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Abstract. We investigate the planarity of the boundaries of right-angled
Coxeter groups. We show that non-planarity of the defining graph does not
necessarily imply non-planarity of every boundary of the associated right-
angled Coxeter group, although it does in many cases. Our techniques yield
a characterization of the triangle-free defining graphs such that the associated
right-angled Coxeter group has boundary a Menger curve.

1. Introduction

A group is CAT(0) if it acts geometrically (properly discontinuously, co-compactly
and by isometries) on a CAT(0) space. Every CAT(0) metric space X has a well-
defined visual boundary ∂X. We will denote a proper CAT(0) space on which G
acts geometrically by XG, or by XΓ, when G is the right-angled Coxeter group
defined by a graph Γ. See Section 2 for more detailed definitions.

When a group G acts geometrically on XG, the topology of ∂XG can provide
information about the algebra of G, even though the boundary of G may not be
well-defined. The dimension of ∂XG is related to the cohomological dimension
of G [16, 4], and in the case that G is torsion-free, G is a PD(3) group exactly
when ∂XG

∼= S2 [4]. Also, splittings of G are expressed as topological features
in ∂XG (see [6, 26, 18] among others).

An important question about the topology of boundaries is their planarity. We
say that a topological space is planar if it can be embedded in S2. When G can
be virtually realized as a geometrically finite Kleinian group, every CAT(0) bound-
ary ∂XG is planar. This can be seen as follows. The limit set of the Kleinian group
is a subset of S2. Moreover, the CAT(0) boundary is well-defined, since G is either
hyperbolic or CAT(0) with isolated flats [20]. This boundary is either the limit set
itself, or the limit set with parabolic fixed points replaced by circles. In either case,
it is planar. By a special case of a theorem of Bestvina–Kapovich–Kleiner [2], if G
is the fundamental group of a 3-manifold, then no boundary of G contains a K5 or
a K3,3 (though this doesn’t immediately imply that every boundary is planar, as
we discuss below).

Conjecture 1.1 below, which was asked as questions in [27, Questions 1.3 and
1.4], presents a sort of converse to the above statements.
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Conjecture 1.1. Let G be a CAT(0) group with a planar visual boundary. Then
every visual boundary of G is planar, and furthermore, G is virtually the funda-
mental group of a compact 3-manifold.

This paper contains evidence for Conjecture 1.1 in the setting of right-angled
Coxeter groups. See Corollary 1.5.

By work of Haïssinsky [17, Theorem 1.10], this conjecture is known to hold for
hyperbolic groups which are CAT(0) cubed, and hence for hyperbolic right-angled
Coxeter groups. We note that Conjecture 1.1 implies the Cannon Conjecture [8]
for hyperbolic groups which are CAT(0). As we write there are no known examples
of hyperbolic groups which are not CAT(0).

Conjecture 1.1 is more speculative than the analogous conjecture for hyperbolic
groups in [17, Conjecture 1.6]. This is because CAT(0) boundaries, unlike the
boundaries of hyperbolic groups, are not always well-defined [12] and not always
locally connected [23]. This last property means that a result of Claytor [11, Theo-
rem C] does not necessarily apply. In particular, when ∂X is not locally connected
non-planarity of the boundary does not imply that there is a K3,3 or K5 in the
boundary. Schreve and Stark [27] have an example of two homeomorphic CAT(0)
complexes with two different boundaries, one of which contains an embedded K3,3

and one of which does not. Both boundaries are non-planar.
In this paper we study the planarity of boundaries of right-angled Coxeter groups.

Given a finite simplicial graph Γ we denote the associated right-angled Coxeter
group by WΓ. Every WΓ is CAT(0), and in particular, WΓ acts geometrically on a
CAT(0) cube complex ΣΓ called its Davis–Moussong complex.

It is tempting to conjecture that if Γ is non-planar then every CAT(0) boundary
of WΓ is non-planar, up to a finite subgroup. Indeed, Świątkowski speculates that
planarity of the defining graph may be a necessary condition for a planar boundary.
See [30, Remark 3]. However, we prove that non-planarity of the defining graph
of a right-angled Coxeter group does not guarantee non-planarity of the boundary;
there is a WΓ with a non-planar defining graph Γ, which has a planar CAT(0)
boundary, as we explain in Example 1.1 below. Indeed there are many.
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Figure 1.1. In the graph Λ on the left, each blue segment is an
edge, while each black segment is a path which may or may not be
subdivided. The graph Λ′ on the right is the double of Λ over the
vertex y, as defined in Section 2.2. The two copies of Λ minus the
open star of y are shown in Λ′ in black and grey respectively.

Example 1.1. Let Λ denote the graph on the left in Figure 1.1, which is non-
planar. As we observe in Lemma 2.5, the groupWΛ contains an index two subgroup
isomorphic to WΛ′ , where Λ′ is the planar graph on the right of Figure 1.1. Any
right-angled Coxeter group with planar defining graph is virtually the fundamental
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group of a 3-manifold. Indeed, the defining graph can be embedded as an induced
subgraph in a triangulation T of a 2-sphere. Now WT , the right-angled Coxeter
group defined by the one-skeleton of T , is virtually a closed 3-manifold group,
since the Davis–Moussong complex ΣT of WT is a manifold. The Davis–Moussong
complex ΣΛ′ of WΛ′ is a convex subcomplex of ΣT . Consequently ∂ΣΛ′ embeds in
∂ΣT ∼= S2. Therefore. ∂ΣΛ′ is planar. (Also see Theorem 11.4.1 of [15].) Now WΛ

acts on WΛ′ by conjugation, and this induces a geometric action of WΛ on on ΣΛ′ .
It follows that WΛ has a planar boundary as well.

The graph Λ in Figure 1.1 is a subdivision of the graph in Figure 1.2. More
generally, let Π denote any graph obtained by subdividing the black segments of
the graph in Figure 1.2 enough to get a triangle-free graph. Then WΠ has a planar
boundary by a similar argument. We show that the graph Π is the only obstruction:

Theorem 1.2. Let Γ be a triangle-free non-planar graph, and let XΓ be a proper
CAT(0) space on which WΓ acts geometrically. Then either ∂XΓ is non-planar
or WΓ contains a finite-index special subgroup whose defining graph contains an
induced copy of the graph Π in Figure 1.2.

Figure 1.2. The graph Π is defined to be any graph as shown in
this figure, such that the blue segments are edges, the black seg-
ments may or may not be edges, and enough of the black segments
are subdivided to ensure that the result is triangle-free. A specific
instance of such a subdivision appears on the left in Figure 1.1.

A graph is inseparable if it is connected, has no separating complete subgraph, no
cut pair, and no separating complete subgraph suspension. When Γ is inseparable
and ∂XΓ is locally connected and planar, it follows from our Corollary 5.2, that
∂XΓ cannot contain an induced copy of the graph in Figure 1.2. Thus we have the
following:

Theorem 1.3. Let Γ be a triangle-free inseparable graph and let XΓ be a CAT(0)
space on which WΓ acts geometrically. If Γ is non-planar and ∂XΓ is locally con-
nected and contains no local cut points, then ∂XΓ is non-planar.

Since planar defining graph implies planar boundary, the following corollary is
immediate.

Corollary 1.4. Let Γ be a triangle-free inseparable graph and let XΓ be a CAT(0)
space on which WΓ acts geometrically. Assume that ∂XΓ is locally connected and
has no local cut points. Then ∂XΓ is planar if and only if Γ is planar.

Using Theorem 1.3 we can now conclude that Conjecture 1.1 holds for a class of
right-angled Coxeter groups:
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Corollary 1.5. (to Theorem 1.3) Let Γ be a graph with no triangles, and XΓ a
proper CAT(0) space on which WΓ acts geometrically. Then if ∂XΓ is a Sierpinski
carpet, WΓ is virtually a 3-manifold group.

The corollary holds as follows. Since ∂X is a Sierpinski carpet, it is planar, locally
connected, and has no local cut points or cut pairs. Therefore in this setting, we
can conclude from Theorem 1.3 that the defining graph Γ is planar as well. This
implies that WΓ is virtually a 3-manifold group by the argument in Example 1.1.

