Abstract

As important determinants of urban thermal environment, surface roughness and
morphology have been extensively studied for sustainable urban development. In this study, we
quantify the effect of urban roughness and morphology on the surface urban heat island (SUHI)
intensity and its spatiotemporal patterns, over seventeen major cities in six urban agglomerations
of China. We employ multisource dataset and derive multiple measures, representative of the
roughness and horizontal/vertical indicators of urban morphology. The results show that the
correlation between the SUHI intensity and urban morphological indices is significantly
strengthened with the heat island intensity, manifested by the contrasting Pearson’s » in summer
(r=0.59 £ 0.13) and winter (0.11 £ 0.35). In general, the impact assessed using different
measures of surface morphology is consistent on the SUHI intensity, while the one-dimensional
(1D) roughness emerges as an adequate index not inferior to more complex morphological
parameters. Our study also shows that the impact of urban morphology varies in different
geographic and climatic regions, as well as with different urban management, which highlights
the importance of locality and site-specific design in implementing effective urban heat

mitigation strategies.
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1. Introduction

As a pronounced environmental phenomenon induced by human activities, urban heat
island (UHI) is depicted as that urban cores are usually warmer than their surrounding rural areas
(Oke 1973). The historical documentation of UHI effect has been very long, dating back to in
London as early as 1800s (Howard, 1833). In the past few decades, the effect, mechanisms, and
consequence of UHI have extensively studied, based on in situ and remotely sensed
measurements, as well as numerical simulations (Arnfield, 2003; Wang, 2022). Depending on
the elevation at which ambient temperature is measured, UHI can be further classified into
subsurface, surface, canopy, or boundary-layer urban heat island (Oke, 1976; Voogt & Oke,
2003; Mirzaei and Haghighat, 2010). More specifically, the surface urban heat island (SUHI)
measured by the land surface (skin) temperature (LST) is a widely used indicator and particularly
suitable for remotely sensed data product (Yuan & Bauer, 2007). The peculiarity of urban
thermal environment, UHI in particular, induces various and compound impact over the built
terrains, including but not limited to, e.g. air quality, energy-water-climate repercussions, and
diverse ecosystem services (Howells et al., 2013; Antognelli et al., 2016; Martinez-Bravo et al.,
2019; Wang, 2021; Zhang et al., 2022). Today, with over half of the world's population living in
urban areas (UN, 2019) and global climate change becoming more prominent (IPCC 2014), it is
of crucial importance to further our understanding of UHI to inform policy makers and urban
planners more sustainable solutions to urban heat-related issues.

The formation of UHI involves complex interplays of multiple contributors that can be
broadly classified as: (1) the use of engineered (mostly impervious) materials (e.g. asphalt,
concrete, bricks, etc.) that introduces changes of land surface hydrothermal properties conducive

to higher surface temperatures and sensible heat (Arnfield, 2003; Yang et al., 2016), (2)



modified physics of urban flows and turbulent transport (Fernando, 2010; Song & Wang, 2016),
(3) changes of radiative heat exchange processes in urban canopies (Wang, 2014a), (4) the
reduction of natural (especially vegetated) landscape that suppresses cooling by
evapotranspiration (Bowler et al., 2010), and (5) concentrated and enhanced release of waste heat
and greenhouse gases, in particular carbon dioxide, attributable to anthropogenic activities
(Hutyra et al., 2014; Song et al., 2017; Li & Wang, 2020). Among these factors, land surface
roughness and urban morphology received growing recognition in recent years (Li et al., 2011;
Peng et al., 2016; Li et al., 2021; Yang et al., 2021; Li et al., 2022). The artificially modified land
surface roughness and/or urban morphology can significantly influence the LST by changing the
physics of flow in the urban canopy layer, which in turn modifies the turbulent transport of latent
and sensible heat fluxes (Wang et al., 2011, 2013). More specifically, a high surface roughness
can enhance the surface stress of water vapor and diminish wind speed, while a low surface
roughness height has an opposite effect (Sud et al., 1988). Some prior studies indicated that land
surface roughness also affect the efficiency of atmospheric heat convection, which in turn
modifies the UHI intensity (Lee et al., 2011; Zhao et al., 2014).

