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Abstract 

As important determinants of urban thermal environment, surface roughness and 

morphology have been extensively studied for sustainable urban development. In this study, we 

quantify the effect of urban roughness and morphology on the surface urban heat island (SUHI) 

intensity and its spatiotemporal patterns, over seventeen major cities in six urban agglomerations 

of China. We employ multisource dataset and derive multiple measures, representative of the 

roughness and horizontal/vertical indicators of urban morphology. The results show that the 

correlation between the SUHI intensity and urban morphological indices is significantly 

strengthened with the heat island intensity, manifested by the contrasting Pearson’s r in summer 

(r = 0.59 ± 0.13) and winter (0.11 ± 0.35). In general, the impact assessed using different 

measures of surface morphology is consistent on the SUHI intensity, while the one-dimensional 

(1D) roughness emerges as an adequate index not inferior to more complex morphological 

parameters. Our study also shows that the impact of urban morphology varies in different 

geographic and climatic regions, as well as with different urban management, which highlights 

the importance of locality and site-specific design in implementing effective urban heat 

mitigation strategies.  
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1. Introduction  

As a pronounced environmental phenomenon induced by human activities, urban heat 

island (UHI) is depicted as that urban cores are usually warmer than their surrounding rural areas 

(Oke 1973). The historical documentation of UHI effect has been very long, dating back to in 

London as early as 1800s (Howard, 1833). In the past few decades, the effect, mechanisms, and 

consequence of UHI have extensively studied, based on in situ and remotely sensed 

measurements, as well as numerical simulations (Arnfield, 2003; Wang, 2022). Depending on 

the elevation at which ambient temperature is measured, UHI can be further classified into 

subsurface, surface, canopy, or boundary-layer urban heat island (Oke, 1976; Voogt & Oke, 

2003; Mirzaei and Haghighat, 2010). More specifically, the surface urban heat island (SUHI) 

measured by the land surface (skin) temperature (LST) is a widely used indicator and particularly 

suitable for remotely sensed data product (Yuan & Bauer, 2007). The peculiarity of urban 

thermal environment, UHI in particular, induces various and compound impact over the built 

terrains, including but not limited to, e.g. air quality, energy-water-climate repercussions, and 

diverse ecosystem services (Howells et al., 2013; Antognelli et al., 2016; Martinez-Bravo et al., 

2019; Wang, 2021; Zhang et al., 2022). Today, with over half of the world's population living in 

urban areas (UN, 2019) and global climate change becoming more prominent (IPCC 2014), it is 

of crucial importance to further our understanding of UHI to inform policy makers and urban 

planners more sustainable solutions to urban heat-related issues. 

The formation of UHI involves complex interplays of multiple contributors that can be 

broadly classified as: (1) the use of engineered (mostly impervious) materials (e.g. asphalt, 

concrete, bricks, etc.) that introduces changes of land surface hydrothermal properties conducive 

to higher surface temperatures and sensible heat (Arnfield, 2003; Yang et al., 2016),  (2) 



3 
 

modified physics of urban flows and turbulent transport (Fernando, 2010; Song & Wang, 2016), 

(3) changes of radiative heat exchange processes in urban canopies (Wang, 2014a), (4) the 

reduction of natural (especially vegetated) landscape that suppresses cooling by 

evapotranspiration (Bowler et al., 2010), and (5) concentrated and enhanced release of waste heat 

and greenhouse gases, in particular carbon dioxide, attributable to anthropogenic activities 

(Hutyra et al., 2014; Song et al., 2017; Li & Wang, 2020). Among these factors, land surface 

roughness and urban morphology received growing recognition in recent years (Li et al., 2011; 

Peng et al., 2016; Li et al., 2021; Yang et al., 2021; Li et al., 2022). The artificially modified land 

surface roughness and/or urban morphology can significantly influence the LST by changing the 

physics of flow in the urban canopy layer, which in turn modifies the turbulent transport of latent 

and sensible heat fluxes (Wang et al., 2011, 2013). More specifically, a high surface roughness 

can enhance the surface stress of water vapor and diminish wind speed, while a low surface 

roughness height has an opposite effect (Sud et al., 1988). Some prior studies indicated that land 

surface roughness also affect the efficiency of atmospheric heat convection, which in turn 

modifies the UHI intensity (Lee et al., 2011; Zhao et al., 2014). 