Theorem 1.3 also allows us to characterize the right-angled Coxeter groups with
triangle-free defining graphs which have Menger curve boundaries.

Corollary 1.6. (to Theorem 1.3) Let Γ be a triangle-free inseparable graph, such
that WΓ is either hyperbolic or CAT(0) with isolated flats. Then the following are
equivalent:

(1) Γ is non-planar.
(2) Every CAT(0) boundary ∂XΓ is Menger curve.
(3) Some CAT(0) boundary ∂XΓ is a Menger curve.

Proof. We claim that under the hypotheses of the corollary, ∂XΓ is 1-dimensional
for every CAT(0) space XΓ on whichWΓ acts geometrically. Since Γ is triangle-free,
the Davis–Moussong complex ΣΓ is 2-dimensional, and the virtual cohomological
dimension (vcd) ofWΓ is equal to 1 or 2. By Stallings [28] a group G with vcd(G) =
1 is virtually free. Since Γ is inseparable, the group WΓ is not virtually free,
so vcd(WΓ) = 2. Since Coxeter groups are virtually torsion-free, a theorem of
Bestvina–Mess [4, Corollary 1.4], see also [1, Theorem 1.7], implies that the covering
dimension of ∂XΓ is equal to vcd(WΓ)− 1. This proves the claim.

Now suppose Γ is non-planar. When WΓ is hyperbolic, ∂XΓ is locally connected
(see [4, 29, 5]). Since vcd(WΓ) = 2, the highest rank of a virtually abelian subgroup
is 2, and we apply [21] to conclude that ∂XΓ is locally connected in the CAT(0)
with isolated flats case. Since Γ is inseparable, WΓ does not split over a 2-ended
subgroup. Thus by [6, Theorem 6.2] (in the hyperbolic case) or by [18, Theorem 1.3]
(in the isolated flats case) we conclude that ∂XΓ has no local cut points. Now
we may apply Theorem 1.3 to conclude that ∂XΓ is non-planar. Then by [22,
Theorem 4] (in the hyperbolic case) or by [18, Theorem 1.2] (in the isolated flats
case), we conclude that ∂XΓ is a Menger curve.

On the other hand if Γ is planar, then ∂ΣΓ is planar (as we showed in Exam-
ple 1.1), and cannot be a Menger curve. Conditions (2) and (3) are equivalent
because in this situation, the CAT(0) boundary is well defined [20]. �

We remark that [30, Theorem 1] implies (in the setting of triangle-free graphs)
that if Γ is inseparable and WΓ is hyperbolic, then the Gromov boundary ∂WΓ

is a Sierpinski carpet. Świątkowski suggests in Remark 3 of [30] that planarity
of the nerve may be a necessary condition for a Coxeter group to have Sierpinski
carpet boundary (up to a product with a finite Coxeter group). Corollary 1.6 shows
that this is true in the case of hyperbolic right-angled Coxeter groups defined by
triangle-free graphs.

In the setting of hyperbolic groups, Menger curve boundary is known to be
generic [13]. Recently Haulmark–Hruska–Sathaye [19] provide examples of large
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type (i.e. not right-angled) Coxeter groups which are not hyperbolic and have vi-
sual boundary homeomorphic to the Menger curve. Corollary 1.6 provides a tech-
nique for constructing large classes of examples of right-angled Coxeter groups with
Menger curve boundary. The following example gives a concrete such class.

Example 1.2. One class of finite simplicial graphs which yield right-angled Cox-
eter groups with Menger curve boundary are the Mobius Ladders (see https://
en.wikipedia.org/wiki/Mobius_ladder) These graphs are inseparable and non-
planar. By a result of Caprace [9, 10] the right-angled Coxeter groups defined by
these graphs have isolated flats; therefore, they satisfy the hypotheses of Corol-
lary 1.6 and have Menger curve boundary.

1.1. Overview of the paper. In Section 2, we give some preliminaries on right-
angled Coxeter groups and their boundaries. In Section 3 we use graph-theoretic
techniques to show that if there is not an inducedK3,3 subdivision in our non-planar
graph Γ, then by taking the double over some vertex finitely many times, we arrive
at a graph Γ′ such thatWΓ′ is a finite-index subgroup ofWΓ, and Γ′ either contains
an induced K3,3 subdivision or an induced subdivided copy of one of two specific
graphs. (See Figure 3.3.) One of the two specific graphs is Π from Figure 1.2. In
Section 4 we show if the defining graph of a right-angled Coxeter group contains
either an induced K3,3 subdivision, or an induced copy of one of the two specific
graphs (the one not equal to Π), then any boundary ∂XΓ is non-planar. Finally
in Section 5 we deal with the case of the remaining graph Π. We show that if any
visual boundary of a right-angled Coxeter group is connected, locally connected,
has no local cut points and is planar, then the defining graph of that right-angled
Coxeter group cannot contain a copy of Π. Theorem 1.2 is proven in Section 4,
while Theorem 1.3 is proven in Section 5.

2. Preliminaries

2.1. Boundaries of CAT(0) Spaces. Let X be a proper CAT(0) space. The
visual or CAT(0) boundary of X, denoted ∂X, is the set of equivalence classes of
geodesic rays, where two rays c1, c2 : [0,∞) → X are equivalent if there exists a
constant D ≥ 0 such that d

(
c1(t), c2(t)

)
≤ D for all t ∈ [0,∞).

The boundary ∂X comes equipped with a natural topology called the cone topol-
ogy. To define this topology, identify ∂X with the set of geodesic rays based at some
fixed point p in X. Then if c is a geodesic ray based at p, a basic open set around c
consists of geodesic rays based at p whose projection onto a ball of radius t around p
is close to c(t).

If G acts geometrically on X one would like to define ∂G to be ∂X. If G is
a hyperbolic group, then X is a Gromov hyperbolic metric space and ∂X is the
Gromov boundary of G. In particular, in this case the CAT(0) boundary ∂G is
well-defined. For example, if G is virtually free, then the boundary of any CAT(0)
space that G acts on geometrically is a Cantor set. Hruska–Kleiner have shown
that ∂G is also well-defined in the setting of CAT(0) groups with isolated flats [20].
In general the homeomorphism type of the boundary is not well-defined for CAT(0)
groups (see [12, 27]). However, for special subgroups of Coxeter groups, one can
find a boundary for that special subgroup in any CAT(0) boundary for the Coxeter
group, by the following lemma of Mihalik and Tschantz [24]. Suppose that (W,S)
is a finitely generated Coxeter system, C is the Cayley graph of W with respect to

https://en.wikipedia.org/wiki/Mobius_ladder
https://en.wikipedia.org/wiki/Mobius_ladder
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S, and W acts geometrically on a CAT(0) space X. Fix a point x ∈ X, and define
a graph Cx ⊂ X to have as vertices the orbit W · x and as edges the collection of
CAT(0) geodesic paths connecting wx and wsx, for w ∈ W and s ∈ S. Note that
the collection of edges will be W -equivariant by uniqueness of CAT(0) geodesics.

Lemma 2.1 ([24] Corollary 6.6). Suppose that (W,S) is a finitely generated Coxeter
group with Cayley graph C, acting geometrically on the CAT(0) space X, and take
an x ∈ X, and Px : C → Cx mapping C quasi-isometrically andW -equivariantly into
X. Then for each subset A ⊂ S, (the image of) the subgroup 〈A〉 is quasi-convex
in X.

We will use the lemma below often to find circles and Cantor sets in the boundary
∂X of some CAT(0) space for WΓ, although it applies more generally. We will also
use it to refer to points of the boundary. For example, if x and y are disjoint vertices
on Γ, the special subgroup defined by x and y is virtually cyclic and we will refer
to the points of its boundary as (xy)∞ and (yx)∞.

