
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 1

PISA: A Non-Volatile Processing-In-Sensor
Accelerator for Imaging Systems
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Abstract—This work proposes a Processing-In-Sensor Accelerator, namely PISA, as a flexible, energy-efficient, and high-performance
solution for real-time and smart image processing in AI devices. PISA intrinsically implements a coarse-grained convolution operation
in Binarized-Weight Neural Networks (BWNNs) leveraging a novel compute-pixel with non-volatile weight storage at the sensor side.
This remarkably reduces the power consumption of data conversion and transmission to an off-chip processor. The design is
completed with a bit-wise near-sensor in-memory computing unit to process the remaining network layers. Once the object is detected,
PISA switches to typical sensing mode to capture the image for a fine-grained convolution using only a near-sensor processing unit.
Our circuit-to-application co-simulation results on a BWNN acceleration demonstrate minor accuracy degradation on various image
datasets in coarse-grained evaluation compared to baseline BWNN models, while PISA achieves a frame rate of 1000 and efficiency of
∼1.74 TOp/s/W. Lastly, PISA substantially reduces data conversion and transmission energy by ∼84% compared to a baseline.

Index Terms—Magnetic memories, processing-in-sensor, accelerator.
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1 INTRODUCTION

INTERNET of Thing (IoT) devices are projected to attain
an $1100B market by 2025, with a web of intercon-

nection projected to comprise approximately 75+ billion
IoT devices, including wearable devices, smart cities, and
smart industry [1], [2]. Intelligent IoT (IIoT) nodes consist
of sensory systems, which enable massive data collection
from the environment and people to process with on-/off-
chip processors (1018 bytes/s or ops). In most cases, large
portions of the captured sensory data are redundant and
unstructured. Data conversion and transmission of large
raw data to a back-end processor impose high energy
consumption, high latency, a memory bottleneck, and low-
speed feature extraction on the edge [1] as shown with the
pixel-only architecture in Fig. 1(a). To overcome these issues,
computing architectures will need to shift from a cloud-
centric approach to a thing-centric (data-centric) approach,
where the IoT node processes the sensed data. Nonetheless,
the processing demands of artificial intelligence tasks such
as Convolutional Neural Networks (CNNs) spanning hun-
dreds of layers face serious challenges for their tractability in
computational and storage resources. Effective techniques in
both software and hardware domains have been developed
to improve CNN efficiency by alleviating the “power and
memory wall” bottleneck.

In algorithm-based approaches, the use of shallower
but wider CNN models, quantizing parameters, and net-
work binarization has been explored thoroughly [3], [4].
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Recently, low bit-width weights and activations reduce
computing complexity and model size. For instance, in
[3], authors performed bit-wise convolution between the
inputs and low bit-width weights by converting the con-
ventional Multiplication-And-Accumulate (MAC) into the
corresponding AND-bitcount operations. In an extreme
quantization method, binary convolutional neural networks
have achieved acceptable accuracy on both small [5] and
large datasets [4] by relaxing the demands for some high
precision calculations. Instead, they binarize weight and/or
input feature map while processing the forward path, pro-
viding a promising solution to mitigate the aforementioned
bottlenecks in storage and computational components [6].

From the hardware point of view, the underlying oper-
ations should be realized using efficient mechanisms. How-
ever, the conventional processing elements are developed
based on the von-Neumann computing model with separate
memory and processing blocks connecting via buses, which
imposes serious challenges, such as long memory access
latency, limited memory bandwidth, energy-hungry data
transfer, and high leakage power consumption restricting
the edge device’s efficiency and working hours [2], [7].
Besides, at the upper level, this causes several significant
issues such as communication bandwidth and security.
Therefore, as a potential remedy, smart image sensors with
instant image preprocessing have been extensively explored
for object recognition applications [2], [8]–[11]. This paves
the way for new sensor paradigms such as a Processing-
Near-Sensor (PNS), in which digital outputs of a pixel
are accelerated near the sensor leveraging an on-chip pro-
cessor. Another solution to alleviate the above-mentioned
challenges is a Processing-in-Memory (PIM) architecture,
which is extensively studied in [6], [7], [12]. By inspiring
the PNS and PIM techniques, two promising alternatives are
the Processing-in-Sensor (PIS) that works on pre-Analog-to-
Digital Converters (ADC) data [9], [13], [14] and a hybrid
PIS-PNS platform [1] to improve vision sensor functionality
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Fig. 1: (a) Various visual system architectures, (b) The pro-
posed hybrid architecture.

and eliminate redundant data output, as shown in Fig. 1(a).
However, the computational capabilities of these sensors
have been limited to specific applications. This includes spe-
cific feature extraction applications less supporting MAC-
based image classification [1], [8] to meet both resiliency and
efficiency such as Haar-like image filtering [15], sharpening,
blurring [10], and local binary pattern [16]. In general,
the PIS units are designed to process the image before
transmitting the raw data to the on-chip memory unit to
be processed by a PNS (PIM) unit. Such data transfer in
traditional designs (from CMOS image sensors to the mem-
ory) imposes a serious bottleneck and reduces the feature
extraction speed remarkably. Therefore, having a coarse-
grained computation with a PIS unit can (i) reduce the
power consumption of data conversion from photo-currents
to pixel values in the image processing tasks, (ii) increase
the data processing speed, and (iii) alleviate the memory
bottleneck issue [1], [2].

