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Abstract

The exacerbated thermal environment in cities, the urban heat island (UHI) effect as a
prominent example, has been the source of many adverse urban environmental issues, including
the increase of health risks, degradation of air quality and ecosystem services, and reduced
resiliency of engineering infrastructure. Last decades have witnessed tremendous efforts and
resources being invested to find sustainable solutions for urban heat mitigation, whereas the
relative contributions of different UHI attributes and their patterns of spatio-temporal variability
remain obscure. In this study, we employed the random forest (RF) method to quantify the
relative importance of four categories of urban surface characteristics that regulate the surface
UHI, namely the urban greenery fraction, land surface albedo, urban morphology, and level of
human activities. We selected seventeen major cities from six megaregions in China as our study
areas, with the RF training and test sets obtained from multi-sourced remote sensing and
observational data products. It is found that the urban greenery coverage manifests as the most
important environmental determinants of UHI, followed by surface albedo. The results are
informative for urban planners, policymakers, and engineering practitioners to design and

implement sustainable strategies for urban heat mitigation.

Keywords: Albedo; Land surface temperature; Normalized difference vegetation index (NDVI);

Random forest; Urban heat island; Urban morphology
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1. Introduction

The urban heat island (UHI) effect, the phenomenon that the built environment is much
warmer than its rural surroundings, has attracted rapidly increasing research efforts in past
decades (Oke, 1967, 1982; Wang, 2022). In the face of climate changes, the UHI effect interacts
positively with global warming as well as increasing heat extremes (McCarthy et al., 2010; Jiang
et al., 2019); both tend to exacerbate the thermal environment in cities. Nevertheless, from the
perspective of urban planners and engineering practitioners, it is the local and surface UHI
determinants that are practically manageable for designing and implementing sustainable
countermeasures and are therefore of pivotal importance for improving the thermal environment
in urban areas.

The local environmental factors underlying the UHI effect contribute to different pathways
of modifying the surface energy balance by human activities. These mechanistic pathways can be
broadly classified as: (1) landuse landcover changes, especially the conversion of natural
(vegetated) to artificial (paved and impervious) surfaces, and the concomitant alternation of land
surface hydrothermal properties (Santero & Horvath, 2009; Yang et al., 2016; Wang et al.,
2021a) that reduces the latent heat of evapotranspiration and converts it to sensible heat for
heating the built environment, (2) the presence of urban morphology, especially building
geometries, in modifying the radiative heat exchange in street canyons (Harman et al., 2004a;
Wang, 2014a), (3) the presence of roughness elements (building and transportation
infrastructure, shade trees, etc.) that modulates the turbulent transport of heat, moisture, and
scalars (Grimmond and Oke, 2002; Harman, 2012; Giometto et al., 2016; Li, Yang. & Yang,

2021), and (4) the emission of anthropogenic heat and greenhouse gases (COz in particular),
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primarily through urban metabolism and fossil fuel burning (Allen et al., 2011; Menberg et al.,
2013; Song et al., 2017) that directly or indirectly contributes to urban warming.

Past decades have also witnessed the tremendous research efforts devoted to unveiling and
quantifying the environmental determinants of UHI that can lead to sustainable, especially
nature-based, solutions for heat mitigation. The two most extensively studied UHI determinants
are the surface reflectance of solar radiation, i.e. albedo, and the coverage of urban greenery,
leading to widely advocated design and implementation of whifte (white roofs and pavements)
and green (green roofs, green walls, urban gardens/forestry, lawns, shade trees, etc.)
infrastructure for heat mitigation (Wang, 2021; Kirsch et al., 2022). The use of so-called cool or
super-cool engineering materials can effectively reduce the surface (skin) temperature of urban
facet by reflecting substantially larger amount of solar radiation directly back to the atmosphere,
but not without unintended consequences (Yang et al., 2015; Wang et al., 2021a). In contrast,
urban green space is a significant regulator to the thermal environment mainly through
evapotranspirative cooling. Urban greening is among the most popular countermeasures of UHI
not just because of its cooling capacity, but also for its environmental co-benefits including
improvement of air quality, building energy efficiency, ecosystem services, and aesthetic value.

Other environmental determinants include the roughness and morphology of the built
environment. Urban roughness elements mainly consist of the building and transportation
infrastructure and, within a proper range, can be conducive to turbulent heat transport and
effectively modulate the UHI effect (Wong et al., 2016; Venter et al., 2021), comparable to the
effect of albedo or urban greenery. Meanwhile, urban morphology, often represented by various
indices such as the building density, the urban canyon aspect (building-height-to-road-width)

ratio, or the sky view factor, contributes to the UHI intensity to a not insignificant degree (Li et
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al., 2021b; Hou et al., 2023), and often with a nonlinear effect in extremely densely or too
sparsely built environment (Theeuwes et al., 2014; Song and Wang, 2015, 2016). Nevertheless,
though the impact of roughness length or urban morphology is significant on UHI intensity,
these parameters are less manageable than albedo or urban greenery for counteracting the UHI
by urban planners or engineers.

The capacity of conventional physically- or statistically-based approaches for determining
the impact of different environmental contributors to the UHI effect is largely limited in the
sense that they often handle individual factors separately or multiple variables by linear
regression or aggregation. It remains an outstanding challenge to quantify multiple determinants
of UHI by considering their realistic (and often nonlinear) synergistic interplay in regulating the
resultant UHI effect, especially when the dataset gets big with large spatial domains and fine
temporal resolutions. This challenge, however, can be readily addressed by recent advances in
data science, in particular, the use of machine learning (ML) techniques. The application of ML
methods in the UHI study, albeit at its infancy, has already led to some promising results. For
example, Venter et al. (2021) probed into different mechanisms of UHI effect using a machine
learning algorithm and maintained aerodynamic roughness as the controlling factor of the UHI
intensity. ML algorithms have also been used for multi-objective optimization (heat and carbon
mitigation) of urban environment system design (Li et al., 2022), or predicting UHI and
heatwaves (Oh et al., 2020; Li et al., 2023). A recent study also adopted ML-based analysis for
projecting the future UHI effect in Chinese cities based on future climate scenarios and
socioeconomic policies (Lan et al., 2023).

In this study, we aim to characterize and quantify the relative significance of different

environmental determinants of heat islands, in particular, the surface urban heat island (SUHI)
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using a particular ML, viz. the random forest (RF) method. The proposed method is applied to
major Chinese cities in six (Northeastern, Northwestern, Jingjinji, Yangtze River Delta,
Chengyu, and Pearl River Delta) megaregions. The UHI determinants are quantified using local
urban factors including the vegetation coverage in urban areas, surface albedo, the canyon aspect
ratio representing urban morphology, and measures of anthropogenic activities. These indices,
together with the SUHI intensity, are calculated based on remotely sensed dataset and field
observations. By quantifying their relative contribution to the SUHI intensity, we will be able to
prioritize the urban planning strategies for more effective amelioration of the urban thermal

environment.