Definition. Let G act geometrically on a proper metric space X. We say that
H < G is quasiconvex for the action of G on X if, given a point x0 ∈ X, any
geodesic between points of the orbit Hx0 lies in the K-neighborhood of Hx0, for
some K > 0

Definition. Let X be a proper CAT(0) space and suppose G acts properly by
isometries on X. The limit set, Λ(G), is the set of all ξ ∈ ∂X such that there is
a sequence (gn) of elements of G with (gnx) → ξ as n → ∞ for some (hence any)
x ∈ X.

Lemma 2.2. Suppose that G acts geometrically on a CAT(0) space X and H < G
is a Gromov hyperbolic group which is quasiconvex for the action of G on X. Then
∂H is homeomorphic to Λ(H), the limit set of H in ∂X. In particular, ∂H embeds
in ∂X.

Proof. We fix a point x0 ∈ X, and use it to identify the CAT(0) visual boundary
∂X of X with the set of geodesic rays emanating from x0, as well as to define the
orbit Hx0. We denote the CAT(0) metric on X by d.

Let K be the quasiconvexity constant of H, and define XH to be the union of the
closed balls of radius K around the points of the orbit Hx0. The action of H on X
leaves XH invariant, and we would like to identify ∂H with the boundary of XH .
However, XH endowed with the metric d is not a geodesic space, and hence does
not satisfy the definition of δ-hyperbolicity. Instead, we consider the length metric
d′ induced by d on XH . To avoid confusion, for the rest of this proof we preface
terms which depend on the metric being used (or on its associated topology) with
the name of the metric (eg. d-geodesic, d-closed set, etc.).

In general, d′(x1, x2) ≥ d(x1, x2) for x1, x2 ∈ XH . Any d-geodesic in XH is
a d′-geodesic (but not necessarily vice versa). Thus, the two metrics agree when
restricted to the orbit Hx0 (since the d-geodesic between a pair of orbit points is
contained in XH by quasiconvexity). Let Bd(x, r) and Bd′(x, r) denote the closed
balls of radius r about x in the specified metrics. If x ∈ XH , then for sufficiently
small ε, the ball Bd(x, ε) intersects XH in a single component, and Bd′(x, ε) =
Bd(x, ε) ∩XH . Note that d(x, y) = d′(x, y) for each y in such a Bd′(x, ε). If x is in
the d-interior of XH , then ε can be chosen so that Bd′(x, ε) = Bd(x, ε) and the two
metrics agree on this entire set. Therefore, the topology on XH induced by d′ is the
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same as its topology as a closed subset of (X, d). The set XH is a union of closed
balls around each point of the orbit of H and is closed as H is finitely generated.

We claim that (XH , d
′) is a proper geodesic space. It is enough to show that

XH is d′-complete and d′-locally compact, by [7, Proposition I.3.7] (Hopf–Rinow
Theorem) and [7, Corollary I.3.8].

To prove that XH is d′-complete, note that every d′-Cauchy sequence (xn) in XH

is also d-Cauchy. Since X is d-complete and XH ⊂ X is d-closed, (xn) d-converges
to some x ∈ XH . Now given any d′-open neighborhood U of x, there exists ε
sufficiently small such that Bd(x, ε) ∩XH = Bd′(x, ε) ⊂ U . Since (xn) is contained
in XH and d-converges to x, it eventually lies in Bd(x, ε) ∩XH ⊂ U . This proves
that it d′-converges to x as well.

Since the topology on XH induced by d′ is the same as the topology induced as
a closed subset of (X, d), (XH , d

′) is homeomorphic to a closed subset of a locally
compact Hausdorff space and hence locally compact [32, Theorem 18.4].

This proves the claim that (XH , d
′) is a proper geodesic space.

The action of H on XH preserves d′ with quotient one closed ball. Thus, H acts
geometrically on (XH , d

′), and is therefore quasi-isometric to it by the Švarc–Milnor
Lemma. It follows that (XH , d

′) is δ-hyperbolic for some δ > 0 (fixed for the rest of
the proof) and ∂H is homeomorphic to ∂XH . To finish the proof, we will show that
∂XH is homeomorphic to the limit set Λ(H) ⊂ X (with the subspace topology).

Next, we define a map φ : ∂XH → ∂X. As (XH , d
′) is a geodesic hyperbolic

space, we can identify ∂XH with the set of equivalence classes of d′-geodesic rays
in XH emanating from x0. We assume all geodesics are parametrized by arclength.
Let [α] ∈ ∂XH , where α is a d′-geodesic ray from x0. Choose a sequence (hn)n≥1 in
H such that the map η : [0,∞)→ XH which sends [n−1, n) to the orbit point hnx0

is a d′-quasigeodesic that is d′-asymptotic to α (i.e. α and β have finite Hausdorff
distance). Such quasigeodesics exist; the sequence obtained by choosing hn such
that d(α(n), hnx0) ≤ K is an example. For n > 0, let βn denote the d-geodesic
segment from x0 to hnx0. Since (X, d) is proper, the Arzela–Ascoli Theorem implies
that there exists a subsequence (βni) with converges to a d-geodesic ray β : [0,∞)→
X. We define φ([α]) = [[β]], where [ ] and [[ ]] denote the appropriate equivalence
classes.

We must show that φ is well-defined. First we establish some useful facts about
β. Since each βi is in XH , and XH is d-closed, it follows that β is in XH and
(thinking of it as a d′-geodesic) represents a point of ∂XH . Moreover, it can be
shown that (βni) d

′-converges to β. Now it is evident that the sequence (hnix0) of
endpoints of the βni

d′-converges to both [η] = [α] and [β], so these are equal. It
follows that α and β are d′-asymptotic, and therefore also d-asymptotic.

Now suppose β′ is a d-geodesic ray obtained from the above construction by
either choosing a different representative for [α], or a different quasigeodesic η, or
a different convergent subsequence of (βn). Then the argument in the previous
paragraph shows that β′ is d-asymptotic to α, and therefore to β. It follows that
[[β]] = [[β′]], i.e., that φ is well-defined.

To see that φ is injective, suppose β is a d-geodesic ray from x0 representing
φ(α) = φ(α′). Then the above argument shows that β is a d′-geodesic asymptotic
to both α and α′, and it follows that [α] = [α′].

It is evident from the construction of φ that its image is in Λ(H). Now let
[[β]] ∈ Λ(H). By definition, there is a sequence (hnx0) whose d-limit is [[β]]. As
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observed in the last paragraph of Section II.8.5 of [7], the geodesics βn from x0

to hnx0 converge to β. Arguing as before, β is in fact in XH , and represents an
element of ∂XH . Applying the above construction to β yields a d-geodesic ray
from x0 which is d-asymptotic to β. Since β is the only such ray, we have that
φ([β]) = [[β]], i.e., φ surjects onto Λ(H).

It remains to prove the continuity of φ and φ−1. A neighborhood basis for
[[β]] ∈ ∂X is given by sets U(β, r, ε), for r, ε > 0, which is the set of d-geodesic
rays β′ from x0 such that d(β(r), β′(r)) < ε. A neighborhood basis for [α] ∈ ∂XH

is given by V (α, r, ρ), for r > 0, ρ > 2δ (where δ is the hyperbolicity constant of
XH), which is the set of equivalence classes of d′-geodesic rays α′ from x0 such that
d′(α(r), α′(r)) < ρ.

Now suppose φ([α]) = [[β]], for some d′-geodesic ray α from x0, and consider some
U = U(β, r, ε). To choose a basis element about [α] mapping into U , fix ρ = 3δ, and
choose R large enough so that for every p ∈ Bd′(β(R), 7δ), the projection p′ of p to
the d-sphere of radius r centered at x0 has the property that d(β(r), p′) < ε (so that
any d-geodesic passing through this ball is in U). Now if α′ is in V = V (α,R, 3δ),
then by definition, d′(α(R), α′(R)) < 3δ. Let β′ be the d-geodesic ray from x0

representing φ([α′]). Then as shown above, α′ and β′ are d′-geodesic rays that are d′-
asymptotic, so, since XH is proper, d′(α′(R), β′(R)) < 2δ by [7, Lemma III.H.3.3].
Similarly d′(α(R), β(R)) < 2δ. It follows that d(β(R), β′(R)) ≤ d′(β(R), β′(R)) <
7δ. Thus [[β′]] ∈ U , and so φ(V ) ⊂ U . This proves that φ is continuous at each
point in ∂XH .

