
M2T2: Multi-Task Masked Transformer for
Object-centric Pick and Place

Wentao Yuan
University of Washington

wentaoy@cs.washington.edu

Adithyavairavan Murali ⇤

NVIDIA
admurali@nvidia.com

Arsalan Mousavian ⇤

NVIDIA
amousavian@nvidia.com

Dieter Fox
University of Washington, NVIDIA

fox@cs.washington.edu

Abstract: With the advent of large language models and large-scale robotic
datasets, there has been tremendous progress in high-level decision-making for
object manipulation [1, 2, 3, 4]. These generic models are able to interpret com-
plex tasks using language commands, but they often have difficulties generalizing
to out-of-distribution objects due to the inability of low-level action primitives.
In contrast, existing task-specific models [5, 6] excel in low-level manipulation
of unknown objects, but only work for a single type of action. To bridge this
gap, we present M2T2, a single model that supplies different types of low-level
actions that work robustly on arbitrary objects in cluttered scenes. M2T2 is a
transformer model which reasons about contact points and predicts valid gripper
poses for different action modes given a raw point cloud of the scene. Trained
on a large-scale synthetic dataset with 128K scenes, M2T2 achieves zero-shot
sim2real transfer on the real robot, outperforming the baseline system with state-
of-the-art task-specific models by about 19% in overall performance and 37.5%
in challenging scenes where the object needs to be re-oriented for collision-
free placement. M2T2 also achieves state-of-the-art results on a subset of lan-
guage conditioned tasks in RLBench [7]. Videos of robot experiments on unseen
objects in both real world and simulation are available on our project website
https://m2-t2.github.io.

Keywords: Object Manipulation, Pick-and-place, Multi-task Learning

1 Introduction

The successful completion of many complex manipulation tasks such as object rearrangement relies
on robust action primitives that can handle a large variety of objects. Recently, tremendous progress
has been made in open-world object manipulation [1, 2, 3, 4] using language models for high-level
planning. However, these methods are often restricted to scenes with a few fixed object shapes due
to the limited capability of low-level skills such as picking and placing. Meanwhile, there are task-
specific models [5, 8, 9] that excel on a particular skill on a large variety of objects. This leads us to
the question: is it possible to have a single model for different action primitives that works robustly
on diverse objects?

We propose Multi-Task Masked Transformer (M2T2), a unified model for learning multiple action
primitives. As shown in Fig. 1, given a point cloud of the scene, M2T2 predicts collision-free
gripper poses for various types of actions including 6-DoF grasping and placing, eliminating the
need to use different methods for different actions. M2T2 can generate a diverse set of goal poses
that provide sufficient options for low-level motion planners. It can also generate more specific goal
poses conditioned on language. Combining high-level task planners and the robust action primitives
from M2T2 allows the robot to solve many complex tasks like the ones in RLBench [7]. Overall,
our contributions are as follows:

ar
X

iv
:2

31
1.

00
92

6v
1

 [c
s.R

O
]

2
N

ov
 2

02
3

https://m2-t2.github.io

Figure 1: We propose M2T2, a unified model for learning multiple action primitives. M2T2 takes a
raw 3D point cloud and predicts 6-DoF grasps per-object (lower left) and orientation-aware place-
ments (lower right, where green means the object can fit in any orientation and yellow means only a
subset of orientations are possible). Colors on the point clouds are for visualization only.

1. We present M2T2, a unified transformer model for grasping and placing, which outper-
forms state-of-the-art methods [5, 6] in terms of success rate and output diversity.

2. A large-scale synthetic dataset for training M2T2, consisting of 130K cluttered scenes with
8.8K different objects, annotated with valid gripper poses for picking and placing.

3. We show that M2T2 achieves zero-shot sim2real transfer for picking and placing out-of-
distribution objects, outperforming baseline by about 19%.

4. We show that M2T2 outperforms state-of-the-art end-to-end method [10] on a subset of
RLBench [7], demonstrating its potential in solving complex tasks with language goals.

