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ON SYMMETRIC REPRESENTATIONS OF SL2(Z)

SIU-HUNG NG, YILONG WANG, AND SAMUEL WILSON

(Communicated by Sarah Witherspoon)

Abstract. We introduce the notions of symmetric and symmetrizable repre-
sentations of SL2(Z). The linear representations of SL2(Z) arising from mod-
ular tensor categories are symmetric and have congruence kernel. Conversely,
one may also reconstruct modular data from finite-dimensional symmetric,
congruence representations of SL2(Z). By investigating a Z/2Z-symmetry of
some Weil representations at prime power levels, we prove that all finite-
dimensional congruence representations of SL2(Z) are symmetrizable. We
also provide examples of unsymmetrizable noncongruence representations of
SL2(Z) that are subrepresentations of a symmetric one.

1. Introduction

The group SL2(Z) plays an integral role in the theory of modular forms. Rep-
resentations of SL2(Z) also appear naturally in rational conformal field theory
(RCFT) and topological quantum field theory (TQFT). In both of these theo-
ries, the representations arise from underlying modular tensor categories (MTC).
Readers are referred to [1, 6] for more details on modular tensor categories. For
their relations to RCFT, see [9,16,29]; for TQFT, see [23,27]. MTCs also form the
foundation for topological quantum computation and topological phases of matter,
regarding which see [12, 14, 24].

Associated to a modular tensor category C is a pair of complex square matrices,
(S, T ), called the modular data of C. The group SL2(Z) is generated by s =[

0 1
−1 0

]
and t = [ 1 1

0 1 ], and the assignment (s, t) → (S−1, T ) defines a projective
representation.1 This can be linearized to a unitary matrix representation ρ where
ρ(s) is symmetric and ρ(t) is diagonal. We call representations of SL2(Z) with
these properties symmetric. Moreover, ρ is congruence, i.e. has a congruence kernel
[3, 19].

The family of pointed MTCs, which can be built from finite abelian groups
equipped with nondegenerate quadratic forms [10, 11], are particularly relevant to
this paper (see Example 2.4 and Section 3.1). The projective representation arising
from such a category coincides with the Weil representation of the quadratic form;
the study of Weil representations has a long history, including works such as [13,
26, 28].

Given a congruence representation of SL2(Z), it is natural to ask whether it can
be realized by an MTC in this way, and if so, how to reconstruct the modular data.
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It is clear that, for the representation to be realized, it is necessary for it to be
symmetrizable — that is, to admit a basis with respect to which it is symmetric.
Representations of SL2(Z) that are not symmetrizable do exist (see Section 2.2);
however, our examples are all noncongruence representations. The main result of
this paper, Theorem 2.10, is that every finite-dimensional congruence representation
of SL2(Z) is symmetrizable.

We prove this theorem by investigating irreducible representations of SL2(Z/pλZ)
for primes p and positive integers λ, which were completely classified by Nobs–
Wolfart using subrepresentations of Weil representations [22]. The main thrust of
the proof is the existence of a certain Z/2Z symmetry, derived from an involutive
automorphism, for each relevant quadratic form. We show that the subspace as-
sociated to each irreducible subrepresentation is invariant under that symmetry;
this implies the representation is symmetrizable. Based on this proof, the authors
have implemented a GAP package, SL2Reps [17], which automatically generates a
symmetric basis for each irreducible congruence representation ρ and outputs the
corresponding matrices ρ(s) and ρ(t). In fact, these symmetric, irreducible con-
gruence representations are essential for the reconstruction of modular data from
representations of SL2(Z) [18]. In special cases (see, for example, [20, Sec. 5] and
[2, Sec. 3]), ρ(s) and ρ(t) will completely determine the fusion rules of a potential
MTC realizing ρ.

The paper is organized as follows. In Section 2, we introduce symmetric and
congruence representations of SL2(Z) and provide some examples. In Section 3, we
describe Weil representations in general and establish criteria for symmetrizability.
Then, in Section 4, we consider irreducible congruence representations of prime
power level in detail and prove the main theorem. Finally, we give some applications
of the result.

2. Symmetric representations of SL2(Z)

2.1. Notation and definitions. Let s :=
[

0 1
−1 0

]
and t := [ 1 1

0 1 ], a choice of genera-
tors for the group SL2(Z). For any real number a ≥ 0, let

√
a denote its nonnegative

square root. The group of n× n unitary complex matrices is denoted by U(n). We
write a complex number u ∈ U(1) of complex modulus 1 as u = eix for some
x ∈ [ 0, 2π) and define

√
u := eix/2. For any r ∈ Q, we write e(r) := e2πir, and for

any positive integer k, we write ζk := e(1/k). In particular,
√
−1 = i = e(1/4) = ζ4

in our convention. Finally, we write
(

k
p

)
for the Legendre symbol of k mod p. All

representations of SL2(Z) considered are finite-dimensional over C.

Definition 2.1. A unitary matrix representation ρ : SL2(Z) → U(n) is called
symmetric if the following two conditions hold:

• ρ(s) is symmetric;
• ρ(t) is diagonal.

For any finite-dimensional Hilbert space V , a representation ρ : SL2(Z) → GL(V ) is
called symmetrizable if it is equivalent to a symmetric representation. An equivalent
condition is that V admits an orthonormal basis, called a symmetric basis for ρ,
with respect to which the matrix presentation of ρ is symmetric.

Remark 2.2.

(i) Any permutation of a symmetric basis for ρ is also a symmetric basis for ρ.
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(ii) Symmetrizability is preserved under direct sum and tensor product of rep-
resentations. Indeed, if ρ1, ρ2 admit symmetric bases B1, B2 respectively,
then {(v1, 0) | v1 ∈ B1}∪{(0, v2) | v2 ∈ B2} and {v1⊗v2 | v1 ∈ B1, v2 ∈ B2}
are symmetric bases for ρ1 ⊕ ρ2 and ρ1 ⊗ ρ2 respectively.

Definition 2.3. A finite-dimensional representation ρ of SL2(Z) is called congru-
ence of level n if ker(ρ) is a congruence subgroup of level n.

In particular, a congruence representation ρ : SL2(Z) → GL(V ) of level n factors
through SL2(Z/nZ). The level of ρ is equal to the order of ρ(t) [3, Lem. A.1].

