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Abstract 

Urban areas experience numerous environmental challenges, among which the 

anthropogenic emissions of heat and carbon are two major contributors, the former is responsible 

for the notorious urban heat effect, the latter longterm climate changes. Moreover, the exchange 

of heat and carbon dioxide are closely interlinked in the built environment, and can form positive 

feedback loops that accelerate the degradation of urban environmental quality. Among a handful 

countermeasures for heat and carbon mitigation, urban irrigation is believed to be effective in 

cooling, yet the understanding of its impact on the co-evolution of heat and carbon emission 

remains obscure. In this study, we conducted multiphysics urban climate modeling for all urban 

areas in the contiguous United States, and evaluated the irrigation-induced cooling and carbon 

mitigation. Furthermore, we assessed the impact of urban irrigation on the potential heat-carbon 

feedback loop, with their strength of coupling quantified by an advanced causal inference 

method using the convergent cross mapping algorithms. It is found that the impact of urban 

irrigation varies vastly in geographically different cities, with its local and non-local effect 

unraveling distinct pathways of heat-carbon feedback mechanism.  

 

Keywords: Causality; Contiguous United States; Convergent cross mapping; Heat-carbon 

feedback; Irrigation; Urban microclimate  
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1.  Introduction 

Urban areas accommodate 56% of the world population (UN, 2019), but cover only about 

3% of Earth’s land surface (Lambin and Meyfroidt, 2011; Gao and O’Neill, 2020). Cities, 

especially the larger ones, are the hotspots of burgeoning human activities, also known as the 

“anthropogenic stressors” (Fernando, 2010), which has been the primary and the most 

irreversible driver to climate changes (Seto et al., 2011; IPCC, 2022).The concentrated 

anthropogenic stressors in urban areas, alongside the irreversible modification of landuse and 

landcover, give rise to drastic environmental consequence, including the exacerbated thermal 

environment, air pollution, infrastructure vulnerability, public health risks, and degraded 

ecosystem services, to name a few (Antognelli & Vizzari, 2016; USGCRP, 2016; Kumar et al., 

2019; Demetillo et al., 2020; Wang, 2021).  

Among anthropogenic stressors, heat and carbon dioxide (CO2) emissions are the two 

primary sources. Urban areas today consume over two thirds of world’s energy, and produce 

about 70% of global carbon emissions (UN-Habitat, 2020). Anthropogenic heat emissions, 

together with other contributors including the presence of urban morphology, reduced vegetation 

coverage, and the use of engineering materials, are mainly responsible for the exacerbated 

thermal environment in urban areas. One prominent example is the well-known phenomenon of 

urban heat island (UHI) effect, viz. urban cores can be significantly warmer than their rural 

surroundings (Oke, 1967, 1982; Wang, 2022). Large cities, with their densely populated 

residential areas and infrastructure, particularly fall prey to the exacerbated thermal environment 

over the last few decades (Habeeb et al., 2015). 

In addition, most sources of anthropogenic heat emissions, such as vehicles and industrial 

buildings, are also significant contributors of greenhouse gas (GHG) emissions, especially the 
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anthropogenic carbon dioxide (AnCO2) (Pataki et al., 2006; Hutyra et al., 2011). On the global 

scale, AnCO2 emissions constitute the largest carbon flux to the atmosphere and represent the 

dominant source of GHG forcing to climate changes (Gurney, 2014). The increase of CO2 

concentration produces rising global mean temperature, which, in turn, results in higher AnCO2 

emissions by, e.g., more fossil fuel burning in buildings and vehicles, leading to a positive loop 

and vicious cycle of climate-carbon feedback in the Earth’s climate system (Randerson et al., 

2015), via land-atmosphere interactions over built terrains (Song & Wang, 2015, 2016; Song et 

al., 2017). 

