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ABSTRACT

Noise in quantum computers presents a challenge for the users of
quantum computing despite the rapid progress we have seen in
the past few years in building quantum computers. Existing works
have addressed the noise in quantum computers using a variety of
mitigation techniques since error correction requires a large number
of qubits which is infeasible at present. One of the consequences
of quantum computing noise is that users are unable to reproduce
similar output from the same quantum computer at different times,
let alone from various quantum computers. In this work, we have
made initial attempts to visualize quantum basis states for all the
circuits that were used in quantum machine learning from various
quantum computers and noise-free quantum simulators. We have
opened up a pathway for further research into this field where we
will be able to isolate noisy states from non-noisy states leading
to efficient error mitigation. This is where our work provides an
important step in the direction of efficient error mitigation. Our
work also provides a ground for quantum noise visualization in the
case of large numbers of qubits.
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1 INTRODUCTION

Quantum computing is an emerging area of research that has at-
tracted a lot of attention from academia and industry. Due to its
unique characteristic of superposition, it has enormous potential
to solve selective difficult classical problems that are unsolvable
by present-day classical supercomputers. An example is that of
Grover’s algorithm [1] which has shown quadratic speed up on
the unstructured search problem. We are also seeing rapid develop-
ments in building quantum computers with a much higher number
of qubits than what we have seen a few years ago. More specifically,
the number of the basic quantum data unit, qubits, has been scaled
up from 5 to 127 in the past 5 years and is expected to achieve 1121
in 2023, according to the report of IBM [2].

Present-day quantum computers possess a serious challenge of
noise. Due to the noise in present-day quantum computing, applica-
tions using quantum computers are constrained. Due to the noise,
it is common to see unexpected results. An important consequence
of noise in quantum computing is reproducibility. Reproducibility
in classical computing is when we obtain similar results when an
algorithm is tested on similar capable machines. On the contrary,
a quantum algorithm will yield dissimilar results when tested on
separate quantum computers. More precisely, a quantum algorithm
may yield dissimilar results when tested on a specific quantum com-
puter multiple times. Hence, it becomes imperative to reduce the
noise in quantum computers or mitigate the effect of noise in quan-
tum computers since the noise is detrimental to the effectiveness of
quantum computing. To overcome the noise in quantum computers,
a technique called error correction [4] is proposed aiming to create
ideal qubits or noise-free qubits resulting in noise-free quantum
computers. The problem with the error correction technique is
that it requires a large number of qubits which is not present with
quantum computers today. Another technique is a practical tech-
nique called error mitigation. In this technique, the effect of noise

OThis manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-
000R22725 with the U.S. Department of Energy. The publisher, by accepting the article
for publication, acknowledges that the U.S. Government retains a non-exclusive, paid
up, irrevocable, world-wide license to publish or reproduce the published form of the
manuscript, or allow others to do so, for U.S. Government purposes. The DOE will
provide public access to these results in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).



QCCC ’23, June 20, 2023, Orlando, FL, USA

in quantum computers is reduced by various methods utilizing
both classical and quantum computers. A very recent study of error
mitigation in VQE using circuits controller is shown in [7]. Recent
work provides a holistic picture of the noise of quantum comput-
ing through multiple interactively coordinated views [8]. However,
there are few works on visualizing cumulative noise produced by
a sequence of a large number of quantum machine learning jobs
consisting of hundreds of circuits in each of those jobs.

Our paper is a novel approach in attempting to visualize the
cumulative noise in quantum machine learning. In our work, we
used multiple quantum computers and a noise-free quantum com-
puter simulator to run our quantum machine learning algorithms.
In our work, we have created raw data of the output states of all the
quantum circuits that were used in our quantum machine learning
algorithm. The raw output dataset is created from all the machines.
We have provided a distribution visualization of all the basis states.
We have also provided a heat map that shows KL-distance among
all the quantum states for all the circuits. This visualizing technique
is a crucial step toward understanding noise in quantum computing
in general. When we will be able to access quantum computers
with a very high number of qubits, key takeaways from our work
will present users of noisy quantum computers with an understand-
ing of noise visually. Research in this direction could provide us
with crucial information on noisy and non-noisy basis states. With
this information, we could mitigate the errors by isolating and
suppressing the effect of noise in quantum computers.

2 RELATED WORK

Noise in Quantum Computing. There are multiple factors that
lead to good accuracy in test results. They are (1) T, (2) T2, (3)
CNOT error and (4) readout error [3, 10]. Ty is thermal relaxation
time that is required by a qubit to move from an excited state to
a ground state. It provides consistency for the qubits to stay in
excited states for some time t. An excited state is usually state
[1). This time is measured experimentally by first exciting a qubit
in the ground state by using a pulse, then waiting for some time,
and then measuring the same qubit. This will give us the thermal
relaxation time of a qubit. T; is called dephasing time. It is the loss
of a qubit’s phase coherence time. It is measured by first applying a
Hadamard gate H to a qubit in |0), which then transforms the qubit

toa|+) = 10)+11)

state which is a superposition of states |0) and
[1). Then apply the Hadamard gate to the |+) and wait for some
time t. Then we measure if it is in state |0). Readout error is the
error that occurs when measurement times are much higher than
coherence times [6]. A CNOT gate entangles two qubits. It involves
two qubits, a source qubit, and a target qubit. If the source qubit
is in state |1) then it applies a X gate to the target qubit. This gate
produces similar error as that of single qubit gates except that the
error involves error with two qubits.