2. Study Areas and Data Retrieval

2.1 The study areas

To adequately represent various geographic and climate conditions, in this study, we
selected seventeen major cities from six megaregions in China (Figure 1). These cities are
distributed across a range of climates (Domrds & Peng, 2012), from mid-temperate humid in the
north to south-subtropical humid in the south, and from mid-temperate arid in the west to north-
subtropical humid in the east. The annual average temperature varies significantly, from 5°C in
the Northeastern megaregion to 21°C in the Pearl River Delta megaregion, while the annual
average precipitation ranges from 300 mm in the Northwestern megaregion to 1800 mm in the
Pearl River Delta megaregion. In addition, the seasonal differences in temperature and
precipitation are highly diverse across the six megaregions. For instance, the amplitude of annual

temperature variation is 40°C in the northeastern megaregion, but only 18°C in the Pearl River
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Delta megaregion; the annual precipitation amplitude is 400 mm in the Jingjinji megaregion, 100

mm Northwestern.
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Figure 1. Map of study areas of six Chinese megaregions including Jingjinji, Yangtze River
delta, Pearl River delta, Chengyu, Northwestern, and Northeastern megaregion, demarked in red
rectangles, containing seventeen major cities. The background color indicates the classification

of climate in different regions.



118 The seventeen cities selected for our study are also regional socioeconomic centers,

119  characterized by concentrated populations and industrial production. The cities in the three east
120 coastal megaregions, in particular, have experienced rapid urbanization and are at the forefront
121  of China's development since the country's opening and reform (Year 1978). Table 1

122  summarizes the socioeconomic statistics for these seventeen cities in 2017, obtained from the
123 State Statistics Bureau (https://data.stats.gov.cn/). As the build-up areas of Guangzhou and

124 Foshan have merged with each other in their decades-long expansion, they will be studied as one
125  greater Guang-Fo metropolitan in the subsequent analysis.

126

127  Table 1. The socioeconomic statistics of the seventeen study cities in 2017

Megaregion City Residents (million) GDP (billion CNY)
Hohhot 3.12 274.37
Northwestern Lanzhou 3.74 252.35
Yinchuan 2.30 180.33
Beijing 21.95 2988.30
Jingjinji Shijiazhuang 10.88 646.09
Tianjin 15.57 1245.06
Changchun 7.49 653.00
Northeastern Harbin 10.93 635.50
Shenyang 8.29 586.50
Hangzhou 9.47 1260.34
Yangtze River Delta  Nanjing 8.34 1171.51
Shanghai 24.18 3292.50
Foshan 7.66 954.96
Pearl River Delta Guangzhou 14.50 2150.32
Shenzhen 12.53 2249.01
Chengyu Chengdg 16.05 1388.94
Chongging 31.44 2006.63

128

129 2.2 Remote sensing data

130 In this study, we employed multi-sourced data, including raster datasets for land surface
131  temperature (LST), normalized difference vegetation index (NDVI), land surface albedo, and

132 nighttime light (NTL), and vector datasets of urban buildings and streets to quantify urban
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morphology. The raster datasets were retrieved from remotely sensed imagery of the Moderate
Resolution Imaging Spectroradiometers (MODIS), onboard the Terra and Aqua satellites
managed by U.S. National Aeronautics and Space Administration (NASA). Both Terra- and
Aqua-MODIS provides global coverage of moderate resolution images at the frequency of every
1 to 2 days, since their launch around 2000. Raw data obtained by MODIS has been used to
generate scientific data products, including the surface reflectance (MOD/MYDO09) (Vermote et
al., 2002) and vegetation indices (MOD/MYD13) (Huete et al., 1999; Zhang et al., 2017), among
others.

MODIS data products have been widely used in various geographical and ecological
studies due to their wide spatial coverage and high temporal frequency. In this study, we utilized
MODIS data products from 2013 to 2017, including LST and emissivity (MOD/MYD11),
vegetation indices (MOD/MYD13), and land cover type (MCD12). The MOD/MYD11 product
provides LST images on a daily basis with 1000 m resolution, retrieved from two thermal
infrared bands, band 31 (10.780 - 11.280 um) and band 32 (11.770 - 12.270 pm), using the split-
window algorithm (Duan et al., 2019). MOD/MYD13 product contains average NDVI and
Enhanced Vegetation Index (EVI) for a 16-day period with a resolution up to 250 m (Huete et
al., 2002), which are calculated from the red, near-infrared and blue bands (band 1, 2 and 3
respectively). Unlike the previous two products which processed data from Terra and Aqua
separately, the MCD12 product integrates data obtained by both Terra and Aqua satellites and
classifies annual land cover types using the decision tree algorithm based on five different
standards, with a spatial resolution up to 500 m (Friedl et al., 2002).

The product of land surface albedo is also readily available from remotely sensed dataset

(Wan & Li, 1997; Sobrino et al., 2005). In this study, we retrieved the shortwave white sky
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albedo in 2013-2017 from the Global Land Surface Satellite (GLASS) dataset. This dataset
provides long-term, no-gap global coverage for many critical eco-environmental features, such
as the leaf area index, broadband emissivity and gross primary production (Liang et al., 2013,
2021).

In addition, we used nighttime light (NTL) images to represent the intensity of human
activities in urban areas, such as population distribution and economic activities (Fan et al.,
2014; Levin et al., 2020). The NTL imagery was obtained from the Visible Infrared Imaging
Radiometer Suites (VIIRS) dataset (Cao et al., 2013; Wolfe et al., 2013). The VIIRS data
products were produced by two satellites, namely Suomi NPP and NOAA-20 launched in 2011
and 2018, respectively, which provides visible and near-infrared data with resolutions of 375 m
and 750 m, respectively. NASA has developed a data product called "Black Marble" to improve
the precision of NTL imagery acquired by VIIRS, by removing cloud and moonlight pollution
through atmospheric and terrain corrections (Roman et al., 2018). In this study, we adopted the
NTL data from the VNP46 dataset of Black Marble product. Furthermore, all remote sensing
datasets used in this study were aggregated to 1000 m in spatial resolution and monthly means

for consistency.

2.3 Field observation

In addition to the remote sensing data described above, we also utilized vector-based
datasets to extract information on urban morphology. Specifically, we obtained a building
distribution dataset from the Resource and Environment Science Data Center of the Chinese
Academy of Sciences (https://www.resdc.cn/data.aspx?DATAID=270). This dataset includes the

location, outline, and number of floors of buildings in build-up areas across several major
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Chinese cities. Moreover, we used a road distribution dataset obtained from the OpenStreetMap
(OSM) project, an online database of roads and amenities maintained by volunteers and publicly
accessible at https://www.OpenStreetMap.org. The urban roads in this dataset have been
classified into various, e.g. primary, secondary, or residential, categories, based on their
applications and construction. Each road category has been assigned to a corresponding road
width in accordance with relevant national standards and studies (Sun & Li, 2018). To ensure
compatibility with the aforementioned raster data, we converted these vector data to raster format
with a spatial resolution of 1000 m. A sample of urban morphology map for part of the city of
Shenzhen, using the aforementioned two datasets, is shown in Figure 2, with different building

height groups and road categories.