In this paper, we propose a new Processing-In-Sensor
Accelerator (PISA) as an energy-efficient PIS paradigm co-
integrating always-on sensing and processing capabilities
working with a near-sensor PIM unit (PNS) that is catego-
rized as a new hybrid design as shown in Fig. 1(b). The
proposed design features a real-time programmable coarse-
grained convolution to reduce the power consumption of
data conversion from photo-currents to pixel values in the
image processing task. Once the object is detected, PISA
switches to a typical sensing mode to capture the image
for fine-grained convolution using a PNS unit. The contri-
butions of this paper are as follows:

1) We develop a PIS architecture based on a set of inno-
vative microarchitectural and circuit-level schemes
optimized to process the 1st-layer of Binarized-

Weight Neural Networks (BWNN) with weights
stored in non-volatile memory components that of-
fers energy-efficiency and speed-up.

2) We complete the design with a bit-wise near-sensor
PIM-enabled unit to process the remaining network
layers. The presented bulk bit-wise computation
operations are supported by most PIM architectures.

3) We present a solid bottom-up evaluation framework
and a PIM assessment simulator to analyze the
performance of the whole system.

4) We extensively assess PISA’s performance and
energy-efficiency co-integrated with the PNS unit
compared with recent sensory platforms.

The remainder of the paper is designed as follows.
Section 2 discusses the state-of-the-art near-sensor, in-sensor
processing designs, and Magnetic Random Access Memory
(MRAM). Section 3 delineates the proposed PISA architec-
ture and the supported operations. Section 4 presents the
near-sensor PIM unit. Section 5 gives the proposed bottom-
up evaluation framework and simulation results. Section 6
discusses the future work and finally, Section 7 concludes
this work.

2 BACKGROUND & MOTIVATION

2.1 Near-Sensor & In-Sensor Processing

Systematic integration of computing and sensor arrays has
been widely studied to eliminate off-chip data transmission
and reduce ADC bandwidth by combining CMOS image
sensor and processors in one chip as known as PNS [2], [10],
or even integrating pixels and computation unit so-called
PIS [9], [13], [17], [18]. In [10], photocurrents are transformed
into pulse-width modulation signals and a dedicated analog
processor is designed to execute feature extraction reduc-
ing ADC power consumption. In [2], 3D-stacked column-
parallel ADCs and Processing Elements (PE) are imple-
mented to run spatiotemporal image processing. In [19], a
CMOS image sensor with dual-mode delta-sigma ADCs is
designed to process 1st-conv, layer of BWNNs. RedEye [20]
executes the convolution operation using charge-sharing
tunable capacitors. Although this design shows energy re-
duction compared to a CPU/GPU by sacrificing accuracy,
to achieve high accuracy computation, the required energy
per frame increases dramatically by 100×. MACSEN [9]
as a PIS platform processes the 1st-convolutional layer of
BWNNs with the correlated double sampling procedure
achieving 1000fps speed in computation mode. However,
it suffers from humongous area-overhead and power con-
sumption mainly due to the SRAM-based PIS method. In
[21], a pulse-domain algorithm uses fundamental building
blocks, photodiode arrays, and an ADC to perform near-
sensor image processing that reduces design complexity and
enhances both cost and speed. Putting all together, there
are three main bottlenecks in IoT imaging systems that this
work explores and aims to solve: (1) The conversion and
storage of pixel values consume most of the power (>96%
[9]) in conventional image sensors; (2) the computation
imposes a large area-overhead and power consumption in
more recent PNS/PIS units and requires extra memory for
intermediate data storage; and (3) the system is hardwired
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Fig. 2: (a) The normalized magnetization switching in x-
, y- and z-axis. (b) The Resistance-Area product w.r.t the
thickness of MTJ tunnel oxide (tox).

so the functionality is limited to simple pre-processing tasks
such as 1st-layer BWNN computation and cannot go beyond
that.

2.2 MRAM as a High-Performance Non-Volatile Memory
With the great advancement of fabrication technology and
commercialization of MRAM (e.g., IBM [22] and Ever-
spin [23]), it is becoming a next-generation universal Non-
Volatile Memory (NVM) technology, with potential applica-
tions in both last-level cache and main memory [24]. Par-
ticularly, recent current-induced Spin-Transfer Torque (STT)
and Spin-Orbit Torque (SOT)-based MRAMs have greatly
changed the state-of-the-art memory hierarchy due to their
non-volatility, zero leakage power in un-accessed bit-cell
[25], high integration density (2× more than SRAM), high
speed (sub-nanosecond) [26], excellent endurance (∼ 1015

cycles [27]), and compatibility with the CMOS fabrication
process (back end of the line) [25]. A standard 1-transistor
1-resistor (1T1R) STT-MRAM bit-cell consists of an access
transistor and a Magnetic Tunnel Junction (MTJ). A typical
MTJ structure consists of two ferromagnetic layers with a
tunnel barrier sandwiched between them [28]. One of the
layers is a pinned magnetic layer, while the other one is
a free magnetic layer. Due to the tunneling magnetore-
sistance (TMR) effect [28], the resistance of MTJ is high
(/low) when the magnetization of two ferromagnetic layers
is in anti-parallel (/parallel). The free layer magnetization
could be manipulated by applying a current-induced STT
[29]. For the STT-MRAM modeling in this work, the Non-
Equilibrium Green’s Function (NEGF) and Landau-Lifshitz-
Gilbert(LLG) equation are used before the circuit-level simu-
lation. The magnetization dynamics of MTJ’s Free Layer-FL
(m) can be modeled as [30]:
dm

dt
= −|γ|m×Heff+α

(
m×dm

dt

)
+|γ|β(m×mp×m)−|γ|βε′(m×mp)

(1)

β = | �

2μ0e
| IcP

AMTJtFLMs
(2)

where � is the reduced plank constant, γ is the gyromag-
netic ratio, Ic is the charge current flowing through MTJ, tFL
is the thickness of the free layer, ε′ is the second Spin transfer
torque coefficient, and Heff is the effective magnetic field. P
is the effective polarization factor, AMTJ is the cross-sectional

TABLE 1: Simulations Parameters for MTJ.