To measure land surface roughness and urban morphology, micrometeorological and
morphometric methods were employed in prior studies, the former using field observation and
the latter using remote sensing dataset (Yang and Friedl, 2003; Tian et al., 2011; Equere et al.,
2020). Mechanistically, the surface roughness is usually represented by two aerodynamic
parameters, viz. the zero-displacement height (d) and the surface roughness length (z0). The
parameter d represents the adjustments of land surface profiles due to the presence of large
obstacles such as buildings and vegetation canopies, while zo measures the height above d where

the mean velocity of wind in the vertical direction is zero due to substrate roughness (Brutsaert



1982; Jasinski and Crago 1999; Meier et al. 2022). On the other hand, the urban morphology can
be portrayed by different aspect ratios of street canyons, such as frontal or roof area factions in
typical street canyons (Grimmond and Oke, 1999; Raupach, 1994).

Mounting evidence shows that urban land surface roughness and morphology are among
the major driving factors of UHI. Model simulations found that the UHI intensity correlates with
the street canyon ratio in a logarithmic function, while the mean UHI intensity could vary as
much as 3.0 °C in response to the change in surface roughness and morphology (Zhao et al.,
2014; Li et al, 2020). Real-world studies in several cities further demonstrated that the
distribution, density and height of building groups have noticeable effects on UHI (Lu et al. 2021;
Peng et al. 2018). Among them, the building coverage ratio was found as the most influential
factor for LST changes in Hangzhou and Dalian (Yuan et al. 2021; Yang et al., 2021). In
comparison, the building density has a seasonally stable positive relationship with LST, which
leads to a LST variability as much as 3.6 °C in Wuhan (Li et al. 2021); while another case study
of Beijing found that the increase of building compactness related to 1 — 2 °C temperature
difference in community scale (Li et al., 2022). Nevertheless, most existing studies were mainly
focused on single cities, whereas inter-regional comparisons and spatiotemporal variability
remain largely missing. To better leverage the strategies and solutions of urban heat mitigation,
policy makers and stakeholders need more site-specific knowledge to support locality-based
urban planning (Wang, 2021). For example, in addressing questions like “how to determine the
ideal locations of high-rise buildings in a city”, or “what is the suitable distance among building
arrays”, answers vary by geographic regions and climate zones. Hence it is imperative to

understand how the background climate affects the relationship between urban roughness and



morphology and UHI, or is the relationship homogeneous across different regions, which
amounts the main objective of the current study.

In this study, we investigate the influence of urban roughness and morphology on UHI
and its spatiotemporal variability by employing remote sensing and urban landscape data in
seventeen major cities from six megaregions in China during 2013 —2017. We aim to reveal the
spatiotemporal patterns and, more importantly, potential underlying mechanisms regulating the
impact of urban morphology on UHI. In particular, we derive the UHI intensity of selected cities
from different background climates from remotely sensed LST data and retrieve the urban

surface roughness and morphological indicators using morphometric methods.

2. Data and study area
2.1 Datasets

In this study, we used a portfolio of remote sensing and urban landscape datasets to
explore how surface roughness and morphology influence UHI, as summarized in Table 1. The
Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua satellites
are widely used due to their capacity to provide long-term, high frequency and wide coverage
earth observation data (Wan, 2014). In this study, we used both the daytime and nighttime scenes
from MODI11A2 and MYD11A2 datasets of MODIS land products to retrieve LSTs. To avoid
the contamination of clouds and possible outliers caused by data processes, all the available 8-
day 1-km resolution LST images in the study areas from 2013 to 2017 were composited to yield
monthly mean LST images. In addition, the MCD12Q1 dataset of MODIS land products and
Landsat 8 multispectral images were employed to determine the urban and rural areas which are

critical in UHI studies. MCD12Q1 provides annually 500 m resolution land cover information



according to several land cover classification standards, with the IGBP classification standard
adopted in this study (Sulla-Menashe and Friedl, 2018). In comparison, the 16-day 30-meter
multispectral images from the OLI sensor onboard Landsat 8 satellite provide more accurate
information of built-up areas in the selected megaregions, and its multi-bands information can
help us identify properties of the land cover (Masek et al., 2020).