2 Related Work

Multi-Task Learning in Robotics With the advent of robotic datasets with diverse tasks [7, 11],
many recent works have shown that learning multiple manipulation tasks with a single model can
improve sample-efficiency and performance. Some works learn a common representation for mul-
tiple tasks [12, 13], while other works [2, 10, 14] train end-to-end language-conditioned policies
via imitation learning. However, these end-to-end agents have a hard time generalizing to out-of-
distribution tasks and objects. In contrast, we take a more modular approach. M2T2 supplies action
primitives like “placing the mug” that work on unseen objects in the real world. By interfacing
with other task planning modules [3, 4], M2T2 can be part of a robust and flexible open-world
manipulation system.

Object Grasping Grasping is the most fundamental skill of a robot manipulator. Recently, 6-DoF,
learning-based grasp pose generator is becoming mainstream. These methods typically take a 3D
point cloud [5, 8, 15, 16] or voxelization of the scene [17, 18] and predict 6-DoF gripper poses to
stably grasp an object. There are also task-oriented grasp generators [19, 20] that predicts grasps for
downstream tasks (e.g. handover). However, these works are geared toward a single skill, grasping.
While grasping is an important skill, it cannot solve all the tasks in manipulation. M2T2 aim to build
a common formulation for different kinds of skills, including grasping.

2

Figure 2: M2T2 generates valid gripper poses for grasping and placing with a single model. First,
a 3D network (scene encoder) takes the scene point cloud and produces multi-scale feature maps.
Then, the features are cross-attended with learnable query tokens via a transformer (contact de-
coder). Finally, the output tokens are multiplied with per-point features and generate contact masks
and gripper poses for each object (for grasping) and each orientation (for placing). For grasping,
addition MLPs are applied to the output tokens and per-point features to predict objectness scores
(to filter out non-object proposals) and grasp parameters (to reconstruct gripper poses). Optionally,
the contact decoder can take a set of tokens encoding language goals to produce goal-conditioned
grasping and placing poses.

Object Placement Placement is another important action mode for a robot manipulator. Com-
pared to grasping methods, placement is less studied until recently. [6] uses rejection sampling and
learning-based collision detector [21] to find all possible placement positions. [22] generates place-
ment configurations for a set of objects based on language commands, but it does not consider the
gripper. M2T2 predicts placement poses without the need for sampling, uses the same model for
grasping and considers both the position and orientation of the object and the gripper.

3 Technical Approach

M2T2 predicts target gripper poses for multiple action primitives. Here, we consider two most
fundamental action modes of a robot manipulator, picking and placing.

Object-centric 6-DoF Grasping: The input is a single 3D point cloud of the scene which can be
extracted from commodity depth sensors. The output is set of object grasp proposals. Each object
grasp proposal is a set of 6-DoF grasp poses (3-DoF rotation + 3-DoF translation), indicating where
the end effector of a robot arm needs to be in order to pick up the object successfully.

Orientation-aware Placing: The input is a 3D point cloud of the scene plus a partial 3D point cloud
of the object to be placed. The output is a set of 6-DoF placement poses, indicating where the end
effector needs to be so that when the object is released, it will be placed stably without collision.
Note that M2T2 generates not only the location, but also the orientation of the object to be placed.
This ensures that the object can be re-oriented before placed to fit into cluttered spaces.

The key idea of M2T2 is to reason about contact points. We view picking as the robot making
contact with a target object using an empty gripper and placing as the robot using an object in its
gripper to make contact with a surface.

3

3.1 Architecture

Scene Encoder: The scene encoder encodes a 3D point cloud of the scene into multi-scale feature
maps that serve as context for the contact decoder. Specifically, it produces four feature maps that
are 1/64, 1/16, 1/4, 1 times the input size respectively. Each feature vector in the feature maps is
grounded to a point in the input point cloud. We adapt a PointNet++ [23] designed for semantic
segmentation as the scene encoder, but in principle, any network that produces multi-resolution
feature maps from 3D point clouds can serve as the scene encoder.