10
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Figure 2. Map of urban morphology for a part of Shenzhen in Pearl River Delta megaregion by
combining two vector datasets: the building and road information obtained from Resource and

Environment Science Data Center and OpenStreetMap project, respectively.

3. Methods

3.1 Quantification of the SUHI intensity

Thermal environment in cities, in contrast to their rural surroundings, is conventionally

quantified as canopy- or boundary-layer UHI (Oke, 1976), measured by air temperatures in the

11
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urban canopy layer or atmospheric boundary layer. These two measures of UHI intensity have
different characteristic footprints (source areas) of atmospheric measurements (Wang et al.,
2018; Wang, 2022). On the other hand, with the advance of satellite-based thermal remote
sensing techniques (Voogt & Oke, 2003), measurements of LST at large spatial coverage
become more readily available. The difference between urban and rural LST has been widely
used as an indicator of UHI at the surface level, viz. the SUHI (Peng et al., 2012), which enables
the study of UHI effect at multiscales ranging from neighborhood to global scales with high
economy and accessibility (Mirzaei & Haghighat, 2010). In this study, we adopted the remotely

sensed LST, and quantified the SUHI intensity using,

AT =T,

¢ =T wvan = T vt (D
where 7sis the LST (skin temperature), retrieved from the MODIS MOD/MYD11 data product.
We calculated the gridded SUHI intensity in each urban pixel within the boundaries of all study
areas, defined by the spatial extent of the vectorial building distribution data. In defining the
urban pixels, the following filtering criteria is applied, viz. the pixels with incomplete records
were excluded from the selected cities, such as water bodies (with LST information from the
MOD/MYDI11 dataset but without NDVI information from the MOD/MYD13 dataset) or bare
land (no building information for calculating urban morphology indicators). In addition, we
applied outer buffer region of 10-km width based on each city's administrative boundary
(Paschalis et al., 2020), in which the gridcells with natural land cover types (IGBP class 1 to 12)
of MODIS MCD12 are classified as the rural surroundings to obtain 7T&,rural averaged over all

rural pixels (Chakraborty & Lee; 2019).

3.2 Urban morphology

12



221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

Urban morphology contributes to the energetic pathway of UHI through the presence of
roughness elements and complex building geometry. Roughness elements are represented by key
aerodynamic parameters such as roughness length and zero-plane displacement that strongly
regulate the turbulent transport of sensible and latent heat (Raupach, 1994; Grimmond & Oke,
1999, 2002; Harman et al., 2004b; Giometto et al., 2016). The geometry of the built
environment, on the other hand, alters the pathway of radiative heat exchange via two major
competing processes: (1) the shading effect that cools the street canyon and (2) the warming
effect by multiple reflections that retains more thermal radiation in street canyons. The
synergistic interactions of two processes result in complex and nonlinear effects of urban
geometry on the UHI intensity (Li et al., 2020; Hou et al., 2023).

The complex urban morphology can be represented by a variety of geometrical parameters,
ranging from the one-dimensional (1D) roughness length and zero-plane displacement, to 2D
building frontal and plane areas, to 3D building density and sky view factors (Grimmond & Oke,
1999; Li et al., 2021; Lu et al., 2022; Dewa et al., 2023). These various morphological
parameters, however, are not independent, but are all strongly correlated to each other instead (Li
etal., 2021; Hou et al., 2023). This is reasonable in the sense that densely built areas in urban
cores tend to have high roughness length, large areas of built facets (roofs and walls), high
building density, and small sky view factors. In urban climate modeling community, urban areas
are customarily represented using “big canyons” (Nunez & Oke, 1977) with two rows of
buildings separated by a road, both of infinite longitudinal dimension (canyon depth). In this
setting, the urban morphology is quantified using the vertical aspect ratio (VAR) of the street

canyon, or the building-height-to-road-width ratio, defined as,

VAR =H /W, 2)

13
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where H is the average height of buildings in an urban gridcell, and W the average road width. In
this study, we adopt the VAR as the representative indicator of urban morphology, owing to the
fact that it maintains an intricate balance of complexity and accuracy for urban climate modeling,

UHI predictions included (Grimmond et al., 2010).

3.3 Random Forest algorithm

We utilized the RF algorithm to quantify the influence of various environmental
determinants on SUHI as well as their relative significance. The RF model is a highly flexible
nonparametric machine learning algorithm, capable of estimating or classifying a target variable
(SUHI in this study) using explanatory variables (“features”) and estimating the importance of
each feature. It leverages the bootstrap resampling method to draw multiple samples from the
original dataset, constructs a decision tree for each bootstrap sample, and combines the
predictions of multiple decision trees to reach the final decision prediction through voting for
classification and averaging for regression (Breiman, 2001). Each node is split using the best
feature selected among a random subset of all features, as opposed to selecting one from all
features in the conventional decision tree algorithm (Breiman, 2001). Because of the
bootstrapping and random subset strategy, random forest is more robust than decision trees
against overfitting and has achieved competitive performance in numerous applications (Liaw &
Wiener, 2002; Xu and Liang, 2021).

In this study, we adopted four local environmental variables as features to estimate the
SUHI intensity using the RF algorithm. These features include NDVI, surface albedo, VAR, and

NTL, representing the contribution from urban green space, paved surfaces, urban morphology,

14
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and intensity of human activities, respectively. These variables, along with the target (SUHI
intensity), were first normalized into the interval [0, 1], by

X-X
X — min , 3
" Xmax _Xmin ( )

for subsequent processing by RF.

To compare the impact of environmental variables on SUHI at different time scales and
spatial regions, we conducted two sets of experiments. In the first experiment set, we calculated
the annual average of all data for each city within a megaregion to investigate the effects of
various variables on SUHI intensity across the megaregion on an annual basis. In the second set,
we established a seasonal model for all selected cities to compare the impact of environmental
variables on SUHI across seasons. In both experiments, the data was split into a training set and
a test set, with the training set containing approximately 70% of the data and the test set
containing the remaining. To fine-tune the hyperparameters of the RF model, we further divided
the training set into five folds to perform 5-fold cross-validation. This approach involved training
the model with a given set of hyperparameters on four of the folds and evaluating it on the
remaining fold (i.e., the validation set). This process was repeated five times, with a different
fold serving as the validation set each time. We evaluated R? and mean square error (MSE) on
each validation set and average across five nodes to obtain an estimate of generalization error for
the given set of hyperparameters. Next, the grid search technique was used to identify the best set
of parameters that yielded the lowest 5-fold cross validation error. Using the optimal
hyperparameters, we retrain the model on the entire training set and evaluate its performance, in
terms of R? and MSE on the test set.