Parameter Value
Free layer dimension (W × L× t)FL 65× 65× 2 nm3

Polarization factor, P 0.4
Gilbert Damping Factor, α 0.007

Saturation Magnetization, Ms 850 kA/m
Oxide thickness, tox 1.5 nm

Resistance-Area product, RAp / TMR 10.58 Ω · μm2 / 171.2%
Supply voltage 1 V

STT-MRAM cell area 48F 2

Access transistor width 9F
Cell aspect Ratio 1.34

area of MTJ, and mp is the unit polarization direction. Figure
2(a) shows the normalized magnetization dynamics of the
free layer in x, y, and z-axes when performing the STT-
MRAM write scheme. Based on the simulation parameters
listed in Table 1, the magnetization dynamic from the LLG
equation can provide the relative angle θ between the mag-
netization of Pinned Layer-PL (ẑ) and Free Layer-FL (m).
Therefore, the real-time conductance of MTJ (GMTJ) is given
by:

GMTJ =
GP +GAP

2
+

GP −GAP
2

cos θ (3)

where GP and GAP are the conductance of MTJ in parallel
(θ = 0) and anti-parallel (θ = 180) configurations. Both GP
and GAP are obtained from the atomistic level simulation
framework based on Non-Equilibrium Green’s Function
(NEGF) [31], while the Resistance-Area Product with respect
to the thickness of MTJ tunnel oxide is shown in Fig. 2(b).

3 PISA ARCHITECTURE

Figure 1(b) shows an overview of the proposed hybrid ar-
chitecture’s data flow regarding a simple network structure
with four convolutional layers and one Fully-Connected
(FC) layer. Similarly, our proposed approach can be ex-
tended to accelerate much more complex CNN models.
We first propose PISA as a flexible, energy-efficient, and
high-performance solution for real-time and smart image
processing in AI devices. PISA will integrate sensing and
processing phases and can intrinsically implement a coarse-
grained convolution operation (Fig 1(b) 1 ) required in a
wide variety of image processing tasks such as classification
by processing the 1st-layer in BWNNs. The design will be
completed with a PNS unit to perform a low bit-width
coarse-grained convolution on the remaining layers. Once
the object is roughly detected at the end of step- 2 , PISA
will switch to typical sensing mode 3 to capture the image
for a fine-grained convolution using the PNS unit 4 .

Overview: At a high level, the PISA array consists of
an m × n Compute Focal Plane (CFP), row and column
controllers (Ctrl), command decoder, sensor timing ctrl,
and sensor I/O operating in two modes, i.e., sensing and
processing as shown in Fig. 3(a). The CFP is designed to co-
integrate sensing and processing of the 1st-layer of BWNN
targeting a low-power and coarse-grained classification. To
enable this, the conventional pixel unit is upgraded to a
Compute Pixel (CP). The Ri (Row) signal is controlled by
the Row Ctrl and shared across pixels located in the same
row to enable access during the row-wise sensing mode.
However, the CR (ComputeRow) is a unique controlling sig-
nal connected to entire CP units activated during processing
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Fig. 3: (a) The overview of PISA architecture, (b) PNS
architecture.

mode. The core part of PISA is the CP unit consisting of a
pixel connected to v Non-Volatile Memory (NVM) elements
as shown in Fig. 4. A Sense Bit-line (SBL) is shared across
the pixels on the same column connected to sensor I/O for
sensing mode (Fig. 3(a)). Moreover, CPs share v Compute
Bit-lines (CBL), each connected to a sense amplifier for
processing as indicated by the purple line in Fig. 3(a). The
1st-layer binarized weight corresponding to each pixel is
pre-stored into NVMs and an efficient coarse-grained MAC
operation is then accomplished in a voltage-controlled cross-
bar fashion. Accordingly, the output of the first layer, as
shown in Fig. 1(b), is transmitted to a PNS unit that enables
the computation of the remaining BWNN layers. Fig. 4(a)
depicts a sample neural network, wherein CP1,1-CPm,n are
linked to out1 via NVM1’s weight. Similarly, every pixel
is connected to out2-outv. To maximize MAC computa-
tion throughput and fully leverage PISA’s parallelism, we
propose a hardware mapping scheme and connection con-
figuration between CP elements and corresponding NVM
add-ons shown in Fig. 4(b) to implement the target neural
network. From a design perspective, the total number of CPs
in PISA is given by m×n as the input spatial dimension.
The total number of NVMs can be given by m×n×v where
v represents the number of output layer’s nodes as depicted
in Fig. 4(a). PISA hardware is developed and fixed at design
time based on the target application and the number of CPs
has a direct impact on the accuracy at the end. The more
CPs are considered to fully cover the input feature map
translated to the higher number of weight parameters that
can be stored in NVMs and this leads to a higher accuracy
at the cost of higher energy consumption.