2.2. Examples of symmetrizable and unsymmetrizable representations.

Example 2.4. As mentioned in the introduction, a family of representations of
SL2(Z) may be obtained from any modular tensor category as follows. Let C be a
modular tensor category— that is, a braided fusion category equipped with a ribbon
structure whose braiding satisfies a nondegeneracy condition (we refer the reader to
[1,6,27] for details). The ribbon structure on C induces a trace on endomorphisms,
and by taking the traces of double braidings and twists of simple objects, one
obtains the modular data (S, T ), a pair of complex matrices indexed by the (finite)
set of isomorphism classes of simple objects in C. With respect to this natural basis,
S is symmetric and T is diagonal [1, Chap. 3].

Let r be the number of isomorphism classes of simple objects of C. It is well-
known (see, for example, [1, 27]) that the assignment (s, t) → (S−1, T ) defines a
projective representation ρ̃C : SL2(Z) → PGLr(C), which can be lifted to a linear
representation of SL2(Z) by scaling S and T , and there are 12 distinct such lifts
[19, Thm. 7.1]. Let ρC : SL2(Z) → GLr(C) be any of these linear lifts of ρ̃C . By the
discussion in the previous paragraph, ρC is a symmetric representation. Further, by
[3, Thm. II], ker(ρC) is a congruence subgroup of SL2(Z). Thus, ρC is a symmetric
congruence representation of SL2(Z).

For the next example, we will use the following lemma.

Lemma 2.5. Let ρ : SL2(Z) → U(n) be a representation such that ρ(t) is diagonal.
Denote s = ρ(s) and t = ρ(t). If ρ is symmetrizable, then for any three indices
j, k, ℓ ∈ {1, . . . , n} such that the eigenvalues tj,j, tk,k, and tℓ,ℓ of ρ(t) all have
multiplicity 1, we have sj,k · sk,ℓ · sℓ,j = sj,ℓ · sℓ,k · sk,j.

Proof. For A ∈ GLn(C) and B ∈ Mn(C), we write BA := A−1BA. Suppose that ρ
is symmetrizable. Then there exists a unitary matrix A such that sA is symmetric
and tA is diagonal. As tA and t are diagonal and have the same eigenvalues, there is
a permutation matrix P such that tAP = t. Denote U := AP . Then Ut = tU , so U
is a unitary block-diagonal matrix; the blocks correspond to the distinct eigenvalues
of t, and each has size equal to the corresponding multiplicity. In particular, since
tj,j is of multiplicity 1, there must be some uj ∈ U(1) such that Ui,j = δijuj for all
1 ≤ i ≤ n. The same holds for k and ℓ.

Now, sU is symmetric. So, ujuksj,k = (sU )j,k = (sU )k,j = ukujsk,j and hence
u2

ksj,k = u2
jsk,j . Similarly, we have u2

ℓsk,ℓ = u2
ksℓ,k and u2

jsℓ,j = u2
ℓsj,ℓ, and the

statement follows immediately. !

Example 2.6. Following [8], we consider the four homomorphisms from SL2(Z) to
the permutation group S7 shown in Table 1.
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Table 1. Four noncongruence permutation representations of SL2(Z)

φ1 φ2 φ3 φ4

s (12)(34)(56) (12)(34)(56) (12)(34)(67) (12)(34)(67)

t (1245)(367) (12475)(36) (124735) (125473)

|Im(φj)| 7! 7! 42 42

nk 12 10 6 6

|SL2(Z/nkZ)| 2732 24325 2432 2432

Notice that, for each k, |Im(φk)| does not divide |SL2(Z/nkZ)|, where nk =
ord(φk(t)). Therefore, the homomorphism φk has a noncongruence kernel. Further,
let ρ : S7 → U(7) be the permutation representation of S7 on V = C7, and let
{ej}7

i=1 denote the standard basis of V . Since ρ is faithful, ker(φk) = ker(ρ◦φk), so
ρ◦φk is a noncongruence representation of SL2(Z). For brevity, we write ρk := ρ◦φk,
and view t as a permutation in S7, namely φk(t) for the relevant choice of k.

The representations ρ1 and ρ2 thus constructed are symmetrizable. It is clear
that the set

B1 :=
{ 3∑

a=0

eta(1), ζ8

3∑

a=0

iaeta(1), −i
3∑

a=0

(−1)aeta(1), ζ8

3∑

a=0

(−i)aeta(1),
2∑

a=0

eta(3),

2∑

a=0

ζa
3 eta(3),

2∑

a=0

ζ2a
3 eta(3)

}

is an orthogonal eigenbasis for ρ1(t). One can check directly that the normalization
of B1 is a symmetric basis for ρ1. Similarly, the normalization of the orthogonal
basis

{ 4∑

a=0

eta(1), −ζ2
5

4∑

a=0

ζa
5 eta(1), ζ5

4∑

a=0

ζ2a
5 eta(1), ζ5

4∑

a=0

ζ3a
5 eta(1), −ζ3

5

4∑

a=0

ζ
a
5eta(1),

1∑

a=0

eta(3), −i
1∑

a=0

(−1)aeta(3)

}

is a symmetric basis for ρ2.
On the other hand, the representations ρ3 and ρ4 are not symmetrizable. Con-

sider the ordered eigenbasis B3 := {v1, . . . , v7} for ρ3(t) given by

v1 := e6, vi :=
1√
6

5∑

a=0

ζ(i−2)a
6 eta(1) for i ∈ {2, . . . , 7}.

Let s = ρ3(s) and s(vj) =
∑7

i=1 si,jvi for i, j ∈ {1, . . . , 7}. The eigenvectors
v3, v4, v5 of ρ3(t) have eigenvalues of multiplicity 1, and

s3,4 = s4,3 =
5 −

√
3i

12
, s3,5 = s4,5 = s5,3 = s5,4 = −2 +

√
3i

6
.

In particular, s3,4 · s4,5 · s5,3 ̸= s3,5 · s5,4 · s4,3. It follows from Lemma 2.5 that ρ3

is not symmetrizable. The same argument may be applied to show that ρ4 is not
symmetrizable either.
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A symmetrizable representation can be obtained from any real orthogonal rep-

resentation of PSL2(Z) via the induction functor IndGL2(Z)
SL2(Z) . The group GL2(Z) is

a semidirect product: GL2(Z) = SL2(Z) ! ⟨j⟩, where j =
[

1 0
0 −1

]
. Conjugation by j

defines an automorphism σ of SL2(Z), and

σ(s) = s−1 and σ(t) = t−1 .

For any representation ρ : SL2(Z) → GLn(C), let ρ̃ := ResSL2(Z)IndGL2(Z)
SL2(Z) ρ, the

restricted induced representation of ρ. As per [15], we have ρ̃ ∼= ρ ⊕ (ρ ◦ σ). In
particular, for any x, y ∈ V ,

ρ̃(s)(x, y) = (ρ(s)x, ρ(s)−1y) and ρ̃(t)(x, y) = (ρ(t)x, ρ(t)−1y) .

