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ABSTRACT. We introduce the notions of symmetric and symmetrizable repre-
sentations of SL2(Z). The linear representations of SL2(Z) arising from mod-
ular tensor categories are symmetric and have congruence kernel. Conversely,
one may also reconstruct modular data from finite-dimensional symmetric,
congruence representations of SLa(Z). By investigating a Z/2Z-symmetry of
some Weil representations at prime power levels, we prove that all finite-
dimensional congruence representations of SL2(Z) are symmetrizable. We
also provide examples of unsymmetrizable noncongruence representations of
SL2(Z) that are subrepresentations of a symmetric one.

1. INTRODUCTION

The group SL2(Z) plays an integral role in the theory of modular forms. Rep-
resentations of SLy(Z) also appear naturally in rational conformal field theory
(RCFT) and topological quantum field theory (TQFT). In both of these theo-
ries, the representations arise from underlying modular tensor categories (MTC).
Readers are referred to [11|6] for more details on modular tensor categories. For
their relations to RCFT, see [9116129]; for TQFT, see [23l27]. MTCs also form the
foundation for topological quantum computation and topological phases of matter,
regarding which see [121[14][24].

Associated to a modular tensor category C is a pair of complex square matrices,
(S,T), called the modular data of C. The group SLy(Z) is generated by s =
[9 6] and t = [§ 1], and the assignment (s,t) — (S~!,T) defines a projective
representation This can be linearized to a unitary matrix representation p where
p(s) is symmetric and p(t) is diagonal. We call representations of SLy(Z) with
these properties symmetric. Moreover, p is congruence, i.e. has a congruence kernel
[3I[19].

The family of pointed MTCs, which can be built from finite abelian groups
equipped with nondegenerate quadratic forms [I0|[I1], are particularly relevant to
this paper (see Example[Z:4]and Section[3:I). The projective representation arising
from such a category coincides with the Weil representation of the quadratic form;
the study of Weil representations has a long history, including works such as [13|
261/28].

Given a congruence representation of SLy(Z), it is natural to ask whether it can
be realized by an MTC in this way, and if so, how to reconstruct the modular data.
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It is clear that, for the representation to be realized, it is necessary for it to be
symmetrizable —that is, to admit a basis with respect to which it is symmetric.
Representations of SLo(Z) that are not symmetrizable do exist (see Section [2.2));
however, our examples are all noncongruence representations. The main result of
this paper, Theorem|2.10} is that every finite-dimensional congruence representation
of SLy(Z) is symmetrizable.

We prove this theorem by investigating irreducible representations of SLo(Z/p*7Z)
for primes p and positive integers A, which were completely classified by Nobs—
Wolfart using subrepresentations of Weil representations [22]. The main thrust of
the proof is the existence of a certain Z/27Z symmetry, derived from an involutive
automorphism, for each relevant quadratic form. We show that the subspace as-
sociated to each irreducible subrepresentation is invariant under that symmetry;
this implies the representation is symmetrizable. Based on this proof, the authors
have implemented a GAP package, SL2Reps [17], which automatically generates a
symmetric basis for each irreducible congruence representation p and outputs the
corresponding matrices p(s) and p(t). In fact, these symmetric, irreducible con-
gruence representations are essential for the reconstruction of modular data from
representations of SLy(Z) [18]. In special cases (see, for example, [20, Sec. 5] and
[2] Sec. 3]), p(s) and p(t) will completely determine the fusion rules of a potential
MTC realizing p.

The paper is organized as follows. In Section [2| we introduce symmetric and
congruence representations of SLa(Z) and provide some examples. In Section [3] we
describe Weil representations in general and establish criteria for symmetrizability.
Then, in Section [4| we consider irreducible congruence representations of prime
power level in detail and prove the main theorem. Finally, we give some applications
of the result.

2. SYMMETRIC REPRESENTATIONS OF SLy(Z)

2.1. Notation and definitions. Let s := [_01 (1)] and t := [} 1], a choice of genera-

tors for the group SLy(Z). For any real number a > 0, let /a denote its nonnegative

square root. The group of n X n unitary complex matrices is denoted by U(n). We

write a complex number u € U(1) of complex modulus 1 as u = € for some

x € [0,27) and define \/u := €*/2. For any r € Q, we write e(r) := ¢>™", and for

any positive integer k, we write (;, := e(1/k). In particular, /-1 =i = e(1/4) = (4
k

in our convention. Finally, we write (5) for the Legendre symbol of k mod p. All

representations of SLy(Z) considered are finite-dimensional over C.
Definition 2.1. A unitary matrix representation p : SLo(Z) — U(n) is called
symmetric if the following two conditions hold:

o p(s) is symmetric;

e p(t) is diagonal.
For any finite-dimensional Hilbert space V, a representation p : SLy(Z) — GL(V) is
called symmetrizable if it is equivalent to a symmetric representation. An equivalent
condition is that V admits an orthonormal basis, called a symmetric basis for p,
with respect to which the matrix presentation of p is symmetric.
Remark 2.2.

(i) Any permutation of a symmetric basis for p is also a symmetric basis for p.
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(ii) Symmetrizability is preserved under direct sum and tensor product of rep-
resentations. Indeed, if p;, po admit symmetric bases By, By respectively,
then {(v1,0) | v1 € B1}U{(0,v2) | v2 € Bz} and {v1 ®va | v1 € B1,v2 € Ba}
are symmetric bases for p; @ p2 and p; ® py respectively.

Definition 2.3. A finite-dimensional representation p of SLy(Z) is called congru-
ence of level n if ker(p) is a congruence subgroup of level n.

