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Abstract 1 

The exacerbated thermal environment in cities, the urban heat island (UHI) effect as a 2 

prominent example, has been the source of many adverse urban environmental issues, including 3 

the increase of health risks, degradation of air quality and ecosystem services, and reduced 4 

resiliency of engineering infrastructure. Last decades have witnessed tremendous efforts and 5 

resources being invested to find sustainable solutions for urban heat mitigation, whereas the 6 

relative contributions of different UHI attributes and their patterns of spatio-temporal variability 7 

remain obscure. In this study, we employed the random forest (RF) method to quantify the 8 

relative importance of four categories of urban surface characteristics that regulate the surface 9 

UHI, namely the urban greenery fraction, land surface albedo, urban morphology, and level of 10 

human activities. We selected seventeen major cities from six megaregions in China as our study 11 

areas, with the RF training and test sets obtained from multi-sourced remote sensing and 12 

observational data products. It is found that the urban greenery coverage manifests as the most 13 

important environmental determinants of UHI, followed by surface albedo. The results are 14 

informative for urban planners, policymakers, and engineering practitioners to design and 15 

implement sustainable strategies for urban heat mitigation.   16 

 17 

Keywords: Albedo; Land surface temperature; Normalized difference vegetation index (NDVI); 18 
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1.  Introduction 20 

The urban heat island (UHI) effect, the phenomenon that the built environment is much 21 

warmer than its rural surroundings, has attracted rapidly increasing research efforts in past 22 

decades (Oke, 1967, 1982; Wang, 2022). In the face of climate changes, the UHI effect interacts 23 

positively with global warming as well as increasing heat extremes (McCarthy et al., 2010; Jiang 24 

et al., 2019); both tend to exacerbate the thermal environment in cities. Nevertheless, from the 25 

perspective of urban planners and engineering practitioners, it is the local and surface UHI 26 

determinants that are practically manageable for designing and implementing sustainable 27 

countermeasures and are therefore of pivotal importance for improving the thermal environment 28 

in urban areas.  29 

The local environmental factors underlying the UHI effect contribute to different pathways 30 

of modifying the surface energy balance by human activities. These mechanistic pathways can be 31 

broadly classified as: (1) landuse landcover changes, especially the conversion of natural 32 

(vegetated) to artificial (paved and impervious) surfaces, and the concomitant alternation of land 33 

surface hydrothermal properties (Santero & Horvath, 2009; Yang et al., 2016; Wang et al., 34 

2021a) that reduces the latent heat of evapotranspiration and converts it to sensible heat for 35 

heating the built environment, (2) the presence of urban morphology, especially building 36 

geometries, in modifying the radiative heat exchange in street canyons (Harman et al., 2004a; 37 

Wang, 2014a), (3) the presence of roughness elements (building and transportation 38 

infrastructure, shade trees, etc.) that modulates the turbulent transport of heat, moisture, and 39 

scalars (Grimmond and Oke, 2002; Harman, 2012; Giometto et al., 2016; Li, Yang. & Yang, 40 

2021), and (4) the emission of anthropogenic heat and greenhouse gases (CO2 in particular), 41 



 

3 
 

primarily through urban metabolism and fossil fuel burning (Allen et al., 2011; Menberg et al., 42 

2013; Song et al., 2017) that directly or indirectly contributes to urban warming.  43 

Past decades have also witnessed the tremendous research efforts devoted to unveiling and 44 

quantifying the environmental determinants of UHI that can lead to sustainable, especially 45 

nature-based, solutions for heat mitigation. The two most extensively studied UHI determinants 46 

are the surface reflectance of solar radiation, i.e. albedo, and the coverage of urban greenery, 47 

leading to widely advocated design and implementation of white (white roofs and pavements) 48 

and green (green roofs, green walls, urban gardens/forestry, lawns, shade trees, etc.) 49 

infrastructure for heat mitigation (Wang, 2021; Kirsch et al., 2022). The use of so-called cool or 50 

super-cool engineering materials can effectively reduce the surface (skin) temperature of urban 51 

facet by reflecting substantially larger amount of solar radiation directly back to the atmosphere, 52 

but not without unintended consequences (Yang et al., 2015; Wang et al., 2021a). In contrast, 53 

urban green space is a significant regulator to the thermal environment mainly through 54 

evapotranspirative cooling. Urban greening is among the most popular countermeasures of UHI 55 

not just because of its cooling capacity, but also for its environmental co-benefits including 56 

improvement of air quality, building energy efficiency, ecosystem services, and aesthetic value.  57 

Other environmental determinants include the roughness and morphology of the built 58 

environment. Urban roughness elements mainly consist of the building and transportation 59 

infrastructure and, within a proper range, can be conducive to turbulent heat transport and 60 

effectively modulate the UHI effect (Wong et al., 2016; Venter et al., 2021), comparable to the 61 

effect of albedo or urban greenery. Meanwhile, urban morphology, often represented by various 62 

indices such as the building density, the urban canyon aspect (building-height-to-road-width) 63 

ratio, or the sky view factor, contributes to the UHI intensity to a not insignificant degree (Li et 64 
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al., 2021b; Hou et al., 2023), and often with a nonlinear effect in extremely densely or too 65 

sparsely built environment (Theeuwes et al., 2014; Song and Wang, 2015, 2016). Nevertheless, 66 

though the impact of roughness length or urban morphology is significant on UHI intensity, 67 