Subsequently, we calculated importance scores of the four environmental variables using a

permutation-based technique. The technique calculates importance score of a feature by adding a

15
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perturbation to the feature and then determining the difference between the model performance
on the original dataset and on the permuted dataset. The score is normalized by dividing this
difference with the standard deviation of model performance on the permuted datasets. A higher
score signifies greater importance of a feature for predicting the target variable.

The schematic of the analysis framework in this study is shown in Figure 3 using the city of
Shanghai as an example. The input to the RF consists of dataset extracted from remotely sensed
imagery and ground-based measurements including the vegetation coverage (NDVI), land
surface reflectivity (albedo), urban morphology (VAR), and nighttime light images (NTL).

ey © — (a) Input dataset (b) Random forest algorithm
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Figure 3. The proposed framework of the current study: (a) Input dataset consists of vegetation
coverage, surface albedo, urban morphology, and nighttime light image in the city of Shanghai,

and (b) the schematic of RF algorithm.
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4. Results and Discussion

In this study, we devised two sets of ML experiments, trained and tested by RF, to evaluate
how various environmental variables attributes to heat islands, including: (1) the spatial
variability of annual mean SUHI attribution in different megaregions, and (2) the seasonal
variation in individual cities. In each set of experiments, we evaluated the performance of RF
model using the statistics of R> and MSE, and discussed the physical interpretation of the results.
In addition, the RF hyperparameters used for training of the two experiments are listed in Tables

S1 and S2 in the Supplementary Information, respectively.

4.1 Spatial variability of annual mean SUHI attribution

In addition to seasonal variability, the intensity of heat islands is also subject to climatic
conditions and atmospheric forcing. To illustrate, the first set of RF experiments probed into the
variation of annual mean SUHI attributes in different megaregions in China. The results are
demonstrated in Figure 4. The first thing noticeable is the difference of dominating factors
between northern and southern China: NDVI is the single predominant contributor to heat
islands in southern Chinese megaregions, while other factors, such as albedo, become more
important in northern megaregions. The predominance of NDVI to SUHI intensities in southern
Chinese cities is possibly due to the presence of large area and high density of urban greenery,
especially urban trees, as a result of abundant rainfall in sub-tropical climates (Li et al., 2015). It
is noteworthy that impact of NDVI, albedo, and surface roughness can be strongly correlated in
the presence of urban forest. The low albedo (~0.15-0.20) of vegetated surfaces can largely offset

the effect of white paving materials (e.g. concrete with albedo of ~0.4), and the complex
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geometry of urban trees synergizes with building clusters in regulating the aerodynamic transport
of turbulent heat fluxes. The complex interactions of urban trees and urban forestry with surface
albedo and urban morphology also help to explain the relatively low attributions of SUHI to
albedo and VAR in cities in southern China. For instance, Fig. S1 shows the dependence plot
(PDP) of albedo and NDVI in the Pearl River Delta megapolitan, where SUHI exhibits varied
responses contingent on different NDVI and albedo combinations. More specifically, SUHI
intensity minimizes at relatively high NDVI (above 0.45) and low albedo (below 0.25) and
stabilizes at a maximum within regions of low NDVI (below 0.3) and high albedo (above 0.35).
When NDVTI and albedo lie within mid-range, the PDP surface manifests high complexity with
multiple peaks and ridges, suggesting interactions between these factors in their influence on
SUHI. Similarly, complex interplays exist in other pairs of SUHI attributing factors: an example
is shown in Fig. S2 of the PDP of NDVI and VAR, where SUHI tends to rise sharply when
either NDVI or VAR is low (below 0.15), whereas the contribution of VAR to SUHI reduces

drastically when NDVI values exceed 0.45.
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339  Figure 4. RF-quantified attribution to annual SUHI intensities by four environmental factors,

340  viz. NDVI, albedo, VAR, and NTL, in six megaregions of China.
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In addition to the relative scarcity of green spaces in the Jingjinji and Northeastern
megaregions, urban vegetation dynamics is also subject to stronger seasonal variability. As a
consequence, the NDVI values change significantly from growing to defoliation seasons due to
the presence of prevailing deciduous trees in northern Chinese cities. Thus when the seasonal
variability is averaged, the annul mean SUHI intensity in northern megaregions of China exhibit
much milder response to NDVI. By the same token, we expect that the synergy between NDVI
and surface albedo or urban morphology is weakened when temporally averaged as annual
means. This also explains that the impact of albedo and VAR becomes comparable to or even
more significant than that of NDVI for Jingjinji and Northeastern megaregions, where their
effects are disentangled.

Moreover, it is noted that the Northwestern megaregion stand out as quite exceptional in
Figure 4 which could be partially due to the fact that cities in this region are relatively small, and
the albedo in Northwestern cities is less distinguishable from that of the prevailing background
of arid plateau areas (Zhang et al., 2013). For these relatively small cities in Northwestern China,
urban morphology (VAR) becomes an outstanding factor in regulating the urban thermal
environment, as it distinguishes the built environment from its rural surroundings.

Furthermore, we evaluated the RF performance using the statistics of R?> and MSE. The
results are summarized in Table 2. It is clear that most megaregions investigated in this study
exhibit favorable model performance, with R? values ranging between 0.5 and 0.9 and MSE
reasonably small for training sets. In addition, the performance levels observed for test sets are
similar to that of the training sets, indicating that the model has achieved a balance between

accuracy and generalizability.
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Table 2. Statistics of R? and MSE of RF performance on training and test data, respectively, for

predicting annual mean SUHI intensities in six Chinese megaregions

Train Test
Megaregions R? MSE R? MSE
Chengyu 0.773 0.395 0.755 0.415
Jingjinji 0.588 1.342 0.593 1.352
Northeastern 0.901 0.567 0.887 0.556
Northwestern 0.661 0.549 0.623 0.460
Pearl River Delta 0.674 1.547 0.694 1.381
Yangtze River Delta 0.635 0.427 0.637 0.414

4.2 SUHI determinants for individual cities with seasonal variability

We then looked into the spatio-temporal variability of SUHI attribution in individual cities
with seasonal variability. The results are shown in Figures 5-10 for the megaregions of
Northwestern, Jingjinji, Northwestern, Chengyu, Pearl River Delta, and Yangtze River Delta,
respectively. The results look rather diverse and have strong locality as well as seasonal
dependence. Nevertheless, we can observe some general patterns. First, NDVI appears to be,
overall, the most important environmental determinant of the heat island effect. This is
particularly true when we consider the seasonal variation of SUHI attributes, in comparison with
the annual mean SUHI intensities in Figure 4, the distinction between cities in northern and
southern China largely disappears when seasonality is taken into consideration.