3 GATHERING BASIS STATES DATA

Our methodology of collecting the basis states distribution involves
a series of steps. We start with training our QML model on MNIST
images belonging to classes 3 and 6. The training is performed on a
noisy quantum computer simulator. This noisy simulator emulates
the NISQ machines used in our work. The training is performed
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on 2000 images. We train on a simulator because of the restric-
tions imposed on actual quantum computers through fair share
job scheduling algorithms of IBMQ. The training schedule involves
training our model once in a week and testing the model for the
rest of the six days in a week on various machines. The accuracy
of the model is tested on two devices IBM Nairobi and IBM Perth.
The testing process involves testing 100 test images belonging to
image classes 3 and 6. The raw data is collected for all the circuits
from all jobs on the two machines. After preliminary analysis of the
raw data, we found out that some of the test images were wrongly
classified during testing by the ideal simulator. In order to remove
noise from images, we adjusted our algorithm to skip those test
images that were inaccurately predicted by the noise-free quantum
computer simulator. We also test those images (post-skipping) on
real quantum computers.

4 EXPERIMENTAL SETUP AND RESULTS

For this project, we compress the MNIST images from 28 by 28
pixels to 12 by 12 pixels so that they can be encoded onto 7 qubits,
since 124 pixel values are encoded onto the amplitudes of 128 basis
states using amplitude encoding. The batch size for our training
and testing is set to 100 images and the learning rate is set to 0.005.
We use the default optimization level for circuit transpilation. Our
architecture is built on the architecture provided by torchquantum
[9]. After the compressed images are encoded onto qubits, the qubits
are subjected to a set of rotation gates and measurement gates. Post
measurement, the qubits-wise probability is calculated which is
further used in calculating the loss for each iteration.

After the testing is performed on both devices on those images
which are predicted accurately by noise-free simulator, we collect
the raw data of all the circuits from all the jobs that were executed
by all the machines. This has resulted in thousands of rows of states
distributions from all the executed circuits output. Figure 1a and
Figure 2a shows the distribution of 128 states from the seven qubits
from all the machines used in our work using the functional box-
plot [5] method. These states reflect all the circuits that were used
during the testing of images on two machines. The plots display
the central 50% region by cinner, the non-outlying region by coyrer,
and the median region by ¢,,e4ian- Figure 1b and Figure 2b show
the pairwise KL-distance among the 128 basis states distributions.

Figure 2a was produced from a much higher number of jobs than
Figure 1a. One thing that is common among all the basis states
distribution for all jobs is that not all the basis states are used for
computation. From Figure 1b and Figure 2b, we can visualize the
KL-distance among various basis states for each of the machines.
Higher KL-distance refers to a higher degree of mismatch between
two distributions, whereas lower KL-distance refers to a lower de-
gree of mismatch between two distributions leading to a greater
similarity between distributions. For instance, in Figure 1b, we see
that there is one basis state 49 that has the brighter spectrum of
colors which implies that state has the most significant mismatch
in their distributions when compared to other states’ distributions.
This means basis state 50 has the highest KL-distance when com-
pared with the rest of the states for the same machine. The figures
presented in this paper lead us to expectations that the signifi-
cant basis states distributions, i.e., basis states distributions with
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Figure 1: Visualization of the distribution of the basis states and the KL-distance among basis states distribution for all jobs
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Figure 2: Visualization of the distribution of the basis states and the KL-distance among basis states distribution for all jobs

from IBM Perth

higher KL-distance, could be the dominant basis states used by the
quantum computer for calculation whereas the non-dominant basis
states are a result of noise. This requires further study to prove our
hypothesis. Also, some basis states are used for computation while
the other excited basis states are a result of noise. With research in
the direction of visualization, we hope to isolate the two types of
basis states.

5 CONCLUSION

In this paper, we investigate the output noise from quantum comput-
ers using quantum machine learning as a case study. Our findings
reveal that using quantum computers for quantum machine learn-
ing (QML) is challenging due to the noise that leads to uncertain

fidelity. To find out the dominant states, we have deployed certain
visualizing techniques to understand the dominant factors that lead
to uncertain outputs due to noise. This is an important and crucial
step toward visualizing and characterizing noise in quantum com-
puting applications. This work is also a crucial step in the direction
of visualizing the noise in the case when qubits are scaled from 5
to over 1000 qubits.
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