these parameters are less manageable than albedo or urban greenery for counteracting the UHI 68 

by urban planners or engineers.  69 

The capacity of conventional physically- or statistically-based approaches for determining 70 

the impact of different environmental contributors to the UHI effect is largely limited in the 71 

sense that they often handle individual factors separately or multiple variables by linear 72 

regression or aggregation. It remains an outstanding challenge to quantify multiple determinants 73 

of UHI by considering their realistic (and often nonlinear) synergistic interplay in regulating the 74 

resultant UHI effect, especially when the dataset gets big with large spatial domains and fine 75 

temporal resolutions. This challenge, however, can be readily addressed by recent advances in 76 

data science, in particular, the use of machine learning (ML) techniques. The application of ML 77 

methods in the UHI study, albeit at its infancy, has already led to some promising results. For 78 

example, Venter et al. (2021) probed into different mechanisms of UHI effect using a machine 79 

learning algorithm and maintained aerodynamic roughness as the controlling factor of the UHI 80 

intensity. ML algorithms have also been used for multi-objective optimization (heat and carbon 81 

mitigation) of urban environment system design (Li et al., 2022), or predicting UHI and 82 

heatwaves (Oh et al., 2020; Li et al., 2023). A recent study also adopted ML-based analysis for 83 

projecting the future UHI effect in Chinese cities based on future climate scenarios and 84 

socioeconomic policies (Lan et al., 2023).  85 

In this study, we aim to characterize and quantify the relative significance of different 86 

environmental determinants of heat islands, in particular, the surface urban heat island (SUHI) 87 
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using a particular ML, viz. the random forest (RF) method. The proposed method is applied to 88 

major Chinese cities in six (Northeastern, Northwestern, Jingjinji, Yangtze River Delta, 89 

Chengyu, and Pearl River Delta) megaregions. The UHI determinants are quantified using local 90 

urban factors including the vegetation coverage in urban areas, surface albedo, the canyon aspect 91 

ratio representing urban morphology, and measures of anthropogenic activities. These indices, 92 

together with the SUHI intensity, are calculated based on remotely sensed dataset and field 93 

observations. By quantifying their relative contribution to the SUHI intensity, we will be able to 94 

prioritize the urban planning strategies for more effective amelioration of the urban thermal 95 

environment.  96 

 97 

2.  Study Areas and Data Retrieval 98 

2.1 The study areas 99 

To adequately represent various geographic and climate conditions, in this study, we 100 

selected seventeen major cities from six megaregions in China (Figure 1). These cities are 101 

distributed across a range of climates (Domrös & Peng, 2012), from mid-temperate humid in the 102 

north to south-subtropical humid in the south, and from mid-temperate arid in the west to north-103 

subtropical humid in the east. The annual average temperature varies significantly, from 5°C in 104 

the Northeastern megaregion to 21°C in the Pearl River Delta megaregion, while the annual 105 

average precipitation ranges from 300 mm in the Northwestern megaregion to 1800 mm in the 106 

Pearl River Delta megaregion. In addition, the seasonal differences in temperature and 107 

precipitation are highly diverse across the six megaregions. For instance, the amplitude of annual 108 

temperature variation is 40°C in the northeastern megaregion, but only 18°C in the Pearl River 109 
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Delta megaregion; the annual precipitation amplitude is 400 mm in the Jingjinji megaregion, 100 110 

mm Northwestern. 111 

 112 

 

Figure 1. Map of study areas of six Chinese megaregions including Jingjinji, Yangtze River 113 

delta, Pearl River delta, Chengyu, Northwestern, and Northeastern megaregion, demarked in red 114 

rectangles, containing seventeen major cities. The background color indicates the classification 115 

of climate in different regions.  116 

 117 
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The seventeen cities selected for our study are also regional socioeconomic centers, 118 

characterized by concentrated populations and industrial production. The cities in the three east 119 

coastal megaregions, in particular, have experienced rapid urbanization and are at the forefront 120 

of China's development since the country's opening and reform (Year 1978). Table 1 121 

summarizes the socioeconomic statistics for these seventeen cities in 2017, obtained from the 122 

State Statistics Bureau (https://data.stats.gov.cn/). As the build-up areas of Guangzhou and 123 

Foshan have merged with each other in their decades-long expansion, they will be studied as one 124 

greater Guang-Fo metropolitan in the subsequent analysis. 125 

 126 

Table 1. The socioeconomic statistics of the seventeen study cities in 2017 127 

Megaregion City Residents (million) GDP (billion CNY) 

Northwestern 
Hohhot 3.12 274.37 
Lanzhou 3.74 252.35 
Yinchuan 2.30 180.33 

Jingjinji 
Beijing 21.95 2988.30 
Shijiazhuang 10.88 646.09 
Tianjin 15.57 1245.06 

Northeastern 
Changchun 7.49 653.00 
Harbin 10.93 635.50 
Shenyang 8.29 586.50 

Yangtze River Delta 
Hangzhou 9.47 1260.34 
Nanjing 8.34 1171.51 
Shanghai 24.18 3292.50 

Pearl River Delta 
Foshan 7.66 954.96 
Guangzhou 14.50 2150.32 
Shenzhen 12.53 2249.01 