Last decades have witnessed the burgeoning interest and tremendous effort of researchers, 

policymakers, and practitioners, devoted to seeking sustainable countermeasures to 

anthropogenic emissions for ameliorating the urban environmental quality, in particular, on heat 

mitigation strategies and carbon-neutral cities (Wang et al., 2021; Huovila et al., 2022). Among 

these countermeasures, urban irrigation has been extensively studied as an effective means for 

reducing the ambient temperature while supporting the biogenic functions of urban vegetations 

(Yang and Wang, 2015; Luketich et al., 2019; Wang et al., 2019). Its impact on the dynamic of 

carbon exchange in urban areas has been hitherto relatively underexplored but starts to attract 

more research endeavor lately (Hardiman et al., 2017; Sargent et al. 2018; Li and Wang, 2021a, 

2021b; Li et al., 2022). Neverthless, the compound effect of urban irrigation on the co-evolution 

of heat and carbon exchange in the built environment remains largely obscure, especially on 

altering the possible pathways of heat-carbon feedback mechanisms.  

In local environments, e.g., street canyons, where urban irrigation takes place, it can 

modify the heat-carbon interactions in two major, but competing, processes. First, by effective 

cooling of the built environment, controlled urban irrigation can suppress biogenic and AnCO2 
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emission via, say reduced use of electricity or fossil burning for air conditioning in buildings and 

cars, hence achieve the environmental co-benefit of heat and carbon mitigation (Li et al., 2021). 

On the contrary, irrigation of urban vegetation can lead to an increase of abiotic carbon emission, 

mainly through soil respiration (Decina et al., 2016; Kindler et al., 2022). In the long run, these 

irrigation-induced changes in local environment will also surface in spatially adjacent or even 

distant areas (de Vrese et al., 2016), via the long-range connectivity of urban areas (aka 

teleconnection) (Seto et al., 2012) that leads to “analog” in thermal environment even among 

cities far apart from one another (Fitzpatrick and Dunn, 2019). 

Given the inadequacy of status quo understanding of the intriguing yet complicated 

tempetature-CO2 interactions, we aim to disentangle and unravel the physics of coupled heat and 

carbon exchange in urban areas. Given the time series of a pair of environmental variables, say 

temperature and abiotic carbon emission, prevailing practices to determine their coupling 

strength is through the measure of statistical correlation, such as Pearson’s r. Nevertheless, 

statistical correlation, fitful for linear systems, is inadequate to capture the true coupling of 

variables in nonlinear dynamics such as the urban climate system. For example, spurious 

correlations between a pair of variables are commonly found, even in simple nonlinear systems 

(Mysterud et al., 2001). Therefore, to determine the true heat-carbon coupling and its strength, 

causal inference, instead of statistical correlation should be used (Pearl and Mackenzie, 2018; 

Runge et al., 2019). In this study, we adopt an advanced causal inference approach, namely the 

convergent cross mapping (CCM) algorithm (Sugihara et al., 2012), to quantify the local and 

non-local impact of urban irrigation on the potential heat-carbon feedback loops. The CCM 

method is particularly fitful for detecting causal relations in nonlinear and moderately coupled 

dynamic systems (e.g. climate systems).  
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The rest of the paper is organized as follows. The methods used in this study are described 

in Section 2, including the study areas, regional hydroclimate modeling, urban land surface 

processes, and the CCM method for quantification of true coupling links and their strength. It is 

followed by results of hydroclimate modeling and causal analysis in Section 3, accompanied by 

discussions in the light of new findings. We then conclude the study with remarks on the major 

findings and their implications, together with caveats and perspectives to future study.  

 

2.  Methods 

In this study, our study area consists of all urban areas in the contiguous United States 

(CONUS) with densely developed land and over 50,000 or more population, according to the 

Topologically Integrated Geographic Encoding and Referencing (TIGER) Geodatabase 

developed by U.S. Census Bureau (https://www.census.gov/geographies/mapping-files/time-

series/geo/tiger-geodatabase-file.html). The spatial distribution of the classified urban pixels is 

shown in Fig. 1a, based on the National Land Cover Database (NLCD) Landsat imagery with 

30-m resolution (Wickham et al., 2014), and the corresponding fractions of built-up areas.  

 

2.1. WRF simulations of urban climate  

We used the mesoscale Weather Research and Forecasting (WRF) model (v4.0) for the 

urban climate simulations of CONUS cities (Skamarock et al., 2019). WRF is a fully 

compressible, Euler nonhydrostatic numerical weather prediction and atmospheric simulation 

system, which has been widely used at multiple spatiotemporal scales. An important feature of 

ARW is that it includes the enhanced land surface parameterizations of Noah-MP (Niu et al., 

2011), including vegetation canopy dynamics, multi-layer soil and snowpack with liquid water 
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retention, and frozen ground physics. In this study, we configured the spatial domain of to cover 

the entire CONUS and its surrounding regions in Canada and Mexico, with a 5-km grid size in 

horizontal directions and 32 vertical layers. The use of parameterization schemes for different 

dynamic solvers including planetary boundary-layer and surface-layer dynamics, cloud 

microphysics, and short- and long-wave radiation followed the choice in Wang et al. (2019a).   