To measure land surface roughness and urban morphology, micrometeorological and 

morphometric methods were employed in prior studies, the former using field observation and 

the latter using remote sensing dataset (Yang and Friedl, 2003; Tian et al., 2011; Equere et al., 

2020). Mechanistically, the surface roughness is usually represented by two aerodynamic 

parameters, viz. the zero-displacement height (d) and the surface roughness length (z0). The 

parameter d represents the adjustments of land surface profiles due to the presence of large 

obstacles such as buildings and vegetation canopies, while z0 measures the height above d where 

the mean velocity of wind in the vertical direction is zero due to substrate roughness (Brutsaert 
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1982; Jasinski and Crago 1999; Meier et al. 2022). On the other hand, the urban morphology can 

be portrayed by different aspect ratios of street canyons, such as frontal or roof area factions in 

typical street canyons (Grimmond and Oke, 1999; Raupach, 1994).  

Mounting evidence shows that urban land surface roughness and morphology are among 

the major driving factors of UHI. Model simulations found that the UHI intensity correlates with 

the street canyon ratio in a logarithmic function, while the mean UHI intensity could vary as 

much as 3.0 °C in response to the change in surface roughness and morphology (Zhao et al., 

2014; Li et al, 2020). Real-world studies in several cities further demonstrated that the 

distribution, density and height of building groups have noticeable effects on UHI (Lu et al. 2021; 

Peng et al. 2018). Among them, the building coverage ratio was found as the most influential 

factor for LST changes in Hangzhou and Dalian (Yuan et al. 2021; Yang et al., 2021). In 

comparison, the building density has a seasonally stable positive relationship with LST, which 

leads to a LST variability as much as 3.6 °C in Wuhan (Li et al. 2021); while another case study 

of Beijing found that the increase of building compactness related to 1 – 2 °C temperature 

difference in community scale (Li et al., 2022). Nevertheless, most existing studies were mainly 

focused on single cities, whereas inter-regional comparisons and spatiotemporal variability 

remain largely missing. To better leverage the strategies and solutions of urban heat mitigation, 

policy makers and stakeholders need more site-specific knowledge to support locality-based 

urban planning (Wang, 2021). For example, in addressing questions like “how to determine the 

ideal locations of high-rise buildings in a city”, or “what is the suitable distance among building 

arrays”, answers vary by geographic regions and climate zones. Hence it is imperative to 

understand how the background climate affects the relationship between urban roughness and 
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morphology and UHI, or is the relationship homogeneous across different regions, which 

amounts the main objective of the current study.  

In this study, we investigate the influence of urban roughness and morphology on UHI 

and its spatiotemporal variability by employing remote sensing and urban landscape data in 

seventeen major cities from six megaregions in China during 2013 – 2017. We aim to reveal the 

spatiotemporal patterns and, more importantly, potential underlying mechanisms regulating the 

impact of urban morphology on UHI. In particular, we derive the UHI intensity of selected cities 

from different background climates from remotely sensed LST data and retrieve the urban 

surface roughness and morphological indicators using morphometric methods.  

 

2. Data and study area 

2.1 Datasets 

In this study, we used a portfolio of remote sensing and urban landscape datasets to 

explore how surface roughness and morphology influence UHI, as summarized in Table 1. The 

Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua satellites 

are widely used due to their capacity to provide long-term, high frequency and wide coverage 

earth observation data (Wan, 2014). In this study, we used both the daytime and nighttime scenes 

from MOD11A2 and MYD11A2 datasets of MODIS land products to retrieve LSTs. To avoid 

the contamination of clouds and possible outliers caused by data processes, all the available 8-

day 1-km resolution LST images in the study areas from 2013 to 2017 were composited to yield 

monthly mean LST images. In addition, the MCD12Q1 dataset of MODIS land products and 

Landsat 8 multispectral images were employed to determine the urban and rural areas which are 

critical in UHI studies. MCD12Q1 provides annually 500 m resolution land cover information 
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according to several land cover classification standards, with the IGBP classification standard 

adopted in this study (Sulla-Menashe and Friedl, 2018). In comparison, the 16-day 30-meter 

multispectral images from the OLI sensor onboard Landsat 8 satellite provide more accurate 

information of built-up areas in the selected megaregions, and its multi-bands information can 

help us identify properties of the land cover (Masek et al., 2020).   