Chengyu Chengdu 16.05 1388.94 
Chongqing 31.44 2006.63 

 128 

2.2 Remote sensing data 129 

In this study, we employed multi-sourced data, including raster datasets for land surface 130 

temperature (LST), normalized difference vegetation index (NDVI), land surface albedo, and 131 

nighttime light (NTL), and vector datasets of urban buildings and streets to quantify urban 132 

https://data.stats.gov.cn/
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morphology. The raster datasets were retrieved from remotely sensed imagery of the Moderate 133 

Resolution Imaging Spectroradiometers (MODIS), onboard the Terra and Aqua satellites 134 

managed by U.S. National Aeronautics and Space Administration (NASA). Both Terra- and 135 

Aqua-MODIS provides global coverage of moderate resolution images at the frequency of every 136 

1 to 2 days, since their launch around 2000. Raw data obtained by MODIS has been used to 137 

generate scientific data products, including the surface reflectance (MOD/MYD09) (Vermote et 138 

al., 2002) and vegetation indices (MOD/MYD13) (Huete et al., 1999; Zhang et al., 2017), among 139 

others.  140 

MODIS data products have been widely used in various geographical and ecological 141 

studies due to their wide spatial coverage and high temporal frequency. In this study, we utilized 142 

MODIS data products from 2013 to 2017, including LST and emissivity (MOD/MYD11), 143 

vegetation indices (MOD/MYD13), and land cover type (MCD12). The MOD/MYD11 product 144 

provides LST images on a daily basis with 1000 m resolution, retrieved from two thermal 145 

infrared bands, band 31 (10.780 - 11.280 µm) and band 32 (11.770 - 12.270 µm), using the split-146 

window algorithm (Duan et al., 2019). MOD/MYD13 product contains average NDVI and 147 

Enhanced Vegetation Index (EVI) for a 16-day period with a resolution up to 250 m (Huete et 148 

al., 2002), which are calculated from the red, near-infrared and blue bands (band 1, 2 and 3 149 

respectively). Unlike the previous two products which processed data from Terra and Aqua 150 

separately, the MCD12 product integrates data obtained by both Terra and Aqua satellites and 151 

classifies annual land cover types using the decision tree algorithm based on five different 152 

standards, with a spatial resolution up to 500 m (Friedl et al., 2002).  153 

The product of land surface albedo is also readily available from remotely sensed dataset 154 

(Wan & Li, 1997; Sobrino et al., 2005). In this study, we retrieved the shortwave white sky 155 
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albedo in 2013-2017 from the Global Land Surface Satellite (GLASS) dataset. This dataset 156 

provides long-term, no-gap global coverage for many critical eco-environmental features, such 157 

as the leaf area index, broadband emissivity and gross primary production (Liang et al., 2013, 158 

2021).  159 

In addition, we used nighttime light (NTL) images to represent the intensity of human 160 

activities in urban areas, such as population distribution and economic activities (Fan et al., 161 

2014; Levin et al., 2020). The NTL imagery was obtained from the Visible Infrared Imaging 162 

Radiometer Suites (VIIRS) dataset (Cao et al., 2013; Wolfe et al., 2013). The VIIRS data 163 

products were produced by two satellites, namely Suomi NPP and NOAA-20 launched in 2011 164 

and 2018, respectively, which provides visible and near-infrared data with resolutions of 375 m 165 

and 750 m, respectively. NASA has developed a data product called "Black Marble" to improve 166 

the precision of NTL imagery acquired by VIIRS, by removing cloud and moonlight pollution 167 

through atmospheric and terrain corrections (Román et al., 2018). In this study, we adopted the 168 

NTL data from the VNP46 dataset of Black Marble product. Furthermore, all remote sensing 169 

datasets used in this study were aggregated to 1000 m in spatial resolution and monthly means 170 

for consistency.   171 

 172 

2.3 Field observation 173 

In addition to the remote sensing data described above, we also utilized vector-based 174 

datasets to extract information on urban morphology. Specifically, we obtained a building 175 

distribution dataset from the Resource and Environment Science Data Center of the Chinese 176 

Academy of Sciences (https://www.resdc.cn/data.aspx?DATAID=270). This dataset includes the 177 

location, outline, and number of floors of buildings in build-up areas across several major 178 

https://www.resdc.cn/data.aspx?DATAID=270
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Chinese cities. Moreover, we used a road distribution dataset obtained from the OpenStreetMap 179 

(OSM) project, an online database of roads and amenities maintained by volunteers and publicly 180 

accessible at https://www.OpenStreetMap.org. The urban roads in this dataset have been 181 

classified into various, e.g. primary, secondary, or residential, categories, based on their 182 

applications and construction. Each road category has been assigned to a corresponding road 183 

width in accordance with relevant national standards and studies (Sun & Li, 2018). To ensure 184 

compatibility with the aforementioned raster data, we converted these vector data to raster format 185 

with a spatial resolution of 1000 m. A sample of urban morphology map for part of the city of 186 

Shenzhen, using the aforementioned two datasets, is shown in Figure 2, with different building 187 

height groups and road categories.  188 

 189 

https://www.openstreetmap.org/
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Figure 2. Map of urban morphology for a part of Shenzhen in Pearl River Delta megaregion by 190 

combining two vector datasets: the building and road information obtained from Resource and 191 

Environment Science Data Center and OpenStreetMap project, respectively.  192 

 193 

3.  Methods  194 

3.1 Quantification of the SUHI intensity 195 

Thermal environment in cities, in contrast to their rural surroundings, is conventionally 196 

quantified as canopy- or boundary-layer UHI (Oke, 1976), measured by air temperatures in the 197 
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urban canopy layer or atmospheric boundary layer. These two measures of UHI intensity have 198 

different characteristic footprints (source areas) of atmospheric measurements (Wang et al., 199 