Moreover, the land surface processes in non-urban areas were simulated using the unified 

Noah land surface model (Noah-LSM), while dynamics of surface exchange in urban cells were 

modeled using the single layer urban canopy model (UCM). Three urban categories were 

adopted in the WRF model, viz. low-residential, high-residential, and commercial areas, 

respectively, each with the UCM input defined in WRF urban parameter table correspondingly 

(Wang & Upreti, 2019). In addition, a “tiling approach” was used to reflect the surface 

heterogeneity as well as to calculate the meteorological condition, such as temperature, 

aggregated over urban and non-urban portion within a given gridcell (Chen et al., 2011). We also 

chose nudging options based on previous studies (Wang et al., 2018, 2019a, 2019b) for 

evaluating different urban strategies over the same study area, viz. CONUS cities, at various 

spatiotemporal resolutions.  

 

2.2. Carbon exchange in the built environment 

In this study, we adopted a state-of-the-art urban land surface model, viz. the Arizona 

Single Layer Urban canopy Model (ASLUM) (Wang et al., 2013) to capture the CO2 exchange 

in the built environment, subjected to the local microclimate conditions generated by the 

mesoscale WRF model. The latest version of ASLUM (v.4.0) (Li and Wang, 2020; Wang et al., 

2021) features a holistic set of parameterization schemes for urban CO2 uptake and emission 
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arising from various sources, including human, building, and vehicular CO2 emissions, plant 

biogenic CO2 fluxes, and ecosystem respiration, via a data fusion approach. The biogenic CO2 

exchange, including CO2 exchange from urban green spaces, is parameterized to resolve the 

interplay between physical environment and biochemical processes. In particular, the gross 

primary production (GPP) is given by, 

 ( )20
GPP , ,[CO ],

LAI
V GPP skf F PAR T dLθ= ∫ ,    (1) 

where fV is the vegetation fraction; FGPP is the Ag-rs-type plant photosynthesis model adopted in 

ASLUM; LAI is the leaf area index; PAR is the photosynthetically activated radiation; Tsk is the 

leaf skin temperature; [CO2] is near surface CO2 concentration level in ppm; and θ is the 

normalized soil moisture (saturation). The special integral sums leaf level carbon assimilation 

rate to canopy level primary production when considering the light extinction inside of the 

canopy (Ronda et al., 2001). In addition, the in-canyon soil respiration R is calculated as, 

 ( )RR , ,sSf F T LAIθ= ,    (2) 

where fs is the soil fraction; FR is the temperature-dependent respiration function; and Ts is top-

soil layer temperature. The net ecosystem exchange (NEE) is then calculated as NEE = R − GPP, 

with both R and GPP being the magnitude (both positive) of carbon exchange rate. The 

directions of NEE follow the sign convention used in ecological studies with negative values 

designating net carbon absorption by vegetation, vice versa. 

 

2.3. Convergent cross mapping for causal inference  

In this study, to quantify the heat-carbon coupling/feedback strength, we adopt the CCM 

method for causal inference between the time series of temperature and a given carbon flux, at 

either the same town (local causality) or different urban areas (non-local impact). To apply the 
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CCM algorithms, the aggregated mean values at each time instant of the 24-hour cycle are 

subtracted from the original time series. Thus, only the detrended time series of anomalies are 

used for subsequent causality analysis. The purpose of the detrending process is to remove the 

impact of periodicity, viz. the diurnal cycle, intrinsic to temperature and carbon dynamics that 

are subject to a common external forcing, viz. solar radiation, and susceptible to produce 

spurious causality.  