Contact Decoder: The contact decoder is a transformer that predicts where to make contact for
both grasping and placing. We used the grasp representation of [5] for grasping where each grasp is
anchored around the visible point on the object that makes contact with the gripper during grasping
and the model predicts additional parameters specifying the relative transform of grasp with respect
to the contact point. We extend this representation for placing by defining contact point as the
location where the center of object point cloud projects on the table.

As a result, we can borrow the latest insight from image segmentation. In our case, we modify the
masked transformer [24] to predict contact masks. The transformer takes a set of learnable query
tokens through multiple attention layers. Feature maps of multiple resolutions from scene encoder
are passed in via cross-attention at different layers. The output tokens of each layer are multiplied
with the per-point feature map from scene encoder to generate interim masks. The interim masks are
used to mask the cross attention in the next layer to guide the attention into relevant regions (thus the
name “masked transformer”). After the last attention layer, the model produces G grasping masks
and P placing masks, where G is the maximum number of graspable objects and P is the number
of placement orientations.

Objectness MLP: An MLP takes the grasp tokens and produces an objectness score for each
token. This is to filter out the non-object tokens since the number of graspable objects in the scene
can vary (see Sec. 3.2 and Sec. 3.3 for how the score is used in training and inference).

Object Encoder: The object encoder is a PointNet++ [23] which encodes a 3D point cloud of the
object to be placed to a single feature vector that is added to the place query tokens.

Action Decoder: The action decoder is a 3-layer MLP that takes the per-point feature map from
scene encoder and predicts a 3D approach direction, a 3D contact direction and a 1D grasp width for
each point, which are used to reconstruct grasp poses together with the contact points (see Sec. 3.3).

3.2 Training Objective

Grasping: The grasping objective consists of three terms: objectness loss Lobj, mask loss Lmask

and ADD-S loss LADD�S.

Because the number of objects N in the scene is unknown, we set G, the number of grasp tokens,
to a large number (see Sec. 4.2 for ablations). M2T2 outputs G scalar objectness scores oi and G
per-point masks Mgrasp

i . We use Hungarian matching to select N masks that best match with the
ground truth. First, we compute the following cost for each prediction (oi,M

grasp
i) and ground truth

mask Mgt
j

Cij = 1� oi + BCE(Mpred
i ,Mgt

j) + DICE(Mpred
i ,Mgt

j) (1)

where BCE is binary cross entropy and DICE is the DICE loss [25]. Now, we apply Hungarian
matching to the G ⇥ N cost matrix C to obtain the set of indices M = {mi} that minimizes the
total cost

PN
j=1 Cmjj . Then, we compute the objectness loss by labeling all matched tokens as

positive and others as negative

Lobj =
1

G

GX

i=1

� [1(i 2 M) log(oi) + (1� 1(i 2 M)) log(1� oi)] (2)

4

We compute the mask loss between the matched masks and the ground truth as

Lmask =
1

N

NX

j=1

BCE(Mpred
mj

,Mgt
j) + DICE(Mpred

mj
,Mgt

j) (3)

In practice, we find that computing the BCE only for the points with top k largest loss improves
performance, where k = 512 for grasping and k = 1024 for placing. This is likely due to the large
class imbalance (over 90% of the points are not contact points). See Sec. 4.2 for ablations.

The ADD-S loss is introduced by [5] and is critical for good grasp confidence estimation (see
Sec. 4.2 for ablations). To compute it, we first need to define 5 key points {vk} on the gripper.
Then, for each pair of predicted grasp and ground truth grasp, we compute the total distance be-
tween transformed key points

dij =
5X

k=1

k(Rpred
i vk + tpredi)� (Rgt

j vk + tgtj)k (4)

Next, we find the closest ground truth to each prediction ni = argminjdij and compute ADD-S as

LADD�S =
1

|Cpred|
X

i2Cpred

sidini (5)

where Cpred is the set of contact points of predicted grasps and si is the grasp confidence, a scalar
between 0 and 1 taken from the contact masks before thresholding. Note that since the loss is
weighted by si, predicted grasps that are far away from any ground truth grasp will get a larger
penalty on confidence, which improves contact point estimation.