In particular, a congruence representation p : SLa(Z) — GL(V) of level n factors
through SLo(Z/nZ). The level of p is equal to the order of p(t) [3] Lem. A.1].

2.2. Examples of symmetrizable and unsymmetrizable representations.

Example 2.4. As mentioned in the introduction, a family of representations of
SLs(Z) may be obtained from any modular tensor category as follows. Let C be a
modular tensor category — that is, a braided fusion category equipped with a ribbon
structure whose braiding satisfies a nondegeneracy condition (we refer the reader to
[1[6][27] for details). The ribbon structure on C induces a trace on endomorphisms,
and by taking the traces of double braidings and twists of simple objects, one
obtains the modular data (S,T"), a pair of complex matrices indexed by the (finite)
set of isomorphism classes of simple objects in C. With respect to this natural basis,
S is symmetric and T is diagonal [1 Chap. 3].

Let r be the number of isomorphism classes of simple objects of C. It is well-
known (see, for example, [1127]) that the assignment (s,t) — (S™1,T) defines a
projective representation p¢ : SL2(Z) — PGL,(C), which can be lifted to a linear
representation of SLa(Z) by scaling S and T, and there are 12 distinct such lifts
[19 Thm. 7.1]. Let pc : SLa(Z) — GL,(C) be any of these linear lifts of jc. By the
discussion in the previous paragraph, p¢ is a symmetric representation. Further, by
|3} Thm. IT], ker(p¢) is a congruence subgroup of SLo(Z). Thus, pc is a symmetric
congruence representation of SLa(Z).

For the next example, we will use the following lemma.

Lemma 2.5. Let p : SLo(Z) — U(n) be a representation such that p(t) is diagonal.
Denote s = p(s) and t = p(t). If p is symmetrizable, then for any three indices
J.k,0 € {1,...,n} such that the eigenvalues t;;, tp, and te, of p(t) all have
multiplicity 1, we have s; 1 - Sk Se.; = 85,0 Stk " Sk,j-

Proof. For A € GL,,(C) and B € M,,(C), we write B4 := A"1BA. Suppose that p
is symmetrizable. Then there exists a unitary matrix A such that s4 is symmetric
and t4 is diagonal. As ¢4 and t are diagonal and have the same eigenvalues, there is
a permutation matrix P such that t4* = ¢. Denote U := AP. Then Ut = tU, so U
is a unitary block-diagonal matrix; the blocks correspond to the distinct eigenvalues
of t, and each has size equal to the corresponding multiplicity. In particular, since
t;; is of multiplicity 1, there must be some u; € U(1) such that U; ; = d;;u; for all
1 <4 < n. The same holds for k and /.

Now, sV is symmetric. So, wjus;r = (sY)jx = (sY)k; = Uru;sk,; and hence
uisjyk = u?sk_j. Similarly, we have u%sk_{ = uisak and u?sm = ufsM, and the
statement follows immediately. (Il

Example 2.6. Following [8|, we consider the four homomorphisms from SLy(Z) to
the permutation group S; shown in Table[T]
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TABLE 1. Four noncongruence permutation representations of SLy(Z)

| | b1 | ) | ?3 | P4 |
s (12)(34)(56) | (12)(34)(56) | (12)(34)(67) | (12)(34)(67)
(1245)(367) | (12475)(36) | (124735) (125473)
[Tm(¢;)| 7! 7! 42 42
n 12 10 6 6
|SLa(Z/niZ)| 2732 24325 2432 2432

Notice that, for each k, |Im(¢y)| does not divide |SLa(Z/nixZ)|, where ny =
ord(¢(t)). Therefore, the homomorphism ¢y, has a noncongruence kernel. Further,
let p : S; — U(7) be the permutation representation of S; on V = C7, and let
{e;}7_, denote the standard basis of V. Since p is faithful, ker(¢) = ker(po ¢y), so
pogy, is a noncongruence representation of SLo(Z). For brevity, we write py := pody,
and view t as a permutation in S7, namely ¢ (t) for the relevant choice of k.

The representations p; and ps thus constructed are symmetrizable. It is clear
that the set

3

3 3 3 2
By = {Zetau), (s Ziaeta(l)a —iZ(—l)aetau), € Z(—i)aetau), Zeta(g),
a=0 a=0 a=0 a=0

a=0

2 2
Z (3eta(3), Z (3 era(3) }
a=0 a=0

is an orthogonal eigenbasis for p;(t). One can check directly that the normalization
of By is a symmetric basis for p;. Similarly, the normalization of the orthogonal
basis

4 4 4 4 4
{ D ey, =G Y Geway, G5 D Gy, G ey, —G Y Cewq),
a=0 a=0 a=0 a=0 a=0
1 1
> e, —i D1 e |
a=0 a=0
is a symmetric basis for ps.

On the other hand, the representations ps and p, are not symmetrizable. Con-
sider the ordered eigenbasis Bz := {v1,...,v7} for p3(t) given by

5
1 (i—2)a .
v1 = eg, v = —= €ta forie {2,...,7}.
1 6 \/6;:0(6 ta(1) { }

Let s = p3(s) and s(v;) = ZZ=1 sijv; for 4,5 € {1,...,7}. The eigenvectors
v3, V4, U5 Of p3(t) have eigenvalues of multiplicity 1, and
_ 5—/3i 243
834 =543 = ———, 835 = 54,5 =853 =854 = ———— .
12 6

In particular, s34 - 845 - 553 7# 83,5 - 55,4 - S4,.3. 1t follows from Lemma [2.5] that ps3
is not symmetrizable. The same argument may be applied to show that py is not
symmetrizable either.
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A symmetrizable representation can be obtained from any real orthogonal rep-
resentation of PSLa(Z) via the induction functor IndSGIIf((ZZ)). The group GL2(Z) is
a semidirect product: GL2(Z) = SLa(Z) » (j), where j = [(1) Pl]. Conjugation by j
defines an automorphism o of SLy(Z), and

o(s) =51 and oty =t"1.