In addition to the aforementioned remote sensing data, we also used vectorial building 

and road distribution datasets to retrieve the information of urban morphology. The building 

distribution dataset contains the location, outline, and floor number of buildings in build-up areas 

of hundreds of Chinese major cities, which is collected and published by the Resource and 

Environment Science Data Center of Chinese Academy of Sciences 

(https://www.resdc.cn/data.aspx?DATAID=270). The road distribution dataset is obtained from 

the OpenStreetMap (OSM) project including an online free database of roads and their related 

amenities worldwide maintained by volunteers, which can be publicly accessed at 

https://www.OpenStreetMap.org. In particular, urban roads in this database have been 

categorized into several classes, e.g. motorway, residential and sidewalk, based on their 

applications and construction. For each road class, a road width is assigned according to the 

relative national standard and studies (Sun and Li, 2018). For convenience, these vectorial data 

were transferred to raster data after preprocessing to match with the remotely sensed data.  

Table 1. Datasets used in this study 

Type Source Collection Resolution 
Spatial  Temporal  

Remote 
sensing 
data 

MODIS 
MOD11A2 
MYD11A2 1-km 8-day 

MCD12Q1 500 m Annual 
Landsat 8 Collection 2 30 m 16-day 

Urban 
landscape 
data 

Resource & Environment 
Science Data Center  8 m Irregularly 

updated OpenStreetMap  6 m 
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2.2 Study areas  

We chose seventeen major cities located in six megaregions of China as our study areas, 

all these cities are provincial socioeconomic centers and covered broad spatial variability as well 

as contrast in climate and geographic conditions (Fig. 1). The three megaregions located along 

the East Coast of China are the Jingjinji, Yangtze River delta, and Pearl River delta megaregions, 

from north to south respectively. According to the National Bureau of Statistics 

(http://www.stats.gov.cn/tjsj/), these are the three biggest megaregions in northern, eastern and 

southern China based on population and economic production in 2020. Beijing, Tianjin and 

Shijiazhuang in Jingjinji; Hangzhou, Nanjing and Shanghai in Yangtze River delta; Guangzhou, 

Foshan and Shenzhen in Pearl River delta are selected as study cities. As the build-up area of 

Guangzhou and Foshan has been overlapped in recent development, it will be studied as one 

greater Guang-Fo metropolitan in the subsequent analysis. In contrast to the three coastal 

megaregions, Chengyu is located in the Sichuan Basin; Northwestern is located between Tibetan 

Plateau and desert in northern China; Northeastern is located in Songnen Plain under mid-

temperature humid climate. Eight study cities were chose from these three non-coastal 

megaregions, including Chengdu, Chongqing, Hohhot, Lanzhou, Yinchuan, Changchun, Harbin 

and Shenyang.   

 The seventeen cities cover all major climate zones in China, except the cold-temperate 

humid in most northern China, tropical humid in most southern China and Plateau arid/semiarid 

in Tibetan Plateau. Five of the six megaregions are located in monsoon climate, while 

Northwestern is located in continental arid climate zone zones (Domrös and Peng, 2012). From 

north to south, the annual mean temperature increases from 5.5 °C in Northeastern to 22.4 °C in 

Pearl River Delta, while the annual precipitation rate raises from around 500 mm in 
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Northwestern to over 2000 mm in Pearl River Delta. The wide distribution, high population 

density, and various climate conditions of the selected areas therefore enables a comprehensive 

study of the thermal environment in Chinese megacities. 

 

 

Figure 1. Map of study areas of six Chinese megaregions including Jingjinji, Yangtze River 

delta, Pearl River delta, Chengyu, Northwestern, and Northeastern megaregion, demarked in red 

dashed circles, containing seventeen major cities. The background color indicates the 

classification of climate in different regions.  
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3. Methods 

3.1 SUHI intensity (ΔT) 

This study focuses exclusively on the surface UHI effect. While other ambient 

temperatures, e.g. near-surface air or boundary-layer temperatures are also commonly used UHI 

indicators (Oke, 1976), the skin temperature of land surface better represents the localized 

thermal environment. The SUHI intensity is defined as,  

 ΔT = Turban  –  Trural (1) 

where Turban and Trural represent the LST of urban and rural areas, respectively, and for brevity, 

we omit the denotation of “surface” in the temperature variables.  

The sampling of corresponding urban and rural areas is of critical importance in the 

calculation of ΔT, for different standards or thresholds applied to select them could impact the 

results directly (Chakraborty and Lee, 2019). Considering the rapid urbanization in these cities 

during the study period, the IGBP land cover classifications from MODIS MCD12Q1 dataset 

and the Landsat 8 derived Normalized Difference Built-up Index (NDBI) images were adopted 

to choose the urban and rural areas. The two remotely sensed datasets have relatively high update 

frequency, which can help us better capture the expansion of urban areas. The various vegetated 

land types from IGBP (class 1 to class 12) are all defined as natural land surfaces. To avoid the 

spatial footprint of urban heat, we generated a 10-km wide outer buffer of the study cities’ 

administration boundary, only the natural land surfaces in this buffer are selected as rural areas. 