To prove the continuity of φ−1, consider [β] = φ−1([[β]]), and a neighbor-
hood V (β, r, ρ) of [β] in ∂XH . Choose ε sufficiently small so that ε < ρ and
Bd′(β(r), ε) = Bd(β(r), ε) ∩XH . Then for γ ∈ U(β, r, ε), we have d′(β(r), γ′(r)) =
d(β(r), γ(r)) < ε < ρ, and it follows that γ represents an element of V (β, r, ρ).
Moreover, φ−1([[γ]]) = [γ]. Thus φ−1(U(β, r, ε)) ⊂ V (β, r, ρ). Thus φ−1 is continu-
ous at each point in its domain. �

Corollary 2.3. Let G act geometrically on a CAT(0) space X, and let H be a
surface subgroup which is quasiconvex for this action. Then Λ(H) is homeomorphic
to ∂H, where ∂H is the CAT(0) boundary of H.

Proof. Each surface group (fundamental group of a closed surface or free group of
rank ≥ 1) is hyperbolic except for Z+Z. Each Z+Z subgroup of G has limit set a
circle by the Flat Torus Theorem. The hyperbolic cases follow from Lemma 2.2. �

Corollary 2.4. Let H and H ′ be surface subgroups of a CAT(0) group G which
are quasiconvex for the action. Then Λ(H ∩H ′) = Λ(H) ∩ Λ(H ′).

2.2. Right-angled Coxeter groups. Let Γ be a finite simplicial graph. The right-
angled Coxeter group associated to Γ has generating set S equal to the vertices of Γ,
relations s2 = 1 for each s in S and relations st = ts whenever s and t are adjacent
vertices of Γ. Given a graph Γ we denote the associated right-angled Coxeter group
by WΓ. Right-angled Coxeter groups are canonical examples of groups with nice
geometric structures. For example, the right-angled Coxeter group on a path of
length at least 3 can be realized as a Fuchsian group which acts geometrically on
strict subset of H2. Hence any CAT(0) boundary of such a right-angled Coxeter
group is either 2 points or a Cantor set.

A technique for finding index two subgroups of a right-angled Coxeter group
that features heavily in the current paper is doubling. Let v ∈ S and define DvΓ
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to be the graph obtained from Γ by gluing two copies of Γ along the star of v then
deleting v and its open star in the new graph. We call DvΓ the double of Γ over v.
If a vertex s of Γ is not in the link Lk(v) we use s′ to denote its double in DvΓ.
The following lemma is a folk result analogous to Example 1.4 of Bestvina–Kleiner–
Sageev [3] (which is in the setting of right-angled Artin groups). For the sake of
brevity we will not include a proof here.

Lemma 2.5 (Doubling Lemma). Assume Γ is a finite simplicial graph, let v be a
vertex of Γ, and set ∆ = DvΓ. Then W∆ is an index two subgroup of WΓ.

Associated to Γ is proper piecewise Euclidean CAT(0) complex ΣΓ called the
Davis–Moussong complex on which Γ acts geometrically. The space ΣΓ is canon-
ically constructed based solely on the combinatorial data of Γ (See [14] for the
details of this construction.)

3. Graph theoretic results

In this section we prove some graph theoretic results which are used in the next
section to prove Theorem 1.2.

3.1. Graph terminology. Given a graph Γ, an edge subdivision operation con-
sists of adding a valence two vertex in the interior of an edge of Γ. A Γ subdivision
is a graph obtained from Γ by a (possibly trivial) sequence of edge subdivision
operations. A subgraph Λ of Γ is said to be induced if every pair of vertices of Λ
which are adjacent in Γ are also adjacent in Λ (i.e. if u and w are vertices of Λ, and
Γ contains the edge [u, v], then Λ does too). An essential vertex of Γ is any vertex
of valence at least 3. Vertices of valence two are called non-essential. A branch
of Γ is an embedded path between essential vertices of the graph. It contains its
endpoints, but does not contain any other essential vertices. The branch between a
pair of essential vertices x and y will be denoted by [x, y]. We will sometimes also
use this interval notation for paths which are not necessarily branches, when there
is no ambiguity.

A cycle in Γ is an embedded loop. We will denote cycles either by the essential
vertices or by the paths that they visit. For example, if a cycle passes through the
essential vertices v1, . . . vn in order, (so that [vi, vi+1] is a branch for each i (mod
n), then we will denote it by (v1, . . . vn). (We only use this notation for graphs in
which every pair of essential vertices is connected by at most one branch.) On the
other hand, if a cycle passes through embedded paths α1, . . . , αn in Γ such that for
each i mod n, the terminal vertex of αi is equal to the initial point of αi+1, then
we denote it by (α1, . . . , αn). (Here we are not assuming that the αi are branches.)

A graph is inseparable if it is connected, has no separating complete subgraph, no
cut pair, and no separating complete subgraph suspension. Obviously, a triangle-
free graph is inseparable if and only if it is connected, has no separating vertex, no
separating edge, no cut pair, and no separating vertex suspension. This is equivalent
to the corresponding right-angled Coxeter group not splitting over a finite group or
a virtually cyclic group [25, 28].

Let Λ ⊂ Γ be a K3,3 (resp. K5) subdivision. We say that a vertex of Λ is Λ-
essential if it has valence bigger than 2 in Λ, and Λ-non-essential if its valence in
Λ is 2. Note that given a vertex of Λ, its valence in Γ could be higher than its
valence in Λ (so in particular, a Λ-non-essential vertex could be an essential vertex
of Γ). If Λ ⊂ Γ is a K3,3 subdivision, a vertex partition for Λ is a partition of the



10 P. DANI, M. HAULMARK, AND G. S. WALSH

Λ-essential vertices into two sets of three vertices, such that every vertex in the first
set is connected to every vertex of the second set by a branch of Λ. By a shortest
graph with a given property, we will mean a graph having the fewest edges with
that property.

Kuratowski’s Theorem says that a graph is planar if and only if it contains
either a K5 subdivision or a K3,3 subdivision. We begin with the following lemma,
which will enable us to ignore the K5 case when we are trying to establish the
non-planarity of boundaries of right-angled Coxeter groups defined by non-planar
graphs.

Lemma 3.1. Let Γ be a triangle-free graph which contains a K5 subdivision Λ.
Then either Γ or the double of Γ over some vertex contains a K3,3 subdivision.

Proof. Choose a shortest K5 subdivision Λ in Γ. Let a, b, c, d, e be the Λ-essential
vertices. Since Λ is shortest, given any Λ-essential vertex, say a, there cannot be a
Γ-edge between a and some a vertex x on a branch of Λ incident to a, unless x is
adjacent to a in Λ.

Next suppose there is a Γ-edge between some Λ-essential vertex and some Λ-non-
essential vertex on a branch of Λ disjoint from it. (See Figure 3.1.) For definiteness,
say there is an edge from a to the Λ-non-essential vertex f in the interior of [d, e].
Then there is a K3,3 subdivision with vertex partition {a, e, d} and {b, c, f}, as
shown in Figure 3.1. This completes the proof of the lemma in this case.

a

b

cd

e

f

Figure 3.1

From the previous two paragraphs, we may assume for the remainder of the proof
that if a Λ-essential vertex a is Γ-adjacent to a vertex x of Λ, then a is adjacent to
x in Λ.

We claim that by relabeling the Λ-essential vertices if necessary, we may assume
that a is not adjacent to vertices b and c. i.e. the branches [a, b] and [a, c] of Λ
are subdivided. To see this, note that if there exist two Λ-essential vertices not
adjacent to a, then we can simply relabel these as b and c. Otherwise, a is adjacent
to at least three Λ-essential vertices, say b, c, d. Now since Γ is triangle-free, each
of [b, c], [c, d] and [b, d] is subdivided, and we can rename b to a, and d to b. This
proves the claim.