Placing: The placing objective is defined as a combination of BCE and DICE [25] between the
predicted and ground truth placement masks

Lplacing =
1

P

PX

i=1

BCE(Mpred
i ,Mgt

i) + DICE(Mpred
i ,Mgt

i) (6)

This is the only loss for placing since no other learnable quantities are needed to reconstruct the
placement poses (see 3.3).

3.3 Model Inference

Grasp Pose Prediction: During inference, we first select the contact masks whose objectness score
is above 0.5. Then, for each point p within the contact mask, we take the corresponding grasp
parameters from the action decoder to reconstruct a 6-DoF grasp pose (Rgrasp, tgrasp) 2 SE(3) as

tgrasp = p+
w

2
c+ da (7)

Rgrasp =

" | | |
c c⇥ a a
| | |

#
(8)

where c is the unit 3D contact direction, a is the unit 3D approach direction, w is the 1D grasp
width and d is the constant distance from the gripper base to the grasp baseline (the line between
two fingers). We refer readers to Contact-Grasp-Net paper for more details on the formulation [5].

Placement Pose Prediction: The P placement contact masks represent valid placement locations
when the object in the gripper is rotated by P discrete planar rotations Rplanar. To recover the
placement poses, we first compute the bottom center b of the object point cloud which is used as the
reference point for contact. Then, we use forward kinematics to obtain the gripper’s current pose
(Ree, tee). The 6-DoF placement pose (Rplace, tplace) can be computed as

tgrasp = p+Rplanar(tee � b) (9)
Rgrasp = RplanarRee (10)

5

(a) Grasping Seen (b) Grasping Unseen (c) Placing Seen (d) Placing Unseen

Figure 3: M2T2 outperforms task-specific models – Contact-GraspNet [5] for grasping and CabiNet
[6] for placing – on objects from seen categories (a,c) and unseen categories (b,d).

(a) ADD-S weight (b) Number of tokens (c) Discrete rotation (d) Hard negative mining

Figure 4: Ablation studies

3.4 Synthetic Data Generation

We build a synthetic dataset with 130K cluttered scenes for training and evaluating 6-DoF picking
and placing methods. There are 64K training scenes and 1K test scenes for picking and placing
each. There are 1 to 15 objects per scene scattered on a randomly sized table mounted with a Franka
Emika robot arm. The objects are sampled from the ACRONYM [26] dataset, which contains 8.8K
object models, each labeled with 2K grasps. The objects are from 252 different categories, 12 of
which are excluded from training. Half of the test scenes contain only objects from the 12 unseen
categories. For each scene, we render a 512⇥ 512 depth image from a random viewpoint above the
table to generate the scene point cloud. We include example images of the dataset in the appendix.

4 Experimental Evaluation

4.1 Evaluation in Simulation

Evaluation Metric: We use the precision-coverage curve as the metric for our evaluation in sim-
ulation. To plot this curve, we start with a confidence threshold of 1 and add grasps/placements
to the set of predictions by incrementally lowering the confidence threshold until 0.5. In the mean
time, we keep track of two numbers: precision, the percentage of successful grasps/placements, and
coverage, the percentage of ground truth grasps/placements that are within 5 cm of any predicted
pose. Finally, we plot the coverage on the x-axis and precision on the y-axis. In practice, we found
that this curve is a good indicator of a model’s performance in the real world.

A grasp is considered successful if the gripper does not collide with the scene (including occluded
parts) and is stable. We evaluate the stableness of a grasp by shaking the grasped object for 5
seconds in the Isaac gym simulator [27] with a physx physics engine, identical to the evaluation
in ACRONYM [26]. A placement is considered successful if both the gripper and the object are
collision-free and the bottom of the object is less than 5 cm from the correct placement surface.