The urban areas are derived from the concentrated built-up land type (IGBP class 13) according 

to the NDBI images (Sulla-Menashe and Friedl, 2018). The NDBI is calculated as: 

 NDBI = (SWIR - NIR) / (SWIR + NIR) (2) 
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where SWIR is the short-wave infrared band of Landsat 8 (band 6 and band 7), and NIR is the 

near infrared band of Landsat 8 (band 5) (Zha et al., 2003). The NDBI images were first 

calculated by the original resolution of corresponding Landsat bands, then resampled to the same 

resolution of MCD12Q1 dataset for later use. A threshold is set based on the distribution of 

NDBI to delineate the densely built-up areas in a city and the villages with sparse buildings 

scattered around it. The intersections of built-up land type from MODIS and densely built-up 

areas from Landsat within this city’s administration boundaries are used as urban samples. The 

ΔTs of study cities are obtained by the mean LSTs of their urban areas minus the mean LSTs of 

corresponding rural areas at the same time. ΔTs of pixels of urban areas are retrieved by the 

pixel’s LST value minus the mean LST of corresponding rural areas. 

 

3.2 Urban surface roughness parameters 

3.2.1 Urban aerodynamic roughness length  

The quantification of the land surface roughness length (z0) and zero displacement height 

(d) need comprehensive information about vertical wind profiles and land surface geometry, 

which is challenging to local field measurements or remote sensing observation (Jasinski and 

Crago, 1999; Yang and Friedl, 2003). More specifically, the value of surface roughness depends 

on the height and spacing of the largest objects acting to retard the surface airflow (Schaudt and 

Dickinson, 2000), which lead researchers to develop multiple algorithms to derive z0 and d from 

land surface structure data (Rotach, 1994; Li et al., 2021; Nakai et al., 2008). For forest canopies, 

z0 and d are usually expressed as functions of vegetation canopy height (Skamarock et al., 2008; 

Wang et al., 2013). For example, a classic algorithm proposed by Garratt (1994) uses 1/8 and 2/3 

of the mean height of vegetation to parameterize z0 and d, respectively. Urban areas have 
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relatively more uniform structures, in contrast to forest canopies where the ratios between the 

land surface roughness and the canopy height varies with diverse vegetation types. Hence prior 

studies often derived z0 and d from urban morphology data (Grimmond and Oke, 1999). Given z0 

is always an order of magnitude smaller than d in urban areas, here we use a lumped urban 

aerodynamic roughness length (zurban) to combine z0 and d, defined as the height above the urban 

land surface when the wind speed becomes zero under neutral conditions, as  

 zurban = h / 3  (3) 

where h is the mean building group height of this area. The values of zurban were first computed at 

the building scale and then resized to match the resolution of LST data.  

 

3.2.2 Street canyon aspect ratios  

The parameter zurban is only representative of the one-dimensional (1D) urban 

morphology in the vertical direction (Bottema, 1997). For a more holistic description of the 

urban morphology, it is common to adopt the measure of street canyon aspect ratios (Raupach, 

1994). For urban areas, there are two indices typically used to describe the street canyon 

parameters:  the first one is the frontal-area index, which describes the ratios of the total frontal 

areas and the total lot areas of building groups, and the second one is the plan-area index, which 

indicates the ratios of the total plan areas and the total lot areas of building groups (Raupach, 

1994; Hagishima et al., 2009). As the resolution of geospatial data improves with the advance of 

remote sensing technology, both parameters emerge as useful representatives of the land surface 

roughness for realistic urban topographies with good accuracy (Grimmond and Oke, 1999; 

Moriwaki et al., 2007). 
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In the light of prior studies, here we define two indices to represent 2D urban morphology 

at vertical and horizontal dimensions, respectively. The first one is the vertical aspect ratio (VAR) 

between the building height and canyon width, as 

 VAR = h / w  (4) 

where w is the mean width of the street canyon. The value of VAR is indicative of the 

morphology of street canyon mostly representative at the neighborhood scale, e.g., a large VAR 

value signals a “deep and narrow” street canyon. In addition, we also define a horizontal aspect 

ratio (HAR), analogous to the frontal-area ratio used in previous studies,  

 HAR = Ap / Ar  (5) 

where Ap is the projected area of building groups on the horizontal plane, and Ar the horizontal 

area of roads in urban gridcell. The ratio HAR is representative of the building density in a built 

environment, with a small HAR indicating a sparsely built area. Together with the 

aforementioned land surface aerodynamic roughness length (1D), these aspect ratios provide a 

relatively comprehensive descriptions of urban morphology, which are directly or indirectly 

related to other morphological parameters such as sky view factor.  