In addition to the aforementioned remote sensing data, we also used vectorial building
and road distribution datasets to retrieve the information of urban morphology. The building
distribution dataset contains the location, outline, and floor number of buildings in build-up areas
of hundreds of Chinese major cities, which is collected and published by the Resource and
Environment Science Data Center of Chinese Academy of Sciences

(https://www.resdc.cn/data.aspx?DATAID=270). The road distribution dataset is obtained from

the OpenStreetMap (OSM) project including an online free database of roads and their related
amenities worldwide maintained by volunteers, which can be publicly accessed at

https://www.OpenStreetMap.org. In particular, urban roads in this database have been

categorized into several classes, e.g2. motorway, residential and sidewalk, based on their
applications and construction. For each road class, a road width is assigned according to the
relative national standard and studies (Sun and Li, 2018). For convenience, these vectorial data
were transferred to raster data after preprocessing to match with the remotely sensed data.

Table 1. Datasets used in this study

. Resolution
Type Source Collection Spatial Temporal
MODI11A2
Remole Mopis MYDI1A2 I-km 8-day
ot & MCDI12Q1 500 m Annual
Landsat 8 Collection 2 30 m 16-day
Urban Resource & Environment
. 8 m Irregularly
landscape Science Data Center undated
data OpenStreetMap 6 m P




2.2 Study areas

We chose seventeen major cities located in six megaregions of China as our study areas,
all these cities are provincial socioeconomic centers and covered broad spatial variability as well
as contrast in climate and geographic conditions (Fig. 1). The three megaregions located along
the East Coast of China are the Jingjinji, Yangtze River delta, and Pearl River delta megaregions,
from north to south respectively. According to the National Bureau of Statistics

(http://www.stats.gov.cn/tjsj/), these are the three biggest megaregions in northern, eastern and

southern China based on population and economic production in 2020. Beijing, Tianjin and
Shijiazhuang in Jingjinji; Hangzhou, Nanjing and Shanghai in Yangtze River delta; Guangzhou,
Foshan and Shenzhen in Pearl River delta are selected as study cities. As the build-up area of
Guangzhou and Foshan has been overlapped in recent development, it will be studied as one
greater Guang-Fo metropolitan in the subsequent analysis. In contrast to the three coastal
megaregions, Chengyu is located in the Sichuan Basin; Northwestern is located between Tibetan
Plateau and desert in northern China; Northeastern is located in Songnen Plain under mid-
temperature humid climate. Eight study cities were chose from these three non-coastal
megaregions, including Chengdu, Chongqing, Hohhot, Lanzhou, Yinchuan, Changchun, Harbin
and Shenyang.

The seventeen cities cover all major climate zones in China, except the cold-temperate
humid in most northern China, tropical humid in most southern China and Plateau arid/semiarid
in Tibetan Plateau. Five of the six megaregions are located in monsoon climate, while
Northwestern is located in continental arid climate zone zones (Domrés and Peng, 2012). From
north to south, the annual mean temperature increases from 5.5 °C in Northeastern to 22.4 °C in

Pearl River Delta, while the annual precipitation rate raises from around 500 mm in



Northwestern to over 2000 mm in Pearl River Delta. The wide distribution, high population
density, and various climate conditions of the selected areas therefore enables a comprehensive

study of the thermal environment in Chinese megacities.
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Figure 1. Map of study areas of six Chinese megaregions including Jingjinji, Yangtze River
delta, Pearl River delta, Chengyu, Northwestern, and Northeastern megaregion, demarked in red
dashed circles, containing seventeen major cities. The background color indicates the

classification of climate in different regions.



3. Methods

3.1 SUHI intensity (AT)

This study focuses exclusively on the surface UHI effect. While other ambient
temperatures, e.g. near-surface air or boundary-layer temperatures are also commonly used UHI
indicators (Oke, 1976), the skin temperature of land surface better represents the localized
thermal environment. The SUHI intensity is defined as,

AT = Tuban — Trural (1)
where Turban and Trural represent the LST of urban and rural areas, respectively, and for brevity,
we omit the denotation of “surface” in the temperature variables.