To simplify notation, given any representation η : PSL2(Z) → GLn(C), we again

use η to denote the representation SL2(Z) → PSL2(Z)
η−→ GLn(C).

Proposition 2.7. Let ρ be any representation PSL2(Z) → O(n), where O(n) =
U(n) ∩ GLn(R) is the group of orthogonal matrices. Then ρ̃ is symmetrizable.

Proof. By assumption, ρ(s) = ρ(s)⊤. Hence, for any x, y ∈ Cn,

⟨ρ(s)x, y⟩ = ⟨ρ(s)x, y⟩ = ⟨y, ρ(s)x⟩ = ⟨ρ(s)y, x⟩.

Consequently, we have
(2.1)
⟨ρ̃(s)(x, x), (y, y)⟩=⟨ρ(s)x, y⟩+⟨ρ(s)x, y⟩=⟨ρ(s)y, x⟩+⟨ρ(s)y, x⟩=⟨ρ̃(s)(y, y), (x, x)⟩.

Now we construct a symmetric basis for ρ̃. Since ρ(t) is orthogonal, and in par-
ticular normal, there exists an orthonormal eigenbasis for ρ(t), denoted by {vj}n

j=1.

Let λj ∈ U(1) be the eigenvalue for vj . Then ρ(t)−1vj = ρ(t)−1vj = λjvj . As such,

Bρ̃ :=
{ 1√

2

(√
εvj ,

√
εvj

) ∣∣∣ ε ∈ {±1}, 1 ≤ i ≤ n
}

is an orthonormal eigenbasis for ρ̃(t). Finally, ρ̃(s) is symmetric with respect to Bρ̃

by (2.1). !

Example 2.8. Subrepresentations of a symmetric representation may fail to be
symmetrizable. Indeed, ρ3 in Example 2.6 fulfils the condition of Proposition 2.7,
so ρ̃3 is symmetric. However, ρ̃3 contains ρ3, which is not symmetrizable, as a
subrepresentation. In fact, ρ3◦σ is not symmetrizable either (by a similar argument
to that in Example 2.6). Notably, since ρ : S7 → U(7) is faithful, ker(ρ̃3) =
ker(φ3) ∩ σ(ker(φ3)) is not a congruence subgroup of SL2(Z).

If a subrepresentation of a symmetric representation admits additional symme-
try, then it is symmetrizable. The following lemma will be used in the subsequent
sections.

Lemma 2.9. Let η : SL2(Z) → U(n) be a symmetric representation. Suppose
U ∈ U(n) commutes with η(g) for all g ∈ SL2(Z). Let ϕ(x) = Ux and ϕ(x) = Ux
for x ∈ Cn; note that ϕ is an antilinear operator. Then:

(i) for any x, y ∈ Cn, we have ⟨η(s)x, y⟩ = ⟨η(s)ϕ(y), ϕ(x)⟩.
(ii) If ρ is a subrepresentation of η and there exists an orthonormal eigenbasis

S for ρ(t) that is fixed by ϕ pointwisely, then S is a symmetric basis for ρ.
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Proof. Since η(s) is symmetric, η(s)=η(s)−1, which implies ⟨η(s)x, y⟩=⟨η(s)−1x, y⟩
= ⟨η(s)y, x⟩ for any x, y ∈ Cn. As a result, we have

⟨η(s)ϕ(y), ϕ(x)⟩ = ⟨η(s)ϕ(x), ϕ(y)⟩ = ⟨ϕ(η(s)x), ϕ(y)⟩ = ⟨η(s)x, y⟩ ,

which proves (i).
By (i), for any x, y ∈ S, the matrix coefficients of ρ(s) are given by

ρ(s)y,x = ⟨η(s)x, y⟩ = ⟨η(s)ϕ(y),ϕ(x)⟩ = ⟨η(s)y, x⟩ = ρ(s)x,y ,

which means ρ(s) is symmetric with respect to S. Since S is an eigenbasis for ρ(t),
ρ is symmetric with respect to S. !

2.3. Statement of the main results. From the above examples, we can see that
representations of SL2(Z) can fail to be symmetrizable, and such representations
cannot arise from any modular tensor category. However, our examples for this
behavior are noncongruence representations, and hence are not very helpful in the
study of MTCs: all SL2(Z)-representations coming from an MTC have to be congru-
ence in the first place. Therefore, it is natural to ask if congruence representations
can also fail to be symmetrizable. The main result of this paper is the following
theorem.

Theorem 2.10. Every finite-dimensional congruence representation of SL2(Z) is
symmetrizable.

Proof. Let ρ be a congruence representation of level n. Since ρ factors through
SL2(Z/nZ), it decomposes into a direct sum of irreducible representations of
SL2(Z/nZ). If each of the irreducible components of ρ is symmetrizable, then
by Remark 2.2, ρ is also symmetrizable. Thus, we may assume without loss of gen-
erality that ρ is irreducible. Then, applying the Chinese remainder theorem and
[25, Thm. 3.2.10], Theorem 2.10 follows from Proposition 2.11. !

Proposition 2.11. Let p be a prime and λ be a positive integer. Every irreducible
representation of SL2(Z/pλZ) is symmetrizable.

The proof of Proposition 2.11 will be provided in Sections 3 and 4.

3. Weil representations and symmetrizability

The irreducible representations of SL2(Z/pλZ) have been classified by Nobs and
Wolfart [22], and all such representations can be built from subrepresentations of
Weil representations (as detailed in Section 4). In this section, we first define
quadratic modules and Weil representations in general, then establish some criteria
for the symmetrizability of subrepresentations thereof.

3.1. Quadratic forms and Weil representations.

Definition 3.1. Let M be an additive abelian group. A nondegenerate quadratic
form on M is a function Q : M → Q/Z such that

(i) Q(−a) = Q(a) for all a ∈ M and
(ii) B(a, b) := Q(a + b) − Q(a) − Q(b) defines a nondegenerate bilinear map.

The pair (M, Q) is then called a (nondegenerate) quadratic module. In this paper,
all quadratic modules are assumed to be nondegenerate.
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Quadratic modules are closely related to pointed modular categories, in which
the isomorphism classes of simple objects form an abelian group under the tensor
product (see, for example, [7, Sec. 8]). Precisely: on the one hand, given any pointed
modular category C, the group of isomorphism classes of simple objects, together
with the function defined by their twists, forms a quadratic module; on the other
hand, given a quadratic module (M, Q), one can use the Eilenberg–MacLane theo-
rem [4, 5] on abelian 3-cocycles to construct a unique (up to equivalence) pointed
modular category C(M, Q) [10, 11] (see also [6, Thm. 8.4.9]).