After obtained the SUHI intensity and urban surface roughness parameters, these data are 

registered and resampled to 2 × 2 km grid size. The correlations between these parameters were 

evaluated by Pearson’s correlation coefficient:  

 𝑟𝑟 =
𝑛𝑛∑𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 − ∑𝑥𝑥𝑖𝑖 ∑ 𝑦𝑦𝑖𝑖

�[𝑛𝑛∑𝑥𝑥𝑖𝑖2 − (∑𝑥𝑥𝑖𝑖)2][𝑛𝑛 ∑𝑦𝑦𝑖𝑖2 − (∑𝑦𝑦𝑖𝑖)2]
 (6) 

where r is the correlation coefficient, n is the sample size, and xi, yi are the individual samples. 

Overall, the structure and flowchart of the current study, with the specific dataset and/or methods 

adopted in each section, are illustrated in Figure 2.  
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Figure 2. Flow chart of this study, the datasets in Table 1 were preprocessed into same 

spatiotemporal resolutions and calculated using the methods in Section 3, the results were then 

analyzed and discussed.  

 

4. Results 

4.1 Spatiotemporal variations of SUHI intensities in major Chinese cities 

The SHUI intensities of the study cities are shown in Figure 3, where the trends are in 

general consistent with what reported in prior studies (Peng et al., 2012; Zhou et al., 2014). All 

the cities have comparative intense SHUI in warm seasons (May to October) than in cold seasons 

during 2013 – 2017, with the seasonal fluctuations being much stronger in other megaregions 

than in Pearl River Delta and Northwestern, due to the mild seasonality and artificial irrigation in 

arid region respectively (Hou et al., 2022). Spatially, two cities from the Chengyu megaregion 

have the most intensive SUHIs, with the mean values greater than 3 °C in winter and 7 °C in 

summer, respectively. This could be largely attributed to their mountainous topography that 

strengthens the urban-rural difference since urban areas are located in plains surrounded by rural 

areas scattered across mountains (Zhou et al., 2014). Cities from the three northern megaregions 
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have relatively smaller SUHI intensity and standard deviations, even manifesting urban oasis 

effect (e.g. during cold seasons in Tianjin and Shenyang) with urban cores cooler than 

surrounding rural areas. Similar phenomena were also observed in Middle East and North Africa 

(Peng et al., 2012). This could be attributed to the evaporative cooling caused by planted 

vegetations and artificial irrigation in urban areas (Guhathakurta et al., 2007; Wang et al., 2018, 

2019a, 2019b), which is more outstanding under the arid/semiarid climate in northern China. 

Besides, as the croplands are contained in the rural areas, the crop phenology induced by 

artificial cultivation tends to exaggerate the SUHI intensity because of the deviation of 

urban/rural green trends. The discrepancy of the crops and farming seasons also contribute to the 

variations of the spatiotemporal patterns of the SUHI intensity in these cities.  

Besides the commonly presented inverted-U shape for the annual distributions of the 

SUHI intensity, an interesting finding often ignored is the seasonal (sub-annual) V curve happens 

in many cities (Fig. 3), e.g. spring in Shijiazhuang and Lanzhou or early summer in Nanjing and 

Shanghai. Diverse factors could contribute to form this pattern. In Shijiazhuang and Lanzhou, it 

is likely due to the seasonal hysteresis of SUHI intensity caused by artificial irrigation (Sun et al., 

2013; Wang, 2014b; Manoli et al., 2020). In Southeast China, i.e. Nanjing and Shanghai, the 

occurrence of seasonal V curves could be attributed to the contamination of the remotely sensed 

data by cloud covers, which is much more significant during rainy seasons in Yangtze River 

Basin and affects the accuracy of the derived LST.  
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Jingjinji 

   

Yangtze 

River Delta 

   

Pearl River 

Delta 

  

 

Chengyu 

  

 

Northwestern 

   

Northeastern 

   

Figure 3. Spatiotemporal variations of the monthly average SUHI intensities of seventeen major 

cities of six megaregions in China.  
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4.2 Statistical distributions of urban morphological parameters 