The sampling of corresponding urban and rural areas is of critical importance in the
calculation of AT, for different standards or thresholds applied to select them could impact the
results directly (Chakraborty and Lee, 2019). Considering the rapid urbanization in these cities
during the study period, the IGBP land cover classifications from MODIS MCD12Q1 dataset
and the Landsat 8 derived Normalized Difference Built-up Index (NDBI) images were adopted
to choose the urban and rural areas. The two remotely sensed datasets have relatively high update
frequency, which can help us better capture the expansion of urban areas. The various vegetated
land types from IGBP (class 1 to class 12) are all defined as natural land surfaces. To avoid the
spatial footprint of urban heat, we generated a 10-km wide outer buffer of the study cities’
administration boundary, only the natural land surfaces in this buffer are selected as rural areas.
The urban areas are derived from the concentrated built-up land type (IGBP class 13) according
to the NDBI images (Sulla-Menashe and Friedl, 2018). The NDBI is calculated as:

NDBI = (SWIR - NIR) / (SWIR + NIR) )



where SWIR is the short-wave infrared band of Landsat 8 (band 6 and band 7), and NIR is the
near infrared band of Landsat 8 (band 5) (Zha et al., 2003). The NDBI images were first
calculated by the original resolution of corresponding Landsat bands, then resampled to the same
resolution of MCD12Q1 dataset for later use. A threshold is set based on the distribution of
NDBI to delineate the densely built-up areas in a city and the villages with sparse buildings
scattered around it. The intersections of built-up land type from MODIS and densely built-up
areas from Landsat within this city’s administration boundaries are used as urban samples. The
ATs of study cities are obtained by the mean LSTs of their urban areas minus the mean LSTs of
corresponding rural areas at the same time. ATs of pixels of urban areas are retrieved by the

pixel’s LST value minus the mean LST of corresponding rural areas.

3.2 Urban surface roughness parameters

3.2.1 Urban aerodynamic roughness length

The quantification of the land surface roughness length (z0) and zero displacement height
(d) need comprehensive information about vertical wind profiles and land surface geometry,
which is challenging to local field measurements or remote sensing observation (Jasinski and
Crago, 1999; Yang and Friedl, 2003). More specifically, the value of surface roughness depends
on the height and spacing of the largest objects acting to retard the surface airflow (Schaudt and
Dickinson, 2000), which lead researchers to develop multiple algorithms to derive zo and d from
land surface structure data (Rotach, 1994; Li et al., 2021; Nakai et al., 2008). For forest canopies,
zoand d are usually expressed as functions of vegetation canopy height (Skamarock et al., 2008;
Wang et al., 2013). For example, a classic algorithm proposed by Garratt (1994) uses 1/8 and 2/3

of the mean height of vegetation to parameterize zo and d, respectively. Urban areas have
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relatively more uniform structures, in contrast to forest canopies where the ratios between the
land surface roughness and the canopy height varies with diverse vegetation types. Hence prior
studies often derived zo and d from urban morphology data (Grimmond and Oke, 1999). Given zo
is always an order of magnitude smaller than 4 in urban areas, here we use a lumped urban
aerodynamic roughness length (zusan) to combine zo and d, defined as the height above the urban
land surface when the wind speed becomes zero under neutral conditions, as

Zurban = h /3 (3)
where 4 is the mean building group height of this area. The values of zusan were first computed at

the building scale and then resized to match the resolution of LST data.

3.2.2 Street canyon aspect ratios

The parameter zuan is only representative of the one-dimensional (1D) urban
morphology in the vertical direction (Bottema, 1997). For a more holistic description of the
urban morphology, it is common to adopt the measure of street canyon aspect ratios (Raupach,
1994). For urban areas, there are two indices typically used to describe the street canyon
parameters: the first one is the frontal-area index, which describes the ratios of the total frontal
areas and the total lot areas of building groups, and the second one is the plan-area index, which
indicates the ratios of the total plan areas and the total lot areas of building groups (Raupach,
1994; Hagishima et al., 2009). As the resolution of geospatial data improves with the advance of
remote sensing technology, both parameters emerge as useful representatives of the land surface
roughness for realistic urban topographies with good accuracy (Grimmond and Oke, 1999;

Moriwaki et al., 2007).
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In the light of prior studies, here we define two indices to represent 2D urban morphology
at vertical and horizontal dimensions, respectively. The first one is the vertical aspect ratio (VAR)
between the building height and canyon width, as