More relevantly, each quadratic module (M, Q) has an associated projective rep-
resentation of SL2(Z), which can be described as follows. The space of complex-
valued functions on M , denoted by V := CM , is equipped with a natural Hermitian
form

⟨f, g⟩ :=
∑

a∈M

f(a)g(a) ,

and we denote the vector norm of f ∈ V by ∥f∥ :=
√
⟨f, f⟩. Note that V admits

a standard orthonormal basis: {δa | a ∈ M}. As described in [21, Satz 2 & Sec. 2],
we have a projective representation

W (M, Q) : SL2(Z/pλZ) → PGL(V )

defined by

s δa := W (M, Q)(s)(δa) =
γQ

|M |
∑

b∈M

e(B(a, b)) δb ,

t δa := W (M, Q)(t)(δa) = e(Q(a)) δa .

(3.1)

Here γQ :=
∑

a∈M e(Q(a)) is the Gauss sum of (M, Q). This representation is
called the Weil representation associated to (M, Q). In fact, W (M, Q) is precisely
the projective representation ρ̃C(M,Q) arising from the pointed modular category
C(M, Q), as described in Example 2.4; the modular data (S, T ) of C(M, Q) is given
by

Sa,b = e(−B(a, b)) and Ta,b = e(Q(a)) · δa,b

for a, b ∈ M . As noted in that example, W (M, Q) can be rescaled to a linear
representation of SL2(Z), and the result is congruence and symmetric.

3.2. Symmetrizability criteria. While it is immediate from (3.1) that, for any
quadratic module (M, Q), the associated representation W (M, Q) is symmetric,
this does not necessarily imply that a given subrepresentation of W (M, Q) is sym-
metrizable (as demonstrated in Example 2.8). To establish criteria for the sym-
metrizability of such subrepresentations, we use the following.

For any quadratic module (M, Q), let Aut(M, Q) denote the group of auto-
morphisms ω of the abelian group M satisfying Q(ωa) = Q(a) for all a ∈ M .
For any ω ∈ Aut(M, Q), we define the associated C-linear map ϕω : V → V by
ϕω(δa) := δωa and the antilinear map ϕω as the composition of ϕω and complex
conjugation, relative to the standard basis {δa | a ∈ M} for V = CM . Note that
ϕω preserves ⟨·, ·⟩, hence is an isometry on V in the usual sense.

Proposition 3.2. Let ω ∈ Aut(M, Q) be an involution and ρ a subrepresentation
of W (M, Q) on Y ⊆ V . If Y admits an orthonormal basis B for which

(i) B is a set of eigenvectors of ρ(t) and
(ii) for any f ∈ B such that f and ϕω(f) are linearly independent, ϕω(f) ∈ B,

then ρ is symmetrizable.
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Proof. Let B1 := {f ∈ B | f and ϕω(f) are linearly dependent}. This means that,
for each f ∈ B1, there exists some ηf ∈ U(1) with ϕω(f) = ηff . Since ω2 = id,
ϕ2
ω = id. So, we can choose B2 ⊂ B " B1 such that B2 ∩ ϕω(B2) = ∅ and B =

B1 ⊔ B2 ⊔ ϕω(B2). It is then clear that the set

S := {√ηff | f ∈ B1} ⊔
{ 1√

2
(f + ϕω(f))

∣∣ f ∈ B2

}
⊔
{ i√

2
(f − ϕω(f))

∣∣ f ∈ B2

}

is an orthonormal basis for Y . Since
√
ε = ε

√
ε for ε ∈ {±1}, we can also write S

as

S = {√ηff | f ∈ B1} ⊔
{ 1√

2
(
√
εf +

√
εϕω(f))

∣∣ ε ∈ {±1} , f ∈ B2

}
.

It follows from the antilinearity of ϕω that ϕω(h) = h for all h ∈ S.
Finally, for each f ∈ B, we have ρ(t)(f) = ξff for some ξf ∈ U(1). Then

ρ(t)ϕω(f) = ϕωρ(t)
−1(f) = ϕω(ξ−1

f f) = ξfϕω(f) .

Therefore, S is an eigenbasis for ρ(t). By Lemma 2.9, S is a symmetric basis for ρ,
which means that ρ is symmetrizable. !

4. Irreducible representations of SL2(Z/pλZ)

In this section, we describe all of the irreducible representations of SL2(Z/pλZ)
as per [22], where they are constructed using specific quadratic modules and their
Weil representations. We show that all of these irreducible representations admit
symmetries that enable us to apply the symmetrizability criteria established in
Section 3. Finally, we complete the proof of Proposition 2.11 near the end of this
section.

4.1. Weil representations of prime power level. Let p be a prime and λ a
positive integer. We follow [21, 22] and denote the ring Z/pλZ by Aλ. By abuse of
notation, we use s and t to denote both the generators of SL2(Z) and their images
in SL2(Z/pλZ). Clearly, any representation of SL2(Z/pλZ) is determined by the
images of s and t.

To construct irreducible representations of SL2(Z/pλZ), we consider the types
of quadratic modules (M, Q) described in Table 2, wherein M is an Aλ-module
(see [21, Def. 3]).

Table 2. Types of quadratic modules with at most two elemen-
tary divisors

Type pλ M Q Other parameters A

D
pλ λ ≥ 1 Aλ ⊕ Aλ

xy

pλ A×
λ

N
pλ

p = 2
Aλ ⊕ Aλ

x2 + xy + y2

2λ

{ε ∈ M× | εε = 1}

λ ≥ 1

p odd
Aλ ⊕ Aλ

x2 + xy + 1+t
4 y2

pλ

t ∈ N,
(−t

p

)
= −1

λ ≥ 1 t ≡ 3 mod 4

Rσ
pλ (r, t)

p = 2
Aλ−1 ⊕ Aλ−σ−1

r(x2 + 2σty2)

2λ

0 ≤ σ ≤ λ − 2

λ ≥ 2 r, t ∈ N and odd

p odd
Aλ ⊕ Aλ−σ

r(x2 + pσty2)

pλ

1 ≤ σ ≤ λ − 1

λ ≥ 2 r, t ∈ {1, u}

R
pλ (r) p odd

Aλ
rx2

pλ
r ∈ {1, u}

λ ≥ 1

Licensed to Louisiana St Univ, Baton Rouge. Prepared on Thu Nov 30 12:03:41 EST 2023 for download from IP 96.125.26.100.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON SYMMETRIC REPRESENTATIONS OF SL2(Z) 1423

Here u is a fixed quadratic nonresidue mod p. The group A will be explained in
Section 4.2.