M2T2 vs. Specialized Baseline Models: We compare M2T2 against two state-of-the-art spe-
cialized models: Contact-GraspNet [5] for grasping and CabiNet [6] for placing. The results are
summarized in Fig. 3. M2T2 outperforms both models by a significant margin, especially on the
placement. This shows the advantage of orientation reasoning for placement. In many cases, it is
not possible to find a good placement pose without rotating the object in hand.

6

Table 1: Real Robot Experiments Success Rates

Model Pick Place Place re-orient Overall
M2T2 (ours) 85.7% 72.2% 62.5% 61.9%

Contact-GraspNet [5] + CabiNet [6] 76.2% 56.2% 25.0% 42.9%

Figure 5: Our robot experimental setup. Left: Scenes where the target object (highlighted in red)
needs to be reoriented to be placed in the placement region (shown in green). Right: A example of
a scene where objects are sequentially moved from the right to the initially empty region on the left.

4.2 Ablations

Choice of ADD-S: We find that setting a larger weight for the ADD-S loss has a critical impact on
the grasping performance. As shown in Fig. 4a, setting lower ADD-S increases grasp coverage at
the expense of precision which is not desirable.

Number of Grasp Queries: We experimented with different number of grasp query tokens and find
100 to be an appropriate number, as shown by the results in Fig. 4b.

Discrete vs. Continuous Rotation: We compared our model with a variant where there is only a
single placement mask and the placement rotations are regressed just like the grasp parameters. As
shown by Fig. 4c, it is better to have a set of placement masks corresponding to discrete rotations.
Since multiple orientations of the object can be valid for a given placement location, regressing to a
single rotation does not model the multi-modality of placement orientations.

Importance of Hard Negative Mining: As mentioned in Sec. 3.2, we use hard negative mining (by
applying the mask loss for 1024 points with the largest loss. Without this trick, the quality of most
confident placements become significantly worse (see Fig. 4d).

4.3 Real Robot Experiments

Hardware Setup: We evaluated M2T2 on a tabletop manipulation setting with a 7-DOF Franka
Panda Robot and a parallel jaw gripper. For perception, we used a single Intel Realsense L515 RGB-
D camera overlooking the scene. We use the motion planner from [6] for reactive path planning via
model predictive control. The picking target and placement region are specified by the user with
3 clicks on the camera image. All inference is run on a single NVIDIA Titan RTX GPU, which
takes about 0.1 second per frame. After obtaining a set of collision-free gripper poses from M2T2,
the robot execute the one that is closest to the current robot configuration in joint space and has a
feasible inverse kinematics solution for the robot arm.

7

Table 2: Success Rate Comparison on RLBench

Task open drawer turn tap meat off grill
M2T2 (ours) 89.3 ± 1.8% 88.0 ± 5.6% 86.7 ± 1.8%
PerAct [10] 80.0% 84.0% 84.0%

Results: Table 1 shows the success rate of 21 pick-and-place sequences in 7 different scenes. Each
scene contains more than 5 objects and all objects are unseen during training. We do not provide
3D models for any of the object. The placing success rate is conditioned on picking success, i.e.
overall success = picking success ⇥ placing success. We designed four scenes where the object has
to be re-oriented before placing to fit in the target region, as shown on the left in Fig 5. We can see
that M2T2 significantly outperforms the baseline system, which is a combination of state-of-the-art
task-specific models. Notably, M2T2 is 9.5% higher for grasping than [5] and 37.5% higher than
[6] for the more challenging re-orientation placement. 2/3 pick failures for M2T2 were for cup
objects, which were out-of-distribution during training. 4/5 pick failures for the baseline [5] was
because the model did not generate grasps at all or the generated ones were not reachable based
on Inverse Kinematics (IK). On the other hand, M2T2 generates grasps with higher coverage and
hence have a greater chance of being within the robot’s kinematic workspace. We only use 8 bins for
the orientation discretization, and further increasing the discretization granularity could potentially
reduce our placement error. The real robot executions can be found on the project website.

