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ABSTRACT

Noise in quantum computers presents a challenge for the users of

quantum computing despite the rapid progress we have seen in

the past few years in building quantum computers. Existing works

have addressed the noise in quantum computers using a variety of

mitigation techniques since error correction requires a large number

of qubits which is infeasible at present. One of the consequences

of quantum computing noise is that users are unable to reproduce

similar output from the same quantum computer at different times,

let alone from various quantum computers. In this work, we have

made initial attempts to visualize quantum basis states for all the

circuits that were used in quantum machine learning from various

quantum computers and noise-free quantum simulators. We have

opened up a pathway for further research into this field where we

will be able to isolate noisy states from non-noisy states leading

to efficient error mitigation. This is where our work provides an

important step in the direction of efficient error mitigation. Our

work also provides a ground for quantum noise visualization in the

case of large numbers of qubits.

CCS CONCEPTS

· Computer systems organization → Quantum computing;

· Hardware → Quantum technologies; · Human-centered

computing → Heat maps.
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1 INTRODUCTION

Quantum computing is an emerging area of research that has at-

tracted a lot of attention from academia and industry. Due to its

unique characteristic of superposition, it has enormous potential

to solve selective difficult classical problems that are unsolvable

by present-day classical supercomputers. An example is that of

Grover’s algorithm [1] which has shown quadratic speed up on

the unstructured search problem. We are also seeing rapid develop-

ments in building quantum computers with a much higher number

of qubits than what we have seen a few years ago. More specifically,

the number of the basic quantum data unit, qubits, has been scaled

up from 5 to 127 in the past 5 years and is expected to achieve 1121

in 2023, according to the report of IBM [2].

Present-day quantum computers possess a serious challenge of

noise. Due to the noise in present-day quantum computing, applica-

tions using quantum computers are constrained. Due to the noise,

it is common to see unexpected results. An important consequence

of noise in quantum computing is reproducibility. Reproducibility

in classical computing is when we obtain similar results when an

algorithm is tested on similar capable machines. On the contrary,

a quantum algorithm will yield dissimilar results when tested on

separate quantum computers. More precisely, a quantum algorithm

may yield dissimilar results when tested on a specific quantum com-

puter multiple times. Hence, it becomes imperative to reduce the

noise in quantum computers or mitigate the effect of noise in quan-

tum computers since the noise is detrimental to the effectiveness of

quantum computing. To overcome the noise in quantum computers,

a technique called error correction [4] is proposed aiming to create

ideal qubits or noise-free qubits resulting in noise-free quantum

computers. The problem with the error correction technique is

that it requires a large number of qubits which is not present with

quantum computers today. Another technique is a practical tech-

nique called error mitigation. In this technique, the effect of noise
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in quantum computers is reduced by various methods utilizing

both classical and quantum computers. A very recent study of error

mitigation in VQE using circuits controller is shown in [7]. Recent

work provides a holistic picture of the noise of quantum comput-

ing through multiple interactively coordinated views [8]. However,

there are few works on visualizing cumulative noise produced by

a sequence of a large number of quantum machine learning jobs

consisting of hundreds of circuits in each of those jobs.

Our paper is a novel approach in attempting to visualize the

cumulative noise in quantum machine learning. In our work, we

used multiple quantum computers and a noise-free quantum com-

puter simulator to run our quantum machine learning algorithms.

In our work, we have created raw data of the output states of all the

quantum circuits that were used in our quantum machine learning

algorithm. The raw output dataset is created from all the machines.

We have provided a distribution visualization of all the basis states.

We have also provided a heat map that shows KL-distance among

all the quantum states for all the circuits. This visualizing technique

is a crucial step toward understanding noise in quantum computing

in general. When we will be able to access quantum computers

with a very high number of qubits, key takeaways from our work

will present users of noisy quantum computers with an understand-

ing of noise visually. Research in this direction could provide us

with crucial information on noisy and non-noisy basis states. With

this information, we could mitigate the errors by isolating and

suppressing the effect of noise in quantum computers.

2 RELATED WORK

Noise in Quantum Computing. There are multiple factors that

lead to good accuracy in test results. They are (1) 𝑇1, (2) 𝑇2, (3)

CNOT error and (4) readout error [3, 10]. 𝑇1 is thermal relaxation

time that is required by a qubit to move from an excited state to

a ground state. It provides consistency for the qubits to stay in

excited states for some time 𝑡 . An excited state is usually state

|1⟩. This time is measured experimentally by first exciting a qubit

in the ground state by using a pulse, then waiting for some time,

and then measuring the same qubit. This will give us the thermal

relaxation time of a qubit. 𝑇2 is called dephasing time. It is the loss

of a qubit’s phase coherence time. It is measured by first applying a

Hadamard gate 𝐻 to a qubit in |0⟩, which then transforms the qubit

to a |+⟩ = |0⟩+|1⟩√
2

state which is a superposition of states |0⟩ and
|1⟩. Then apply the Hadamard gate to the |+⟩ and wait for some

time 𝑡 . Then we measure if it is in state |0⟩. Readout error is the
error that occurs when measurement times are much higher than

coherence times [6]. A CNOT gate entangles two qubits. It involves

two qubits, a source qubit, and a target qubit. If the source qubit

is in state |1⟩ then it applies a 𝑋 gate to the target qubit. This gate

produces similar error as that of single qubit gates except that the

error involves error with two qubits.