Each choice of M has a ring structure. Types Dpλ and Rpλ(r) are equipped with
their natural ring structure. For the others, we may identify M with a quotient
ring as follows:

• for type N2λ , let X := 1
2 (1 +

√
−3), and then M := Aλ ⊕Aλ

∼= Z[X]/(2λ) ,
• for type Npλ with p odd, let X := 1

2 (1 +
√
−t), and then M := Aλ ⊕ Aλ

∼=
Z[X]/(pλ) ,

• for type Rσ
2λ(r, t), let X :=

√
−2σt, and then M := Aλ−1 ⊕ Aλ−σ−1

∼=
Z[X]/(2λ−σ−1X) ,

• for type Rσ
pλ(r, t) with p odd, let X :=

√
−pσt, and then M := Aλ⊕Aλ−σ

∼=
Z[X]/(pλ−σX) .

In each case, we identify (x, y) with x + Xy. The Aλ-module M then inherits the
multiplication and complex conjugation of the quotient ring as well as the norm of
Z[X]. In particular, for Npλ , Q(x, y) = Norm(x, y)/pλ; while for Rσ

pλ(r, t), we have

Q(x, y) = r · Norm(x, y)/pλ. We write M× for the multiplicative group of units of
M .

For each of these types, the projective Weil representation W (M, Q) defined by
(3.1) is in fact a linear representation of SL2(Z/pλZ) [21, Sec. 2].

4.2. Standard irreducible representations. The quadratic modules of type
Dpλ , Npλ , and Rσ

pλ(r, t), as described in Table 2, will simply be referred as binary
quadratic modules throughout this paper, as M has exactly 2 elementary divisors.

For any binary quadratic module (M, Q), we define κ ∈ Aut(M, Q) as follows:

κ :=

⎧
⎪⎨

⎪⎩

(x, y) 5→ (y, x) , if (M, Q) is of type Dpλ ;

(x, y) 5→ (x, y) = (x + y,−y) , if (M, Q) is of type Npλ ;

(x, y) 5→ (x, y) = (x,−y) , if (M, Q) is of type Rσ
pλ(r, t) .

From the definition of Q in Table 2, it is immediate that κ ∈ Aut(M, Q). Note
that κ is of order 2, except in the case of Rλ−2

2λ (r, t), where the second factor of M
is isomorphic to Z/2Z and hence κ is trivial.

Definition 4.1. A binary quadratic module of type Rλ−2
2λ (r, t) is called extremal.

For any binary quadratic module (M, Q), there is a notion of determinant on
Aut(M, Q), and we denote the subgroup of determinant 1 by A. We explicitly
describe A for each type of quadratic module following [22]. If (M, Q) is of type
Dpλ , the group A := A×

λ acts on M via ε(x, y) = (ε−1x, εy) for any ε ∈ A and
(x, y) ∈ M ; if (M, Q) is of type Npλ or Rσ

pλ(r, t), we take A := {ε ∈ M× | εε = 1},

acting on M by multiplication (see Section 4.1). In each case, we can check that A
is indeed an abelian subgroup of Aut(M, Q). Note that, in the case of an extremal
quadratic module (M, Q), we have a = a for all a ∈ M , so A = {ε ∈ M× | ε2 = 1}
is an elementary 2-group. We also have the following lemma.

Lemma 4.2. Let (M, Q) be a binary quadratic module. For any ε ∈ A, (κ◦ε)2 = id.

Proof. Indeed, for type Dpλ , we have

(κ ◦ ε)2(x, y) = κ
(
ε(εy, ε−1x)

)
= (x, y)
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for all (x, y) ∈ M . For type Npλ or Rσ
pλ(r, t), we have ε = ε−1 and thus

(κ ◦ ε)2(a) = κ
(
ε(ε a)

)
= a

for all a ∈ M . As a particular case, for the extremal type Rλ−2
2λ (r, t), A has exponent

2 and κ = id, so the condition (κ ◦ ε)2 = id follows trivially. !
Characters of A naturally give rise to subrepresentations of W (M, Q). More

precisely, denote by Â the character group of A. Then, for any χ ∈ Â,

(4.1) V χ := {f ∈ CM | f(εa) = χ(ε)f(a) for all a ∈ M and ε ∈ A}
is an SL2(Z/pλZ)-invariant subspace of V . The restriction of W (M, Q) to V χ

is denoted by W (M, Q,χ). Using (4.1) and Lemma 4.2, it is straightforward to
verify that ϕκ (as defined in Section 3.2) maps V χ to V χ. In fact, W (M, Q,χ) is
equivalent to W (M, Q,χ) via ϕκ.

A basis for V χ can be chosen as follows (cf. [22]). For any χ ∈ Â and a ∈ M ,
define

f̃χ
a :=

∑

ε∈A

χ(ε)δεa .

Clearly, we have f̃χ
a ∈ V χ. Whenever f̃χ

a ̸= 0 (which occurs if and only if Stab(a) ⊆
ker(χ)), define

fχ
a :=

f̃χ
a

∥f̃χ
a ∥

.

Let θ be a complete set of representatives for the orbits of A on M such that, for
any a ∈ θ, if κa /∈ Aa, then κa ∈ θ. Define

θχ := θ ∩ {a ∈ M | Stab(a) ⊆ ker(χ)} .

By Lemma 4.2, Stab(κa) = Stab(a) for any a ∈ M , so the assumption on θ ensures
that, if a ∈ θχ and κa /∈ Aa, then κa ∈ θχ. Moreover, since the A-orbits are
disjoint, the set

Bχ := {fχ
a | a ∈ θχ}

is an orthonormal basis for V χ.

Proposition 4.3. Let (M, Q) be a binary quadratic module. Then, for any char-
acter χ ∈ Â, W (M, Q,χ) is symmetrizable.

Proof. It suffices to show that the basis Bχ defined above satisfies the conditions
in Proposition 3.2.

Recall that for, any a ∈ θχ and ε ∈ A, we have Q(εa) = Q(a). As such, (3.1)
yields

(4.2) tfχ
a =

1

∥f̃χ
a ∥

∑

ε∈A

χ(ε)tδεa =
1

∥f̃χ
a ∥

∑

ε∈A

χ(ε)e(Q(εa))δεa = e(Q(a))fχ
a .