We will now produce a K3,3 subdivision in DaΓ, assuming that b and c are not
adjacent to a. By our assumption in the third paragraph, the link of a intersected
with Λ consists of exactly four vertices, one on each branch incident to a. The
vertices d and e could be among these. Let Γ̄ and Γ̄′ both denote Γ minus the open
star of a, and recall that DaΓ is obtained by identifying Γ̄ and Γ̄′ along the link
of a. For each vertex x of Γ, let x and x′ be the corresponding vertices in Γ̄ and
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Γ̄′ respectively. Since b and c are not adjacent to a in Γ, we have that b′ 6= b and
c′ 6= c in DaΓ. However, we could have d = d′ or e = e′.

Γ̄ Γ̄′

b

cd

e

e1 d1c1b1 e1 d1c1 b1

b′

c′d′

e′

Figure 3.2. The graph DaΓ is obtained by identifying Γ̄ and Γ̄′

along b1, c1, d1, and e1. Thus for example, the path from d to b′
in DaΓ consists of the branch [d, d1] in Γ̄ followed by the branches
[d1, d

′] and [d′, b′]. When a is adjacent to d (respectively e), then
d = d1 = d′ (respectively e = e1 = e′).

We claim that there is a K3,3 subdivision in DaΓ with vertex partition {b, d, c′}
and {c, e, b′}. This is shown in Figure 3.2 in the case when d 6= d′ and e 6= e′. When
d = d′, the path from b′ to d in Figure 3.2 is replaced by the branch in Γ̄′ from
b′ to d′ = d. Similarly, when e = e′, the path from c′ to e shown in Figure 3.2 is
replaced by the branch in Γ̄′ from c′ to e′ = e. Since the link of a in Λ consists of
exactly four vertices, the subdivision constructed above is embedded in DaΓ. �

The K3,3 subdivision present in a non-planar graph Γ may not be an induced
subgraph. In Proposition 3.2 we show that by successively doubling Γ along ver-
tices finitely many times, one can find a subgraph that is either an induced K3,3

subdivision, or one of two specific graphs.

Proposition 3.2. Let Γ be a triangle-free graph which contains a K3,3 subdivision.
Then there exists a graph Γ′ obtained from Γ by a sequence of doubling moves, and
a K3,3 subdivision Λ′ ⊆ Γ′ such that either Λ′ is induced or the subgraph of Γ′

induced by Λ′ is one of the graphs in Figure 3.3.

a

b

c

x

y

z

a x

b y

c z

Figure 3.3. The figure shows the two possible graphs induced
by Λ′ in Γ′ in Proposition 3.2. In both pictures, Λ′ is the K3,3

subdivision with vertex partition {a, b, c} and {x, y, z}. The black
paths may be subdivided, while the blue ones are edges. There are
no edges of Γ′ \ Λ′ connecting any pair of vertices in the graphs
shown.

We begin by recalling and expanding terminology from subsection 3.1 and prov-
ing several lemmas to be used in the proof. In all of the proofs below, we assume
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that Λ has Λ-essential vertex sets {a, b, c} and {x, y, z}. Recall that a branch of
Λ is the unique path between a pair of Λ-essential vertices which does not pass
through any additional Λ-essential vertices. We assume that there are branches of
Λ connecting each of a, b, and c to each of x, y, and z, and we will denote the branch
between Λ-essential vertices, say a and x, by [a, x]. We will sometimes also use this
interval notation to denote sub-paths of branches or edges. A branch or path [s, t]
will always include its endpoints s and t. Two branches will be called adjacent if
they share an Λ-essential vertex endpoint.

If Λ ⊂ Γ is not induced, we define a bad edge of Λ to be an edge in E(Γ) \E(Λ)
whose endpoints are both vertices of Λ, and we define B(Λ) to be the number of
bad edges of Λ. Observe that Λ is induced if and only if B(Λ) = 0.

Idea of the proof. If the K3,3 subdivision Λ is not induced, it has a non-trivial set
of bad edges. If one doubles Γ over the endpoint v of a bad edge of Λ, then that
edge disappears in DvΓ. So the general strategy is to double over endpoints of bad
edges of Λ and to find a new K3,3 subdivision in the double which has fewer bad
edges than Λ. Then after finitely many steps we end up with either an induced
K3,3 subdivision or one of the graphs in Figure 3.3.

The double of Λ in DvΓ typically has many more bad edges than Λ itself, and
as a result, finding a K3,3 subdivision in DvΓ with fewer bad edges than Λ can be
a nontrivial feat. To aid this process, we do two things. Firstly, we start with a
shortest subdivision Λ, and we show in Lemma 3.3 that this restricts the types of
bad edges that may occur in Λ. (Types of bad edges may be differentiated based on
whether they connect disjoint or adjacent branches, and whether their endpoints
are Λ-essential or not.) Secondly, we choose the order of vertices to double over
carefully.

Initially, we focus on reducing the number of bad edges which have at least one
endpoint a Λ-non-essential vertex. In particular, we show in Lemmas 3.5 and 3.6,
that if v is a Λ-non-essential vertex which is the endpoint of a bad edge of Λ, then
unless the edges incident to v have a specific configuration (shown in Figure 3.8),
the double DvΓ does contain a K3,3 subdivision with fewer bad edges than Λ.
Then, in the proof of Proposition 3.2, we show how to deal with the problematic
configuration given in the statement of Lemma 3.6, Figure 3.8. This eliminates
all bad edges which have at least one Λ-non-essential vertex as an endpoint. Also
in the proof of Proposition 3.2, we resolve the case in which all bad edges have
Λ-essential vertices as both their endpoints. It is in this case that the graphs in
Figure 3.3 arise.

We begin with Lemma 3.3, which puts restrictions on the type of bad edges one
could see in a shortest K3,3 subdivision with a given number of bad edges.

Lemma 3.3. Let Γ be a triangle-free graph containing a K3,3 subdivision Λ. If Λ
is shortest among all K3,3 subdivisions with at most B(Λ) bad edges, then Λ has no
bad edges of the following types:

(1) Bad edges with both endpoints on a single branch of Λ.
(2) Bad edges connecting non-Λ-essential vertices on adjacent branches.

Proof. Item (1) is obvious. For (2), suppose Λ has an edge connecting non-Λ-
essential vertices v and w on two adjacent branches, say [a, x] and [a, y] (see Fig-
ure 3.4). Since Γ is triangle-free, the path from a to one of these vertices, say w,
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must be subdivided. Then there is a shorter K3,3 subdivision with at most B(Λ)
bad edges (having vertex partition {x, y, z} and {v, b, c}) as shown in Figure 3.4.
This is a contradiction. �

a

b

c

x

y

z

v

w

Figure 3.4. Consider the K3,3 subdivision shown, with Λ-
essential vertex sets {x, y, z} and {v, b, c}. It is shorter than Λ
and each of its bad edges is already a bad edge of Λ.

The next step is to begin doubling over Λ-non-essential vertices, and to find
K3,3 subdivisions with fewer bad edges in the double. We now know that bad
edges between two Λ-non-essential vertices must go between two disjoint branches.
Lemma 3.4 gives a useful consequence of the existence of such a bad edge. This
will be used in Lemma 3.5, where we find a K3,3 subdivision in the double over an
endpoint of such an edge.

Lemma 3.4. Let Γ be a triangle-free graph, and let Λ be shortest among all K3,3

subdivisions with at most B(Λ) bad edges. Suppose there is a bad edge connecting
non-Λ-essential vertices on disjoint branches α and β of Λ. Then the unique branch
of Λ disjoint from α and β is an edge.

Proof. Assume without loss of generality that there is an edge connecting non-Λ-
essential vertices v and w on branches [a, x] and [c, z] respectively. If [b, y], the
unique branch of Λ disjoint from [a, x] and [c, z], is not an edge, then one obtains
a shorter K3,3 subdivision with at most B(Λ) bad edges, (having vertex partition
{v, c, z} and {w, a, x}) as shown in Figure 3.5. �

x a

yb

z c

v

w

Figure 3.5. The K3,3 subdivision shown, with Λ-essential vertex
sets {v, c, z} and {w, a, x}, has at most B(Λ) bad edges. It is
shorter than Λ unless [b, y] is an edge.