2018; Wang, 2022). On the other hand, with the advance of satellite-based thermal remote 200 

sensing techniques (Voogt & Oke, 2003), measurements of LST at large spatial coverage 201 

become more readily available. The difference between urban and rural LST has been widely 202 

used as an indicator of UHI at the surface level, viz. the SUHI (Peng et al., 2012), which enables 203 

the study of UHI effect at multiscales ranging from neighborhood to global scales with high 204 

economy and accessibility (Mirzaei & Haghighat, 2010). In this study, we adopted the remotely 205 

sensed LST, and quantified the SUHI intensity using, 206 

 ,urban ,rurals s sT T T∆ = − ,    (1) 207 

where Ts is the LST (skin temperature), retrieved from the MODIS MOD/MYD11 data product. 208 

We calculated the gridded SUHI intensity in each urban pixel within the boundaries of all study 209 

areas, defined by the spatial extent of the vectorial building distribution data. In defining the 210 

urban pixels, the following filtering criteria is applied, viz. the pixels with incomplete records 211 

were excluded from the selected cities, such as water bodies (with LST information from the 212 

MOD/MYD11 dataset but without NDVI information from the MOD/MYD13 dataset) or bare 213 

land (no building information for calculating urban morphology indicators). In addition, we 214 

applied outer buffer region of 10-km width based on each city's administrative boundary 215 

(Paschalis et al., 2020), in which the gridcells with natural land cover types (IGBP class 1 to 12) 216 

of MODIS MCD12 are classified as the rural surroundings to obtain Ts,rural averaged over all 217 

rural pixels (Chakraborty & Lee; 2019). 218 

 219 

3.2 Urban morphology 220 
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Urban morphology contributes to the energetic pathway of UHI through the presence of 221 

roughness elements and complex building geometry. Roughness elements are represented by key 222 

aerodynamic parameters such as roughness length and zero-plane displacement that strongly 223 

regulate the turbulent transport of sensible and latent heat (Raupach, 1994; Grimmond & Oke, 224 

1999, 2002; Harman et al., 2004b; Giometto et al., 2016). The geometry of the built 225 

environment, on the other hand, alters the pathway of radiative heat exchange via two major 226 

competing processes: (1) the shading effect that cools the street canyon and (2) the warming 227 

effect by multiple reflections that retains more thermal radiation in street canyons. The 228 

synergistic interactions of two processes result in complex and nonlinear effects of urban 229 

geometry on the UHI intensity (Li et al., 2020; Hou et al., 2023). 230 

The complex urban morphology can be represented by a variety of geometrical parameters, 231 

ranging from the one-dimensional (1D) roughness length and zero-plane displacement, to 2D 232 

building frontal and plane areas, to 3D building density and sky view factors (Grimmond & Oke, 233 

1999; Li et al., 2021; Lu et al., 2022; Dewa et al., 2023). These various morphological 234 

parameters, however, are not independent, but are all strongly correlated to each other instead (Li 235 

et al., 2021; Hou et al., 2023). This is reasonable in the sense that densely built areas in urban 236 

cores tend to have high roughness length, large areas of built facets (roofs and walls), high 237 

building density, and small sky view factors. In urban climate modeling community, urban areas 238 

are customarily represented using “big canyons” (Nunez & Oke, 1977) with two rows of 239 

buildings separated by a road, both of infinite longitudinal dimension (canyon depth). In this 240 

setting, the urban morphology is quantified using the vertical aspect ratio (VAR) of the street 241 

canyon, or the building-height-to-road-width ratio, defined as, 242 

 VAR /H W= ,    (2) 243 
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where H is the average height of buildings in an urban gridcell, and W the average road width. In 244 

this study, we adopt the VAR as the representative indicator of urban morphology, owing to the 245 

fact that it maintains an intricate balance of complexity and accuracy for urban climate modeling, 246 

UHI predictions included (Grimmond et al., 2010).  247 

 248 

3.3 Random Forest algorithm  249 

We utilized the RF algorithm to quantify the influence of various environmental 250 

determinants on SUHI as well as their relative significance. The RF model is a highly flexible 251 

nonparametric machine learning algorithm, capable of estimating or classifying a target variable 252 

(SUHI in this study) using explanatory variables (“features”) and estimating the importance of 253 

each feature. It leverages the bootstrap resampling method to draw multiple samples from the 254 

original dataset, constructs a decision tree for each bootstrap sample, and combines the 255 

predictions of multiple decision trees to reach the final decision prediction through voting for 256 

classification and averaging for regression (Breiman, 2001). Each node is split using the best 257 

feature selected among a random subset of all features, as opposed to selecting one from all 258 

features in the conventional decision tree algorithm (Breiman, 2001). Because of the 259 

bootstrapping and random subset strategy, random forest is more robust than decision trees 260 

against overfitting and has achieved competitive performance in numerous applications (Liaw & 261 

Wiener, 2002; Xu and Liang, 2021). 262 

In this study, we adopted four local environmental variables as features to estimate the 263 

SUHI intensity using the RF algorithm. These features include NDVI, surface albedo, VAR, and 264 

NTL, representing the contribution from urban green space, paved surfaces, urban morphology, 265 



 