Thus, Bχ is an eigenbasis for t.
Further, by definition and Lemma 4.2, for any a ∈ θχ, we have

(4.3) ϕκ(fχ
a ) =

1

∥f̃χ
a ∥

∑

ε∈A

χ(ε−1)δκεa =
1

∥f̃χ
a ∥

∑

ε∈A

χ(ε−1)δε−1κa = fχ
κa ,

noting that ∥f̃χ
a ∥ = ∥f̃χ

κa∥. If κa ∈ Aa, then κa = µaa for some µa ∈ A. This
implies fχ

κa = fχ
µaa = χ(µ−1

a )fχ
a , and hence fχ

a and ϕκ(fχ
a ) are linearly dependent.

Thus, if fχ
a and ϕκ(fχ

a ) are linearly independent, then κa /∈ Aa. By the assumption
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on θ and the preceding discussion, κa ∈ θχ, and so fχ
κa = ϕκ(fχ

a ) ∈ Bχ. The result
now follows from Proposition 3.2. !
Remark 4.4. Let θχ1 := {a ∈ θχ | κa ∈ Aa}. Then, by the proof of Proposition 3.2,
there is a choice of subset θχ2 ⊂ θχ such that θχ2 ∩κ(θχ2 ) = ∅ and θχ = θχ1 ∪θ

χ
2 ∪κ(θχ2 ).

Moreover, a symmetric basis of W (M, Q,χ) can be chosen to be

Sχ =
{√

χ(µ−1
a )fχ

a

∣∣ a ∈ θχ1
}
∪
{ 1√

2
(fχ

a +fχ
κa)

∣∣ a ∈ θχ2
}
∪
{ i√

2
(fχ

a −fχ
κa)

∣∣ a ∈ θχ2
}

,

where the notation µa is as in the proof of Proposition 4.3.

When χ2 = 1 (i.e. χ = χ), ϕκ becomes an auto-equivalence of V χ. Therefore,
in this case, if ϕκ

∣∣
V χ ̸= id, then W (M, Q,χ) admits a further decomposition into

eigenspaces of ϕκ:

V χ
± := {f ∈ V χ | f(κa) = ±f(a) for all a ∈ M} .

The corresponding subrepresentations are denoted by W (M, Q,χ)±.

Proposition 4.5. Let (M, Q) be a binary quadratic module. Then, for any χ ∈ Â
satisfying χ2 = 1 and ϕκ

∣∣
V χ ̸= id, the subrepresentations W (M, Q,χ)± are both

symmetrizable.

Proof. It suffices to show that every element in the symmetric basis Sχ for V χ in
Remark 4.4 is an eigenvector of ϕκ, since this will imply that Sχ

± := V χ
± ∩ Sχ are

symmetric bases for W (M, Q,χ)±.

By (4.3), for any a ∈ θχ, we have ϕκ(fχ
a ) = fχ

κa. Moreover, since χ2 = 1, we

have fχ
κa = fχ

κa, which means ϕκ(fχ
a ) = fχ

κa. Therefore, for any a ∈ θχ2 , it is readily
seen that 1√

2
(fχ

a + fχ
κa) ∈ V χ

+ , and i√
2
(fχ

a − fχ
κa) ∈ V χ

− .

Finally, for any a ∈ θχ1 , κa = µaa for some µa ∈ A. In this case, the same com-
putation as in the proof of Proposition 4.3 shows that ϕκ(fχ

a ) = fχ
κa = χ(µ−1

a )fχ
a ,

which equals ±fχ
a as χ2 = 1. This completes the proof. !

The question of which characters χ ∈ Â give rise to irreducible W (M, Q,χ) was
answered as a remarkable result of [22]; we need the following definition for the
statement.

Definition 4.6. Let (M, Q) be a binary quadratic module which is not extremal,
and let A ≤ Aut(M, Q) be the corresponding abelian subgroup. A character χ ∈ Â
is called primitive if there exists some ε ∈ A such that χ(ε) ̸= 1 and ε fixes pM
pointwise.

Nobs and Wolfart showed that most primitive characters of A give rise to irre-
ducible representations. More precisely, they proved the following theorem.

Theorem 4.7 ([22, Hauptsatz 1]). Let (M, Q) be a quadratic module of type Dpλ ,
Npλ , or non-extremal Rσ

pλ(r, t), and let A ≤ Aut(M, Q) be the corresponding sub-

group. If χ ∈ Â is primitive and not an involution, then W (M, Q,χ) is an irre-
ducible representation of SL2(Z) of level pλ.

If χ1, χ2 ∈ Â are primitive and not involutions, then W (M, Q,χ1) is equivalent
to W (M, Q,χ2) if, and only if, χ1 = χ2 or χ1 = χ2.

The case of χ2 = 1 is not directly covered by the theorem, but W (M, Q,χ)± is
irreducible in many cases. The precise details can be found in the complete list of
irreducible representations of SL2(Z/pλZ) in [22, pp. 521-525].
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Definition 4.8. Let p be a prime and λ ∈ N. We will call an irreducible represen-
tation of SL2(Z/pλZ) that is equivalent to W (M, Q,χ) or W (M, Q,χ)± for some
binary quadratic module (M, Q) a standard irreducible representation.

Combining Propositions 4.3 and 4.5, we have:

Proposition 4.9. For any prime p and positive integer λ, every standard irre-
ducible representation of SL2(Z/pλZ) is symmetrizable. !
4.3. Special irreducible representations of SL2(Z/2λZ). For a quadratic mod-
ule (M, Q) of type Rσ

2λ(r, t) and χ ∈ Â, we denote the representation W (M, Q,χ)
of SL2(Z/2λZ) by Rσ

2λ(r, t,χ). A representation of the form Rσ
2λ(r, t,χ) with χ not

primitive is usually reducible, but some cases with σ = λ− 2 or λ− 3 will contain
a unique irreducible subrepresentation of level 2λ that does not occur among the
standard representations [22, Sec. 6]. We will call the irreducible representations
appearing this way special ; they are denoted by Rσ

2λ(r, t,χ)1. We list all the special
irreducible representations (up to equivalence), together with a choice of basis for
each, in Table 3.