In general, the importance of NDVI in regulating the SUHI intensity is more significant in
warm seasons (summer and autumn) than in cold seasons, but with occasional exceptions. We
speculate that there might be potential hysteresis effect in the seasonal variation of NDVI in
modulating as well as responding to urban thermal environment. This is plausible as urban
vegetation, in comparison to other non-biogenic factors, alters the surface energy balance in less
direct pathway via evapotranspirative cooling by changing the relative partitioning of sensible

and latent heat (Li & Wang, 2020). Furthermore, the growth of urban vegetation can be enhanced
21



385  in positive response to the warming in urban environment (Zhao et al., 2016). The bi-directional
386  urban vegetation-heat interactions contain intrinsic hysteresis effect in both directions as it takes
387  time for biogenic functions of urban vegetation to act on and react to the change of thermal

388  environment. Such hysteresis effect has been observed in urban environment in terms of phase
389  lags among different heat fluxes (Sun et al., 2013; Wang, 2014b) and temperature-CO2

390 interactions (Zhang et al., 2015).
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391  Figure 5. RF-quantified attribution of NDVI, albedo, VAR, and NTL to seasonal SUHI

[N

0.5 1

392  intensities in the cities of Hohhot, Lanzhou and Yinchuan of the Northwestern megaregion. The
393  wvalues shown in each cell represents the feature importance determined by the RF model, with
394  number in each row of each city sum up to unity.
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396  Figure 6. Same as Figure 5, but for the Jingjinji megaregion.
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Figure 7. Same as Figure 5, but for the Northeastern megaregion.
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Figure 8. Same as Figure 5, but for the Chengyu megaregion.
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Figure 9. Same as Figure 5, but for the Pearl River Delta megaregion.
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403  Figure 10. Same as Figure 5, but for the Yangtze River Delta megaregion.
404
405 Besides NDVI, albedo is the second most important attribute to SUHI in northern Chinese

406 cities, but its significance is weaker and often out-weighed by VAR or NTL in southern

407  megaregions. In addition, the importance of albedo is usually more manifest in cold seasons
408  (winter and spring), possible due to the reduced impact of NDVI in these seasons, especially if
409  deciduous broadleaf urban trees prevail in the built environment. Considering the remaining
410  factors of VAR and NTL, their significance shows up in some cities in certain seasons (€.g. in
411  Shenzhen or Chongging), but there is no general pattern observed. Moreover, these parameters
412  are less manageable as far as UHI mitigation strategies are concerned.

413 The model performance for this set of RF experiments is shown in Table 3 for individual
414  cities. In most cases, the RF performance is of good accuracy and robust. A number of cities,
415  including Beijing, Chengdu, Guang-Fo, Hangzhou, Hohhot, Shenzhen, and Shijiazhuang,

416  exhibited consistently better-the-average performance throughout all seasons, with R? scores
417  ranging from 0.7 to 0.9 for both training and test sets. Nevertheless, in some cities, the RF model
418  exhibits good performance in specific seasons but encountered difficulties in others. For

419  instance, in Tianjin, the RF model effectively captured the relationships between explanatory

420  variables and SUHI during the summer season but failed to replicate these patterns in the other
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three seasons. This inconsistency in model performance might be attributed to the fluctuating
seasonal patterns of SUHI’s dependency on the selected environmental variables. In a particular
season, when at least one variable exhibits a pronounced relationship with SUHI, model
performance tends to be satisfactory. As an example, in Beijing, also located in the Jingjinji city
group, all four factors—NDVI, albedo, NTL, and VAR—display distinct correlations with
SUHI. These varying dependency patterns can substantially impact the model’s ability to
accurately characterize the intricate relationships between surface characteristics and SUHI

intensity throughout the year.

Table 3. The statistics of RF performance (R?) for predicting SUHI attributes in selected Chinese

cities with seasonal variability

Spring Summer Autumn Winter
Train Test Train Test Train Test Train Test
Beijing 0.862 0.850 0.941 0.952 0.879 0.885 0.798 0.755
Changchun 0.650 0.607 0.899 0.905 0.780 0.779 0.722 0.749
Chengdu 0.790 0.787 0.909 0.907 0.766 0.766 0.790 0.744
Chongging 0.720 0.713 0.849 0.843 0.828 0.814 0.428 0.411
Guang-Fo 0.751 0.754 0.869 0.870 0.892 0.883 0.819 0.804
Hangzhou 0.851 0.759 0.907 0.894 0.883 0.825 0.840 0.836
Harbin 0.492 0.467 0.857 0.827 0.842 0.831 0.838 0.787
Hohhot 0.804 0.839 0.944 0.917 0.877 0.857 0.751 0.748
Lanzhou 0.554 0.593 0.639 0.631 0.856 0.832 0.861 0.859
Nanjing 0.764 0.750 0.877 0.856 0.805 0.792 0.420 0.431
Shanghai 0.745 0.764 0.849 0.842 0.844 0.864 0.541 0.530
Shenyang 0.466 0.438 0.931 0.930 0.712 0.787 0.578 0.531
Shenzhen 0.832 0.815 0.872 0.860 0.876 0.853 0.778 0.777
Shijiazhuang 0.900 0.854 0.952 0.939 0.772 0.705 0.712 0.702
Tianjin 0.390 0.318 0.790 0.802 0.494 0.493 0.191 0.185
Yinchuan 0.553 0.548 0.656 0.656 0.592 0.578 0.276 0.261
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A critical constraint in this study is the size of available data points, which is closely
associated to the spatial and temporal resolutions and can impact the model accuracy. The
amount of training data available for seasonal models for each city depends on the city size at the
same spatial resolution, which may result in an inadequate representation of real-world
conditions due to insufficient observations in smaller cities (e.g. those in the Northwestern
megaregion). Furthermore, the spatial and temporal resolutions of the dataset may not be
sufficiently fine-grained to capture the intricate dynamics of SUHI with adequate sub-grid
heterogeneity. Employing finer resolution data, when available, could unveil more complex
patterns and dependencies, leading to enhanced model performance and a deeper understanding
of the underlying processes. Consequently, future studies should consider incorporating more

detailed data with higher resolutions to improve the accuracy and precision of SUHI modeling.

4.3 Implications to UHI mitigation strategies

Previous results showed that the presence of urban greenery, measured by NDVI, is overall
the most significant determinant to SUHI intensity in all the selected Chinese cities, especially in
southern megaregions and in warm (growing) seasons. This is consistent with the prevailing
practice of sustainable urban planning in advocating the use of nature-based solutions for heat
mitigation. In this regard, urban greening, together with irrigation that supports the biogenic
functions of vegetation, remains the most important UHI countermeasure, and is more
sustainable, ecosystem friendly, and aesthetically appealing than the use of white (highly
reflective) materials in urban infrastructure.

In contrast, the use of white roofs and white pavements continues to attract advocates in

many cities, most likely due to the simplicity of its working mechanism as well as low
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maintenance cost. Despite its simplicity in working mechanisms, there remains knowledge gaps
that needs to be addressed in the use of white pavements for heat mitigation, especially the lack
of transparency and trustworthy information regarding its implementation and efficacy (Wang et
al., 2021a, 2021b). In particular, the unintended consequence of high albedo paving materials has
hitherto been largely overlooked, such as its potential degradation to urban ecosystems, and
health risks to sensitive population groups such as children and the elderly (Yang et al., 2015).
Moreover, white roofs and white pavements are not aesthetically appealing or help to meet
recreational needs to many urban residents in diverse cultural groups (Wang, 2021).