For any representation p : SLa(Z) — GL,(C), let g := Ressh(z)lndsgf(%)p, the

restricted induced representation of p. As per [15], we have p = p® (po o). In
particular, for any z,y € V,

p(s)(x,y) = (p(s)z,p(s)"'y)  and  p(t)(z,y) = (p(t)a, p(t)'y) .
To simplify notation, given any representation n : PSLs(Z) — GL,(C), we again
use 7 to denote the representation SLy(Z) — PSLa(Z) 2 GL,(C).

Proposition 2.7. Let p be any representation PSLo(Z) — O(n), where O(n) =
U(n) N GL,,(R) is the group of orthogonal matrices. Then p is symmetrizable.

Proof. By assumption, p(s) = p(s)". Hence, for any x,y € C",

(p(s)T,7) = (p(s)z,y) = (y, p(s)x) = (p(s)y, z).
Consequently, we have
(2.1)
<ﬁ(5) (1‘7 E)v (ya §)> = <p(5)$, y>+<p(5)fa ?> = (p(ﬁ)ﬂ, §>—|—<p(5)y7 J?) = <ﬁ(5) (y’ y)’ (1‘7 E)>

Now we construct a symmetric basis for g. Since p(t) is orthogonal, and in par-
ticular normal, there exists an orthonormal eigenbasis for p(t), denoted by {v;}}_;.

Let A; € U(1) be the eigenvalue for v;. Then p(t)~'v; = p(t)~1v; = A\;u;. As such,

B; = {%(\/Evj,\/_ij) ‘ ge{+1},1<i< n}

is an orthonormal eigenbasis for p(t). Finally, p(s) is symmetric with respect to B;
by (2.1). |

Example 2.8. Subrepresentations of a symmetric representation may fail to be
symmetrizable. Indeed, p3 in Example[2.6] fulfils the condition of Proposition 2.7
so ps is symmetric. However, ps contains ps, which is not symmetrizable, as a
subrepresentation. In fact, p3oo is not symmetrizable either (by a similar argument
to that in Example [2.6). Notably, since p : S7 — U(7) is faithful, ker(ps) =
ker(¢s) No(ker(¢s)) is not a congruence subgroup of SLy(Z).

If a subrepresentation of a symmetric representation admits additional symme-
try, then it is symmetrizable. The following lemma will be used in the subsequent
sections.

Lemma 2.9. Let n : SLo(Z) — U(n) be a symmetric representation. Suppose
U € U(n) commutes with n(g) for all g € SLa(Z). Let p(x) = Uz and p(z) = Uz
for x € C™; note that @ is an antilinear operator. Then:
(i) for any z,y € C", we have (n(s)z, y) = (n(s)@(y), ?(z)).
(ii) If p is a subrepresentation of n and there exists an orthonormal eigenbasis
S for p(t) that is fized by @ pointwisely, then S is a symmetric basis for p.
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Proof. Since n(s) is symmetric, n(s) =n(s) "', which implies (n(s)Z, ¥) = (n(s) 'z, y)
= (n(s)y, x) for any z,y € C". As a result, we have

(n(s)@(y), P(2)) = (n(s)p(x), v(y)) = (p(n(s)z), v(y)) = (n(s)z, v),

which proves (i).
By (i), for any z,y € S, the matrix coefficients of p(s) are given by

p(8)y.e = (n(s)z,y) = (n(s)2(y), P(x)) = ((s)y, ) = p(8)ay

which means p(s) is symmetric with respect to S. Since S is an eigenbasis for p(t),
p is symmetric with respect to S. ]

2.3. Statement of the main results. From the above examples, we can see that
representations of SLg(Z) can fail to be symmetrizable, and such representations
cannot arise from any modular tensor category. However, our examples for this
behavior are noncongruence representations, and hence are not very helpful in the
study of MTCs: all SLa(Z)-representations coming from an MTC have to be congru-
ence in the first place. Therefore, it is natural to ask if congruence representations
can also fail to be symmetrizable. The main result of this paper is the following
theorem.

Theorem 2.10. Every finite-dimensional congruence representation of SLo(Z) is
symmetrizable.

Proof. Let p be a congruence representation of level n. Since p factors through
SLo(Z/nZ), it decomposes into a direct sum of irreducible representations of
SLo(Z/nZ). 1f each of the irreducible components of p is symmetrizable, then
by Remark[2:2] p is also symmetrizable. Thus, we may assume without loss of gen-
erality that p is irreducible. Then, applying the Chinese remainder theorem and
[25] Thm. 3.2.10], Theorem [2.10] follows from Proposition [2.11 O

Proposition 2.11. Let p be a prime and A be a positive integer. Every irreducible
representation of SLy(Z/p*7Z) is symmetrizable.

The proof of Proposition 2.11]will be provided in Sections [3]and [4]

3. WEIL REPRESENTATIONS AND SYMMETRIZABILITY

The irreducible representations of SLy(Z/p*Z) have been classified by Nobs and
Wolfart [22], and all such representations can be built from subrepresentations of
Weil representations (as detailed in Section @). In this section, we first define
quadratic modules and Weil representations in general, then establish some criteria
for the symmetrizability of subrepresentations thereof.