Table 3. Special irreducible representations

Type M Basis in [22]

R0
22(1, 3,χ1)1 A1 ⊕ A1 δ(1,0), δ(0,1), δ(0,0) − δ(1,1)

R0
23(1, 3,χ1)1 A2 ⊕ A2

δ(0,0) − δ(2,2), δ(2,0) − δ(0,2), δ(1,0) + δ(−1,0),

δ(1,2) − δ(−1,2), δ(0,1) + δ(0,−1), δ(2,1) + δ(2,−1)

R2
24(r, 3,χ1)1 A3 ⊕ A1

δ(1,0) + δ(−1,0), δ(3,0) + δ(−3,0), δ(1,1) + δ(−1,1),

r ∈ {1, 3} δ(3,1) + δ(−3,1), δ(0,0) − δ(4,0), δ(0,1) − δ(4,1)

R2
25(r, 1,χ1)1 A4 ⊕ A2

f̃χ1
a for a ∈ {1, 3, 5, 7} × {0, 1}, f̃χ1

(2,0) − f̃χ1

(6,0),

r ∈ {1, 3} f̃χ1

(2,2) − f̃χ1

(6,2), f̃χ1

(0,0) − f̃χ1

(8,0), f̃χ1

(0,2) − f̃χ1

(8,2)

R2
25(r, 1,χ2)1 A4 ⊕ A2

f̃χ2
a for a ∈ {1, 3, 5, 7} × {0, 1},

r ∈ {1, 3} f̃χ2

(4,0), f̃
χ2

(4,2), f̃χ2

(2,0) − f̃χ2

(6,0), f̃χ2

(2,2) − f̃χ2

(6,2)

R4
26(r, t,χ1)1 A5 ⊕ A1

f̃χ1

(x,0) for odd 1 ≤ x ≤ 15, f̃χ1

(0,0) − f̃χ1

(16,0),

(r, t) ∈ {1, 3, 5, 7} × {1, 3} f̃χ1

(4,0) − f̃χ1

(12,0), f̃χ1

(2,1) − f̃χ1

(14,1), f̃χ1

(6,1) − f̃χ1

(10,1)

Rλ−3
2λ (r, t,χ)1

Aλ−1 ⊕ A2

See table at [22, p. 512]. The basis elements are of

(r, t) ∈ {1, 3, 5, 7} × {1, 3}, the form f̃χ
a for some a ∈ Y0, or f̃χ

(x,y) − f̃χ
(2λ−2−x,y)

λ ≥ 7,χ ∈ ⟨χ3⟩ for some (x, y) ∈ Y1 .

In this table we use the following notation. Let χ1 denote the trivial charac-
ter. For R2

25(r, 1), we have A = ⟨(−1, 0)⟩ × ⟨(9, 2)⟩, and χ2 denotes the character

determined by ker(χ2) = ⟨(9, 2)⟩. Finally, for Rλ−3
2λ (r, t) with λ ≥ 7, we have

A = ⟨(−1, 0)⟩×⟨α⟩, where α = (1−2λ−4t−22λ−9, 1), and χ3 denotes the character
determined by ker(χ3) = ⟨(−1, 0)⟩. The sets Y0 and Y1 are defined as the following
disjoint unions:

Y0 := {(x, 0) | x odd} ⊔ {(x, y) | y ∈ {0, 2}, x = 4 − 2y + 8j, 0 ≤ j ≤ 2λ−6 − 1} ,

Y1 := {(x, y) | y ∈ {0, 2}, x = 2y + 8j, 0 ≤ j ≤ 2λ−6 − 1}
⊔ {(x, 0) | x = 2 + 4k, 0 ≤ k ≤ 2λ−5 − 1} .

We may then derive the following proposition.
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Proposition 4.10. Every special irreducible representation in Table 3 is sym-
metrizable.

Proof. We will apply Lemma 2.9 to show that each basis in the table is a symmetric
basis for the corresponding representation.

First, we observe that each basis in the table is an orthogonal basis. Indeed, this
is clear for the first six rows. For the last row, it follows from the fact that Y0 and
Y1 are disjoint.

Next, we claim that each basis element in the table is fixed by ϕκ, as follows.
Recall that κ(x, y) = (x,−y) for type Rσ

2λ(r, t). It is immediate from this that each
basis element in the first three rows is fixed by ϕκ.

For R2
25(r, 1), direct computation yields (9, 2) · (x, 1) = (x,−1) for each x ∈

{1, 3, 5, 7}. If χ = χ1 or χ2, then χ2 = 1, so

ϕκ(f̃χ
(x,1)) = ϕκ(f̃χ

(x,1)) = f̃χ
(x,−1) = χ(9, 2)f̃χ

(x,1) = f̃χ
(x,1)

for any x ∈ {1, 3, 5, 7}. Moreover, since M = A4 ⊕A2, for any (x, y) ∈ A4 × {0, 2},
we have

ϕk(f̃χ
(x,y)) = ϕk(f̃χ

(x,y)) = f̃χ
(x,−y) = f̃χ

(x,y) .

This confirms that each basis element in the 4th and 5th rows is fixed by ϕκ.
For R4

26(r, t), M = A5 ⊕ A1, so κ acts trivially on M . Hence, for any a ∈ M ,

the function f̃χ1
a is fixed by ϕκ. Since ϕκ is antilinear, it also fixes the other basis

elements, as each is a Z-linear combination of f̃χ1
a .

Similarly, for Rλ−3
2λ (r, t) with λ ≥ 7, we have M = Aλ−1⊕A2, so (again) κ(x, y) =

(x, y) for any (x, y) ∈ Aλ−1 × {0, 2}. Therefore, for any (x, y) ∈ Aλ−1 × {0, 2}, the
function f̃χ

(x,y) is fixed by ϕκ. Since ϕκ is antilinear, it also fixes the rest of the
basis elements.

Finally, we claim that each basis element in the table is an eigenvector for t.
Indeed, for any quadratic module (M, Q) of type Rσ

2λ(r, t), (3.1) and (4.2) show

that any function of the form δa or f̃χ
a for a ∈ M and χ ∈ A is an eigenvector of

t with eigenvalue e(Q(a)). To show a basis element in Table 3 is an eigenvector
of t, it suffices to show that the value of Q(a) is the same for each index a ∈ M
among its summands. Recall that Q(x, y) = r(x2 + 2σty2)/2λ ∈ Q/Z in this case.
In particular, for (x, y) ∈ M , we have Q(x, y) = Q(−x, y) = Q(x,−y). Our claim
then follows from the computations below.

• For R0
22(1, 3), Q(0, 0) = Q(1, 1) = 0.

• For R0
23(1, 3), Q(0, 0) = Q(2, 2) = 0 and Q(2, 0) = Q(0, 2) = 1/2.

• For R2
24(r, 3), Q(0, 0) = Q(4, 0) = 0 and Q(0, 1) = Q(4, 1) = 3r/4.