On the other hand, the parameters NTL signaling human activities and VAR representing
urban morphology, in general, are of less importance than NDVI and albedo in regulating the
SUHI intensity and its seasonal variation. This could be partly due to the fact that these two
indices are relative constant and lack seasonal variability. In terms of heat mitigation, it is also
less manageable for urban planners and engineers to significantly alter the patterns of urban
morphology or anthropogenic activities in existing cities without causing substantial disturbance
or even chaos in urban life. Nevertheless, accurate quantification of the attribution of urban
morphology and anthropogenic activities to the UHI effect is imperatively necessary. This will
be particularly informative to urban planners and policy makers in building sustainable future
cities over still unoccupied and natural terrains.

Lastly, we can learn from the high spatio-temporal variability of SUHI attributions that
practical design and implementation of sustainable heat mitigation solutions should be based on
local environmental (and socioeconomic) conditions. It is clear from the results of seasonal
variation of SUHI attribution in individual cities (Figures 5-10) that the most effective means for

combating SUHI in a given city may not be compatible with that suggested by the spatially-
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and/or temporally-aggregated result (c.f. Figure 4 for annual mean SUHI aggregated in
megaregions). More importantly, to effectively counteract the UHI effect in different cities, it is
more practical to have a portfolio of mixed and well-coordinated solutions, instead of a singular
strategy (such as urban greening or the use of white pavements). For example, in Harbin or
Nanjing, all four SUHI attributes are of comparable importance, albeit varying seasonally, and
they jointly determine the heat island effect. Therefore an optimal countermeasure of UHI in
these cities could be a combined approach using white and green infrastructure, together with
careful planning of building density and regulation of building operation and transportation, in

future urban expansion or re-development.

5. Concluding Remarks

In this study, we quantified different environmental attributes to urban heat islands
measured by the land surface temperature in six megaregions of China, using the RF method, a
popular machine learning algorithm suitable for nonlinear regression problems. Future research
endeavor to employ ML algorithms for UHI studies is therefore encouraged to make
intercomparisons of numerical performance of different ML algorithms, in the hope that more
specific ML method tailored for urban climate dynamics should prevail. Out of the four
representative environmental indices, viz. NDVI, albedo, VAR, and NTL, we found that overall
the presence of urban greenery (NDVI) emerges as the most significant determinant of the
surface UHI effect in the selected major Chinese cities, followed by the surface albedo. It is
caveated that the list of selected environmental indices in this study is neither unique nor
exhaustive. For all the selected major categories of SUHI attributes, e.g. vegetation fraction,

built-up areas, urban morphology, and anthropogenic activities, each can be measured by
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multiple indices. For example, urban morphology can be readily measured by the aerodynamic
roughness length, building density, or sky view factor, in addition to VAR, to name a few.
Moreover, the influences of the selected indices on heat islands are by no means independent. On
the contrary, they often interact synergistically to regulate the urban thermal environment via
complex pathways for redistributing surface energy budgets.

In addition, in terms of UHI mitigation to promote human thermal comfort, some critical
factors may have been missed from the current study. For instance, for cities located in humid
environment, such as those in the Pearl River Delta or Hong Kong, an effective means for
ameliorating human thermal comfort of urban residents is to maintain breezeways of air flow
(HKPSG, 2022). The impact of breezeway design, albeit related to urban morphology, is
inadequately represented by the current study, as it requires much finer temporal (sub-hour) scale
to capture the highly turbulent air flow that affect human thermal comfort combining with
temperature and humidity variables. Nevertheless, the findings of RF simulations in this study
provide useful urban planning guidelines to counteract the UHI effect. In particular, it
corroborates and echoes what we have proposed in a previous study that there is unlikely to be a
one-solution-fits-all strategy for urban heat mitigation (Yang et al., 2015). The sooner we
abandon the myth of seeking a “silver bullet” for UHI, the better the chance we have for finding
more sustainable solutions that are likely to be locality-dependent and consist of a portfolio of

coordinated urban heat mitigation and adaptation strategies.

29



521

522

523

524

525

Acknowledgement

ZHW acknowledges the funding support from the U. S. National Science Foundation
(NSF) under grant No. CBET-2028868 and AGS-2300548, and the National Aeronautics and
Space Administration (NASA) under grant No. SONSSC20K 1263. The study is also supported

by the National Natural Science Foundation of China under grand No. 41971315.

30



526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

References:

Allen, L., Lindberg, F., & Grimmond, C. S. B. (2011), Global to city scale urban anthropogenic
heat flux: model and variability, International Journal of Climatology, 31(13), 1990-2005.

Breiman, L. (2001), Random forests. Machine learning, 45, 5-32.

Cao, C., Xiong, J., Blonski, S., Liu, Q., Uprety, S., Shao, X., et al. (2013), Suomi NPP VIIRS
sensor data record verification, validation, and long-term performance monitoring, Journal
of Geophysical Research: Atmospheres, 118(20), 11664-11678.

Chakraborty, T., & Lee, X. (2019). A simplified urban-extent algorithm to characterize surface
urban heat islands on a global scale and examine vegetation control on their spatiotemporal
variability. International Journal of Applied Earth Observation and Geoinformation, 74,
269-280.

Dewa, D.D., Buchori, 1., Rudiarto, 1., & Sejati, A.W. (2023), Modifying the contact perimeter
approach for measuring urban compactness gradients in the Joglosemar urban region,
Indonesia, Journal of Geovisualization and Spatial Analysis, 7(1), 4.

Domrés, M., & Peng, G. (2012), The climate of China. Springer Science & Business Media.

Duan, S.-B., Li, Z.-L., Li, H., Géttsche, F.-M., Wu, H., Zhao, W., et al. (2019), Validation of
Collection 6 MODIS land surface temperature product using in situ measurements, Remote
Sensing of Environment, 225, 16-29.

Fan, J., Ma, T., Zhou, C., Zhou, Y., & Xu, T. (2014), Comparative estimation of urban
development in China’s cities using socioeconomic and DMSP/OLS night light data,
Remote Sensing, 6(8), 7840-7856.

Friedl, M. A., Mclver, D. K., Hodges, J. C. F., Zhang, X. Y., Muchoney, D., Strahler, A. H., et

al. (2002), Global land cover mapping from MODIS: algorithms and early results, Remote

31



549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

Sensing of Environment, 83(1), 287-302.

Giometto, M. G., Christen, A., Meneveau, C., Fang, J., Krafczyk, M., & Parlange, M. B. (2016),
Spatial characteristics of roughness sublayer mean flow and turbulence over a realistic
urban surface, Boundary-Layer Meteorology, 160(3), 425-452.