The violin plots in Fig. 4 show the statistics of three urban surface roughness parameters, 

viz. zurban, VAR, and HAR, in the selected cities. The width of each cluster represents the number 

of the 2 × 2 km grids in each city, and the box plots in the middle of the clusters show the mean 

values and quantiles of the three parameters of the cities. As shown in Fig. 4 (a), the values of 

zurban of most cities are concentrated between 0 – 1 m, at least half of the gridcells in all the cities 

have zurban values lower than 1 m. The largest value of zurban is over 4 m and appears in Guang-Fo, 

while the highest mean zurban is found in Tianjin. The statistical distributions of VAR of the study 

cities are similar to those of zurban (Fig. 4b), despite over half of the gridcells in seven cities, 

including Beijing, Shijiazhuang, Shanghai, Hohhot, Yinchuan, Changchun and Harbin, are larger 

than 1 with Shijiazhuang has the largest value (> 5). Moreover, Shenyang has the highest value 

of HAR, while nearly 75% of grid values of HAR in Tianjin are over 2 when grided values of 

HAR in most cities are concentrated between 0 – 2. The violin shape of the statistical 

distributions of these parameters is global, showing that the prevailing built structure in most 

Chinese cities mainly consists of regular multistorey buildings and a small fraction of high-rise 

buildings.  
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Figure 4. Statistics of (a) zurban, (b) VAR, and (c) HAR of seventeen major cities in China, the 

violin shapes show the frequency distributions of the parameters of these cities and the box plots 

in the center of the violins show the quantiles of the parameters with white dots indicating the 

median.  

 

4.3 Relationships between the SUHI intensity and urban morphology 

After statistical characterizing the SUHI intensity and the representative urban 

morphological parameters above, we then proceed to quantify their correlation in this section. 

The results are shown in Figures 5 to 10, where the subplots for the same city are grouped in the 

row while columns are grouped by morphological parameters. It is clear that the three parameters 

have significant positive relationships with SUHI intensity in all the study cities (annual mean 

and standard error of r is 0.37 ± 0.30), despite their spatiotemporal variabilities. While zurban, 
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VAR and HAR are representative of different aspect of urban morphology, i.e. building height, 

canyon geometry, and building density, respectively, their correlations with the SUHI intensity 

are strikingly similar (0.35 ± 0.34, 0.35 ± 0.31 and 0.41 ± 0.26 for r values of zurban, VAR and 

HAR respectively). In general, the SUHI intensity increased with morphological parameters, the 

correlation appears strongest in summers with highest seasonal mean r values (0.59 ± 0.13) in all 

the study cities, followed by autumns and springs. The r values in winter are small (0.11 ± 0.35), 

or even reversed to be negative in Jingjinji and Northwestern megaregions (−0.22 ± 0.36 and 

−0.19 ± 0.32), indicating the often-weak relationship between the SUHI intensity and urban 

morphology in cold seasons.  

Given the different background climates of the six megaregions, the correlation between 

these parameters and the SUHI intensity has manifest spatial variability. The mean and standard 

error of r in Jingjinji, Yangtze River Delta, Pearl River Delta, Chengyu, Northwestern and 

Northeastern megaregions are 0.31 ± 0.42, 0.48 ± 0.18, 0.47 ± 0.19, 0.36 ± 0.11, 0.22 ± 0.41 and 

0.44 ± 0.22 respectively. In Jingjinji, the scatters are gathered into four rather distinctive clusters 

corresponding to four seasons (Fig. 5). In contrast, the scatters of spring and autumn in Yangtze 

River Delta and Chengyu are blended into one cluster (Figs. 6 and 7). Moreover, the scatters of 

all four seasons in Pearl River Delta do not differentiate significant from one another (Fig. 8), 

indicating weak seasonality in the region largely due to the prevailing hot and humid subtropical 

climate. The distributions of the scatters in Northwestern and Northeastern are similar to Jingjinji, 

despite the urban sizes in Northwestern are significantly smaller than that of Jingjinji and 

Northeastern, demonstrating the effect of seasonality in mid-temperature regions. Overall, the 

seasonal variability of correlation between the SUHI intensity and urban morphological 
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parameters decreases from North to South China, clearly suggesting the heterogeneous impact of 

the background climate on local urban thermal environment.  

 

   

   

   

Figure 5. The statistical correlation between the SUHI intensity and urban morphological 

parameters of three cities in Jingjinji megaregion; r is the Pearson correlation coefficient, and * 

stands for r value passing the 0.95 confidence level.  
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Figure 6. Same as Fig. 5, but for three cities in Yangtze River Delta megaregion.  