VAR =h/w (4)
where w is the mean width of the street canyon. The value of VAR is indicative of the
morphology of street canyon mostly representative at the neighborhood scale, e.g., a large VAR
value signals a “deep and narrow” street canyon. In addition, we also define a horizontal aspect
ratio (HAR), analogous to the frontal-area ratio used in previous studies,

HAR = 4p | Ar ()
where A is the projected area of building groups on the horizontal plane, and 4, the horizontal
area of roads in urban gridcell. The ratio HAR is representative of the building density in a built
environment, with a small HAR indicating a sparsely built area. Together with the
aforementioned land surface aerodynamic roughness length (1D), these aspect ratios provide a
relatively comprehensive descriptions of urban morphology, which are directly or indirectly
related to other morphological parameters such as sky view factor.

After obtained the SUHI intensity and urban surface roughness parameters, these data are
registered and resampled to 2 x 2 km grid size. The correlations between these parameters were

evaluated by Pearson’s correlation coefficient:

. nY Xy — XX LY 6)
\/[anL-Z - Qx)?nXyi* — X yi)?]

where r is the correlation coefficient, » is the sample size, and x;, y; are the individual samples.
Overall, the structure and flowchart of the current study, with the specific dataset and/or methods

adopted in each section, are illustrated in Figure 2.
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Figure 2. Flow chart of this study, the datasets in Table 1 were preprocessed into same
spatiotemporal resolutions and calculated using the methods in Section 3, the results were then

analyzed and discussed.

4. Results

4.1 Spatiotemporal variations of SUHI intensities in major Chinese cities

The SHUI intensities of the study cities are shown in Figure 3, where the trends are in
general consistent with what reported in prior studies (Peng et al., 2012; Zhou et al., 2014). All
the cities have comparative intense SHUI in warm seasons (May to October) than in cold seasons
during 2013 — 2017, with the seasonal fluctuations being much stronger in other megaregions
than in Pearl River Delta and Northwestern, due to the mild seasonality and artificial irrigation in
arid region respectively (Hou et al., 2022). Spatially, two cities from the Chengyu megaregion
have the most intensive SUHIs, with the mean values greater than 3 °C in winter and 7 °C in
summer, respectively. This could be largely attributed to their mountainous topography that
strengthens the urban-rural difference since urban areas are located in plains surrounded by rural

areas scattered across mountains (Zhou et al., 2014). Cities from the three northern megaregions
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have relatively smaller SUHI intensity and standard deviations, even manifesting urban oasis
effect (e.g. during cold seasons in Tianjin and Shenyang) with urban cores cooler than
surrounding rural areas. Similar phenomena were also observed in Middle East and North Africa
(Peng et al., 2012). This could be attributed to the evaporative cooling caused by planted
vegetations and artificial irrigation in urban areas (Guhathakurta et al., 2007; Wang et al., 2018,
2019a, 2019b), which is more outstanding under the arid/semiarid climate in northern China.
Besides, as the croplands are contained in the rural areas, the crop phenology induced by
artificial cultivation tends to exaggerate the SUHI intensity because of the deviation of
urban/rural green trends. The discrepancy of the crops and farming seasons also contribute to the
variations of the spatiotemporal patterns of the SUHI intensity in these cities.

Besides the commonly presented inverted-U shape for the annual distributions of the
SUHI intensity, an interesting finding often ignored is the seasonal (sub-annual) V curve happens
in many cities (Fig. 3), e.g. spring in Shijiazhuang and Lanzhou or early summer in Nanjing and
Shanghai. Diverse factors could contribute to form this pattern. In Shijiazhuang and Lanzhou, it
is likely due to the seasonal hysteresis of SUHI intensity caused by artificial irrigation (Sun et al.,
2013; Wang, 2014b; Manoli et al., 2020). In Southeast China, i.e. Nanjing and Shanghai, the
occurrence of seasonal V curves could be attributed to the contamination of the remotely sensed
data by cloud covers, which is much more significant during rainy seasons in Yangtze River

Basin and affects the accuracy of the derived LST.
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Figure 3. Spatiotemporal variations of the monthly average SUHI intensities of seventeen major

cities of six megaregions in China.
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4.2 Statistical distributions of urban morphological parameters