3.1. Quadratic forms and Weil representations.
Definition 3.1. Let M be an additive abelian group. A nondegenerate quadratic
form on M is a function @ : M — Q/Z such that

(i) Q(—a) = Q(a) for all a € M and

(ii) B(a,b) := Q(a+b) — Q(a) — Q(b) defines a nondegenerate bilinear map.
The pair (M, Q) is then called a (nondegenerate) quadratic module. In this paper,
all quadratic modules are assumed to be nondegenerate.
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Quadratic modules are closely related to pointed modular categories, in which
the isomorphism classes of simple objects form an abelian group under the tensor
product (see, for example, [7] Sec. 8]). Precisely: on the one hand, given any pointed
modular category C, the group of isomorphism classes of simple objects, together
with the function defined by their twists, forms a quadratic module; on the other
hand, given a quadratic module (M, @), one can use the Eilenberg—MacLane theo-
rem [4l[5] on abelian 3-cocycles to construct a unique (up to equivalence) pointed
modular category C(M, Q) [10l11] (see also [6] Thm. 8.4.9]).

More relevantly, each quadratic module (M, @) has an associated projective rep-
resentation of SLy(Z), which can be described as follows. The space of complex-
valued functions on M, denoted by V := C™, is equipped with a natural Hermitian

form
)= fla)g(a)
acM
and we denote the vector norm of f € V by ||f| := \/(f, f). Note that V admits
a standard orthonormal basis: {0, | a € M}. As described in |21} Satz 2 & Sec. 2],
we have a projective representation

W(M,Q) : SLy(Z/p*7Z) — PGL(V)
defined by

b, = W (M. Q)(5)(5u) ) 6.
(3.1) ? Qe |M|b§4 b

td, == W(M,Q)(t)(6a) = e(Q(a)) dq .
Here vq = ) ,cpe(Q(a)) is the Gauss sum of (M,Q). This representation is
called the Weil representation associated to (M, Q). In fact, W (M, Q) is precisely
the projective representation pe(ar ) arising from the pointed modular category
C(M,Q), as described in Example the modular data (S,T") of C(M, Q) is given
by
Sap = €(—B(a,b)) and Top =e(Q(a)) - dap

for a,b € M. As noted in that example, W(M, Q) can be rescaled to a linear
representation of SLy(Z), and the result is congruence and symmetric.

3.2. Symmetrizability criteria. While it is immediate from (3.I)) that, for any
quadratic module (M, Q), the associated representation W (M, Q) is symmetric,
this does not necessarily imply that a given subrepresentation of W (M, Q) is sym-
metrizable (as demonstrated in Example [28). To establish criteria for the sym-
metrizability of such subrepresentations, we use the following.

For any quadratic module (M, Q), let Aut(M,Q) denote the group of auto-
morphisms w of the abelian group M satisfying Q(wa) = Q(a) for all a € M.
For any w € Aut(M,Q), we define the associated C-linear map ¢, : V. — V by
©w(0g) 1= dyq and the antilinear map @, as the composition of ¢, and complex
conjugation, relative to the standard basis {6, | @ € M} for V = CM. Note that
., preserves (-,-), hence is an isometry on V in the usual sense.

Proposition 3.2. Let w € Aut(M, Q) be an involution and p a subrepresentation
of W(M,Q) onY CV. IfY admits an orthonormal basis B for which

(i) B is a set of eigenvectors of p(t) and
(ii) for any f € B such that f and P, (f) are linearly independent, o, (f) € B,

then p is symmetrizable.
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Proof. Let By :={f € B| f and §(f) are linearly dependent}. This means that,
for each f € By, there exists some ny € U(1) with $,,(f) = nsf. Since w? = id,
?2 = id. So, we can choose By C B~ By such that Bo NG, (B2) = @ and B =
By U By U, (B2). It is then clear that the set

Si= (i | f € By} L {%(fww(f)) | fe By U {%(f—%(f)) | feBy)

is an orthonormal basis for Y. Since /z = e1/¢ for € € {#1}, we can also write S
as

3={\/77_ff|feBl}u{%(ﬁf+$%(f)) |ce{+1}, feB).

It follows from the antilinearity of @, that @, (h) = h for all h € S.
Finally, for each f € B, we have p(t)(f) = &;f for some {; € U(1). Then

P02, (f) = Pur() 7 (f) = P& f) = &Pu(f) .-

Therefore, S is an eigenbasis for p(t). By Lemma[2:9] S is a symmetric basis for p,
which means that p is symmetrizable. (|

4. ITRREDUCIBLE REPRESENTATIONS OF SLy(Z/p*Z)

In this section, we describe all of the irreducible representations of SLa(Z/p*7Z)
as per [22], where they are constructed using specific quadratic modules and their
Weil representations. We show that all of these irreducible representations admit
symmetries that enable us to apply the symmetrizability criteria established in
Section |3] Finally, we complete the proof of Proposition|2.11|near the end of this
section.

4.1. Weil representations of prime power level. Let p be a prime and A a
positive integer. We follow [21]22] and denote the ring Z/p*Z by Aj. By abuse of
notation, we use s and t to denote both the generators of SLy(Z) and their images
in SLy(Z/p*Z). Clearly, any representation of SLa(Z/p*Z) is determined by the
images of s and t.