3.1 Compute-Pixel Element
The CP is composed of a pixel (three transistors and one
Photodiode (PD)) as shown in Fig. 5, and v compute add-
ons. The compute add-on consists of three transistors of
which T4 and T5 work as deep triode region current sources
and a 2:1 MUX controlled by an NVM element. We selected
STT-MRAM as the NVM unit as depicted in Fig. 5(b) due to
its high speed (sub-nanosecond), long-endurance (10 years),
and less than fJ/bit memory write energy (close to SRAM)
[30]. Thus, the binary weight data is stored as the magne-
tization direction in the MTJ’s free layer, which could be
programmed through the current-induced STT by the NVM
write driver. A reference resistor is then used to realize a
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Fig. 4: (a) An example of a fully-connected network with v
output, (b) PISA’s mapping scheme for an m×n CFP.

voltage divider circuit to read out the weight value from the
memory. Fig. 5(a) illustrates a 2×1 CP array implementation.
Please note that we keep the number of compute add-ons in
each CP to a maximum of 64 according to our simulations
to keep the pixel sensitivity high.

3.2 Sensing Mode

In sensing mode, by initially setting Rst=‘high’, the pho-
todiode (PD) connected to the T1 transistor (see Fig. 5(b))
turns into inverse polarization. In this way, turning on the
access transistor T3 and k1 switch (see Fig. 5(c)) at the Sensor
I/O allows the C1 capacitor to fully charge through SBL. By
turning off T1, PD generates a photo-current with respect to
the external light intensity which in turn leads to a voltage
drop (VPD) at the gate of T2. Once again by turning on
the T3 and this time k2 switch, C2 is selected to record the
voltage drop. Therefore, the voltage values before and after
the image light exposure, i.e., V1 and V2, are sampled by the
CP, and the difference between the two voltages is sensed
with an amplifier. This value is proportional to the voltage
drop on VPD. In other words, the voltage at the cathode
of PD can be read at the pixel output. It is worth pointing
out that each ADC samples when the voltage drops, then
it subtracts the pixel reset voltage and converts the output
signal. Accordingly, the ADC can skip to the next row of
the array. Please note that in sensing mode, the CR signal is
grounded.

3.3 Integrated Sensing-Processing Mode

In this mode, as shown in a sample 2×1 CFP array in Fig.
5(a), the CPD capacitor is initialized to the fully-charged
state by setting Rst=‘high’, similar to the sensing mode.
During an evaluation cycle, by turning off T1, the row ctrl
activates the CR signal, while the Ri signals are deactivated.
This will activate the entire array for a single-cycle MAC
operation. The core idea behind compute add-on shown in
Fig. 5(b) is to leverage pixel’s VPD as a sampling voltage for
T4(/T5) in v-NVM units to simultaneously generate(/pull)
current from the CBLs. To implement multiplications be-
tween the pixel value identified by VPD and the binary
weight stored in NVM, a 2:1 MUX unit was devised in
every CP taking the T4’s source and T5’s drain signals as
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inputs and NVM sensed data as the selector. Note that T4
and T5 are connected to VDD and −VDD

3 , respectively. After
exposure, the set of input sensor voltages VPD= [VPD1,1

,
VPD1,2

,..., VPDm,n
] is applied to the gate of T4s and T5s

generating current set I= [I1,1(1), I1,1(2),..., I1,1(v),..., Im,n(1),
Im,n(2),..., Im,n(v)] for the entire array. If the binary weight
equals ‘1’ (Wi=+1), T4 acts as a current source and generates
a current with Ii,j(x) magnitude on the shared CBL as
shown by the red dashed line in Fig. 5(b). However, if
the binary weight equals ‘0’ (Wi=-1), the T5 transistor acts
as a negative current source and pulls a current with the
same magnitude as Ii,j(x) in the opposite direction from
the shared CBL as indicated by the blue dashed line in Fig.
5(b). Please note that T4’s and T5’s gate capacitors as well
as parasitic capacitors will be fully charged to VDD through
T1 in the pre-charge cycle, this will significantly keep the
pixel sensitivity when the number of compute add-ons in-
creases. This mechanism converts every input pixel value to
a weighted current according to the NVM that is interpreted
as the multiplication in BWNNs. Mathematically, let Gj,i be
the conductance of the synapse connecting ith to the jth

node, the current through that synapse is Gj,iVi and the col-
lection of the current through each CBL represents the MAC
result (Isum,j=

∑
i Gj,iVi), according to Kirchhoff’s law. This

is readily calculated by measuring the voltage across a
sensing resistor. For the activation function, we designed
and tuned a sense circuit connected to each CBL based
on StrongARM latch to realize an in-sensor sign function
[32], [33] as shown in Fig. 5(d). The sense amplifier requires
two clock phases: pre-charge (Clk ‘high’) and sensing (Clk
‘low’). During sensing, Isum(x) flows from every CBL to the
ground and generates a sense voltage (Vsense) at the input
of the sense amplifier. This voltage is compared with the
reference voltage by applying a proportional current over
a processing reference resistor (Rpro) activated by the mode
signal. The binary activation is then transmitted through the
bus fabrics to the PNS unit for storage.