Grimmond, C. S. B., Blackett, M., Best, M. J., Barlow, J., Baik, J. J., Belcher, S. E., et al. (2010),
The international urban energy balance models comparison project: First results from Phase
1, Journal of Applied Meteorology and Climatology, 49(6), 1268-1292.

Grimmond, C. S. B., & Oke, T. R. (1999), Aerodynamic properties of urban areas derived from
analysis of surface form, J. Appl. Meteorol., 38(9), 1262-1292.

Grimmond, C. S. B., & Oke, T. R. (2002), Turbulent heat fluxes in urban areas: Observations
and a local-scale urban meteorological parameterization scheme (LUMPS), Journal of
Applied Meteorology, 41(7), 792-810.

Harman, 1. N. (2012), The role of roughness sublayer dynamics within surface exchange
schemes, Boundary-Layer Meteorology, 142(1), 1-20.

Harman, I. N., Best, M. J., & Belcher, S. E. (2004a), Radiative exchange in an urban street
canyon, Boundary-Layer Meteorol., 110(2), 301-316.

Harman, I. N., Barlow, J. F., & Belcher, S. E. (2004b), Scalar fluxes from urban street canyons.
Part II: Model, Boundary-Layer Meteorology, 113(3), 387-409.

HKPSG, (the Hong Kong Planning Standards and Guidelines) (2022), Chapter 11: Urban
Design Guidelines, Planning Department of the Government of the Hong Kong Special
Administrative Region, 56 pp.

Hou, H., Su, H., Yao, C., & Wang, Z.-H. (2023), Spatiotemporal patterns of the impact of

surface roughness and morphology on urban heat island, Sustainable Cities and Society, 92,

32



572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

104513.

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002), Overview
of the radiometric and biophysical performance of the MODIS vegetation indices, Remote
Sensing of Environment, 83(1), 195-213.

Huete, A., Justice, C., & van Leeuwen, W. (1999), MODIS vegetation index (MOD 13)
algorithm theoretical basis document version 3. University of arizona 1200.

Jiang, S. J., Lee, X., Wang, J. K., & Wang, K. C. (2019), Amplified urban heat islands during
heat wave periods, Journal of Geophysical Research-Atmospheres, 124(14), 7797-7812.

Kirsch, K.R., Newman, G.D., Zhu, R., McDonald, T.J., Xu, X., & Horney, J.A. (2022), Applying
and integrating urban contamination factors into community garden siting, Journal of
Geovisualization and Spatial Analysis, 6(2), 33.

Lan, T., Peng, J., Liu, Y., Zhao, Y., Dong, J., Jiang, S., et al. (2023), The future of China's urban
heat island effects: A machine learning based scenario analysis on climatic-socioeconomic
policies, Urban Climate, 49, 101463.

Levin, N., Kyba, C. C. M., Zhang, Q., Sanchez de Miguel, A., Roman, M. O., Li, X., et al.
(2020), Remote sensing of night lights: A review and an outlook for the future, Remote
Sensing of Environment, 237, 111443.

Li, F., Wang, R., Liu, X., & Zhang, X. (2005), Urban forest in China: Development patterns,
influencing factors and research prospects, International Journal of Sustainable
Development & World Ecology, 12(2), 197-204.

Li, H,, Li, Y., Wang, T., Wang, Z. H., Gao, M., & Shen, H. (2021), Quantifying 3D building
form effects on urban land surface temperature and modeling seasonal correlation patterns,

Building and Environment, 204, 108132.

33



595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

Li, P. & Wang, Z. H. (2020), A nonequilibrium thermodynamic approach for surface energy
balance closure, Geophysical Research Letters, 47(3), e2019GL085835.

Li, P., Xu, T., Wei, S., & Wang, Z. H. (2022), Multi-objective optimization of urban
environmental system design using machine learning, Computers, Environment and Urban
Systems, 94, 101796.

Li, P., Yu, Y., Huang, D., Wang, Z. H., & Sharma, A. (2023), Regional heatwave prediction
using Graph Neural Network and weather station data, Geophysical Research Letters, 50,
€2023GL103405.

Li, Q., Yang, J., & Yang, L. (2021), Impact of urban roughness representation on regional
hydrometeorology: An idealized study, Journal of Geophysical Research: Atmospheres,
126(4), €2020JD033812.

Li, Y., Schubert, S., Kropp, J. P., & Rybski, D. (2020), On the influence of density and
morphology on the Urban Heat Island intensity, Nature Communications, 11(1), 2647.

Liang, S., Cheng, J., Jia, K., Jiang, B., Liu, Q., Xiao, Z., et al. (2021), The Global Land Surface
Satellite (GLASS) Product Suite, Bulletin of the American Meteorological Society, 102(2),
E323-E337.

Liang, S., Zhao, X., Liu, S., Yuan, W., Cheng, X., Xiao, Z., et al. (2013), A long-term Global
LAnd Surface Satellite (GLASS) data-set for environmental studies, International Journal
of Digital Earth, 6, 5-33.

Liaw, A., & Wiener, M (2002), Classification and regression by randomForest. R News, 2(3), 18-
22.

Lu, H., Li, F., Yang, G., & Sun, W. (2021), Multi-scale impacts of 2D/3D urban building pattern

in intra-annual thermal environment of Hangzhou, China, International Journal of Applied

34



618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

Earth Observation and Geoinformation, 104, 102558.

McCarthy, M. P., Best, M. J., & Betts, R. A. (2010), Climate change in cities due to global
warming and urban effects, Geophysical Research Letters, 37, 1.09705.

Menberg, K., Blum, P., Schaffitel, A., & Bayer, P. (2013), Long-term evolution of anthropogenic
heat fluxes into a subsurface urban heat island, Environmental Science & Technology,
47(17), 9747-9755.

Mirzaei, P. A., & Haghighat, F. (2010), Approaches to study Urban Heat Island — Abilities and
limitations, Building and Environment, 45(10), 2192-2201.

Nunez, M., & Oke, T. R. (1977), The energy balance of an urban canyon, Journal of Applied
Meteorology, 16(1), 11-19.

Oh, J. W., Ngarambe, J., Duhirwe, P. N, Yun, G. Y., & Santamouris, M. (2020), Using deep-
learning to forecast the magnitude and characteristics of urban heat island in Seoul Korea,
Scientific Reports, 10(1), 3559.

Oke, T. R. (1967), City size and the urban heat island, Atmospheric Environment, 7, 769-779.

Oke, T. R. (1976), The distinction between canopy and boundary-layer urban heat islands,
Atmosphere, 14,268-277.

Oke, T. R. (1982), The energetic basis of the urban heat island, Quarterly Journal of the Royal
Meteorological Society, 108(455), 1-24.

Paschalis, A., Chakraborty, T. C., Fatichi, S., Meili, N., & Manoli, G. (2021). Urban forests as
main regulator of the evaporative cooling effect in cities. AGU Advances, 2(2),
€2020AV000303.

