using the CCM method to unravel the 380 
causal impact of anthropogenic emissions of heat, moisture, and greenhouse gases on the future 381 
evolution of complex hydroclimate systems with a focus on the occurrence of climatic extremes 382 
such as flooding, droughts, or mega heatwaves. For instance, the observed decrease in drought 383 
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severity over the central United States during the second half of the twentieth century seems to 384 
be primarily driven by variability associated with tropical sea surface temperature (Shin & 385 
Sardeshmukh, 2011), which is largely attributable to the anthropogenic carbon emission. 386 
Detection of such causal relations is of paramount importance to informing and helping policy 387 
makers to develop and implement more sustainable strategies for mitigating climatic risks and 388 
extreme events faced by the humanity (Eyring et al., 2019). Causal inference also stands out as a 389 
powerful tool for detecting the potential critical, and often catastrophic, transitions in Earth and 390 
climate systems as both are believed to evolve towards unprecedented and irreversible changes 391 
due to anthropogenic stressors. Finding the causal relationship in the Earth system could enable 392 
us to pin down the crucial players, i.e., tipping elements, of future critical transitions, as well as 393 
to help decision makers to find countermeasures to mitigate or even reverse the system tipping 394 
(Lenton et al., 2008). 395 

 396 

Acknowledgments 397 

This study is based upon work supported by the U.S. National Science Foundation (NSF) 398 
under Grant # AGS-1930629 and CBET-2028868, and the National Aeronautics and Space 399 
Administrations (NASA) under grant No. 80NSSC20K1263. YCL was supported by the Office 400 
of Naval Research (ONR) under Grant No. N00014-21-1-2323and by the Air Force Office of 401 
Scientific Research (AFOSR) under Grant No. FA9550-21-1-0438. The authors thank Dr. Junjie 402 
Jiang for discussions about the CCM algorithm.  403 

 404 

Data Availability Statement 405 

The gridded dataset for 1901–2018 is the Climatic Research Unit (CRU) Time-Series 406 
(TS) version 4.03, which is archived by the Center for Environmental Data Analysis (CEDA) 407 
and is publicly available at 408 
https://catalogue.ceda.ac.uk/uuid/10d3e3640f004c578403419aac167d82. The division of climate 409 
regions is defined by the National Centers for Environmental Information of NOAA at 410 
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/regional_monitoring/regions.shtml411 
. 412 

 413 

References 414 

Boers, N., Goswami, B., Rheinwalt, A., Bookhagen, B., Hoskins, B., Kurths, J., 2019. Complex 415 
networks reveal global pattern of extreme-rainfall teleconnections. Nature 566, 373–377. 416 
https://doi.org/10.1038/s41586-018-0872-x 417 

Coumou, D., Di Capua, G., Vavrus, S., Wang, L., Wang, S., 2018. The influence of Arctic 418 
amplification on mid-latitude summer circulation. Nature Communications 9, 2959. 419 
https://doi.org/10.1038/s41467-018-05256-8 420 

Deyle, E.R., Sugihara, G., 2011. Generalized theorems for nonlinear state space reconstruction. 421 
PLoS One 6, e18295. 422 

https://catalogue.ceda.ac.uk/uuid/10d3e3640f004c578403419aac167d82
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/regional_monitoring/regions.shtml
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/regional_monitoring/regions.shtml


Confidential manuscript submitted to Geophysical Research Letters 

14 
 

Ding, M., Grebogi, C., Ott, E., Sauer, T., Yorke, J.A., 1993. Plateau onset for correlation 423 
dimension: When does it occur? Physical Review Letter. 70, 3872–3875. 424 
https://doi.org/10.1103/PhysRevLett.70.3872 425 

Eyring, V., Cox, P.M., Flato, G.M., Gleckler, P.J., Abramowitz, G., Caldwell, P., Collins, W.D., 426 
Gier, B.K., Hall, A.D., Hoffman, F.M. and Hurtt, G.C., 2019. Taking climate model 427 
evaluation to the next level. Nature Climate Change 9, 102–110. 428 
https://doi.org/10.1038/s41558-018-0355-y 429 