4 NEAR-SENSOR BIT-WISE PIM UNIT (PNS)

Besides 1st-layer, there are other convolutional and FC lay-
ers in BWNNs that can be accelerated close to the sensor
without sending the activated feature maps to off-chip pro-
cessors. The general memory organization of the PNS unit is
shown in Fig. 3(b). The memory unit is divided into multiple
banks consisting of computational sub-arrays. Every two
sub-arrays share a Local Row Buffer (LRB) and the entire
array shares a Digital Processing Unit (DPU) to pre-process
the data by quantization and post-process outputs with
linear batch normalization and activation. For the micro-
architecture and circuit-level implementation of the near-
sensor PIM unit, we adopt DRISA-1T1C [12] and ReDRAM
[34] techniques. Fig. 6 gives an overview of the BWNN bit-
wise acceleration steps. In the first step, the preprocessed
data from PISA is mapped into the computational sub-
arrays. In the second step, parallel computational sub-arrays
perform bulk bit-wise operations between tensors and gen-
erate the output. Accordingly, the output is activated by
DPU’s activation unit and saved back into memory. From
a computation perspective, every convolutional layer can
be similarly implemented by exploiting logic AND, bitcount,
and bitshift as rapid and parallelizable operations [3]. As-
sume I is a sequence of M -bit input integers (3-bit as an ex-
ample in Fig. 6) located in input fmap covered by the sliding
kernel of W , such that Ii ∈ I is an M -bit vector representing
a fixed-point integer. Now, we index the bits of each Ii
element from LSB to MSB with m = [0,M − 1], such that
m = 0 and m = M − 1 are corresponding to LSB and MSB,
respectively. Accordingly, we represent a second sequence
denoted as Cm(I) including the combination of mth bit of
all Ii elements (shown by colored elliptic). For instance,
C0(I) vector consists of LSBs of all Ii elements “0110”.
Considering W as a sequence of N -bit weight integers (3-
bit, herein) located in a sliding kernel with the index of n =
[0, N − 1]. The second sequence can be similarly generated
as Cn(W ). Now, by considering the set of all mth value se-
quences, the I can be represented like I =

∑M−1
m=0 2mcm(I).
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Fig. 6: Acceleration steps of the PNS convolver.

Likewise, W can be represented like W =
∑N−1

n=0 2ncn(W ).
In this way, the convolution between I and W can be de-
fined as

∑M−1
m=0

∑N−1
n=0 2m+nbitcount(and(Cn(W ), Cm(I))).

As shown in the data mapping step of Fig. 6, C2(W )-
C0(W ) are consequently mapped to the designated sub-
array. C2(I) − C0(I) are mapped in the following memory
rows in the same way. Now, computational sub-array can
perform bit-wise parallel AND operation of Cn(W ) and
Cm(I) as depicted in Fig. 6. The results stored within the
sub-array will be accordingly processed using DPU’s bit-
counter. Bit-counter readily counts the number of “1”s in
each resultant vector and passes it to the Shifter unit. As
depicted in Fig. 6, “0001”, as a result of Bit-Counter is left-
shifted by 3-bit (×22+1) to “1000”. Eventually, the PIM adds
the shifter unit’s outputs to produce output fmaps for every
layer. Note that the PNS unit supports multi-bit convolu-
tion so the various configurations of weight:input can be
achieved at the edge. Due to the lack of space, we refer the
readership to the above-mentioned papers for details on in-
memory logic implementation techniques. The total number
and size of the compute sub-arrays are predefined to fit the
preprocessed data from PISA and to accelerate the bit-wise
operations. Considering an N -input feature map layer that
needs to be mapped to PNS with Ns activated sub-arrays
of the size of x × y, each sub-array can process n input
feature maps (n ≤ f |n ∈ N, f = min(x, y)). In this way,
the number of sub-arrays for processing an N input feature
map layer can be formulated as Ns =

⌈
N
f

⌉
.

5 PERFORMANCE EVALUATION

5.1 Framework & Methodology

To assess the performance of the proposed design, we
developed a simulation framework from scratch consisting
of two main components as shown in Fig. 7. First, for
coarse-grained computation, at the circuit level, we fully
implemented PISA with peripheral circuity with TSMC
65nm-GP in Cadence to achieve the performance parame-
ters. For the NVM elements, we jointly use the NEGF and
LLG equations to model MTJ [30]. A Verilog-A model of
the NVM element is then developed to co-simulate with
interface CMOS circuits in Cadence Spectre and SPICE.
PISA requires binarizing the 1st-layer weights as discussed
while the rest of the layers processed with the PNS unit
have various bit-length. We trained a PyTorch BWNN model
inspired by [35], [36] extracting the 1st-layer weights. PISA’s
NVM elements are then programmed at the circuit-level by
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Fig. 7: Evaluation framework.

the binary weights. After 1st-layer computation, the results
are recorded and fed into a behavioral-level PIM simula-
tor to simulate the PNS platform. Second, for fine-grained
computation, at the circuit level, we fully implemented
DRISA-1T1C [12] and ReDRAM [34] with TSMC 65nm-
GP in Cadence to achieve the performance parameters. A
custom architecture-level PIM support tool is developed
based on our previous simulator (PIMA-SIM [37]) to model
the timing, energy, and area based on the circuit-level data.
This tool offers the same flexibility in memory configuration
regarding bank/mat/subarray organization and peripheral
circuitry design as Cacti [38] while supporting PIM-level
configurations. Based on the circuit level results, it can alter
the configuration files (.cfg) with different array organiza-
tions and add-ons such as DPU and report performance for
PIM operations. We then configure the PNS unit with 1024
rows and 256 columns, 4×4 mats per bank organized in an
H-tree routing manner, and 16×16 banks in each memory
group. The behavioral PIM model developed in Python then
takes coarse-grained computation voltage results, 2nd-to-
last layer trained weights, and the PIM architecture-level
data and processes the BWNN. It calculates the latency and
energy that the whole system spends executing the network.

5.2 Results

Functionality: Fig. 8 shows the post-layout transient simula-
tion waveforms of a 4×4 PISA array with eight NVM units
(v=8) storing binary weights with VClk, VRst, VPD, ICBL,
and VOut signals. PISA executes global shutter in processing
mode and conducts all computations in parallel. As shown,
periodically, by precharging VPD to VDD, the computation
takes place at every falling edge of the clock, i.e., ∼100μs. In
this way, ICBL carries the summation current corresponding
to VPDs. As can be seen, when ICBL is positive (e.g., the
case of 32μA and 39μA) meaning the MAC result is larger
than zero and the output sign function results in “1” and
vice-versa.