4.4 Evaluataion on RLBench

RLBench [7] is a commonly used benchmark to evaluate multi-task robot manipulation methods. We
found that many complex tasks in RLBench can be decomposed into a sequence of primitive actions
and solved by M2T2. We demonstrate this by training and evaluating our model on 3 RLBench
tasks: open drawer, turn tap and meat off grill. M2T2 is able to outperform PerAct [10], a state-of-
the-art multi-task model, on all 3 tasks. The results are summarized in Table 2. We report average
success rate over 25 random seeds. The standard deviation is computed with 3 repeated trials for
each seed. PerAct’s results are taken from the original paper. This demonstrates M2T2’s ability
to learn action primitives other than generic pick and place and to incorporate multi-modal inputs
including language. More details of the experiments are in the appendix.

5 Conclusion

In this paper we present Multi-Task Masked Transformer (M2T2), an object-centric transformer
model for pick-and-place of unknown objects in clutter. We train M2T2 on a large-scale synthetic
dataset of 130K scenes and deploy it on a real robot without any real-world training data. M2T2
outperforms state-of-the-art specialized models in 6-DoF grasping [5] and placing [6] by about 19%
in overall success rate in the real world. M2T2 is especially proficient in re-orienting objects for
precise collision-free placement. In future, we plan to integrate M2T2 with language-conditioned
task planners [3, 4] to build an open-world manipulation system that works on everyday scenes with
out-of-distribution objects.

Limitations: M2T2’s performance is bounded by the visibility of contact points. For example, it
cannot predict grasps on the side of the box opposite to the camera. M2T2 is also not able to directly
predict actions without contact points, such as lifting. During placing, M2T2 needs segmentation
of the object in gripper in order to estimate how far the gripper needs to be from the contact point
between the object and placement surface. The grasp predictions for each token can spread across
multiple objects in close contact. Currently, M2T2 is trained and evaluated only on tabletop scenes,
but this could be improved by training with more diverse procedurally generated synthetic data such
as in [6, 28].

8

https://m2-t2.github.io

Acknowledgments

This work is supported by NSF Award IIS-2024057. The project title is Collaborative Research:
NRI: FND: Graph Neural Networks for Multi-Object Manipulation.

References
[1] A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho, J. Ibarz, A. Irpan, E. Jang,

R. Julian, et al. Do as i can, not as i say: Grounding language in robotic affordances. In
Conference on Robot Learning, pages 287–318. PMLR, 2023.

[2] Y. Jiang, A. Gupta, Z. Zhang, G. Wang, Y. Dou, Y. Chen, L. Fei-Fei, A. Anandkumar, Y. Zhu,
and L. Fan. Vima: General robot manipulation with multimodal prompts. arXiv preprint
arXiv:2210.03094, 2022.

[3] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng. Code as
policies: Language model programs for embodied control. arXiv preprint arXiv:2209.07753,
2022.

[4] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason, and
A. Garg. Progprompt: Generating situated robot task plans using large language models. arXiv
preprint arXiv:2209.11302, 2022.

[5] M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox. Contact-graspnet: Efficient 6-dof
grasp generation in cluttered scenes. In 2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 13438–13444. IEEE, 2021.

[6] A. Murali, A. Mousavian, C. Eppner, A. Fishman, and D. Fox. Cabinet: Scaling neural col-
lision detection for object rearrangement with procedural scene generation. arXiv preprint
arXiv:2304.09302, 2023.

[7] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. Rlbench: The robot learning benchmark &
learning environment. IEEE Robotics and Automation Letters, 5(2):3019–3026, 2020.

[8] A. Murali, A. Mousavian, C. Eppner, C. Paxton, and D. Fox. 6-dof grasping for target-driven
object manipulation in clutter. In 2020 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 6232–6238. IEEE, 2020.

[9] S. Song, A. Zeng, J. Lee, and T. Funkhouser. Grasping in the wild: Learning 6dof closed-loop
grasping from low-cost demonstrations. Robotics and Automation Letters, 2020.