The next two lemmas deal with finding K3,3 subdivisions in doubles DvΓ, where
v is a Λ-non-essential vertex which is the endpoint of a bad edge. Lemma 3.5 gives
a criterion on v which guarantees that DvΓ has a K3,3 subdivision with fewer bad
edges. This will be used in Lemma 3.6.
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Lemma 3.5. Let Γ be a triangle-free graph, and let Λ be shortest among all K3,3

subdivisions with at most B(Λ) bad edges. Let v be a non-Λ-essential vertex on a
branch α of Λ such that v is an endpoint of a bad edge. If there is a branch β which
is disjoint from α such that β does not intersect the link of v, then there exists a
K3,3 subdivision Λ′ ⊆ Dv(Λ) with B(Λ′) < B(Λ).

Proof. Assume without loss of generality that α = [a, x] and that β = [c, z] is
disjoint from the link of v. See Figure 3.6. We know by Lemma 3.3(2) that the
interiors of the branches [a, z] and [x, c] are disjoint from the link of v, and by
Lemma 3.3(1) that the link of v intersects [a, x] in exactly two vertices, u and w,
with u possibly equal to a and w possibly equal to x. It follows that the path

x a

yb

z c

w v u

α

β

δ

Figure 3.6. The link of v consists of u, w and possibly some
vertices in [z, b] ∪ [b, y] ∪ [y, c]. The path δ is shown in red.

δ from u to w which consists of the concatenation of [u, a], [a, z], [z, c], [c, x], [x,w]
intersects the link of v only in u and w.

Now let Γ̄ and Γ̄′ be two copies of Γ with the open star of v removed. The double
DvΓ is formed by identifying Γ̄ and Γ̄′ along the copy of the link of v in each. Define
Λ̄ ⊆ Γ̄ to be the copy of Λ minus the open star of v in Γ̄, and note that Λ̄ would
be a K3,3 subdivision if we added a path between u and w which is disjoint from
Λ̄. There is a copy of the path δ constructed above in Γ′, which intersects Γ̄ (and
hence Λ̄) only at u and w. Let γ be the shortest path in Γ̄′ between u and w which
which intersects Γ̄ only at u and w. Form Λ′ by identifying Λ̄ and γ along {u,w}.
(This is shown in Figure 3.7 in the case γ = δ.) Then Λ′ is a K3,3 subdivision in
DvΓ.

Λ1 ⊆ Γ1 Λ2 ⊆ Γ2

x w u a x′ w u a′

yb

z c z′ c′

γ

Figure 3.7. The two graphs shown are identified along Lk(v) in
DvΓ. In particular, they are identified along u and w, and possibly
some additional vertices on [z, b] ∪ [b, y] ∪ [y, c]. The red graph on
the left is Λ̄. The red path shown on the right is γ, in the case that
γ = δ. The choice of γ ensures that no vertex on it is identified
with a vertex in Γ̄.
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If e is a bad edge of Λ′, our choice of γ implies that the endpoints of e are in Γ̄.
Thus there is a bad edge of Λ in Γ that corresponds to e. On the other hand, there
is at least one bad edge of Λ incident to v, for which there is no corresponding bad
edge of Λ′. Thus B(Λ′) < B(Λ). �

The following lemma shows that if v is Λ-non-essential and is the endpoint of
a bad edge of Λ, then DvΓ does contain a K3,3 subdivision with fewer bad edges
than Λ, except possibly in one particular situation. (This situation is specified in
conditions (1) and (2) of the lemma).

Lemma 3.6. Let Γ be a triangle-free graph, and let Λ be shortest among all K3,3

subdivisions with at most B(Λ) bad edges. Let v be a non-Λ-essential vertex on a
branch α of Λ such that v is an endpoint of a bad edge. Then either there exists a
K3,3 subdivision Λ′ ⊆ Dv(Λ) with B(Λ′) < B(Λ) or both of the following statements
hold. (See Figure 3.8.)

(1) The vertex v is adjacent to exactly one Λ-essential vertex s of Λ which is
not an endpoint of α, and to at least one non-Λ-essential vertex on each of
the two branches that are disjoint from both α and s.

(2) The branch α consists of exactly the two edges incident to v.

x v a

s = b y

u

cwz

α

Figure 3.8. This illustrates the configuration from Lemma 3.6
in the case that v lies on [a, x], and v is adjacent to b. Then the
lemma says that v must be adjacent to at least one vertex on each
of [c, y] and [c, z], and that [v, x] and [v, a] are edges.

Proof. Without loss of generality, assume v lies on α = [a, x]. First we consider the
case that v is not adjacent to any of the Λ essential vertices b, c, y, or z. In this case
we show that DvΓ contains a K3,3 subdivision Λ′ ⊆ Dv(Λ) with B(Λ′) < B(Λ). By
hypothesis, there is a bad edge incident to v, and by Lemma 3.3, its other endpoint
has to be on a branch disjoint from α, say (without loss of generality) [c, z]. Then
by Lemma 3.4, the branch [b, y] is an edge. Since by assumption v is not adjacent
to b or y, we may apply Lemma 3.5 with β = [b, y], to conclude that there exists a
K3,3 subdivision Λ′ ⊆ Dv(Λ) with B(Λ′) < B(Λ).

Thus we may assume that v is adjacent to at least one of b, c, y, and z. Now we
analyze a few cases. If v is adjacent to both b and c, then one obtains a shorter
K3,3 subdivision with at most B(Λ) bad edges, as shown on the left in Figure 3.9,
which is a contradiction, since Λ was chosen to be shortest. Thus v is adjacent to
at most one of b and c, and similarly, v is adjacent to at most one of y and z.

Suppose v is adjacent to exactly one from each pair, say b and y. Then since Γ is
triangle-free, [b, y] is not an edge. Applying Lemma 3.4, we conclude that v is not
adjacent to any vertex in [c, z]. Then by Lemma 3.5, with β = [c, z], there exists a
K3,3 subdivision Λ′ ⊆ Dv(Λ) with B(Λ′) < B(Λ).
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x v a

b y

cz

x v a

b y

u

cwz

Figure 3.9. If v is connected to both b and c, then one obtains
the red graph on the left. It is shorter than Λ and has at most
B(Λ) bad edges. If v is adjacent to b, w, and u as shown, and if
one of [a, v] and [v, x] is not an edge, then the red graph on the
right is shorter than Λ and has at most B(Λ) bad edges.

We are left with the case that v is adjacent (via a bad edge) to exactly one
Λ-essential vertex, say b. As before, if Lk(v) fails to intersect one of the branches
[c, y] and [c, z], then applying Lemma 3.5, we would find the desired Λ′ in DvΓ.
If not, then v is adjacent to non-Λ-essential vertices u and w on [y, c] and [z, c]
respectively, i.e. condition (1) in the statement of the lemma holds. Finally, if we
have the configuration in (1), but one of [x, v] and [a, v] is not an edge, we get a
shorter K3,3 subdivision as shown on the right in Figure 3.9. The above reasoning
shows that either DvΓ contains a K3,3 subdivision Λ′ ⊆ Dv(Λ) with B(Λ′) < B(Λ)
or (1) and (2) both hold simultaneously. �

Using the Lemma 3.6, we can keep doubling over Λ-non-essential vertices and
finding K3,3 subdivisions with fewer bad edges until we either run out of Λ-non-
essential vertices which are endpoints of bad edges, or get to the point where every
such Λ-non-essential vertex has the configuration in Figure 3.8. In particular, by
applying Lemma 3.6 to w and u (from Figure 3.8) we obtain strong restrictions on
the graph, which enable us to find an induced K3,3 subdivision. Finally, we show
that when all of the bad edges have Λ-essential vertex endpoints, then either the
graph is one of the graphs in Figure 3.3 or some double contains a K3,3 subdivision
with fewer bad edges. This is all put together in the following proof.