The violin plots in Fig. 4 show the statistics of three urban surface roughness parameters,
Viz. zuban, VAR, and HAR, in the selected cities. The width of each cluster represents the number
of the 2 x 2 km grids in each city, and the box plots in the middle of the clusters show the mean
values and quantiles of the three parameters of the cities. As shown in Fig. 4 (a), the values of
zurban Of MoSst cities are concentrated between 0 — 1 m, at least half of the gridcells in all the cities
have zuban values lower than 1 m. The largest value of zusan 1s over 4 m and appears in Guang-Fo,
while the highest mean zuan 1s found in Tianjin. The statistical distributions of VAR of the study
cities are similar to those of zusan (Fig. 4b), despite over half of the gridcells in seven cities,
including Beijing, Shijiazhuang, Shanghai, Hohhot, Yinchuan, Changchun and Harbin, are larger
than 1 with Shijiazhuang has the largest value (> 5). Moreover, Shenyang has the highest value
of HAR, while nearly 75% of grid values of HAR in Tianjin are over 2 when grided values of
HAR in most cities are concentrated between 0 — 2. The violin shape of the statistical
distributions of these parameters is global, showing that the prevailing built structure in most
Chinese cities mainly consists of regular multistorey buildings and a small fraction of high-rise

buildings.
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Figure 4. Statistics of (a) zurban, (b) VAR, and (c) HAR of seventeen major cities in China, the
violin shapes show the frequency distributions of the parameters of these cities and the box plots
in the center of the violins show the quantiles of the parameters with white dots indicating the

median.

4.3 Relationships between the SUHI intensity and urban morphology

After statistical characterizing the SUHI intensity and the representative urban
morphological parameters above, we then proceed to quantify their correlation in this section.
The results are shown in Figures 5 to 10, where the subplots for the same city are grouped in the
row while columns are grouped by morphological parameters. It is clear that the three parameters
have significant positive relationships with SUHI intensity in all the study cities (annual mean

and standard error of 7 is 0.37 £ 0.30), despite their spatiotemporal variabilities. While zurban,
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VAR and HAR are representative of different aspect of urban morphology, i.e. building height,
canyon geometry, and building density, respectively, their correlations with the SUHI intensity
are strikingly similar (0.35 + 0.34, 0.35 + 0.31 and 0.41 + 0.26 for r values of zurpan, VAR and
HAR respectively). In general, the SUHI intensity increased with morphological parameters, the
correlation appears strongest in summers with highest seasonal mean r values (0.59 + 0.13) in all
the study cities, followed by autumns and springs. The » values in winter are small (0.11 + 0.35),
or even reversed to be negative in Jingjinji and Northwestern megaregions (—0.22 + 0.36 and
—0.19 £ 0.32), indicating the often-weak relationship between the SUHI intensity and urban
morphology in cold seasons.

Given the different background climates of the six megaregions, the correlation between
these parameters and the SUHI intensity has manifest spatial variability. The mean and standard
error of 7 in Jingjinji, Yangtze River Delta, Pear]l River Delta, Chengyu, Northwestern and
Northeastern megaregions are 0.31 £ 0.42, 0.48 £0.18, 0.47 £0.19, 0.36 = 0.11, 0.22 + 0.41 and
0.44 + 0.22 respectively. In Jingjinji, the scatters are gathered into four rather distinctive clusters
corresponding to four seasons (Fig. 5). In contrast, the scatters of spring and autumn in Yangtze
River Delta and Chengyu are blended into one cluster (Figs. 6 and 7). Moreover, the scatters of
all four seasons in Pearl River Delta do not differentiate significant from one another (Fig. 8),
indicating weak seasonality in the region largely due to the prevailing hot and humid subtropical
climate. The distributions of the scatters in Northwestern and Northeastern are similar to Jingjinji,
despite the urban sizes in Northwestern are significantly smaller than that of Jingjinji and
Northeastern, demonstrating the effect of seasonality in mid-temperature regions. Overall, the

seasonal variability of correlation between the SUHI intensity and urban morphological
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parameters decreases from North to South China, clearly suggesting the heterogeneous impact of

the background climate on local urban thermal environment.
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Figure 5. The statistical correlation between the SUHI intensity and urban morphological

parameters of three cities in Jingjinji megaregion; r is the Pearson correlation coefficient, and *

stands for 7 value passing the 0.95 confidence level.
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Figure 6. Same as Fig. 5, but for three cities in Yangtze River Delta megaregion.
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Figure 7. Same as Fig. 5, but for three cities in Peral River Delta megaregion.
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Figure 9. Same as Fig. 5, but for three cities in Northwestern megaregion.
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Figure 10. Same as Fig. 5, but for three cities in Northeastern8 megaregion.