[10] M. Shridhar, L. Manuelli, and D. Fox. Perceiver-actor: A multi-task transformer for robotic
manipulation. In Conference on Robot Learning, pages 785–799. PMLR, 2023.

[11] J. Duan, Y. R. Wang, M. Shridhar, D. Fox, and R. Krishna. Ar2-d2: Training a robot without a
robot. arXiv preprint arXiv:2306.13818, 2023.

[12] L. Pinto and A. Gupta. Learning to push by grasping: Using multiple tasks for effective
learning. In IEEE International Conference on Robotics and Automation (ICRA), pages 2161–
2168. IEEE, 2017.

[13] W. Yuan, C. Paxton, K. Desingh, and D. Fox. Sornet: Spatial object-centric representations for
sequential manipulation. In Conference on Robot Learning, pages 148–157. PMLR, 2022.

[14] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. arXiv
preprint arXiv:2212.06817, 2022.

9

[15] A. Mousavian, C. Eppner, and D. Fox. 6-dof graspnet: Variational grasp generation for object
manipulation. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 2901–2910, 2019.

[16] H.-S. Fang, C. Wang, M. Gou, and C. Lu. Graspnet-1billion: A large-scale benchmark for
general object grasping. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11444–11453, 2020.

[17] M. Breyer, J. J. Chung, L. Ott, S. Roland, and N. Juan. Volumetric grasping network: Real-time
6 dof grasp detection in clutter. In Conference on Robot Learning, 2020.

[18] Z. Jiang, Y. Zhu, M. Svetlik, K. Fang, and Y. Zhu. Synergies between affordance and geometry:
6-dof grasp detection via implicit representations. Robotics: science and systems, 2021.

[19] K. Fang, Y. Zhu, A. Garg, A. Kurenkov, V. Mehta, L. Fei-Fei, and S. Savarese. Learning task-
oriented grasping for tool manipulation from simulated self-supervision. The International
Journal of Robotics Research, 39(2-3):202–216, 2020.

[20] A. Murali, W. Liu, K. Marino, S. Chernova, and A. Gupta. Same object, different grasps: Data
and semantic knowledge for task-oriented grasping. In Conference on robot learning, pages
1540–1557. PMLR, 2021.

[21] M. Danielczuk, A. Mousavian, C. Eppner, and D. Fox. Object rearrangement using learned im-
plicit collision functions. In 2021 IEEE International Conference on Robotics and Automation
(ICRA), pages 6010–6017. IEEE, 2021.

[22] W. Liu, C. Paxton, T. Hermans, and D. Fox. Structformer: Learning spatial structure for
language-guided semantic rearrangement of novel objects. In 2022 International Conference
on Robotics and Automation (ICRA), pages 6322–6329. IEEE, 2022.

[23] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information processing systems, 30, 2017.

[24] B. Cheng, A. Choudhuri, I. Misra, A. Kirillov, R. Girdhar, and A. G. Schwing. Mask2former
for video instance segmentation. arXiv preprint arXiv:2112.10764, 2021.

[25] F. Milletari, N. Navab, and S.-A. Ahmadi. V-net: Fully convolutional neural networks for
volumetric medical image segmentation. In 2016 fourth international conference on 3D vision
(3DV), pages 565–571. Ieee, 2016.

[26] C. Eppner, A. Mousavian, and D. Fox. Acronym: A large-scale grasp dataset based on sim-
ulation. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages
6222–6227. IEEE, 2021.

[27] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, et al. Isaac gym: High performance gpu-based physics simulation for
robot learning. arXiv preprint arXiv:2108.10470, 2021.

[28] A. Fishman, A. Murali, C. Eppner, B. Peele, B. Boots, and D. Fox. Motion policy networks.
In Conference on Robot Learning, pages 967–977. PMLR, 2023.

[29] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages 8748–8763. PMLR, 2021.