To construct irreducible representations of SLy(Z/p*Z), we consider the types
of quadratic modules (M, Q) described in Table 2l wherein M is an Aj-module
(see [21] Def. 3]).

TABLE 2. Types of quadratic modules with at most two elemen-
tary divisors

Type | p’\ | M Q | Other parameters A
Yy
Do A>1 Ay @ Ay oY A%
— 2 2
po® Ay @ Ay vty
Noa Azl ] 22 ¢ 2 7
P =T\ —
p odd Ay A, =¥ f ey 4+ oy t €N, (7)—71
A>1 p>\ t =3mod4 {EEMX |eg=1}
p=2 r(zZ + 2% ty?) 0<o<A—-2
Ax—1 D Ax—o-1 —_ =7
RY, () A>2 2\ r,t € N and odd
pA p odd r(z® + p%ty~) 1<o<A-—-1
A\ ® Ax_o _
A>2 pA rt € {1,u}
2
R ” p odd A rT 1
o (1) A1 A =y r € {l,u}
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Here u is a fixed quadratic nonresidue mod p. The group 2l will be explained in
Section
Each choice of M has a ring structure. Types Dyx and Ry (r) are equipped with
their natural ring structure. For the others, we may identify M with a quotient
ring as follows:
o for type Nox, let X := (14 +/=3), and then M := Ay ® Ay = Z[X]/(2"),
e for type N,» with p odd, let X := %(1 ++/—t), and then M := A\ ® A\ =
ZIX]/ (") ,
e for type R3,(r,t), let X := /=29, and then M = A\ 1 ® Ay o1
ZIX]/(22 771 X)),
e for type RZA (r,t) with p odd, let X := /=p°t, and then M := A\®A\_, =
ZIX]/ (P X).
In each case, we identify (z,y) with  + Xy. The Ay-module M then inherits the
multiplication and complex conjugation of the quotient ring as well as the norm of
Z[X]. In particular, for N,», Q(z,y) = Norm(z, y)/p"; while for R7\ (r,t), we have
Q(z,y) = r - Norm(z,y)/p*. We write M* for the multiplicative group of units of
M.
For each of these types, the projective Weil representation W (M, Q) defined by
(3) is in fact a linear representation of SLo(Z/p*Z) [21} Sec. 2].

4.2. Standard irreducible representations. The quadratic modules of type

Dpx, Npx, and R7, (r,t), as described in Table[2] will simply be referred as binary

quadratic modules throughout this paper, as M has exactly 2 elementary divisors.
For any binary quadratic module (M, @), we define k € Aut(M, Q) as follows:

(l‘,y) = (ya J)) ) if (M, Q) is of type Dp,\ )
k=4 (z,y) = (z,9) = (z+y,~y), if (M,Q) is of type Ny ;
(z,y) = (z,y) = (z,—y), if (M, Q) is of type R7,(r,t).

From the definition of @ in Table[2] it is immediate that x € Aut(M,Q). Note
that k is of order 2, except in the case of R;\;2(r, t), where the second factor of M
is isomorphic to Z/27Z and hence « is trivial.

Definition 4.1. A binary quadratic module of type Rgf 2(r,t) is called extremal.

For any binary quadratic module (M, @), there is a notion of determinant on
Aut(M, Q), and we denote the subgroup of determinant 1 by 2. We explicitly
describe 2 for each type of quadratic module following [22]. If (M, Q) is of type
Dy, the group A := A acts on M via e(z,y) = (¢ 'w,ey) for any ¢ € 2 and
(z,y) € M3 if (M, Q) is of type Nyx or R7,(r,t), we take 2 := {e € M | eg =1},
acting on M by multiplication (see Section[4.1]). In each case, we can check that 2
is indeed an abelian subgroup of Aut(M, Q). Note that, in the case of an extremal
quadratic module (M, Q), we have @ = a for all a € M, so A= {e € M* |2 =1}
is an elementary 2-group. We also have the following lemma.

Lemma 4.2. Let (M, Q) be a binary quadratic module. For anye € A, (rkoe)? = id.
Proof. Indeed, for type Dy, we have

(koe)(x,y) = n(a(sy,a_lx)) = (x,y)
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1424 SIU-HUNG NG, YILONG WANG, AND SAMUEL WILSON

for all (x,y) € M. For type N, or RZA (r,t), we have € = e~ ! and thus

(koe)*(a) = k(e(Fa)) =a
forall a € M. As a particular case, for the extremal type R;‘; 2 (r,t), A has exponent
2 and x = id, so the condition (x o ¢)? = id follows trivially. O

Characters of 2 naturally give rise to subrepresentations of W(M Q). More
precisely, denote by 2l the character group of . Then, for any y € 2A,
(4.1) VX = {feCM| f(eca) = x(¢)f(a) for all a € M and ¢ € A}
is an SLy(Z/p*Z)-invariant subspace of V. The restriction of W (M, Q) to VX
is denoted by W(M,Q, x). Using (£I) and Lemma [42] it is straightforward to
verify that ¢, (as defined in Section B:2) maps VX to VX. In fact, W (M, Q, x) is
equivalent to W (M, Q,Y) via ¢.