    

   

Figure 7. Same as Fig. 5, but for three cities in Peral River Delta megaregion.  
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Figure 8. Same as Fig. 5, but for two cities in Chengyu megaregion. 

   

   

   

Figure 9. Same as Fig. 5, but for three cities in Northwestern megaregion.  



22 
 

   

   

   

Figure 10. Same as Fig. 5, but for three cities in Northeastern8 megaregion.  

 

5. Discussion 

As a critical determinant of the UHI effect, land surface roughness and morphology have 

been extensively studied in the literature (Lee et al. 2011; Li et al. 2020; Myint et al. 2017). 

Overall, the results of this study are consistent with that of prior studies, revealing that the SUHI 

intensity has a positive relationship with the spatial distribution and density of buildings (Guan et 

al., 2021; Peng et al., 2018). The left columns of Figs. 5 to 10 show the relationships between the 

SUHI intensity and the urban roughness zurban proportional to building height. The same 

correlation was qualitatively observed and reported in case studies of Wuhan and Hangzhou (Li 

et al., 2021; Lu et al., 2021). With respect to the 2D morphological parameters, previous case 
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studies reported the building coverage/area (HAR) is the dominant factor of SUHI variability (Li 

et al., 2021; Lu et al., 2021; Yuan et al., 2021). Nevertheless, the current study finds that the 

influence of VAR on SUHI is comparable to that of HAR (middle and right columns from Figs. 5 

to 8). Furthermore, the correlation between the SUHI intensity and VAR or HAR exhibits nearly 

identical seasonal fluctuations. 

It is noteworthy that numerical simulations of urban climate found that the LST in a street 

canyon bears nonlinear relationship with the building-height-to-canyon-width ratio, viz. VAR, 

arising from the complex interplay of radiative shading and trapping effect by the presence of 

building structure (Song & Wang, 2015, 2016). As a consequence, the correlation between SUHI 

and VAR is expected to be nonlinear, provided that the variation of VAR covers a broad enough 

range, say 0.1 – 10. In this study, however, we only find the increasing trend of SUHI intensity 

with VAR. This is mainly due to that the prevailing building type in most Chinese cities renders a 

relatively narrow range of VAR (mostly less than 3, see Fig. 4). Nevertheless, it is caveated that 

in sufficiently densely built areas (e.g. downtown or commercial district teeming with 

skyscrapers) the simple linear correlation between VAR and the SUHI intensity may break down, 

and more sophisticated technique (e.g. machine learning, see Li et al., 2022) is needed to 

quantify their relationship, as well as for optimal urban design.  

When referring back to Fig. 3, the SUHI intensity of eleven Chinese cities have coherent 

trends but each varies individually, suggesting diverse mechanisms (as described in the 

Introduction) synergistically determines the urban thermal environment. Among these 

determinants, urban morphology is responsible for a part of, albeit critical, SUHI variability and 

its spatiotemporal patterns. In addition to urban morphology, prior studies also suggest that the 

background climate and evapotranspiration of vegetation are the major factors that influence 
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urban thermal environment (Zhao et al., 2014). Seasonal changes in background temperature 

have a significant impact on spatial distributions of SUHI intensity, the intensive shortwave 

radiation during summertime not only heats the near-surface atmosphere, but also accelerates the 

speed of heat release from artificial structures in urban areas (Zhou et al., 2014), further amplify 

the difference of heat storage and convection ability between urban and rural areas and lead to 

strong SUHI (Hou et al., 2022). At the same time, as the vegetation coverage in Northern China 

mainly consists of temperate broad-leaf forests, the evaporative cooling by plants in summers 

also exaggerates the temperature difference between vegetated and impervious land surfaces 

(Peng et al., 2012), another way to intensify UHI. 