• For R2
25(r, 1), Q(2, 0) = Q(6, 0) = r/8, Q(2, 2) = Q(6, 2) = 5r/8, Q(0, 0) =

Q(8, 0) = 0, and Q(0, 2) = Q(8, 2) = r/2.
• For R4

26(r, t,χ)1, the basis elements are either of the form f̃χ1
a for some

a ∈ M , or of the form f̃χ1

(2x,y) − f̃χ1

(16−2x,y) for some (2x, y) ∈ M . As such, it

suffices to verify the following equality for any (2x, y) ∈ M :

Q(16 − 2x, y) =
r((16 − 2x)2 + 16ty2)

64
=

r(4x2 + 16ty2)

64
= Q(2x, y) .
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• For Rλ−3
2λ (r, t) with λ ≥ 7, any element in Y1 is of the form (2u, v) ∈

Aλ−1 × {0, 2} by definition. Now, we find

Q(2λ−2 − 2u, v) =
r((2λ−2 − 2u)2 + 2λ−3tv2)

2λ
=

r(22λ−4 − 2λu + 4u2 + 2λ−3tv2)

2λ

= Q(2u, v) .

In summary, each of the bases in Table 3 is an orthogonal eigenbasis for t, and
each basis element thereof is fixed by ϕκ. Therefore, the normalization of these
bases are symmetric bases for the corresponding representations by Lemma 2.9,
and this completes the proof. !

4.4. Unary representations. Unary quadratic modules are those of type Rpλ(r),
where p is an odd prime and M = Aλ is cyclic. In this case, it is easy to see
Aut(M, Q) = {±1}, and we define

κ : M → M , a 5→ −a .

The representation W (M, Q), denoted simply by Rpλ(r), decomposes into two sub-
representations Rpλ(r)± corresponding to the (±1)-eigenspaces of ϕκ. For λ = 1,
these are irreducible. For λ ≥ 2, each contains a unique irreducible subrepresenta-
tion of level pλ, denoted (Rpλ(r)±)1. Specifically, [22, Satz 8] shows that

Rpλ(r) ∼= (Rpλ(r)+)1 ⊕ (Rpλ(r)−)1 ⊕ Rpλ−2(r)

(wherein R1(r) is the trivial representation). We will call the irreducible represen-
tations Rp(r)± (λ = 1) and (Rpλ(r)±)1 (λ ≥ 2) for any odd prime p the unary
irreducible representations of SL2(Z/pλZ).

With some minor changes from [22],2 an orthonormal basis for each unary irre-
ducible representation can be chosen as follows. For x ∈ M = Aλ and ε ∈ {±1},
define

f̃x,ε :=
√
εδx +

√
εδ−x =

√
εδx + ϕκ(

√
εδx) and fx,ε :=

1√
2
f̃x,ε .

In particular, we have

(4.4) ϕκ(f̃x,ε) = f̃x,ε and ϕκ(fx,ε) = fx,ε .

Note also that, by (3.1) and Q(x) = Q(−x) = rx2/pλ, f̃x,ε and fx,ε are eigenvectors
of t.

Further, for 0 ≤ y < pλ−1, 1 ≤ k < p, and ε, η ∈ {±1}, define

hy,k,ε,η :=
1
√

p

∑

a∈A1

(√
ηζka

p +
√
ηζka

p

)
f̃(py+apλ−1), ε .

By (4.4) and the antilinearity of ϕκ, we have hy,k,ε,η = ϕκ(hy,k,ε,η). Moreover, for
any λ ≥ 2 and any integers y and a, we have

Q(py + apλ−1) =
r(py + apλ−1)2

pλ
=

r((py)2 + 2apλ + a2p2λ−2)

pλ
=

r(py)2

pλ

= Q(py) ∈ Q/Z .

2Cf. [22, p. 509]. With gy,k,ε as defined in loc. cit., here we have hy,k,ε,η = 1
2
√

p (gy,k,ε +

εηg(pλ−1−y),k,ε).
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Therefore, for λ ≥ 2, hy,k,ε,η is an eigenvector of t. Then, denoting

Fε :=

{
fx,ε

∣∣∣∣ x ∈ M× with 1 ≤ x ≤ pλ − 1

2

}
,

Hε :=

{
hy,k,ε,η

∣∣∣∣ 1 ≤ y ≤ pλ−2 − 1

2
, 1 ≤ k ≤ p − 1

2
, η ∈ {±1}

}
,

we have the following orthonormal eigenbases for t:

• For Rp(r)+, B := F+1 ∪ {δ0} .
• For Rp(r)−, B := F−1 .
• For (Rpλ(r)ε)1 with λ ≥ 2,

B := Fε ∪ Hε ∪
{

1√
2
h0,k,ε,ε

∣∣∣∣ 1 ≤ k ≤ p − 1

2

}
.

By the above discussions, for each unary irreducible representation, the correspond-
ing basis B is an orthonormal t-eigenbasis that is fixed by ϕκ elementwise. There-
fore, by Lemma 2.9, B is a symmetric basis. In other words, we have the following
proposition.

Proposition 4.11. Every unary irreducible representation is symmetrizable. !
4.5. Proof of Proposition 2.11 and applications. We are now ready to prove
Proposition 2.11.

Proof of Proposition 2.11. According to [22, Hauptsatz 2] (see also the tables in
[22, pp. 521-525]), every irreducible representation of SL2(Z/pλZ) is equivalent to
one of the following: a standard irreducible representation, a special irreducible
representation, a unary irreducible representation, or a tensor product of two rep-
resentations of the above three types. Since symmetrizability is preserved under
taking tensor product (see Remark 2.2) and each of the first three types of repre-
sentations is symmetrizable by Propositions 4.9, 4.10, and 4.11, we are done. !

Lemma 4.12. Suppose ρ is an irreducible, symmetric representation of SL2(Z).
Then ρ(s) = s̃ or i · s̃ for some real symmetric matrix s̃.

Proof. Denote s := ρ(s). Since ρ is unitary and s is symmetric, s−1 = s† = s.
Because s2 is in the center of SL2(Z), Schur’s Lemma shows that s2 ∈ C · id. Since
s4 = id, s2 = ± id and s = s3. If s2 = id, then s = s and so s̃ := s is real; otherwise,
(i · s)2 = id and so s̃ := −i · s is real. !

Corollary 4.13. Every irreducible, congruence representation of SL2(Z) is equiva-
lent to a representation ρ such that ρ(s) = s̃ or i · s̃ for some real symmetric matrix
s̃.

Proof. This follows immediately Theorem 2.10 and Lemma 4.12. !
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