The CCM algorithm for causal inference has been developed for detecting the directed 

causal influence in moderately-coupled nonlinear dynamic systems, such as Earth’s climate 

system. The method is based on the classic delay-coordinate embedding theory for nonlinear 

time series analysis (Takens, 1981), with a nearest-neighbors algorithm for reconstruction of the 

cross-mapping estimate (Sugihara and May, 1990; Sugihara et al., 2012). The fundamental idea 

of the CCM algorithm is that if causality exists between a pair of generic variables, represented 

by two time series X(t) and Y(t) respectively, then the cross-mapping dynamics of one variable 

can be reconstructed from the information of the other, and vice versa. To quantify the causal 

inference from Y to X, it starts by constructing a shadow manifold MX from X(t) by re-arranging 

the original time series into a lagged-coordinate vector, denoted as x(t) = [X(t), X(t−τ), …, 

X(t−(E−1)τ)], where τ and E are the time delay and embedding dimension, respectively. It 

follows that cross-mapping estimates can then be constructed from the manifolds. For example, 

the cross-mapping ˆ( ) | XY t M can be constructed using a simple projection of the E+1 nearest 

neighbors of vector x(t) in the manifold of MX, with exponentially weighted distances.  

Lastly, the causality from Y to X is measured by the correlation coefficient 
XY Mρ  

between the original Y(t) and the cross-mapping estimate ˆ( ) | XY t M , given by 
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where E, µ, and σ are the statistical expectation, average, and standard deviation, respectively. A 

larger value | XY Mρ implies a stronger casual influence, while Y is not causal to X if 0
XY Mρ ≤ .  

Likewise, the causality from X to Y can be quantified using the aforementioned procedure 

by constructing the cross-mapping estimate ˆ ( ) | YX t M  and finding its correlation to the original 

data series of X(t). In addition, the accuracy of the CCM algorithm can be sensitive to the choice 

of the time delay τ and the embedding dimension E. Both parameters for the time series of 

similar nature, say temperatures, can be determined using the correlation integral and dimension 

method (Grassberger and Procaccia, 1983; Lai and Ye, 2003). In this study, we adopted τ = 1 

and E = 3 following our previous analysis for temperature series (Yang et al. 2022, 2023).  

 

3.  Results and Discussion 

3.1. The impact of urban irrigation on mitigating heat and carbon emissions  

We first evaluated the model performance of WRF simulations by comparing the predicted 

2-m air temperature in CONUS urban areas against field measurements from the Global 

Historical Climatology Network (GHCN) database. The results of comparisons are shown in Fig. 

1. It can be seen that the model results are in good agreement with measurement with a root-

mean-square-error (RMSE) of 2.14 oC, which is within the usual range of uncertainty of WRF 

temperature predictions.  

We then conducted urban climate simulations using WRF over the summer of four months, 

from 01 May to 30 August, in 2013, under controlled experiments without (the “baseline” 

scenario) and with urban irrigation (the “irrigated” scenario). A standard daily irrigation scheme 
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during 21:00 to 22:00 local time was applied uniformly throughout all urban areas, which 

stopped once the soil water content reaches the field capacity, following the guideline of typical 

practice of municipal irrigation (Gober et al., 2010). The output of WRF simulation was 

calculated at a timestep of 30 second, including surface level temperatures, air pressure, 

humidity, incoming solar radiation, soil moisture, etc. These variables were then aggregated at an 

hourly interval for model outputs.  

 

Figure 1. (a) Urban fraction over CONUS and GHCN ground stations used in this study for 

temperature validation; (b) comparison between WRF simulated daily mean 2-meter temperature 

(T2) and daily mean air temperature from GHCN stations (Tobs.). Dashed red line represents the 

linear regression of scattered data points (n = 51728). 

 

The results of the changes, i.e. the difference between the irrigated and baseline scenarios, 

of the magnitude of the 2-m temperature dT2, and that of the surface CO2 fluxes, viz. dGPP, dR, 

and dNEE are mapped into each urban gridcell in CONUS, as shown in Figure 2. Urban 

irrigation improves the thermal environment with a ubiquitous reduction of the near-surface 

temperature in all urban areas (Fig. 2a). The cooling effect varies spatially with, in general, the 
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most significant impact on densely populated urban clusters, e.g. metropolitans in the Northeast 

corridor, the Great Lake area, Florida, Texas, California, and Arizona.  

 

Figure 2. Change of temperature and carbon fluxes due to urban irrigation in (a) 2-m 

temperature dT2, (b) net ecosystem exchange dNEE, (c) gross primary production dGPP, and (d) 

soil respiration dR. The color bars are designed such that the cool (blue) spectrum shows 

desirable results with urban irrigation (reduced temperature and carbon emissions), whereas the 

warm (red) spectrum shows adverse effect.  