15 
 

and intensity of human activities, respectively. These variables, along with the target (SUHI 266 

intensity), were first normalized into the interval [0, 1], by 267 

 min

max min
N

X XX
X X

−
=

−
,    (3) 268 

for subsequent processing by RF.  269 

To compare the impact of environmental variables on SUHI at different time scales and 270 

spatial regions, we conducted two sets of experiments. In the first experiment set, we calculated 271 

the annual average of all data for each city within a megaregion to investigate the effects of 272 

various variables on SUHI intensity across the megaregion on an annual basis. In the second set, 273 

we established a seasonal model for all selected cities to compare the impact of environmental 274 

variables on SUHI across seasons. In both experiments, the data was split into a training set and 275 

a test set, with the training set containing approximately 70% of the data and the test set 276 

containing the remaining. To fine-tune the hyperparameters of the RF model, we further divided 277 

the training set into five folds to perform 5-fold cross-validation. This approach involved training 278 

the model with a given set of hyperparameters on four of the folds and evaluating it on the 279 

remaining fold (i.e., the validation set). This process was repeated five times, with a different 280 

fold serving as the validation set each time. We evaluated R2 and mean square error (MSE) on 281 

each validation set and average across five nodes to obtain an estimate of generalization error for 282 

the given set of hyperparameters. Next, the grid search technique was used to identify the best set 283 

of parameters that yielded the lowest 5-fold cross validation error. Using the optimal 284 

hyperparameters, we retrain the model on the entire training set and evaluate its performance, in 285 

terms of R2 and MSE on the test set. 286 

Subsequently, we calculated importance scores of the four environmental variables using a 287 

permutation-based technique. The technique calculates importance score of a feature by adding a 288 
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perturbation to the feature and then determining the difference between the model performance 289 

on the original dataset and on the permuted dataset. The score is normalized by dividing this 290 

difference with the standard deviation of model performance on the permuted datasets. A higher 291 

score signifies greater importance of a feature for predicting the target variable. 292 

The schematic of the analysis framework in this study is shown in Figure 3 using the city of 293 

Shanghai as an example. The input to the RF consists of dataset extracted from remotely sensed 294 

imagery and ground-based measurements including the vegetation coverage (NDVI), land 295 

surface reflectivity (albedo), urban morphology (VAR), and nighttime light images (NTL).  296 

 297 

 298 

Figure 3. The proposed framework of the current study: (a) Input dataset consists of vegetation 299 

coverage, surface albedo, urban morphology, and nighttime light image in the city of Shanghai, 300 

and (b) the schematic of RF algorithm.  301 

(b) Random forest algorithm(a) Input dataset
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 302 

4.  Results and Discussion 303 

In this study, we devised two sets of ML experiments, trained and tested by RF, to evaluate 304 

how various environmental variables attributes to heat islands, including: (1) the spatial 305 

variability of annual mean SUHI attribution in different megaregions, and (2) the seasonal 306 

variation in individual cities. In each set of experiments, we evaluated the performance of RF 307 

model using the statistics of R2 and MSE, and discussed the physical interpretation of the results. 308 

In addition, the RF hyperparameters used for training of the two experiments are listed in Tables 309 

S1 and S2 in the Supplementary Information, respectively. 310 

 311 

4.1 Spatial variability of annual mean SUHI attribution 312 

In addition to seasonal variability, the intensity of heat islands is also subject to climatic 313 

conditions and atmospheric forcing. To illustrate, the first set of RF experiments probed into the 314 

variation of annual mean SUHI attributes in different megaregions in China. The results are 315 

demonstrated in Figure 4. The first thing noticeable is the difference of dominating factors 316 

between northern and southern China: NDVI is the single predominant contributor to heat 317 

islands in southern Chinese megaregions, while other factors, such as albedo, become more 318 

important in northern megaregions. The predominance of NDVI to SUHI intensities in southern 319 

Chinese cities is possibly due to the presence of large area and high density of urban greenery, 320 

especially urban trees, as a result of abundant rainfall in sub-tropical climates (Li et al., 2015). It 321 

is noteworthy that impact of NDVI, albedo, and surface roughness can be strongly correlated in 322 

the presence of urban forest. The low albedo (~0.15-0.20) of vegetated surfaces can largely offset 323 

the effect of white paving materials (e.g. concrete with albedo of ~0.4), and the complex 324 
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geometry of urban trees synergizes with building clusters in regulating the aerodynamic transport 325 

of turbulent heat fluxes. The complex interactions of urban trees and urban forestry with surface 326 

albedo and urban morphology also help to explain the relatively low attributions of SUHI to 327 

albedo and VAR in cities in southern China. For instance, Fig. S1 shows the dependence plot 328 

(PDP) of albedo and NDVI in the Pearl River Delta megapolitan, where SUHI exhibits varied 329 

responses contingent on different NDVI and albedo combinations. More specifically, SUHI 330 

intensity minimizes at relatively high NDVI (above 0.45) and low albedo (below 0.25) and 331 

stabilizes at a maximum within regions of low NDVI (below 0.3) and high albedo (above 0.35). 332 

When NDVI and albedo lie within mid-range, the PDP surface manifests high complexity with 333 

multiple peaks and ridges, suggesting interactions between these factors in their influence on 334 