Furthermore, other contributing factors to urban thermal environment can also be 

significant, one being the topography of cities. For example, the SUHI intensity of Chengdu and 

Chongqing (Fig. 3) show that cities built over mountainous terrains can exhibit stronger SUHI 

intensity, even compared to cities more densely built or populated. This can be attributed to the 

drastic changes in land cover and/or altitude in mountainous areas (Hou et al., 2022; Zhou et al., 

2014). In addition, anthropogenic activities, such as urban irrigation, plays an increasingly 

important in regulating the thermal environment in cities (Wang et al., 2019a). It has been found 

that irrigation changes the rate of soil water convection, which in turn lead to the hysteresis 

effect of LST evolution (Wang, 2014b). This seasonal hysteresis due to irrigation is likely 

responsible to the anomalous SUHI variation in Shijiazhuang and Tianjin (Fig. 3) during springs 

and early summers, which accelerates the vegetation growth, leading to a higher 

evapotranspiration cooling effect than in rural areas and forming a temporary urban heat oasis 

(Zhao et al., 2016; Zhou et al., 2013). 
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Despite the spatiotemporal variability in the four megaregions, the strongest correlation 

to morphological parameters (both r and slope of regression functions) always appears in 

summer while the weakest appears in winter. Spatially, the seasonal differentiation of this 

correlation decreases from North to South, due to the variation of background climate conditions. 

From the warm-temperature humid climate zone (Jingjinji megaregion) to the mid- (Yangtze 

River Delta and Chengyu megaregions) to south-subtropical humid climate zone (Peral River 

Delta megaregion), the seasonal fluctuations of temperature and precipitation become gradually 

milder (Domrös and Peng, 2012), contributing to the distinctive or insignificant seasonality in 

Fig. 5 and Fig. 8, respectively. 

The temporal differentiations of these relationships, on the other hand, reveal more 

detailed mechanisms for formation of UHI. The correlation between urban morphology and the 

SUHI intensity is weakest in winter (Figs. 5 to 10), even becomes negative (Figs. 5 and 9). In the 

winter of Jingjinji and Northwestern megaregion, contrary to the common belief that the UHI 

intensity increases with building density (Guan et al. 2021; Lu et al., 2021), it can decline with 

all three urban roughness and morphology indicators. This is because that the presence of high-

rise buildings in urban cores, in conjunction with the low zenith angles of the sun in winter in 

northern China, can effectively impede the solar radiation incident on street canyon facets, and 

effect known as radiative shading (Song & Wang, 2015; Li et al., 2021).  

 

6. Concluding Remarks 

In this study, we quantified the spatiotemporal patterns of the relationship between urban 

morphology and the SUHI intensity in major Chinese cities, using MODIS LST data and urban 

landscape data during the 2013 – 2017 period. In general, it is found the SUHI intensity is 



26 
 

positively correlated with the surface roughness (zurban), canyon geometry (VAR), as well as 

building density (HAR). in addition, the spatiotemporal variation of this correlation is strongly 

regulated by the seasonality and background climate in the study regions. In particular, when the 

SUHI intensity rises with background temperatures, its dependence on the urban morphology 

also becomes more significant, as revealed by the increase in values of both r and slope of 

regression. In megaregions that have notable seasonality, these relationships always achieve their 

highest degree in summer (mean and standard error of r is 0.59 ± 0.13) and lowest degree in 

winter (0.11 ± 0.35). Furthermore, most parameters have negative relationships with the SUHI 

intensity in the winter of Jingjinji and Northwestern megaregions (-0.22 ± 0.36 and -0.19 ± 0.32), 

implying the effect exerted by urban surface roughness and morphology is not unidirectional, 

and could contribute to urban oasis either.  

Moreover, the intercomparison among the three urban morphological parameters show 

that their influence on the urban thermal environmental are comparable, despite the parameters 

are calculated in different dimensions. While the 1D surface roughness zurban, as a function of 

building height alone, appears to be a simplified measure of urban morphology, it turns out to be 

good representative of the 2D urban geometry and building density as well. This makes physical 

sense as in real urban planning, all three parameters are highly dependent, e.g. a built 

environment teeming with high-rise buildings (like the commercial districts in the Jingjinji 

megaregion or downtown Manhattan) will feature high surface roughness zurban, deep and narrow 

street canyon (large VAR), and high building density (large HAR) at the same time.  

It is caveated that urban morphology is only a partial, albeit important factor, contributing 

to regulate the thermal environment in cities. Nevertheless, the findings of this study enhance our 

understanding of how urban morphology affects UHI, and more importantly, how building 
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structures can be strategically planned to counteract the heat island effect. One particular 

example is the potential nonlinearity of the correlation between the SUHI intensity and the street 

canyon geometry (VAR), and other morphological parameters as well, due to complex 

interactions of radiative trapping and shading effect in street canyons. The threshold VAR of this 

nonlinearity can be utilized in planning for future cities, especially under the stress of 

intensification of urban cores. Strategical urban planning as such will require more sophisticated 

tools such as multiscale urban climate simulations and/or machine learning based surrogate 

modeling or optimization.     
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