A basis for VX can be chosen as follows (cf. |22]). For any x € & and a € M,

define R
fa = ZX(5)56(1

ecA
Clearly, we have fX € VX. Whenever fX # 0 (which occurs if and only if Stab(a) C
ker(x)), define
fx
=

LfxI

Let 6 be a complete set of representatives for the orbits of 2 on M such that, for
any a € 0, if ka ¢ Aa, then ka € 6. Define

0% :=0Nn{a € M |Stab(a) C ker(x)}.
By Lemma[4.2] Stab(ra) = Stab(a) for any a € M, so the assumption on 6 ensures

that, if @ € 0% and ka ¢ a, then ka € 6X. Moreover, since the -orbits are
disjoint, the set

BY = {fX | a %)
is an orthonormal basis for VX,

Proposition 4.3. Let (M, Q) be a binary quadratic module. Then, for any char-
acter x € A, W(M, Q, x) is symmetrizable.

Proof. 1t suffices to show that the basis BX defined above satisfies the conditions
in Proposition

Recall that for, any a € 6X and ¢ € 2, we have Q(ca) = Q(a). As such, (31)
yields

(4.2) fx

ZX ea ||f H ZX 65(1 = E(Q(a))f(i(

||fa H eeA eeA

Thus, BX is an eigenbasis for t.
Further, by deﬁnition and Lemma[42] for any a € 60X, we have

(43) fa ZX 71 Onea = ZX 5 lka — f,é(aa
||f¢1 || ceA ||fa H ecA
noting that [|fX|| = ||fX|. If ka € Aa, then ka = p,a for some p, € A. This

implies fX, = fX , = X(u; 1) £X, and hence fX and @, (fX) are linearly dependent.

Thus, if fX and B, (fX) are linearly independent, then xa ¢ 2da. By the assumption
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on 6 and the preceding discussion, ka € 6X, and so fX, =3, (fX) € BX. The result
now follows from Proposition O

Remark 4.4. Let 07 := {a € 6X | ka € 2a}. Then, by the proof of Proposition [3.2]
there is a choice of subset 65 C X such that 05 Nk(65) = @ and X = X UOX UK (05).
Moreover, a symmetric basis of W (M, @, x) can be chosen to be

_ 1 i
& = (Y | a € B UL 4 50 | 0 € BV UL (g5 |a e 03).
where the notation p, is as in the proof of Proposition [43]

When x? =1 (i.e. x = X), ¢« becomes an auto-equivalence of VX. Therefore,
in this case, if ¢ # id, then W(M, @, x) admits a further decomposition into
eigenspaces of @,,:

V¥ :={feVX| f(ka) =£f(a) for all a € M}.
The corresponding subrepresentations are denoted by W (M, @, x)+.

I

Proposition 4.5. Let (M, Q) be a binary quadratic module. Then, for any x € A
satisfying x> = 1 and go,{‘vx # id, the subrepresentations W(M,Q, x)+ are both
symmetrizable.

Proof. 1t suffices to show that every element in the symmetric basis $X for VX in
Remark [£4]is an eigenvector of ¢, since this will imply that S := VX N SX are
symmetric bases for W (M, Q, x)+.

By (£3), for any a € 6X, we have o, (fX) = fXa. Moreover, since x? = 1, we
have fX, = fX,, which means ¢, (fX) = fX,. Therefore, for any a € 6%, it is readily
seen that %(fg + fX,) € VX, and ﬁ(fg‘ — fXx)evx

Finally, for any a € 6y, ka = uqa for some pu, € 2A. In this case, the same com-
putation as in the proof of Proposition [4.3] shows that o, (fX) = X, = x(u; 1) fX,
which equals +fX as x? = 1. This completes the proof. |

The question of which characters x € 2 give rise to irreducible W (M, @, x) was
answered as a remarkable result of [22]; we need the following definition for the
statement.

Definition 4.6. Let (M, Q) be a binary quadratic module which is not extremal,
and let A < Aut(M, Q) be the corresponding abelian subgroup. A character x € 2
is called primitive if there exists some ¢ € 2 such that x(¢) # 1 and ¢ fixes pM
pointwise.

Nobs and Wolfart showed that most primitive characters of 2 give rise to irre-
ducible representations. More precisely, they proved the following theorem.

Theorem 4.7 (|22| Hauptsatz 1]). Let (M, Q) be a quadratic module of type Dx,
Npr, or non-extremal 7, (r,t), and let A < Aut(M, Q) be the corresponding sub-
group. If x € A is primitive and not an involution, then W (M, Q,x) is an irre-
ducible representation of SLa(Z) of level p*.

If x1, x2 € A are primitive and not involutions, then W (M, Q, x1) is equivalent
to W(M,Q, x2) if, and only if, x1 = x2 or x1 = Xz-

The case of x? = 1 is not directly covered by the theorem, but W (M, Q, x)+ is

irreducible in many cases. The precise details can be found in the complete list of
irreducible representations of SLy(Z/p*Z) in [22} pp. 521-525].
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Definition 4.8. Let p be a prime and A € N. We will call an irreducible represen-
tation of SLo(Z/p*Z) that is equivalent to W (M, Q, x) or W (M, Q, x)+ for some
binary quadratic module (M, Q) a standard irreducible representation.