SUHI. Similarly, complex interplays exist in other pairs of SUHI attributing factors: an example 335 

is shown in Fig. S2 of the PDP of NDVI and VAR, where SUHI tends to rise sharply when 336 

either NDVI or VAR is low (below 0.15), whereas the contribution of VAR to SUHI reduces 337 

drastically when NDVI values exceed 0.45. 338 
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Figure 4. RF-quantified attribution to annual SUHI intensities by four environmental factors, 339 

viz. NDVI, albedo, VAR, and NTL, in six megaregions of China.  340 

 341 
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In addition to the relative scarcity of green spaces in the Jingjinji and Northeastern 342 

megaregions, urban vegetation dynamics is also subject to stronger seasonal variability. As a 343 

consequence, the NDVI values change significantly from growing to defoliation seasons due to 344 

the presence of prevailing deciduous trees in northern Chinese cities. Thus when the seasonal 345 

variability is averaged, the annul mean SUHI intensity in northern megaregions of China exhibit 346 

much milder response to NDVI. By the same token, we expect that the synergy between NDVI 347 

and surface albedo or urban morphology is weakened when temporally averaged as annual 348 

means. This also explains that the impact of albedo and VAR becomes comparable to or even 349 

more significant than that of NDVI for Jingjinji and Northeastern megaregions, where their 350 

effects are disentangled.  351 

Moreover, it is noted that the Northwestern megaregion stand out as quite exceptional in 352 

Figure 4 which could be partially due to the fact that cities in this region are relatively small, and 353 

the albedo in Northwestern cities is less distinguishable from that of the prevailing background 354 

of arid plateau areas (Zhang et al., 2013). For these relatively small cities in Northwestern China, 355 

urban morphology (VAR) becomes an outstanding factor in regulating the urban thermal 356 

environment, as it distinguishes the built environment from its rural surroundings.   357 

Furthermore, we evaluated the RF performance using the statistics of R2 and MSE. The 358 

results are summarized in Table 2. It is clear that most megaregions investigated in this study 359 

exhibit favorable model performance, with R2 values ranging between 0.5 and 0.9 and MSE 360 

reasonably small for training sets. In addition, the performance levels observed for test sets are 361 

similar to that of the training sets, indicating that the model has achieved a balance between 362 

accuracy and generalizability.  363 

 364 



 

21 
 

Table 2. Statistics of R2 and MSE of RF performance on training and test data, respectively, for 365 

predicting annual mean SUHI intensities in six Chinese megaregions 366 

Megaregions 
Train Test 

R2 MSE R2 MSE 
Chengyu 0.773 0.395 0.755 0.415 
Jingjinji 0.588 1.342 0.593 1.352 
Northeastern 0.901 0.567 0.887 0.556 
Northwestern 0.661 0.549 0.623 0.460 
Pearl River Delta 0.674 1.547 0.694 1.381 
Yangtze River Delta 0.635 0.427 0.637 0.414 

 367 

4.2 SUHI determinants for individual cities with seasonal variability 368 

We then looked into the spatio-temporal variability of SUHI attribution in individual cities 369 

with seasonal variability. The results are shown in Figures 5-10 for the megaregions of 370 

Northwestern, Jingjinji, Northwestern, Chengyu, Pearl River Delta, and Yangtze River Delta, 371 

respectively. The results look rather diverse and have strong locality as well as seasonal 372 

dependence. Nevertheless, we can observe some general patterns. First, NDVI appears to be, 373 

overall, the most important environmental determinant of the heat island effect. This is 374 

particularly true when we consider the seasonal variation of SUHI attributes, in comparison with 375 

the annual mean SUHI intensities in Figure 4, the distinction between cities in northern and 376 

southern China largely disappears when seasonality is taken into consideration.  377 

In general, the importance of NDVI in regulating the SUHI intensity is more significant in 378 

warm seasons (summer and autumn) than in cold seasons, but with occasional exceptions. We 379 

speculate that there might be potential hysteresis effect in the seasonal variation of NDVI in 380 

modulating as well as responding to urban thermal environment. This is plausible as urban 381 

vegetation, in comparison to other non-biogenic factors, alters the surface energy balance in less 382 

direct pathway via evapotranspirative cooling by changing the relative partitioning of sensible 383 

and latent heat (Li & Wang, 2020). Furthermore, the growth of urban vegetation can be enhanced 384 
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in positive response to the warming in urban environment (Zhao et al., 2016). The bi-directional 385 

urban vegetation-heat interactions contain intrinsic hysteresis effect in both directions as it takes 386 

time for biogenic functions of urban vegetation to act on and react to the change of thermal 387 

environment. Such hysteresis effect has been observed in urban environment in terms of phase 388 

lags among different heat fluxes (Sun et al., 2013; Wang, 2014b) and temperature-CO2 389 

interactions (Zhang et al., 2015).  390 

 Hohhot Lanzhou Yinchuan 

Spring 

   

Summer 

Autumn 

Winter 

 
 

Figure 5. RF-quantified attribution of NDVI, albedo, VAR, and NTL to seasonal SUHI 391 

intensities in the cities of Hohhot, Lanzhou and Yinchuan of the Northwestern megaregion. The 392 

values shown in each cell represents the feature importance determined by the RF model, with 393 

number in each row of each city sum up to unity.  394 

 395 
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Figure 6. Same as Figure 5, but for the Jingjinji megaregion. 396 
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 397 
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Figure 7. Same as Figure 5, but for the Northeastern megaregion. 398 