Proof of Proposition 3.2. Choose a K3,3 subdivision Λ ⊆ Γ such that Λ is shortest
among all K3,3 subdivisions with at most B(Λ) bad edges.

Claim: If Λ is not induced, one of the following holds:
(i) Λ induces one of the graphs in Figure 3.3.
(ii) For some vertex v, the double DvΓ contains a K3,3 subdivision Λ′ such that

B(Λ′) < B(Λ).
Before proving the claim, we explain why it is sufficient to complete the proof.

Given a K3,3 subdivision Λ, if it is induced or if (i) holds, i.e. if it induces one of the
graphs in Figure 3.3, then we are done. Otherwise, (ii) holds. We take Λ2 to be the
shortest K3,3 subdivision in Γ2 = DvΓ with at most B(Λ′) bad edges, where DvΓ
and Λ′ are provided by (ii), and we repeat the argument with Λ2 and Γ2 instead
of Λ and Γ. After finitely many steps we arrive at a pair Λn ⊆ Γn which either
satisfies (i) or such that B(Λn) = 0, which means Λn is induced. This proves the
proposition.



RIGHT-ANGLED COXETER GROUPS WITH NON-PLANAR BOUNDARY 17

Proof of the claim: By Lemma 3.3, Λ has no bad edges between any pair of ver-
tices that lie on a single branch, or any pair of Λ-non-essential vertices on adjacent
branches.

Case 1. Non-essential vertex on a bad edge. Suppose there exists a Λ-
non-essential vertex v, say on the branch [a, x], which is the endpoint of a bad edge.
Then by Lemma 3.6, either (ii) in the claim above holds (in which case we are done)
or we may assume that Λ has the configuration specified by conditions (1) and (2)
of Lemma 3.6. In the latter case, [v, a] and [v, x] are edges and we can assume, by
re-labeling if necessary, that the edges incident to v guaranteed by (1) are as shown
in Figure 3.8. In particular, v is adjacent to b, and to Λ-non-essential vertices w on
[c, z] and u on [c, y].

Now apply Lemma 3.6 to w. If DwΓ contains a K3,3 subdivision Λ′ such that
B(Λ′) < B(Λ), we are done. If not, we conclude (from Lemma 3.6(1)) that w is
adjacent to exactly one of a, b, x and y. (See the left side of Figure 3.10.) Since
Γ is triangle-free, and v is already adjacent to a, x, b and w, we see that w cannot
be adjacent to any of a, x, or b. Thus we conclude that w is adjacent to y. By
Lemma 3.6(1), there is a Λ-non-essential vertex t on [x, b] adjacent to w. Further-
more, [w, c] and [w, z] are edges by Lemma 3.6(2).

x v a

b y

u

cwz

t

x

c

v u

w t

Figure 3.10. The picture on the left shows the configuration ob-
tained after Lemma 3.6 has been applied to v and then to w. Blue
paths are edges.
After applying Lemma 3.6 to u, we have additional edges from u
to z and t. Then the resultant graph contains a K3,3 subdivision
as shown in the picture on the right.

Applying similar reasoning to u, we conclude (from Lemma 3.6(2)) that [c, u],
[u, y] are edges and (from Lemma 3.6(1)) that u is adjacent to z and to a Λ-non-
essential vertex t′ on the branch [x, b]. Finally, applying Lemma 3.6(2) to the vertex
t from the previous paragraph, we conclude that [t, x] and [b, t] are edges. It follows
that t = t′, so that u is adjacent to t.

Then Γ contains a K3,3 subdivision as shown on the right in Figure 3.10. All
the branches of this K3,3 subdivision are edges, except possibly [c, x]. If e is a bad
edge of this graph, then Lemma 3.3(1) together with the triangle-free condition
implies that e must connect one of t, u, v and w to a Λ-non-essential vertex on
[x, c]. However, since each of t, u, v, and w lies on a branch of Λ adjacent to [c, x],
Lemma 3.3(2) implies that there are no bad edges of this kind. Thus the K3,3

subdivision is induced. In particular, (ii) of the claim holds. This completes the
proof of the claim in the case that there is at least one non-Λ-essential vertex of Λ
which is the endpoint of a bad edge.
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Case 2. Every bad edge has essential vertices. It remains to consider the
case that all endpoints of bad edges are Λ-essential. Lemma 3.3 (1) implies that any
bad edge has its both its endpoints in {x, y, z} or both in {a, b, c}. Moreover, since
Γ is triangle-free, for each of these sets, there can be at most two edges connecting
pairs of vertices in the set.

First consider the case when one of the sides has exactly one edge (and the other
side has zero, one or two edges). Assume without loss of generality, that there is
a bad edge between x and y, but none between either of these and z. Then DxΓ
contains a K3,3 subdivision Λ′ such that B(Λ′) < B(Λ). If there are no bad edges
with endpoints among a′, b′, c′, then the required K3,3 subdivision is as shown in
Figure 3.11, and is induced. If there are such bad edges, then in particular, these
bad edges have endpoints between non-essential vertices of adjacent branches of the
K3,3 subdivision in Figure 3.11, and they can be eliminated using the procedure
in the proof of Lemma 3.3 (2). Then the resulting graph only has bad edges with
endpoints among a, b, c, but we have eliminated the bad edge between x and y. So
the resulting graph has fewer bad edges.

a a′

y b y b′

z c z′ c′

Figure 3.11. This illustrates the induced K3,3 subdivision in
DxΓ, when Λ a bad edge between x and y, and no other bad
edges.

Finally, we are left with the case that one of the sides has two edges (say there
are edges between x and y, and between y and z) and the other side has zero or
two bad edges. If the other side has zero bad edges, we have the graph on the left
in Figure 3.3. Otherwise assume without loss of generality that [a, b] and [b, c] are
the two edges on the other side. Now suppose that one of [x, b], [z, b], [a, y], and

a x

b y

c z

Figure 3.12. If one of [x, b], [z, b], [a, y], [c, y] is not an edge, then
the red K3,3 subdivision is shorter than Λ and has at most B(Λ)
bad edges.

[c, y] is not an edge. Then we obtain a shorter K3,3 subdivision with at most B(Λ)
bad edges, as shown in Figure 3.12, establishing (ii) of the claim. Otherwise, all
of [x, b], [z, b], [a, y], and [c, y] are edges, and we obtain the graph on the right in
Figure 3.3. �



RIGHT-ANGLED COXETER GROUPS WITH NON-PLANAR BOUNDARY 19

4. Boundaries of right-angled Coxeter groups defined by non-planar
graphs.

In this section we prove Theorem 1.2. That is, we show that if Γ is a non-planar
triangle-free graph, then either ∂XΓ is non-planar for any CAT(0) spaceX on which
WΓ acts geometrically, orWΓ contains a finite index subgroup whose defining graph
contains an induced copy of the graph in Figure 1.2. We will show below that the
graph theoretic results of the previous section together with the doubling lemma
(Lemma 2.5) can be used to reduce this to proving the following two propositions.

Proposition 4.1. If ∆ is a K3,3 subdivision and W∆ acts geometrically on a
CAT(0) space X∆, then ∂X∆ is non-planar.

Proposition 4.2. Let ∆ be the graph on the right side in Figure 3.3, subdivided
enough so that it is triangle-free, and suppose that W∆ acts geometrically on the
CAT(0) space X∆. Then ∂X∆ is non-planar.

Before we prove the above propositions, we indicate how to use them to deduce
Theorem 1.2.

Proof of Theorem 1.2. Let Γ be a triangle-free non-planar graph. Then Kura-
towski’s Theorem says that Γ contains a (not necessarily induced) K3,3 or K5

subdivision. If Γ contains a K5 subdivision, then Lemma 3.1 says that Γ1 contains
a (not-necessarily induced) K3,3 subdivision, where Γ1 is either Γ itself, or the
double of Γ over some vertex. Now we apply Proposition 3.2 to Γ1. We conclude
that there is a graph Γ2 which is obtained from Γ1 by a finite sequence of doubling
moves, and an induced subgraph ∆ of Γ2, such that ∆ is either a K3,3 subdivision
or one of the two graphs in Figure 3.3. Lemma 2.5 implies thatWΓ2

is a finite-index
subgroup of WΓ.