Robustness: PISA operates in the mixed-signal domain,
which is vulnerable to non-ideal factors, such as variations,
noises, and leakage. We simulated the PISA’s circuit-level
variations and noises with equivalent post-layout parasitic
at 300K with 10000 Monte-Carlo runs. This includes a
variation in the width/length of transistors and CBL ca-
pacitance. The impact of thermal noises was modeled as
the additive Gaussian noise on the dynamic capacitance
along with 1/f noise of CMOS transistors from the source-
follower in pixels. Our study shows that the percentage
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Fig. 8: Post-layout transient simulation result for a sample
4×4 PISA array.

of failure upon a considerable variation/noise (10%) across
10000 iterations is 0% as plotted VPD in Fig. 8. It is worth
mentioning that T4’s and T5’s gate capacitors as well as
parasitic capacitors will be fully charged to VDD through
T1 in the pre-charge cycle, this will significantly keep the
pixel sensitivity when the number of compute add-ons
increases. For variations above 10%, a noise-aware training
technique [39] is used injecting multiplicative noise onto the
weights in the training to increase BWNN robustness. For
the NVM element, we added a σ = 2% variation to the
Resistance-Area product, and a σ = 5% process variation
(typical MTJ conductance variation [30]) on the TMR and
verified a sense margin of 70mV between parallel and
anti-parallel cases. In the noise-aware training technique,
input features are augmented with a noise estimate before
training. Originally, such a technique was demonstrated in
[40] for noise-resistant speech recognition. The basic CNN
training did not specifically utilize the noise information of
each utterance. Thus, noise awareness is enabled by feeding
the CNN with noisy speech samples augmented with noise
estimates. Using additional noise information online, CNN
can predict more accurately.

Energy & Performance: We analyze the PISA’s utility
in processing the 1st-convolutional layer for continuous
mobile vision in three scenarios, i.e., assisting mobile CPU
(PISA-CPU), assisting mobile GPU (PISA-GPU), and PISA-
PNS, and comparing it with a baseline sensor-CPU plat-
form. For this goal, a BWNN model with 6 binary-weight
convolutional layers and 2 FC layers to process the SVHN
dataset is adopted. The energy consumption and latency
results of the under-test platforms are then reported for
four various weight/input configurations in PNS (W:I= 1:32,
1:16, 1:8, 1:4) in Fig. 9. The rationale behind this experi-
ment is to show how weight/input configuration’s precision
will impact the whole deep neural network acceleration
performance in various platforms, especially in the PISA-
PNS designs. The under-test platforms in each experiment
from left to right include the baseline design consisting of a
conventional 128×128 image sensor and an Intel(R) Core i7-
6700 at 3.4GHz CPU with 16GB RAM where the CPU plays
the main role in processing all layers after receiving the raw
data from the sensor’s ADC. The second platform consists
of the same CPU connected to a 128×128 PISA array, where
PISA processes 1st convolutional layer, and the remaining
layers are processed by the CPU. The third design replaces
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Fig. 9: (a) Energy consumption, and (b) Execution time of
under-test PISA-based platforms in various PNS configu-
rations compared with the baseline. From left to right in
each bar group: Baseline, PISA-CPU, PISA-GPU, PISA-PNS-
I, and PISA-PNS-II.

the previous CPU with an NVIDIA GTX 1080Ti Pascal GPU
with 3584 CUDA cores running at 1.5GHz (11 TFLOPs
peak performance). For CPU/GPU platforms, we use the
open-source algorithm DoReFa-Net [3] where the rest of the
layers can be accelerated using the bit-wise convolution of
fixed-point integers. The last two designs (fourth and fifth
columns in each configuration in Fig. 9) take advantage of
PISA and its PNS-support to process the whole BWNN.
When the 1st convolutional layer is processed by PISA,
we adopted two alternative PIM techniques, i.e., DRISA
[12] and ReDRAM [34] in PNS unit to compute the 2nd-6th

convolutional and 2 FC layers near the sensor. Note that, any
bit-wise PIM techniques could be adopted. We report the
breakdown of energy consumption into sensor processing,
off-chip processing, data transfer, and PNS. We find that
PISA performs favorably against conventional CMOS image
sensors. To have a fair comparison with the PISA-PNS plat-
forms, we also considered the fact that the 2nd-layer input
matrices on the processor side need to be transposed and
processed cycle-by-cycle before any computation. Therefore,
the energy/latency cost of such an extra operation was
taken into account. First, PISA substantially reduces the
data transmission energy by ∼84%. paired with the CPU
and GPU. The PISA-CPU platform saves 58% energy on
average compared with the baseline as shown in Fig. 9(a).
While the PISA-GPU does not show a remarkable energy-
saving over PISA-CPU but is still ∼62.5% more energy-
efficient than the baseline. Besides the reduction in data
transfer, the other reason behind such a striking energy
saving is eliminating energy-hungry ADC units in PISA’s
processing mode. Second, we observe that PISA-PNSs (PNS-
I and PNS-II denote the adopted DRISA-1T1C and ReDRAM
techniques, respectively) reduce the energy consumption of
edge devices dramatically. The PISA-PNS-II requires ∼50-
170μJ energy depending on the PNS configuration to pro-
cess the whole BWNN on the edge, which is a safe choice
for power-constrained IoT sensor devices. The PISA-PNS
designs almost eliminate the data transmission energy. Fig.
9(b) illustrates the execution time corresponding to various
W:I configurations. This figure reports the sensor and off-
sensor/near-sensor processing time as the time taken by the
computing cores (i.e., CPU in the baseline, PISA plus CPU
in the PISA-CPU platform, PISA plus GPU in the PISA-GPU
platform, and PISA plus PNS in PISA-PNS). We observe that
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TABLE 2: Performance comparison of various PIS units.