Fan, J., Meng, J., Ludescher, J., Chen, X., Ashkenazy, Y., Kurths, J., Havlin, S., Schellnhuber, 430 
H.J. 2021. Statistical physics approaches to the complex Earth system. Physics Reports, 431 
896, 1-84. https://doi.org/10.1016/j.physrep.2020.09.005  432 

Gershunov, A., Barnett, T.P., 1998. Interdecadal modulation of ENSO teleconnections. Bulletin 433 
of the American Meteorological Society 79, 2715–2726. https://doi.org/10.1175/1520-434 
0477(1998)079<2715:IMOET>2.0.CO;2 435 

Ghil, M., Lucarini, V., 2020. The physics of climate variability and climate change. Reviews of 436 
Modern Physics. 92, 035002. https://doi.org/10.1103/RevModPhys.92.035002 437 

Good, P., Lowe, J.A., Andrews, T., Wiltshire, A., Chadwick, R., Ridley, J.K., Menary, M.B., 438 
Bouttes, N., Dufresne, J.L., Gregory, J.M., Schaller, N., Shiogama, H., 2015. Nonlinear 439 
regional warming with increasing CO2 concentrations. Nature Climate Change 5, 138–440 
142. https://doi.org/10.1038/nclimate2498 441 

Granger, C.W., 1969. Investigating causal relations by econometric models and cross-spectral 442 
methods. Journal of the Econometric Society 37, 424–438. 443 

Grassberger, P., Procaccia, I., 2004. Measuring the strangeness of strange attractors. In The 444 
Theory of Chaotic Attractors. Springer, New York, NY, pp. 170–189. 445 
https://doi.org/10.1007/978-0-387-21830-4_12 446 

Grassberger, P., Procaccia, I., 1983. Characterization of strange attractors. Physical Review 447 
Letter. 50, 346–349. https://doi.org/10.1103/PhysRevLett.50.346 448 

Harris, I., Osborn, T.J., Jones, P., Lister, D., 2020. Version 4 of the CRU TS monthly high-449 
resolution gridded multivariate climate dataset. Scientific Data 7, 109. 450 
https://doi.org/10.1038/s41597-020-0453-3 451 

Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C. and 452 
Liu, H.H., 1998. The empirical mode decomposition and the Hilbert spectrum for 453 
nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of 454 
London. Series A: mathematical, physical and engineering sciences, 454, 903-995. 455 
https://doi.org/10.1098/rspa.1998.0193 456 

Huang, N.E. and Wu, Z., 2008. A review on Hilbert‐Huang transform: Method and its 457 
applications to geophysical studies. Reviews of geophysics, 46(2). 458 
https://doi.org/10.1029/2007RG000228 459 

Jiang, J.-J., Huang, Z.-G., Huang, L., Liu, H., Lai, Y.-C., 2016. Directed dynamical influence is 460 
more detectable with noise. Scientific Reports 6, 24088. 461 
https://doi.org/10.1038/srep24088 462 

https://doi.org/10.1098/rspa.1998.0193
https://doi.org/10.1029/2007RG000228


Confidential manuscript submitted to Geophysical Research Letters 

15 
 

Kantz, H., Schreiber, T., 1997. Nonlinear Time Series Analysis, first. ed. Cambridge University 463 
Press, Cambridge, UK. 464 

Karl, T.R., Koscielny, A.J., 1982. Drought in the United States: 1895–1981. Journal of 465 
Climatology 2, 313–329. https://doi.org/10.1002/joc.3370020402 466 

Konapala, G., Mishra, A., 2017. Review of complex networks application in hydroclimatic 467 
extremes with an implementation to characterize spatio-temporal drought propagation in 468 
continental USA. Journal of Hydrology 555, 600–620. 469 
https://doi.org/10.1016/j.jhydrol.2017.10.033 470 

Kretschmer, M., Coumou, D., Donges, J.F., Runge, J., 2016. Using causal effect networks to 471 
analyze different arctic drivers of midlatitude winter circulation. Journal of Climate 29, 472 
4069–4081. https://doi.org/10.1175/JCLI-D-15-0654.1 473 