 

The impact of urban irrigation on individual carbon exchange processes is more complex 

and intriguing. The response of carbon exchange to irrigation in CONUS urban areas, on the 

other hand, exhibits two rather distinct regions, roughly representing the east and west halves of 



12 
 

CONUS, where the opposite effect can be found in irrigation-induced carbon emissions. For 

example, in the regions east to Great Lakes and Ohio Valley, there is a significant reduction of 

soil respiration dR (blue areas in Fig. 2d), indicating the effect is favorable as carbon mitigation, 

whereas the change is generally unfavorable in the west with vast areas of arid/semiarid regions. 

Or in other words, urban irrigation induces a net environmental co-benefit of heat-carbon (in 

terms of R) mitigation in east CONUS, but a clear trade-off between cooling and enhanced soil 

respiration in the west, both were mechanistically investigated and reported in our previous study 

(Li and Wang, 2021a). In particular, the urban irrigation-induced increase in soil respiration in 

the west is consistent with the finding in a lately reported site measurement using a mobile eddy-

covariance tower located in the Phoenix metropolitan areas (Kindler et al. 2022).  

The impact of urban irrigation on GPP shows an opposite spatial distribution over CONUS, 

as compared to that on R, i.e. it is generally unfavorable (decrease in GPP) in the east CONUS 

(demarked by red urban pixels), but favorable in the west (Fig. 2c). This implies that urban 

irrigation, while enhancing soil respiration (e.g. in the west), also promotes carbon assimilation 

by plants via photosynthesis. The magnitude of dGPP, however, is often smaller than that of dR, 

presumably because the effect of irrigation on the microbial process in soil (via soil respiration) 

is more direct and stronger than that in the atmosphere (via photosynthesis). This difference 

leads to the overall impact of irrigation on NEE is dominated by the change of respiration (Fig. 

2b), as revealed by the striking similarity in their patterns of spatial distribution (c.f. Fig. 2d).  

 

3.2. CCM causality in comparison with statistical correlation  

After obtaining the dataset of WRF model outcome on urban temperature and carbon 

fluxes, we then proceed to quantify their strength of coupling, a strong indicator to potential 
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heat-carbon feedback mechanism. We first tested the proposed causality algorithm, viz. the CCM 

method, in comparison to the prevailing linear statistical correlation. To do this, we used the 

WRF-predicted time series of T2, GPP, NEE and R in a selected urban area of CONUS, viz. 

Phoenix city, shown in Fig. 3a, and detrended the diurnal cycles to yield the corresponding 

anomalies (Fig. 3b). The results of linear correlation and CCM causality matrices are shown in 

Fig. 3c and Fig. 3d, respectively. In these matrices, we removed the self-correlation or causality, 

represented by the diagonal entities in Figs. 3c&d, and concentrated the off-diagonal terms.  

It is noteworthy that the correlation matrix is symmetrical, but the directional causality 

matrix is asymmetrical, by definition, as the causal influence e.g. by near-surface temperature T2 

on soil respiration R is not necessarily the same as R on T2, while the statistical correlation 

between the two time series always remains the same without directionality.  Moreover, we 

found that the CCM method is capable of capturing the strong causal influence of T2 on all the 

carbon fluxes (the first row in Fig. 3d), whereas their statistical correlations are rather mild or 

even weak (the first row in Fig. 3c). On the other hand, T2 is weakly susceptible to all surface 

carbon fluxes either statistically or causally (c.f. the first columns in Fig. 3c and Fig 3d), even 

more so in terms of causality. This finding shed the first new light on the true heat-carbon 

coupling (and feedback) in that the causal relationship is capable of not only discovering the 

spurious correlation, but also manifesting the mechanistically significant (true) interactions.  

In addition, among the three carbon fluxes, NEE is causally linked to both R and GPP (as 

per definition, NEE is the sum of the two), but the causality is strong between NEE and R, which 

is consistent with the results and interpretation of the WRF outcome in Fig. 2. There is no causal 

relationship between GPP and R, as they are governed by independent physical processes, while 

there exists some weak to moderate degree of statistical correlation, which is likely due to their 
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response to common forcing in the nonlinear urban climate system, and can be regarded as 

spurious in the light of CCM results.  