Peng, S. S., Piao, S. L., Ciais, P., Friedlingstein, P., Ottle, C., Breon, F. M., et al. (2012), Surface

urban heat island across 419 global big cities, Environmental Science & Technology, 46(2),

35



641 696-703.

642  Raupach, M. R. (1994), Simplified expressions for vegetation roughness length and zero-plane
643 displacement as functions of canopy height and area index, Boundary-Layer Meteorology,
644 71(1),211-216.

645 Roman, M. O., Wang, Z., Sun, Q., Kalb, V., Miller, S. D., Molthan, A., et al. (2018), NASA's
646 Black Marble nighttime lights product suite, Remote Sensing of Environment, 210, 113-
647 143.

648  Santero, N. J., & Horvath, A. (2009), Global warming potential of pavements, Environmental
649 Research Letters, 4(3), 034011.

650  Sobrino, J. A., Jiménez-Mufioz, J. C., & Verhoef, W. (2005), Canopy directional emissivity:
651 Comparison between models, Remote Sensing of Environment, 99(3), 304-314.

652  Song, J., & Wang, Z. H. (2015), Interfacing urban land-atmosphere through coupled urban

653 canopy and atmospheric models, Boundary-Layer Meteorology, 154(3), 427-448.

654  Song,J., & Wang, Z. H. (2016), Evaluating the impact of built environment characteristics on
655 urban boundary layer dynamics using an advanced stochastic approach, Atmospheric

656 Chemistry and Physics, 16, 6285-6301.

657  Song,J., Wang, Z. H., & Wang, C. (2017), Biospheric and anthropogenic contributors to

658 atmospheric CO2 variability in a residential neighborhood of Phoenix, Arizona, Journal of
659 Geophysical Research: Atmospheres, 122,3317-3329.

660  Sun, J., & Li, T. (2018) Relationship of lane width to speed for urban expressway: A case study
661 in Shanghai, In: 2018 International Conference on Network, Communication, Computer
662 Engineering (NCCE 2018), Atlantis Press, pp. 1-6.

663  Sun, T., Wang, Z. H., & Ni, G. (2013), Revisiting the hysteresis effect in surface energy budgets,

36



664 Geophysical Research Letters, 40, 1741-1747.

665  Theeuwes, N. E., Steeneveld, G. J., Ronda, R. J., Heusinkveld, B. G., van Hove, L. W. A., &

666 Holtslag, A. A. M. (2014), Seasonal dependence of the urban heat island on the street
667 canyon aspect ratio, Quarterly Journal of the Royal Meteorological Society, 140(684),
668 2197-2210.

669  Venter, Z. S., Chakraborty, T., & Lee, X. (2021), Crowdsourced air temperatures contrast

670 satellite measures of the urban heat island and its mechanisms, Science Advances, 7(22),
671 eabb9569.

672  Vermote, E. F., El Saleous, N. Z., & Justice, C. O. (2002), Atmospheric correction of MODIS
673 data in the visible to middle infrared: first results, Remote Sensing of Environment, 83(1),
674 97-111.

675 Voogt,J. A., & Oke, T. R. (2003), Thermal remote sensing of urban climates, Remote Sensing of
676 Environment, 86(3), 370-384.

677 Wan, Z., & Li, Z.-L. (1997), A physics-based algorithm for retrieving land-surface emissivity
678 and temperature from EOS/MODIS data, /IEEE Transactions on Geoscience and Remote
679 Sensing, 35(4), 980-996.

680 Wang, C., Wang, Z. H., Kaloush, K. E., & Shacat, J. (2021a), Cool pavements for urban heat
681 island mitigation: A synthetic review, Renewable & Sustainable Energy Reviews, 146,
682 111171.

683  Wang, C., Wang, Z. H., Kaloush, K. E., & Shacat, J. (2021b), Perceptions of urban heat island
684 mitigation and implementation strategies: survey and gap analysis, Sustainable Cities and
685 Society, 66, 102687.

686 Wang, C., Wang, Z. H., Yang, J., & Li, Q. (2018), A backward-Lagrangian-stochastic footprint

37



687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

model for the urban environment, Boundary-Layer Meteorology, 168(1), 59-80.

Wang, Z. H. (2014a), Monte Carlo simulations of radiative heat exchange in a street canyon with
trees, Solar Energy, 110, 704-713.

Wang, Z. H. (2014b), A new perspective of urban-rural differences: The impact of soil water
advection, Urban Climate, 10, 19-34.

Wang, Z. H. (2021), Compound environmental impact of urban mitigation strategies: Co-
benefits, trade-offs, and unintended consequence, Sustainable Cities and Society, 73,
103284.

Wang, Z. H. (2022), Reconceptualizing urban heat island: Beyond the urban-rural dichotomy,
Sustainable Cities and Society, 77, 103581.

Wolfe, R. E., Lin, G., Nishihama, M., Tewari, K. P., Tilton, J. C., & Isaacman, A. R. (2013),
Suomi NPP VIIRS prelaunch and on-orbit geometric calibration and characterization,
Journal of Geophysical Research: Atmospheres, 118(20), 11508-11521.

Wong, P. P. Y., Lai, P. C., Low, C. T., Chen, S., & Hart, M. (2016), The impact of
environmental and human factors on urban heat and microclimate variability, Building and
Environment, 95, 199-208.

Xu, T., & Liang, F. (2021). Machine learning for hydrologic sciences: An introductory
overview. Wiley Interdisciplinary Reviews: Water, 8(5), e1533.

Yang, J., Wang, Z. H., Kaloush, K., & Dylla, H. (2016), Effect of pavement thermal properties
on mitigating urban heat islands: A multi-scale modeling case study in Phoenix, Building
and Environment, 108, 110-121.

Yang, J., Wang, Z. H., & Kaloush, K. E. (2015), Environmental impacts of reflective materials:

Is high albedo a 'silver bullet' for mitigating urban heat island?, Renewable and Sustainable

38



710

711

712

713

714

715

716

717

718

719

720

721

722

Energy Reviews, 47, 830-843.

Zhang, Q., Katul, G. G., Oren, R., Daly, E., Manzoni, S., & Yang, D. W. (2015), The hysteresis
response of soil CO2 concentration and soil respiration to soil temperature, Journal of
Geophysical Research-Biogeosciences, 120(8), 1605-1618.

Zhang, Y. F., Wang, X. P., Pan, Y. X., & Hu, R. (2013), Diurnal and seasonal variations of
surface albedo in a spring wheat field of arid lands of Northwestern China, International
Journal of Biometeorology, 57(1), 67-73.

Zhang, Y., Song, C., Band, L. E., Sun, G., & Li, J. (2017), Reanalysis of global terrestrial
vegetation trends from MODIS products: Browning or greening?, Remote Sensing of
Environment, 191, 145-155.

Zhao, S. Q., Liu, S. G., & Zhou, D. C. (2016), Prevalent vegetation growth enhancement in
urban environment, Proceedings of the National Academy of Sciences of the United States

of America, 113(22), 6313-6318.

39