Designs Technology
(nm) Purpose Comput. Scheme Memory NV* Pixel Size

(μm2) Array Size Frame Rate
(frame/s)

Power
(mW )

Efficiency
(TOp/s/W )

[41] 180 2D optic flow est. raw-wise Yes No 28.8×28.8 64×64 30 0.029 0.0041

[10] 180 edge*/blur/sharpen/
1st layer CNN raw-wise No No 7.6×7.6 128×128 480 sensing: 0.077

processing: 0.091 0.777

[2] 60/90 STP† raw-wise Yes No 3.5×3.5 1296×976 1000 sensing: 230
processing:363 0.386

[9] 180 1st layer BNN entire-array No No 110×110 32×32 1000 0.0121 1.32
[8] 180 edge*/TMF‡ raw-wise Yes No 32.6×32.6 256×256 100,000 1230 0.535

PISA 65 1st layer BNN entire-array Yes Yes 55×55 128×128 1000 sensing: 0.025
processing: 0.0090 1.745

* Edge extraction. †Spatial Temporal Processing. ‡Thresholding Median Filter.

PISA-PNS designs achieve ∼9-11× speed-up in processing
input frames compared with the baseline.

Resource Utilization: To explore the impact of PISA in
reducing memory bottleneck in executing the 1st-layer of
BWNN, we measured the time fraction at which on-/off-
chip data transfer limits the performance. This evaluation
was accomplished through experimentally extracted results
of each platform with the number of memory access. We
observe the PISA spends less than 5% of time for data
conversion and memory access, whereas the baseline design
spends over 76% of its time waiting to load data from
memory. The PISA-PNS platforms obtain the highest ratio
utilizing up to 95% computation resources.

Comparison: Table 2 compares the structural and perfor-
mance parameters of selective PIS implementations in the
literature. As different implementations are developed for
specific domains, for an impartial comparison, we estimated
and normalized the power consumption when all PIS units
execute the similar task of processing the 1st-layer of CNN.
In our evaluation, we followed the method in state-of-the-
art papers and intentionally didn’t scale down the process
nodes to 65nm as we didn’t have access to all technical con-
figurations of the counterpart implementations. It is note-
worthy that the reported numbers for Top/s/W and frame-
rate are technology-dependent. The PISA achieves the frame
rate of 1000 and the efficiency of ∼1.745 TOp/s/W as an
efficient implementation. This comes from the massively-
parallel CFP and eliminating ADC for coarse-grained de-
tection. However, the implementation in [8] achieves the
highest frame-rate and the implementation in [2] imposes
the least pixel size enabling in-sensor computing. As for
the area, our simulation results reported in Table 2 show
a PISA’s compute-pixel occupies ∼55x55 μm2 in 65nm.
As we do not have access to the other layouts’ configu-
rations, it is very hard to have a fair comparison between
area overheads. However, we believe a ballpark assessment
can be made by comparing the number of minimum-size
transistors in previous SRAM-based implementations and
PISA’s lower-overhead compute add-on. We reimplemented
MACSen [9] at circuit-level as the only BWNN accelerator
developed with the same purpose. Our evaluation showed
that with the same PNS unit based on DRISA [12], PISA
consumes ∼40% less power consumption. Putting every-
thing together, PISA offers 1) a low-overhead, dual-mode,
and reconfigurable design to keep the sensing performance
and realize a processing mode to remarkably reduce the
power consumption of data conversion and transmission;
2) single-cycle in-sensor processing mechanism to improve
image processing speed; 3) highly parallel in-sensor process-
ing design to achieve ultra-high-throughput; 4) exploiting

NVM which reduces standby power consumption during
idle time and offers instant wake-up time, and resilience to
power failure to achieve high performance.

As discussed earlier, MRAM is not the only type of
NVM that can be adopted in PISA. The efficiency and
speed-up of the PISA compared to the recently-proposed
near-sensor and in-sensor designs mainly come from the
innovative compute focal plane architecture consisting of
compute pixels that can be readily implemented with vari-
ous types of NVMs such as ReRAM, PCM, FeRAM, etc. To
further explore the performance of PISA using other types of
NVM, we simulated the design with the TiN/Ti/HfO2/TiN
RRAM device integrated with CMOS n-channel Field-Effect
Transistor (nFET) in [11] to realize a 1T1R unit cell as the
primary NVM element. For this experiment, we considered
Muli-Level Cells (MLC) with 4 resistance levels. We used the
same evaluation framework in Fig. 7 only replacing the de-
vice measurements. The only hardware modification is the
read/write voltages in the voltage driver that changes the
power budget of the system. We observe that the processing
power consumption will increase by 28% compared to the
STT-MRAM. Besides, we get a lower overall efficiency of
∼1.41 TOP/s/W as opposed to the 1.74 TOP/s/W reported
for PISA’s initial configuration.

Table 3 mainly discusses the worst-, average-, and best-
case power consumption with respect to four under-test
datasets. As can be seen, depending on the input dataset,
the processing power (mW) of PISA changes. In Table 2, we
only reported the average power consumption across the
whole test images in the SVHN dataset.

TABLE 3: PISA’s processing power consumption (mW) for
various datasets.