 

Figure 3. WRF-generated data (a) hourly time series of T2, GPP, NEE, and R in the summer of 

2013 and (b) anomalies after detrending, for the quantification and comparisons of heat-carbon 

coupling strength using (c) the statistical correlation coefficient, and (d) the CCM method.  

 

3.3. The impact of urban irrigation on heat-carbon feedback 

We then extended the CCM analysis to all urban areas in CONUS, using the four key 

outputs by WRF. We first focused on the local impact of urban irrigation on the heat-carbon 

coupling, viz. the change of causality strength due to irrigation measured by the difference 

between the irrigated and the baseline scenarios ,irrigated ,no-irrigationY Y YX M X M X Mρ ρ ρ∆ = − , with 
YX Mρ  

defined in Eq. (3). By local, we mean the difference is taken at same urban area, e.g. Phoenix 
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city, without considering the potential causal influence among temperature and carbon fluxes to 

or from another urban pixel, be it adjacent or distant. The results of all 
YX Mρ∆ , with the generic 

variables X and Y representing T2, R, GPP, and NEE alternatively, are shown in Fig. 4 mapped 

onto all urban areas in CONUS. The color bars represent the difference in the magnitude of 

YX Mρ∆ , instead of fractional changes. The reason of avoiding the use of fractional changes is 

that fractional changes can give rise to a false significance in the change when the coupling is 

weak, e.g. an increase of
YX Mρ from 0.01 to 0.02 stands for 100% of change, yet both are 

insignificant in terms of coupling strength.  

The results show that the most significant local impact of urban irrigation occurs in the 

west CONUS between T2 and R (the first row of Fig. 4), where the coupling of temperature and 

soil respiration is significantly strengthened, especially in metropolitan areas in the states of 

Texas, California, and Washington. It is not a coincidence that this change is in good agreement 

with the WRF simulation results in the areas where urban irrigation enhances soil respiration, i.e. 

the trade-off regions for heat-carbon mitigations. In contrast, in the east CONUS that marks the 

co-benefit of heat-carbon mitigation, viz. both temperature and soil respiration are reduced by 

urban irrigation, the strength of T2-R coupling remains largely the same or weakly decreases. The 

impact of urban irrigation on T2-R coupling is bi-directional, as revealed by the similarity of 

spatial distribution in Fig. 4a and Fig. 4b.  

The impact of urban irrigation on T2-GPP coupling (Fig. 4c and 4d) is much less significant 

as compared to that on the T2-R counterpart. We can only trace a mildly enhanced coupling trend 

along the coastal cities in the south (Florida, Texas, and South California), whereas the T2-GPP 

coupling in most of the inland urban areas remains largely indifferent to irrigation. The resultant 

T2-NEE coupling, resultant in the sense that NEE is determined as the sum of R and GPP, 
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exhibits mixed and complex patterns in its response to urban irrigation (Fig. 4e and 4f), due to 

the complex and highly nonlinear pathway governing the interactions between urban ambient 

temperature and the net ecosystem exchange (Yuan et al., 2011). 

 

 

Figure 4. The results of local difference of causality strength on heat-carbon coupling between 

the irrigated and baseline scenarios, for (a) 
2 RT Mρ∆ , (c) 

2 GPPT Mρ∆ , (e) 
2 NEET Mρ∆ from temperature 

to carbon fluxes, and (b) 
R 2M Tρ∆ , (d) 

GPP 2M Tρ∆ , (f) 
NEE 2M Tρ∆ from carbon fluxes to temperature, 

respectively.  
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Lastly, we proceeded to look into the non-local impact of urban irrigation on heat-carbon 

interactions. In this case, the changes of causality strength in a given city, giving rise to or 

resulted from all other urban areas (except itself, which is considered as the local impact as 

discussed above), need to be considered. To quantify the outgoing (causal influence) and 

incoming (causal susceptibility) influence at the locality, we therefore use the average causal 

effect (ACE) and the average causal susceptibility (ACS) at a given city with an index i, defined 

by (Runge et al., 2015) 

 
,|

1ACE
1 i Y ji X M

j in
ρ

≠

=
− ∑ ,    (4) 

 
,|

1ACS
1 j Y ii X M

j in
ρ

≠

=
− ∑ ,    (5) 

where n is the total number of CONUS cities. Mathematically, ACE and ACS represent the 

averages over columns and rows of the n × n causality matrix, respectively, over the spatially 

mapping of all CONUS cities.  