Lai, Y.-C., David, L., Hayden, R., 1996. An upper bound for the proper delay time in chaotic 474 
time-series analysis. Physics Letters A 218, 30–34. https://doi.org/10.1016/0375-475 
9601(96)00408-2 476 

Lai, Y.-C., Lerner, D., 1998. Effective scaling regime for computing the correlation dimension 477 
from chaotic time series. Physica D: Nonlinear Phenomena 115, 1–18. 478 
https://doi.org/10.1016/S0167-2789(97)00230-3 479 

Lai, Y.-C., Ye, N., 2003. Recent developments in chaotic time series analysis. International 480 
Journal of Bifurcation and Chaos 13, 1383–1422. 481 
https://doi.org/10.1142/S0218127403007308 482 

Lenton, T.M., Held, H., Kriegler, E., Hall, J.W., Lucht, W., Rahmstorf, S., Schellnhuber, H.J., 483 
2008. Tipping elements in the Earth’s climate system. Proceedings of the national 484 
Academy of Sciences 105, 1786–1793. https://doi.org/10.1073/pnas.0705414105 485 

McCann, K., Hastings, A., Huxel, G.R., 1998. Weak trophic interactions and the balance of 486 
nature. Nature 395, 794–798. https://doi.org/10.1038/27427 487 

Moran, P. a. P., 1953. The statistical analysis of the Canadian Lynx cycle. Australian Journal of 488 
Zoology 1, 291–298. https://doi.org/10.1071/zo9530291 489 

Mysterud, A., Stenseth, N.C., Yoccoz, N.G., Langvatn, R., Steinheim, G., 2001. Nonlinear 490 
effects of large-scale climatic variability on wild and domestic herbivores. Nature 410, 491 
1096–1099. https://doi.org/10.1038/35074099 492 

Ombadi, M., Nguyen, P., Sorooshian, S., Hsu, K., 2020. Evaluation of methods for causal 493 
discovery in hydrometeorological systems. Water Resources Research 56, 494 
e2020WR027251. https://doi.org/10.1029/2020WR027251 495 

Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S., 1980. Geometry from a time series. 496 
Physical review letters 45, 712–716. https://doi.org/10.1103/PhysRevLett.45.712 497 

Pearl, J., Mackenzie, D., 2018. The Book of Why: The New Science of Cause and Effect. Basic 498 
Books. 499 

Runge, J., 2018. Causal network reconstruction from time series: From theoretical assumptions 500 
to practical estimation. Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 501 
075310. https://doi.org/10.1063/1.5025050 502 



Confidential manuscript submitted to Geophysical Research Letters 

16 
 

Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., Glymour, C., 503 
Kretschmer, M., Mahecha, M.D., Muñoz-Marí, J. and van Nes, E.H., 2019a. Inferring 504 
causation from time series in Earth system sciences. Nature Communications. 10, 2553. 505 
https://doi.org/10.1038/s41467-019-10105-3 506 

Runge, J., Nowack, P., Kretschmer, M., Flaxman, S., Sejdinovic, D., 2019b. Detecting and 507 
quantifying causal associations in large nonlinear time series datasets. Science Advances 508 
5, eaau4996. https://doi.org/10.1126/sciadv.aau4996 509 

Runge, J., Petoukhov, V., Donges, J.F., Hlinka, J., Jajcay, N., Vejmelka, M., Hartman, D., 510 
Marwan, N., Paluš, M., Kurths, J., 2015. Identifying causal gateways and mediators in 511 
complex spatio-temporal systems. Nature Communication 6, 8502. 512 
https://doi.org/10.1038/ncomms9502 513 

Sauer, T., Yorke, J.A., Casdagli, M., 1991. Embedology. Journal of Statistical Physics 65, 579–514 
616. 515 

Shepherd, T.G., 2014. Atmospheric circulation as a source of uncertainty in climate change 516 
projections. Nature Geoscience 7, 703–708. https://doi.org/10.1038/ngeo2253 517 

Shi, H., Zhao, Y., Liu, S., Cai, H., Zhou, Z., 2022. A new perspective on drought propagation: 518 
causality. Geophysical Research Letters 49, e2021GL096758. 519 
https://doi.org/10.1029/2021GL096758 520 