3 GATHERING BASIS STATES DATA

Our methodology of collecting the basis states distribution involves

a series of steps. We start with training our QML model on MNIST

images belonging to classes 3 and 6. The training is performed on a

noisy quantum computer simulator. This noisy simulator emulates

the NISQ machines used in our work. The training is performed

on 2000 images. We train on a simulator because of the restric-

tions imposed on actual quantum computers through fair share

job scheduling algorithms of IBMQ. The training schedule involves

training our model once in a week and testing the model for the

rest of the six days in a week on various machines. The accuracy

of the model is tested on two devices IBM Nairobi and IBM Perth.

The testing process involves testing 100 test images belonging to

image classes 3 and 6. The raw data is collected for all the circuits

from all jobs on the two machines. After preliminary analysis of the

raw data, we found out that some of the test images were wrongly

classified during testing by the ideal simulator. In order to remove

noise from images, we adjusted our algorithm to skip those test

images that were inaccurately predicted by the noise-free quantum

computer simulator. We also test those images (post-skipping) on

real quantum computers.

4 EXPERIMENTAL SETUP AND RESULTS

For this project, we compress the MNIST images from 28 by 28

pixels to 12 by 12 pixels so that they can be encoded onto 7 qubits,

since 124 pixel values are encoded onto the amplitudes of 128 basis

states using amplitude encoding. The batch size for our training

and testing is set to 100 images and the learning rate is set to 0.005.

We use the default optimization level for circuit transpilation. Our

architecture is built on the architecture provided by torchquantum

[9]. After the compressed images are encoded onto qubits, the qubits

are subjected to a set of rotation gates and measurement gates. Post

measurement, the qubits-wise probability is calculated which is

further used in calculating the loss for each iteration.

After the testing is performed on both devices on those images

which are predicted accurately by noise-free simulator, we collect

the raw data of all the circuits from all the jobs that were executed

by all the machines. This has resulted in thousands of rows of states

distributions from all the executed circuits output. Figure 1a and

Figure 2a shows the distribution of 128 states from the seven qubits

from all the machines used in our work using the functional box-

plot [5] method. These states reflect all the circuits that were used

during the testing of images on two machines. The plots display

the central 50% region by 𝑐𝑖𝑛𝑛𝑒𝑟 , the non-outlying region by 𝑐𝑜𝑢𝑡𝑒𝑟 ,

and the median region by 𝑐𝑚𝑒𝑑𝑖𝑎𝑛 . Figure 1b and Figure 2b show

the pairwise KL-distance among the 128 basis states distributions.

Figure 2a was produced from a much higher number of jobs than

Figure 1a. One thing that is common among all the basis states

distribution for all jobs is that not all the basis states are used for

computation. From Figure 1b and Figure 2b, we can visualize the

KL-distance among various basis states for each of the machines.

Higher KL-distance refers to a higher degree of mismatch between

two distributions, whereas lower KL-distance refers to a lower de-

gree of mismatch between two distributions leading to a greater

similarity between distributions. For instance, in Figure 1b, we see

that there is one basis state 49 that has the brighter spectrum of

colors which implies that state has the most significant mismatch

in their distributions when compared to other states’ distributions.

This means basis state 50 has the highest KL-distance when com-

pared with the rest of the states for the same machine. The figures

presented in this paper lead us to expectations that the signifi-

cant basis states distributions, i.e., basis states distributions with
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(a) Distribution displaying median, inner band, and outer

band regions with yellow, dark blue, and cyan, respec-

tively for basis states distribution of 7 qubits

(b) Heat map of pairwise KL-distance for all jobs among

the distributions for 128 basis states

Figure 1: Visualization of the distribution of the basis states and the KL-distance among basis states distribution for all jobs

from IBM Nairobi

(a) Distribution displaying median, inner band, and outer

band regions with yellow, dark blue, cyan, and red, re-

spectively for basis states distribution of 7 qubits

(b) Heat map of pairwise KL-distance for all jobs among

the distributions for 128 basis states

Figure 2: Visualization of the distribution of the basis states and the KL-distance among basis states distribution for all jobs

from IBM Perth

higher KL-distance, could be the dominant basis states used by the

quantum computer for calculation whereas the non-dominant basis

states are a result of noise. This requires further study to prove our

hypothesis. Also, some basis states are used for computation while

the other excited basis states are a result of noise. With research in

the direction of visualization, we hope to isolate the two types of

basis states.

5 CONCLUSION

In this paper, we investigate the output noise from quantum comput-

ers using quantum machine learning as a case study. Our findings

reveal that using quantum computers for quantum machine learn-

ing (QML) is challenging due to the noise that leads to uncertain

fidelity. To find out the dominant states, we have deployed certain

visualizing techniques to understand the dominant factors that lead

to uncertain outputs due to noise. This is an important and crucial

step toward visualizing and characterizing noise in quantum com-

puting applications. This work is also a crucial step in the direction

of visualizing the noise in the case when qubits are scaled from 5

to over 1000 qubits.
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