[30] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

10

Appendix

A Further Architectural Details

Scene Encoder The scene encoder is a PointNet++ [23] with 4 multi-resolution set abstraction
layers as the encoder and 4 feature propagation layers as the decoder. The input point cloud is sub-
sampled to 16384 points. Each set abstraction layer will select N/4 seed points using furthest point
sampling where N is the size of the input pointwise feature map. Then, local features are computed
around each seed point and propagated with an MLP. As a result, the scene encoder produces 4
feature maps of decreasing resolution, with 16384, 4096, 1024 and 256 points respectively. We use
the first per-point feature map for prediction and the remaining 3 for cross-attention.

Contact Decoder The contact decoder takes G = 100 grasp tokens and P = 64 placement tokens
as input. These input query tokens are randomly initialized and learned during training. The G+ P
query tokens are fed into a transformer network with 3 blocks. Each block consists of a cross-
attention layer, a self-attention layer and a feedforward MLP layer. In the cross-attention layer, the
query tokens are cross attended with one of the feature maps produced by the scene encoder to
incorporate scene context. In the self-attention layer, the query tokens are attended with themselves
to propagate information among different queries. The width (i.e. dimension of each token) is set to
256. The input tokens of each transformer block (including the initial one) are also used to produce
intermediate mask predictions. Specifically, the tokens are multiplied with the per-point feature map
from the scene encoder, passed through sigmoid and thresholded to generate a per-point mask for
each query. These intermediate masks are not only supervised by the ground truth masks during
training, but also subsampled and used as attention masks for the cross-attention layer. This forces
the network to focus on relevant regions in the scene.

While the contact decoder is inspired by [24], it is specially designed to handle 3D inputs instead
of images. For example, since the context features are grounded to 3D points, we compute position
encodings from their 3D locations during cross-attention.

Modifications for RLBench In RLBench, we break down tasks like “put meat off grill” into
predicting a single grasp or placement pose conditioned on the language goal. To make the output
conditioned on language, as shown in Fig. A, we can introduce additional language tokens as query
tokens, where the language tokens come from the language goal embedded by a frozen CLIP [29]
encoder. Following PerAct [10], we trained M2T2 on 100 demos and evaluate on 25 demos with
random seeds different from training.

Figure A: Network for language-conditioned pick-and-place in RLBench. Compared to the network
for generic pick-and-place, there are only 1 grasp and 1 place query token. The predicted grasp and
placement are conditioned on language commands encoded by a frozen CLIP.

11

B Comparison Against Single-task Model

We have trained our model to only perform a single task. These task-specialized models are worse
than our multi-task model (see Fig. Ba, Bb). This shows the importance to formulate both picking
and placing under the same framework.

(a) Against pick-only (b) Against place-only

Figure B: Multi-task vs Single-task Models

C Training

M2T2 is trained using the Adam-W [30] optimizer with a fixed learning rate of 0.0008 on 8 V100
GPUs for 160 epochs. The batch size is 16 on each GPU. The training takes about 2 days to finish.

D Data Generation

We procedurally generated a large-scale synthetic dataset for training M2T2, as shown in Fig C. In
each scene, we randomly place 1-15 objects from the ACRONYM dataset [26] on the table. Each
object in ACRONYM are labeled with 2000 grasps. We transform these grasps by the object pose
and filter out colliding ones. The camera pose is randomized around the entire hemisphere above
the table, making M2T2 very robust to viewpoint changes.

Figure C: Examples for our large-scale synthetic dataset, for the grasping (top) and placing (bottom)
tasks respectively. Objects are randomly sampled from ACRONYM [26]. Each scene can contain
up to 15 objects, which creates many very cluttered scenes. We also include robot in the observation
to simulate realistic occlusion by the robot arm.

12

	Introduction
	Related Work
	Technical Approach
	Architecture
	Training Objective
	Model Inference
	Synthetic Data Generation

	Experimental Evaluation
	Evaluation in Simulation
	Ablations
	Real Robot Experiments
	Evaluataion on RLBench

	Conclusion
	Further Architectural Details
	Comparison Against Single-task Model
	Training
	Data Generation