Combining Propositions [£.3] and [£.5] we have:

Proposition 4.9. For any prime p and positive integer A, every standard irre-
ducible representation of SLy(Z/p*Z) is symmetrizable. ([l

4.3. Special irreducible representations of SLy(Z/2*Z). For a quadratic mod-
ule (M, Q) of type R, (r,t) and x € 21, we denote the representation W (M, Q, x)
of SLo(Z /2 Z) by RS, (r,t,x). A representation of the form R, (r,t,x) with x not
primitive is usually reducible, but some cases with 0 = A — 2 or A — 3 will contain
a unique irreducible subrepresentation of level 2* that does not occur among the
standard representations [22] Sec. 6]. We will call the irreducible representations
appearing this way special; they are denoted by RS, (r,t, x)1. We list all the special
irreducible representations (up to equivalence), together with a choice of basis for
each, in Table

TABLE 3. Special irreducible representations

Type | M | Basis in |22
R, (1,3,x1)1 A1 ® A1 | 61,0y, 9(0,1), 6(0,0) — 6(1,1)
R (13,311 Ay Ay 30,00 = 6(2,2)» 0(2,0) — 6(0,2)> (1,0 + O(—1,0)
? 0(1,2) — 0(=1,2), 9(0,1) + 60,15 O(2,1) + d(2,-1)
R3.(r,3,x1)1 Ay A, 01,00 T 0(=1,0)> 0(3,0) + I(=3,0), 6(1,1) + 6(=1,1),
r€{1,3} d(3,1) + 6(=3,1)s 6(0,0) = O(4,0)5 O(0,1) — O(4,1)
R2(r1,x1)1 Ao A 2 fora € {1,3,5,71 x {01}, f5) — fiso):
4 2 £X1 £X1 £X1 X1 £X1 T 1 '
re {13} ooy = J62) o) = S0y J62) = f(8i2)
R2(r,1,x2)1 A oA fx2 fora € {1,3,5,7} x {0,1},
4 2 o N = = xe P
re{ls) fitoy fta) [50) = FG0y J(5a) = Fioa)
R3s(r,t, x1)1 As o Ay Fi) forodd 1< <15, f') = fi6 o)
(7'7 t) € {173’577} X {173} féll’()) - f(X1124’0>7 f();l,l) - f()(114)1)» f()é.ll) - f(Xlt)yl)
R§;3(1', t,X)1 See table at [22] p. 512]. The basis elements are of
rt) € {1,3,5,7} x {1, 3}, a1 ® Ay | the form fX for some a € o,OTN fNA,L
1,3,5,7 1,3 A A he fi X f Y ();’y) (); o)
A>T, x € (x3) for some (z,y) € Y7 .

In this table we use the following notation. Let x; denote the trivial charac-
ter. For R2;(r,1), we have 2 = ((—1,0)) x ((9,2)), and x2 denotes the character
determined by ker(x2) = ((9,2)). Finally, for R;‘;?’(r, t) with A > 7, we have
A = ((—1,0)) x {a), where a = (1 —2*~4t—222=9 1) and 3 denotes the character
determined by ker(x3) = ((—1,0)). The sets Y and Y; are defined as the following
disjoint unions:

Yy := {(2,0) [z odd} U {(z,y) [y € {0,2}, 2 =4 — 2y +8j, 0 < j <220 — 1},
Vii={(z,9) |y e{0,2}, 2 =2y +85,0<j <22 ° -1}
U{(2,0) |z =2+4k, 0< k <22° —1}.

We may then derive the following proposition.
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Proposition 4.10. FEvery special irreducible representation in Table |3| is sym-
metrizable.

Proof. We will apply Lemma[2.9]to show that each basis in the table is a symmetric
basis for the corresponding representation.

First, we observe that each basis in the table is an orthogonal basis. Indeed, this
is clear for the first six rows. For the last row, it follows from the fact that Yy and
Y7 are disjoint.

Next, we claim that each basis element in the table is fixed by P, as follows.
Recall that x(x,y) = (z, —y) for type R, (r,t). It is immediate from this that each
basis element in the first three rows is fixed by @,..

For R3;(r,1), direct computation yields (9,2) - (z,1) = (z,—1) for each z €
{1,3,5,7}. If x = x1 or X2, then x? =1, so

@n(f();yl)) @n(f(z 1)) f();y,l) = X(9a2)f(>;71) = f();yl)

for any x € {1,3,5,7}. Moreover, since M = Ay @ A,, for any (z,y) € Aq x {0, 2},
we have

Pr(Flay) = 0rlle) = oy = Jioy -
This confirms that each basis element in the 4" and 5" rows is fixed by P,..

For Rj(r,t), M = A5 & Ai, so k acts trivially on M. Hence, for any a € M,
the function fX is fixed by @,. Since 3, is antilinear, it also fixes the other basis
clements, as each is a Z-linear combination of fX'.

Similarly, for R;‘;?’(r, t) with A > 7, we have M = A)_1D Ay, so (again) k(z,y) =
(x,y) for any (z,y) € Ax—1 x {0,2}. Therefore, for any (z,y) € Ay_1 x {0,2}, the
function féy) is fixed by @,. Since P, is antilinear, it also fixes the rest of the
basis elements.

Finally, we claim that each basis element in the table is an eigenvector for t.
Indeed, for any quadratic module (M, Q) of type R, (r,t), (3.I) and ([@2) show
that any function of the form J, or fg( for a € M and x € 2 is an eigenvector of
t with eigenvalue e(Q(a)). To show a basis element in Table[3]is an eigenvector
of t, it suffices to show that the value of Q(a) is the same for each index a € M
among its summands. Recall that Q(z,y) = r(z% + 29ty?)/2* € Q/Z in this case.
In particular, for (z,y) € M, we have Q(z,y) = Q(—z,y) = Q(z, —y). Our claim
then follows from the computations below.

e For R%(1,3), Q(0,0) = Q(L,1) = 0.

e For R23(1,3) Q(0,0) =Q(2,2) =0 and Q(2,0) = Q(0,2) = 1/2.

e For R24(7“, 3), Q(0,0) = Q(4,0) =0 and Q( 1) (4 ) = 37“/4

e For R ( )7 Q(270) = Q(670) = T‘/S, Q(27 ) Q(67 ) = T/& Q(0,0) =

Q(S,O) =0, and Q(0,2) = Q(8,2) =r/2. )

e For Rj(r,t,x)1, the basis elements are either of the form fX* for some
a € M, or of the form f(x;m ) f(16 2y for some (2z,y) € M. As such, it
suffices to verify the following equality for any (2z,y) € M:

r((16 — 22)2 + 16ty2) r(4z? + 16ty?)