5. Discussion

As a critical determinant of the UHI effect, land surface roughness and morphology have
been extensively studied in the literature (Lee et al. 2011; Li et al. 2020; Myint et al. 2017).
Overall, the results of this study are consistent with that of prior studies, revealing that the SUHI
intensity has a positive relationship with the spatial distribution and density of buildings (Guan et
al., 2021; Peng et al., 2018). The left columns of Figs. 5 to 10 show the relationships between the
SUHI intensity and the urban roughness zurban proportional to building height. The same
correlation was qualitatively observed and reported in case studies of Wuhan and Hangzhou (Li

et al., 2021; Lu et al., 2021). With respect to the 2D morphological parameters, previous case
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studies reported the building coverage/area (HAR) is the dominant factor of SUHI variability (Li
etal., 2021; Lu et al., 2021; Yuan et al., 2021). Nevertheless, the current study finds that the
influence of VAR on SUHI is comparable to that of H4R (middle and right columns from Figs. 5
to 8). Furthermore, the correlation between the SUHI intensity and VAR or HAR exhibits nearly
identical seasonal fluctuations.

It is noteworthy that numerical simulations of urban climate found that the LST in a street
canyon bears nonlinear relationship with the building-height-to-canyon-width ratio, viz. VAR,
arising from the complex interplay of radiative shading and trapping effect by the presence of
building structure (Song & Wang, 2015, 2016). As a consequence, the correlation between SUHI
and VAR is expected to be nonlinear, provided that the variation of VAR covers a broad enough
range, say 0.1 — 10. In this study, however, we only find the increasing trend of SUHI intensity
with VAR. This is mainly due to that the prevailing building type in most Chinese cities renders a
relatively narrow range of VAR (mostly less than 3, see Fig. 4). Nevertheless, it is caveated that
in sufficiently densely built areas (e.g. downtown or commercial district teeming with
skyscrapers) the simple linear correlation between VAR and the SUHI intensity may break down,
and more sophisticated technique (e.g. machine learning, see Li et al., 2022) is needed to
quantify their relationship, as well as for optimal urban design.

When referring back to Fig. 3, the SUHI intensity of eleven Chinese cities have coherent
trends but each varies individually, suggesting diverse mechanisms (as described in the
Introduction) synergistically determines the urban thermal environment. Among these
determinants, urban morphology is responsible for a part of, albeit critical, SUHI variability and
its spatiotemporal patterns. In addition to urban morphology, prior studies also suggest that the

background climate and evapotranspiration of vegetation are the major factors that influence
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urban thermal environment (Zhao et al., 2014). Seasonal changes in background temperature
have a significant impact on spatial distributions of SUHI intensity, the intensive shortwave
radiation during summertime not only heats the near-surface atmosphere, but also accelerates the
speed of heat release from artificial structures in urban areas (Zhou et al., 2014), further amplify
the difference of heat storage and convection ability between urban and rural areas and lead to
strong SUHI (Hou et al., 2022). At the same time, as the vegetation coverage in Northern China
mainly consists of temperate broad-leaf forests, the evaporative cooling by plants in summers
also exaggerates the temperature difference between vegetated and impervious land surfaces
(Peng et al., 2012), another way to intensify UHI.

Furthermore, other contributing factors to urban thermal environment can also be
significant, one being the topography of cities. For example, the SUHI intensity of Chengdu and
Chongqing (Fig. 3) show that cities built over mountainous terrains can exhibit stronger SUHI
intensity, even compared to cities more densely built or populated. This can be attributed to the
drastic changes in land cover and/or altitude in mountainous areas (Hou et al., 2022; Zhou et al.,
2014). In addition, anthropogenic activities, such as urban irrigation, plays an increasingly
important in regulating the thermal environment in cities (Wang et al., 2019a). It has been found
that irrigation changes the rate of soil water convection, which in turn lead to the hysteresis
effect of LST evolution (Wang, 2014b). This seasonal hysteresis due to irrigation is likely
responsible to the anomalous SUHI variation in Shijiazhuang and Tianjin (Fig. 3) during springs
and early summers, which accelerates the vegetation growth, leading to a higher
evapotranspiration cooling effect than in rural areas and forming a temporary urban heat oasis