 399 
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Figure 8. Same as Figure 5, but for the Chengyu megaregion. 400 
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Figure 9. Same as Figure 5, but for the Pearl River Delta megaregion. 402 
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 Hangzhou Nanjing Shanghai 
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Figure 10. Same as Figure 5, but for the Yangtze River Delta megaregion. 403 

 404 

Besides NDVI, albedo is the second most important attribute to SUHI in northern Chinese 405 

cities, but its significance is weaker and often out-weighed by VAR or NTL in southern 406 

megaregions. In addition, the importance of albedo is usually more manifest in cold seasons 407 

(winter and spring), possible due to the reduced impact of NDVI in these seasons, especially if 408 

deciduous broadleaf urban trees prevail in the built environment. Considering the remaining 409 

factors of VAR and NTL, their significance shows up in some cities in certain seasons (e.g. in 410 

Shenzhen or Chongqing), but there is no general pattern observed. Moreover, these parameters 411 

are less manageable as far as UHI mitigation strategies are concerned.  412 

The model performance for this set of RF experiments is shown in Table 3 for individual 413 

cities. In most cases, the RF performance is of good accuracy and robust. A number of cities, 414 

including Beijing, Chengdu, Guang-Fo, Hangzhou, Hohhot, Shenzhen, and Shijiazhuang, 415 

exhibited consistently better-the-average performance throughout all seasons, with R2 scores 416 

ranging from 0.7 to 0.9 for both training and test sets. Nevertheless, in some cities, the RF model 417 

exhibits good performance in specific seasons but encountered difficulties in others. For 418 

instance, in Tianjin, the RF model effectively captured the relationships between explanatory 419 

variables and SUHI during the summer season but failed to replicate these patterns in the other 420 
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three seasons. This inconsistency in model performance might be attributed to the fluctuating 421 

seasonal patterns of SUHI’s dependency on the selected environmental variables. In a particular 422 

season, when at least one variable exhibits a pronounced relationship with SUHI, model 423 

performance tends to be satisfactory. As an example, in Beijing, also located in the Jingjinji city 424 

group, all four factors—NDVI, albedo, NTL, and VAR—display distinct correlations with 425 

SUHI. These varying dependency patterns can substantially impact the model’s ability to 426 

accurately characterize the intricate relationships between surface characteristics and SUHI 427 

intensity throughout the year. 428 

 429 

Table 3. The statistics of RF performance (R2) for predicting SUHI attributes in selected Chinese 430 

cities with seasonal variability 431 

 

Spring Summer Autumn Winter 
Train Test Train Test Train Test Train Test 

Beijing 0.862 0.850 0.941 0.952 0.879 0.885 0.798 0.755 
Changchun 0.650 0.607 0.899 0.905 0.780 0.779 0.722 0.749 
Chengdu 0.790 0.787 0.909 0.907 0.766 0.766 0.790 0.744 
Chongqing 0.720 0.713 0.849 0.843 0.828 0.814 0.428 0.411 
Guang-Fo 0.751 0.754 0.869 0.870 0.892 0.883 0.819 0.804 
Hangzhou 0.851 0.759 0.907 0.894 0.883 0.825 0.840 0.836 
Harbin 0.492 0.467 0.857 0.827 0.842 0.831 0.838 0.787 
Hohhot 0.804 0.839 0.944 0.917 0.877 0.857 0.751 0.748 
Lanzhou 0.554 0.593 0.639 0.631 0.856 0.832 0.861 0.859 
Nanjing 0.764 0.750 0.877 0.856 0.805 0.792 0.420 0.431 
Shanghai 0.745 0.764 0.849 0.842 0.844 0.864 0.541 0.530 
Shenyang 0.466 0.438 0.931 0.930 0.712 0.787 0.578 0.531 
Shenzhen 0.832 0.815 0.872 0.860 0.876 0.853 0.778 0.777 
Shijiazhuang 0.900 0.854 0.952 0.939 0.772 0.705 0.712 0.702 
Tianjin 0.390 0.318 0.790 0.802 0.494 0.493 0.191 0.185 
Yinchuan 0.553 0.548 0.656 0.656 0.592 0.578 0.276 0.261 

 432 
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A critical constraint in this study is the size of available data points, which is closely 433 

associated to the spatial and temporal resolutions and can impact the model accuracy. The 434 

amount of training data available for seasonal models for each city depends on the city size at the 435 

same spatial resolution, which may result in an inadequate representation of real-world 436 

conditions due to insufficient observations in smaller cities (e.g. those in the Northwestern 437 

megaregion). Furthermore, the spatial and temporal resolutions of the dataset may not be 438 

sufficiently fine-grained to capture the intricate dynamics of SUHI with adequate sub-grid 439 

heterogeneity. Employing finer resolution data, when available, could unveil more complex 440 

patterns and dependencies, leading to enhanced model performance and a deeper understanding 441 

of the underlying processes. Consequently, future studies should consider incorporating more 442 

detailed data with higher resolutions to improve the accuracy and precision of SUHI modeling. 443 