Configuration MNIST SVHN CIFAR-10 CIFAR-100
worst 0.0104 0.0114 0.0210 0.0231

average 0.0072 0.0090 0.0175 0.0184
best 0.0063 0.0071 0.0139 0.0181

Accuracy: In the original BWNN topology, all the layers,
except the first and last, are implemented with binarized
weights [33], [42], [43]. Since, in image classification tasks,
the number of input channels is relatively smaller than the
number of internal layers’ channels, the required parameters
and computations are small. Thus, converting the input
layer will not be a significant issue [33]. We conduct experi-
ments on several datasets, including MNIST, SVHN, CIFAR-
10, and CIFAR-100. Fig. 10 shows the validation error versus
the number of epochs for the four datasets in a worst-case
scenario, i.e., with a 1:4 configuration for 2nd to the last layer.
The comparison of classification accuracy is summarized in
Table 4. We find that the PISA-MRAM shows an acceptable
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Fig. 10: Validation error curves of four different datasets
using the proposed BWNN configuration.

accuracy while providing significant energy-delay-product
reduction as discussed earlier. The accuracy drop of PISA
is mainly because of two reasons: (1) PISA processes the
1st convolutional layer with binarized weights stored in the
magnetic NVM; (2) PISA implements the Sign function as an
activation function, which easily saturates. Thus it degrades
the accuracy compared to ReLU. To enhance the accuracy,
possible solutions are outlined:
(a) In this work, we readily mapped the full precision
trained weights to binary weights ∈ {−1,+1} by only
taking the sign function, expressed in Equation 4:

Forward: b = sign(y) =

{
+1, ify ≥ 0
−1, otherwise

(4)

In this case, the sign function is non-convex, which results
in the gradient becoming zero. Thus, a standard backprop-
agation approach will be impractical due to the vanishing
gradient problem. One practical technique to mitigate this
issue is Normalization. A good normalization is a basis
for neural network convergence; thus, the weights should
be normalized first, then binarized. The accuracy results
associated with this experiment indicated by PISA-m1 are
listed in Table 4 for four under-test data-sets, which show
slight improvement over the baseline PISA implementation.
(b) Another approach could be adding more layers to the
neural network, which allows it to learn more abstract
features and transform the input space more. Although it
may increase accuracy, it increases power consumption and
reduces throughput. The accuracy results associated with
adding 3 additional layers indicated by PISA-m2 are listed
in Table 4 for four under-test data-sets.
(c) As a practical hardware method to enhance the accu-
racy, we reimplemented the PISA’s NVM blocks with the
TiN/Ti/HfO2/TiN RRAM device integrated with CMOS n-
channel Field-Effect Transistor (nFET) in [11] that offers 4
different levels of resistance. As can be seen in Table 4,
the PISA-m3 with 2-bit weight resolution can increase the
accuracy slightly over four different datasets. For example,
for CIFAR-10, we observe ∼0.45% improvement compared
to the MRAM-based implementation. It is worth pointing
out that the PISA architecture enabling edge AI is crucial
in applications that necessitate real-time responses, such as
predictive maintenance, environmental monitoring, smart
home systems, and agricultural AI applications (e.g., crop
health monitoring systems) where the lower accuracy can
be offset. It’s also pivotal in environments with connectiv-

TABLE 4: PISA’s Accuracy (%) on various datasets.
Configuration MNIST SVHN CIFAR-10 CIFAR-100

[33] 96.0 97.47 89.85 70.9
[42] 98.25 97.00 86.98 69.5
[43] 98.4 94.9 80.1 68.8
[35] – 96.9 88.61 71.5

PISA-MRAM 95.12 90.35 79.80 61.6
PISA-m1 95.89 91.20 82.85 62.10
PISA-m2 95.70 91.34 81.76 64.61
PISA-m3 95.72 90.55 80.25 62.5

ity constraints, where privacy concerns demand local data
processing, and where power and cost efficiency are vital.

6 DISCUSSION AND FUTURE WORK

Although almost all the state-of-the-art image sensor de-
signs utilize effective methods to reduce dynamic energy
consumption, including clock gating and low-voltage oper-
ation, an increasing number of modern intelligent sensors
and more application scenarios, making the standby power
dissipation of such systems a critical issue, which can limit
the wider sensors’ applications. The emergence of energy
harvesting systems as a promising approach for battery-
less IoTs suffers from intermittent behavior, leading to data
and environmental inconsistencies. For example, captured
data by sensors become unstable if they are held for a
long time without intermittent resilient architectures and/or
harvestable sources. Moreover, since concurrency with sen-
sors is relatively interrupt-driven, intermittency makes this
concurrency control much more complex. To solve the data
consistency, PISA utilizes NVM elements, which reduce
standby power consumption during idle time, instant wake-
up time, and resilience to power failure, leading to high
throughput and high performance at the cost of minor
accuracy degradation. We plan to extend our future work
to investigate image sensors’ challenges in the presence
of power failure for energy-harvested systems, and more
thoroughly discuss PISA’s power failure resiliency.

7 CONCLUSION
In summary, this work proposed an efficient processing-
in-sensor accelerator, namely PISA, for real-time edge-AI
devices. PISA intrinsically performs a coarse-grained con-
volution operation on the 1st-layer of binarized-weight neu-
ral networks leveraging a novel compute-pixel with non-
volatile weight storage. The design was then completed by
a near-sensor processing-in-memory unit to perform a fine-
grained convolution operation over the remaining layers.
Our results demonstrate acceptable accuracy on various
datasets, while PISA achieves the frame rate of 1000 and
the efficiency of ∼1.74 TOp/s/W.
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