Q16 — 2z,y) = o o

= Q(2z,y).
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e For R;‘;S(T, t) with A > 7, any element in Y; is of the form (2u,v) €
Ax—1 x {0,2} by definition. Now, we find

Q22 — 2u,0) = r((2272 — 2u)? + 22 3t?) _ P24 — 22y 4 4o? + 22 310?)

22 22
= Q(2u,v).
In summary, each of the bases in Table[3]is an orthogonal eigenbasis for t, and
each basis element thereof is fixed by ©,. Therefore, the normalization of these

bases are symmetric bases for the corresponding representations by Lemma [2.9]
and this completes the proof. O

4.4. Unary representations. Unary quadratic modules are those of type R (r),
where p is an odd prime and M = A, is cyclic. In this case, it is easy to see
Aut(M, Q) = {£1}, and we define

k:M— M, a— —a.

The representation W (M, Q), denoted simply by R, (r), decomposes into two sub-
representations R, (r)+ corresponding to the (£1)-eigenspaces of ¢.. For A =1,
these are irreducible. For A > 2, each contains a unique irreducible subrepresenta-
tion of level p*, denoted (R, (r)+)1. Specifically, [22] Satz 8] shows that

RpA (T) = (RpA (T)+)1 D (Rp’\ (7“),)1 D Rprz (T)
(wherein Ry (r) is the trivial representation). We will call the irreducible represen-
tations Ry(r)+ (A = 1) and (Rpr(r)+)1 (A > 2) for any odd prime p the unary
irreducible representations of SLo(Z/p 7).
With some minor changes from ;22] an orthonormal basis for each unary irre-

ducible representation can be chosen as follows. For x € M = Ay and ¢ € {£1},
define

- — 1 -
fac,e = \/gax + \/gé—w = \/E(Sac +¢n(\/g5:c) and fw,a = Efm,a .

In particular, we have

(4‘4) @/{(‘fiﬁ) = fm,s and @N(fz,e) = fz,s .
Note also that, by and Q(z) = Q(—z) = rz?/p*, fmﬁ and f, . are eigenvectors
of t.

Further, for 0 <y < p*~1, 1 <k < p, and ¢,n € {£1}, define

Z (\/ﬁcll;a +\/7_7—<z]7m) f(perap*‘l);E :

h k = —
Y,k,€m
\/Z_)aGAl

By (4.4) and the antilinearity of ,,, we have hy ke = P, (hy kcn). Moreover, for
any A > 2 and any integers y and a, we have

_rlpy+ap® 2 r((py)? + 2ap™ + a®p*2)  r(py)?
B p B p* - p
=Qpy) € Q/Z.

Q(py + ap™™t)

2Cf. [22] p. 509]. With gy, as defined in loc. cit., here we have hy ko, = ﬁ(gy,kﬁ +

NG (A1 —y) k)
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Therefore, for A > 2, hy i, is an eigenvector of t. Then, denoting

P -1
}‘E;z{fm reM* withl<z< > },
)\72_1 —1
He = {hy,k,s,n 1§y§pT, 1§k§]9T’ ﬂé{il}}a

we have the following orthonormal eigenbases for t:
e For Rp(T)+, B:= ./—"_;,_1 U {50} .
e For R,(r)_, B:=F_;.
e For (Rpx(r)ec)1 with A > 2,

1 p—1
B:ZFEUHEU{ﬁhO,kﬁyE 1<k< 9 }
By the above discussions, for each unary irreducible representation, the correspond-
ing basis B is an orthonormal t-eigenbasis that is fixed by p,. elementwise. There-
fore, by Lemma[2.9] B is a symmetric basis. In other words, we have the following
proposition.

Proposition 4.11. Every unary irreducible representation is symmetrizable. [

4.5. Proof of Proposition and applications. We are now ready to prove
Proposition [2.11

Proof of Proposition According to |22 Hauptsatz 2] (see also the tables in
(22| pp. 521-525]), every irreducible representation of SLy(Z/p*7Z) is equivalent to
one of the following: a standard irreducible representation, a special irreducible
representation, a unary irreducible representation, or a tensor product of two rep-
resentations of the above three types. Since symmetrizability is preserved under
taking tensor product (see Remark[2.2) and each of the first three types of repre-
sentations is symmetrizable by Propositions and we are done. [

Lemma 4.12. Suppose p is an irreducible, symmetric representation of SLa(Z).
Then p(s) = § or i - 3§ for some real symmetric matriz §.

Proof. Denote s := p(s). Since p is unitary and s is symmetric, s~ = s = 3.
Because 52 is in the center of SLy(Z), Schur’s Lemma shows that s? € C -id. Since
st =id, s> = +id and 5 = s3. If s? = id, then 5 = s and so § := s is real; otherwise,
(i-5)? =id and so 5 := —i - 5 is real. O

Corollary 4.13. FEvery irreducible, congruence representation of SLa(Z) is equiva-
lent to a representation p such that p(s) = § ori-§ for some real symmetric matriz

S.

Proof. This follows immediately Theorem [2.10]and Lemma [£.12 O
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