 444 

4.3 Implications to UHI mitigation strategies 445 

Previous results showed that the presence of urban greenery, measured by NDVI, is overall 446 

the most significant determinant to SUHI intensity in all the selected Chinese cities, especially in 447 

southern megaregions and in warm (growing) seasons. This is consistent with the prevailing 448 

practice of sustainable urban planning in advocating the use of nature-based solutions for heat 449 

mitigation. In this regard, urban greening, together with irrigation that supports the biogenic 450 

functions of vegetation, remains the most important UHI countermeasure, and is more 451 

sustainable, ecosystem friendly, and aesthetically appealing than the use of white (highly 452 

reflective) materials in urban infrastructure. 453 

In contrast, the use of white roofs and white pavements continues to attract advocates in 454 

many cities, most likely due to the simplicity of its working mechanism as well as low 455 
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maintenance cost. Despite its simplicity in working mechanisms, there remains knowledge gaps 456 

that needs to be addressed in the use of white pavements for heat mitigation, especially the lack 457 

of transparency and trustworthy information regarding its implementation and efficacy (Wang et 458 

al., 2021a, 2021b). In particular, the unintended consequence of high albedo paving materials has 459 

hitherto been largely overlooked, such as its potential degradation to urban ecosystems, and 460 

health risks to sensitive population groups such as children and the elderly (Yang et al., 2015). 461 

Moreover, white roofs and white pavements are not aesthetically appealing or help to meet 462 

recreational needs to many urban residents in diverse cultural groups (Wang, 2021).   463 

On the other hand, the parameters NTL signaling human activities and VAR representing 464 

urban morphology, in general, are of less importance than NDVI and albedo in regulating the 465 

SUHI intensity and its seasonal variation. This could be partly due to the fact that these two 466 

indices are relative constant and lack seasonal variability. In terms of heat mitigation, it is also 467 

less manageable for urban planners and engineers to significantly alter the patterns of urban 468 

morphology or anthropogenic activities in existing cities without causing substantial disturbance 469 

or even chaos in urban life. Nevertheless, accurate quantification of the attribution of urban 470 

morphology and anthropogenic activities to the UHI effect is imperatively necessary. This will 471 

be particularly informative to urban planners and policy makers in building sustainable future 472 

cities over still unoccupied and natural terrains.   473 

Lastly, we can learn from the high spatio-temporal variability of SUHI attributions that 474 

practical design and implementation of sustainable heat mitigation solutions should be based on 475 

local environmental (and socioeconomic) conditions. It is clear from the results of seasonal 476 

variation of SUHI attribution in individual cities (Figures 5-10) that the most effective means for 477 

combating SUHI in a given city may not be compatible with that suggested by the spatially- 478 
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and/or temporally-aggregated result (c.f. Figure 4 for annual mean SUHI aggregated in 479 

megaregions). More importantly, to effectively counteract the UHI effect in different cities, it is 480 

more practical to have a portfolio of mixed and well-coordinated solutions, instead of a singular 481 

strategy (such as urban greening or the use of white pavements). For example, in Harbin or 482 

Nanjing, all four SUHI attributes are of comparable importance, albeit varying seasonally, and 483 

they jointly determine the heat island effect. Therefore an optimal countermeasure of UHI in 484 

these cities could be a combined approach using white and green infrastructure, together with 485 

careful planning of building density and regulation of building operation and transportation, in 486 

future urban expansion or re-development.  487 

 488 

5.  Concluding Remarks  489 

In this study, we quantified different environmental attributes to urban heat islands 490 

measured by the land surface temperature in six megaregions of China, using the RF method, a 491 

popular machine learning algorithm suitable for nonlinear regression problems. Future research 492 

endeavor to employ ML algorithms for UHI studies is therefore encouraged to make 493 

intercomparisons of numerical performance of different ML algorithms, in the hope that more 494 

specific ML method tailored for urban climate dynamics should prevail. Out of the four 495 

representative environmental indices, viz. NDVI, albedo, VAR, and NTL, we found that overall 496 

the presence of urban greenery (NDVI) emerges as the most significant determinant of the 497 

surface UHI effect in the selected major Chinese cities, followed by the surface albedo. It is 498 

caveated that the list of selected environmental indices in this study is neither unique nor 499 

exhaustive. For all the selected major categories of SUHI attributes, e.g. vegetation fraction, 500 

built-up areas, urban morphology, and anthropogenic activities, each can be measured by 501 
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multiple indices. For example, urban morphology can be readily measured by the aerodynamic 502 

roughness length, building density, or sky view factor, in addition to VAR, to name a few. 503 

Moreover, the influences of the selected indices on heat islands are by no means independent. On 504 

the contrary, they often interact synergistically to regulate the urban thermal environment via 505 

complex pathways for redistributing surface energy budgets.  506 

In addition, in terms of UHI mitigation to promote human thermal comfort, some critical 507 

factors may have been missed from the current study. For instance, for cities located in humid 508 

environment, such as those in the Pearl River Delta or Hong Kong, an effective means for 509 

ameliorating human thermal comfort of urban residents is to maintain breezeways of air flow 510 

(HKPSG, 2022). The impact of breezeway design, albeit related to urban morphology, is 511 

inadequately represented by the current study, as it requires much finer temporal (sub-hour) scale 512 

to capture the highly turbulent air flow that affect human thermal comfort combining with 513 

temperature and humidity variables. Nevertheless, the findings of RF simulations in this study 514 

provide useful urban planning guidelines to counteract the UHI effect. In particular, it 515 

corroborates and echoes what we have proposed in a previous study that there is unlikely to be a 516 

one-solution-fits-all strategy for urban heat mitigation (Yang et al., 2015). The sooner we 517 

abandon the myth of seeking a “silver bullet” for UHI, the better the chance we have for finding 518 

more sustainable solutions that are likely to be locality-dependent and consist of a portfolio of 519 

coordinated urban heat mitigation and adaptation strategies.   520 
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