The results of irrigation-induced non-local changes in ACE are shown in Fig. 5. The results 

of ACS exhibit similar patterns reciprocal to its counterpart of ACE and are therefore not shown. 

The first thing to be noticed is that the non-local impact of urban irrigation is almost negligible 

everywhere over the entire CONUS, except that the ACE from R to T2 (Fig. 5b). The non-local 

ACE change from R to T2 can be interpreted as the causal effect (influence) exerted by the local 

change of soil respiration on non-local ambient temperatures averaged over all other CONUS 

cities via the application of urban irrigation. The results of ACS (not shown here) reveal, on the 

other hand, a manifest reciprocal causal susceptibility of local urban temperature to the change 

of respiration induced by irrigation aggregated over other cities. The impact is far-reaching as 
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compared to the local effect (in Fig. 4), as it implies there exists potentially long-range impact 

(viz. the teleconnection) of urban irrigation in influencing the built environment at long distance 

(de Vrese et al., 2016). In our case, the teleconnection is discerned in the interaction between T2 

and R, with urban irrigation has the potential to enhance the heat-carbon (in this case, R) 

coupling in most of the west CONUS cities, but weaken the causal feedback in south California 

cities.  

 

Figure 5. The results of non-local impact of urban irrigation on ACE of heat-carbon coupling 

between the irrigated and baseline scenarios, for (a) T2 to R, (c) T2 to GPP, (e) T2 to NEE, and (b) 

R to T2, (d) GPP to T2, (f) NEE to T2, respectively.  
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4.  Concluding Remarks  

In this study, we quantified the impact of urban irrigation on the strength of coupling 

between ambient temperature and surface exchange of CO2 fluxes via, soil respiration, carbon 

assimilation by vegetation, and the resultant net ecosystem exchange. We find that the 

application of urban irrigation in CONUS cities causes a ubiquitous cooling effect, but its impact 

on carbon fluxes via complex interplay of heat-carbon dynamics is far more complicated and 

intriguing. In general, the net effect is an environmental co-benefit of both heat and carbon 

mitigation in the east half of CONUS, but a manifest trade-off in the west via enhanced soil 

respiration (abiotic carbon emission). The local impact of urban irrigation on heat-carbon 

coupling, with soil respiration as the dominant carbon exchange process in urban areas, follows a 

similar spatial distribution, viz. a strengthening of coupling strength and potential feedback 

mechanisms in the west, weakening in the east. The non-local effect only exists between the 

causal influence exerted on ambient temperature by soil respiration in the west U.S., signaling a 

far-reaching impact of potential teleconnection of urban irrigation.  

It is caveated that the measure of heat-carbon feedback mechanisms we adopted in this 

study, viz. the causality strength quantified by the CCM method, is by no means unique. Rather, 

the proposed method should be viewed as experimental in nature. There are other valid, or even 

better, methods to unravel the complex interplay of heat and carbon dynamics in urban areas, 

such as Granger or Bayesian causal inference. Yet, in the light of this pioneering work, the CCM 

method is a good candidate for such a task, especially given that urban surface processes 

constitute a highly nonlinear dynamic system with all the environmental variables (e.g. 

temperature, soil moisture, humidity, and scalar transport) subtly and intrinsically connected. 

While we focused on four key variables in this study, the coupling among different variables 
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may exhibit very different or more complex (c.f. temperature and NEE) behavior, locally and 

non-locally. Their distinctive patterns of interactions will have important and far-reaching 

implications for relevant stakeholders, e.g. urban planners, practitioners, environmental 

managers, and policymakers, to seek sustainable solutions to mitigate the adverse environmental 

impact and promoting overall liveability of urban areas, especially mega-cities, among which 

urban irrigation is but one singular, though undoubtedly very important, strategy. For example, 

given the potential long-range impact of irrigation on the heat and carbon dynamics of some 

remote urban areas, stakeholders from different cities/regions should cooperate more closely to 

optimize urban mitigation/adaptation strategies via better coordinated and synergistic means.  
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