(Zhao et al., 2016; Zhou et al., 2013).
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Despite the spatiotemporal variability in the four megaregions, the strongest correlation
to morphological parameters (both r and slope of regression functions) always appears in
summer while the weakest appears in winter. Spatially, the seasonal differentiation of this
correlation decreases from North to South, due to the variation of background climate conditions.
From the warm-temperature humid climate zone (Jingjinji megaregion) to the mid- (Yangtze
River Delta and Chengyu megaregions) to south-subtropical humid climate zone (Peral River
Delta megaregion), the seasonal fluctuations of temperature and precipitation become gradually
milder (Domrds and Peng, 2012), contributing to the distinctive or insignificant seasonality in
Fig. 5 and Fig. 8, respectively.

The temporal differentiations of these relationships, on the other hand, reveal more
detailed mechanisms for formation of UHI. The correlation between urban morphology and the
SUHI intensity is weakest in winter (Figs. 5 to 10), even becomes negative (Figs. 5 and 9). In the
winter of Jingjinji and Northwestern megaregion, contrary to the common belief that the UHI
intensity increases with building density (Guan et al. 2021; Lu et al., 2021), it can decline with
all three urban roughness and morphology indicators. This is because that the presence of high-
rise buildings in urban cores, in conjunction with the low zenith angles of the sun in winter in
northern China, can effectively impede the solar radiation incident on street canyon facets, and

effect known as radiative shading (Song & Wang, 2015; Li et al., 2021).

6. Concluding Remarks
In this study, we quantified the spatiotemporal patterns of the relationship between urban
morphology and the SUHI intensity in major Chinese cities, using MODIS LST data and urban

landscape data during the 2013 — 2017 period. In general, it is found the SUHI intensity is
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positively correlated with the surface roughness (zurban), canyon geometry (VAR), as well as
building density (HAR). in addition, the spatiotemporal variation of this correlation is strongly
regulated by the seasonality and background climate in the study regions. In particular, when the
SUHI intensity rises with background temperatures, its dependence on the urban morphology
also becomes more significant, as revealed by the increase in values of both » and slope of
regression. In megaregions that have notable seasonality, these relationships always achieve their
highest degree in summer (mean and standard error of 7 is 0.59 = 0.13) and lowest degree in
winter (0.11 £ 0.35). Furthermore, most parameters have negative relationships with the SUHI
intensity in the winter of Jingjinji and Northwestern megaregions (-0.22 + 0.36 and -0.19 + 0.32),
implying the effect exerted by urban surface roughness and morphology is not unidirectional,
and could contribute to urban oasis either.

Moreover, the intercomparison among the three urban morphological parameters show
that their influence on the urban thermal environmental are comparable, despite the parameters
are calculated in different dimensions. While the 1D surface roughness zursan, as a function of
building height alone, appears to be a simplified measure of urban morphology, it turns out to be
good representative of the 2D urban geometry and building density as well. This makes physical
sense as in real urban planning, all three parameters are highly dependent, e.g. a built
environment teeming with high-rise buildings (like the commercial districts in the Jingjinji
megaregion or downtown Manhattan) will feature high surface roughness zusan, deep and narrow
street canyon (large VAR), and high building density (large HAR) at the same time.

It is caveated that urban morphology is only a partial, albeit important factor, contributing
to regulate the thermal environment in cities. Nevertheless, the findings of this study enhance our

understanding of how urban morphology affects UHI, and more importantly, how building
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structures can be strategically planned to counteract the heat island effect. One particular
example is the potential nonlinearity of the correlation between the SUHI intensity and the street
canyon geometry (VAR), and other morphological parameters as well, due to complex
interactions of radiative trapping and shading effect in street canyons. The threshold VAR of this
nonlinearity can be utilized in planning for future cities, especially under the stress of
intensification of urban cores. Strategical urban planning as such will require more sophisticated
tools such as multiscale urban climate simulations and/or machine learning based surrogate

modeling or optimization.
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