Shin, S.-I., Sardeshmukh, P.D., 2011. Critical influence of the pattern of Tropical Ocean 521 
warming on remote climate trends. Climate Dynamics 36, 1577–1591. 522 
https://doi.org/10.1007/s00382-009-0732-3 523 

Storch, H. von, Zwiers, F.W., 2001. Statistical Analysis in Climate Research. Cambridge 524 
University Press. 525 

Sugihara, G., May, R., Ye, H., Hsieh, C.-H., Deyle, E., Fogarty, M., Munch, S., 2012. Detecting 526 
causality in complex ecosystems. Science 338, 496–500. 527 

Sugihara, G., May, R.M., 1990. Nonlinear forecasting as a way of distinguishing chaos from 528 
measurement error in time series. Nature 344, 734–741. 529 

Takens, F., 1981. Detecting strange attractors in fluid turbulence, in: Rand, D., Young, L.S. 530 
(Eds.), Dynamical Systems and Turbulence. Springer-Verlag, Berlin, 366–381. 531 

Vejmelka, M., Pokorná, L., Hlinka, J., Hartman, D., Jajcay, N. and Paluš, M., 2015. Non-random 532 
correlation structures and dimensionality reduction in multivariate climate data. Climate 533 
Dynamics, 44, 2663-2682. https://doi.org/10.1007/s00382-014-2244-z 534 

Walsh, J.E., Richman, M.B., Allen, D.W., 1982. Spatial coherence of monthly precipitation in 535 
the United States. Monthly Weather Review 110, 272–286. https://doi.org/10.1175/1520-536 
0493(1982)110<0272:SCOMPI>2.0.CO;2 537 

Wang, C., Wang, Z.H. 2020. A network-based toolkit for evaluation and intercomparison of 538 
weather prediction and climate modeling. Journal of Environmental Management, 268, 539 
110709. https://doi.org/10.1016/j.jenvman.2020.110709 540 



Confidential manuscript submitted to Geophysical Research Letters 

17 
 

Wang, Y., Yang, J., Chen, Y., De Maeyer, P., Li, Z., Duan, W., 2018. Detecting the causal effect 541 
of soil moisture on precipitation using convergent cross mapping. Scientific reports. 8, 542 
12171. https://doi.org/10.1038/s41598-018-30669-2 543 

Yang, X., Wang, Z.H., Wang, C. 2022a. Critical transitions in the hydrological system: early-544 
warning signals and network analysis. Hydrology and Earth System Sciences, 26(7), 545 
1845-1856. https://doi.org/10.5194/hess-26-1845-2022 546 

Yang, X., Wang, Z.H., Wang, C., Lai, Y.C. 2022b. Detecting the causal influence of thermal 547 
environments among climate regions in the United States. Journal of Environmental 548 
Management, 116001. https://doi.org/10.1016/j.jenvman.2022.116001 549 

Zhang, X., Wang, J., Zwiers, F.W., Groisman, P.Y., 2010. The influence of large-scale climate 550 
variability on winter maximum daily precipitation over North America. Journal of 551 
Climate 23, 2902–2915. https://doi.org/10.1175/2010JCLI3249.1 552 

Zishka, K.M. and Smith, P.J., 1980. The climatology of cyclones and anticyclones over North 553 
America and surrounding ocean environs for January and July, 1950–77. Monthly 554 
Weather Review, 108, 387-401. https://doi.org/10.1175/1520-555 
0493(1980)108<0387:TCOCAA>2.0.CO;2 556 

https://doi.org/10.1175/1520-0493(1980)108%3C0387:TCOCAA%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1980)108%3C0387:TCOCAA%3E2.0.CO;2

	Key Points:
	Abstract
	Keywords
	1 Introduction
	2 Methods
	2.1 Data retrieval and treatment
	2.2 Convergent cross mapping algorithm
	2.3 The reconstruction of phase-space dynamical system
	2.4 Quantification of causal effect and susceptibility for climate regions in the U.S.
	3 Results
	3.1 Cross-regional causality in the CONUS
	3.2 Regional causal effect and susceptibility
	3.3 Temporal variability of causality between pairs of climate regions
	4 Discussion
	5 Concluding remarks
	Acknowledgments
	Data Availability Statement
	References