Now if ∆ is either a K3,3 subdivision or the graph on the right in Figure 3.3,
then Propositions 4.1 and 4.2 say that every boundary of W∆ is non-planar. The
group W∆ is a special subgroup of WΓ2

, and therefore every boundary of WΓ2

is non-planar. Now suppose that WΓ acts geometrically on a CAT(0) space XΓ.
Then since WΓ2

is a finite index subgroup of WΓ, WΓ2
also acts geometrically on

XΓ. Therefore the boundary of XΓ is non-planar.
On the other hand, if ∆ is the graph on the left in Figure 3.3 (which is the same

as the graph in Figure 1.2), then we have produced a finite-index subgroup of WΓ,
namely WΓ2

, whose defining graph Γ2 contains an induced copy of the graph in
Figure 1.2. �

We now prove Propositions 4.1 and 4.2. We begin with a lemma about the
boundaries of Θ-graph subdivisions. (By a Θ-graph we mean a graph with two
essential vertices and three distinct edges between the essential vertices.) Recall
that a branch in a graph is an embedded path between essential vertices of the
graph. It contains its endpoints, but does not contain any other essential vertices.

Lemma 4.3. Let Λ be a Θ-graph subdivision such that each branch has length at
least 2, and at least one of the branches has length at least three. (See Figure 4.1.)
If XΛ is a CAT(0) space on which WΛ acts geometrically, then ∂XΛ contains an
embedded Θ-graph.
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We remark that the conclusion is true even without the condition that at least
one branch has length at least three, but the above lemma is sufficient for our
purposes.

a

b

zyx

α1

α2

α3

β1

β2

β3

Figure 4.1. A Θ-graph subdivision with each branch of length at
least two, and at least one branch of length at least 3.

Proof. Assume that Λ has essential vertices a and b, and non-essential vertices x, y,
and z as shown in Figure 4.1. Let α1, α2, and α3 be the paths from a to x, y,
and z, respectively. Define β1, β2, β3 analogously with the βi incident to b. The
hypotheses imply that at least one of these paths is subdivided, so we may assume
α1 is subdivided.

Let D2 and D3 be the cycles given by (β1, α1, α2, β2) and (β1, α1, α3, β3) respec-
tively, and let G2 and G3 be the corresponding special subgroups. Consider the
quasi-isometry (coming from the orbit map) between XΛ and the Davis complex
ΣΛ. Let X2 denote the image of ΣG2

under this quasi-isometry based at the image
of the identity vertex. Note that X2 is quasi-convex. Define X3 analogously. We
we will use the cycles D2 and D3 to find a theta graph in ∂XΛ.

Now D2 and D3 are cycles of length at least 5, so G2 and G3 are hyperbolic
reflection groups acting geometrically on H2. Thus ∂X2

∼= ∂X3
∼= S1. Since D2 and

D3 intersect in a path of length at least three, the corresponding special subgroup
is virtually free and its boundary, which is equal to ∂X2∩∂X3, is homeomorphic to
either two points or a Cantor set, see Section 2.2. Furthermore,

{
(ab)∞, (ba)∞

}
⊂

∂X2 ∩ ∂X3, and this set separates each of ∂X2 and ∂X3 into two components, as
shown in Figure 4.2.

We now explicitly find a Θ-graph in ∂XΛ with essential vertices (ab)∞ and (ba)∞.
Let Z be the subset of ∂X3 represented by Cayley graph geodesic rays whose first
letter is the label of a vertex on the branch α3 ∪ β3. Note that Z is the arc of
∂X3 which intersects ∂X2 ∩ ∂X3 (and hence ∂X2) only at its endpoints (ab)∞ and
(ba)∞. Then ∂X3 ∪ Z is an embedded Θ-graph in ∂XΛ. �

We now prove Proposition 4.1. In the proof we will use the embedded Θ-graph
in ∂XΓ that we constructed in the previous lemma.

Proof of Proposition 4.1. Let ∆ be a K3,3 subdivision with essential vertex sets
{a, b, c} and {x, y, z}. Let α1, α2, α3, be the branches from a to x, y, and z, respec-
tively. Define β1, β2, β3 and γ1, γ2, γ3 analogously with the βi incident to b, and the
γi incident to c. (See Figure 4.3.)

If ∆ is graph-isomorphic to K3,3 (i.e. if it is the trivial K3,3 subdivision) then
∂X∆ is the join of two Cantor sets, and is therefore non-planar. Thus we may
assume that at least one branch, say α1, of ∆ is subdivided.
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(ba)∞

(ab)∞

∂X2
∂X3

Z

Figure 4.2. The figure shows ∂X2 in grey and ∂X3 in black. The
intersection ∂X2 ∩ ∂X3 is a Cantor set. The set

{
(ab)∞, (ba)∞

}
separates the grey and black circles into two components each.
The embedded Θ-graph constructed in the proof consists of the
grey circle together with the arc labeled Z.

a

b

c

zyx

α1

α2

α3

β1

β2

β3

γ1 γ2

γ3

Figure 4.3. A K3,3 subdivision in which at least one branch is
subdivided.

Observe that the union of the αi and the βi is precisely the Θ-graph subdivision
Λ from Lemma 4.3. (See Figure 4.1.) Retaining the notation of Lemma 4.3, we see
that ∂X2 ∪Z is an embedded Θ-graph in ∂X∆. To complete the proof we will find
another half of a Θ-graph which intersects ∂X2 ∪ Z in exactly three points. (See
Figure 4.4.)

(ba)∞

(ab)∞

(xy)∞ (yx)∞ (zx)∞

(ca)∞

Z∂X2∂X2

A B

Figure 4.4. An embedded K3,3 in ∂X∆
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Let D′2 and D′3 be the cycles given by (γ1, α1, α2, γ2) and (γ1, α1, α3, γ3), re-
spectively. Define X ′2 and X ′3 to be the quasiconvex subspaces of X∆ corre-
sponding to the special subgroups generated by D′2 and D′3. Following the ar-
gument of Lemma 4.3 above with the cycles D2 and D′2, we see that ∂X2 and
∂X ′2 intersect in a Cantor set, and that there is a closed arc A of ∂X ′2 such that
A ∩ ∂X2 =

{
(xy)∞, (yx)∞

}
. The interior of A contains the point (ca)∞ and is

disjoint from ∂X2.
Similarly considering the cycles D3 and D′3, we conclude that ∂X3 ∩ ∂X ′3 is a

Cantor set, and that there exists closed arc C in ∂X ′3 which intersects ∂X3 in{
(xz∞), (zx)∞

}
and whose interior contains (ca)∞. Define B to be the subarc of C

which connects (ca)∞ to (zx)∞. Notice that since z is the label of the initial edge
in the Cayley graph geodesic for the ray (zx)∞ we have that (zx)∞ ∈ Z. Moreover,
points of B are represented by Cayley graph geodesic rays whose first letter is a
label of a vertex on γ3, see Lemma 2.1, and therefore B intersects ∂X2 ∪ Z ∪ A
exactly in the two points (ca)∞ and (zx)∞. Thus ∂X2 ∪Z ∪A∪C is an embedded
K3,3 in ∂X∆, as shown in Figure 4.4. �

Next, we prove Proposition 4.2 by showing that if ∆ is the graph on the right in
Figure 3.3, then ∂X∆ is non-planar. Figure 4.5 below reproduces this graph, and
also shows an alternate view of it. Note that in our application (Theorem 1.2), this
graph is an induced subgraph of a triangle-free graph, which forces all of the black
edges in the figure to be subdivided.

a

b

c z

y

x

a

b

c z

y

x

Figure 4.5. The figure shows two different views of the graph
being considered in Proposition 4.2. The blue branches are edges.
The black branches are necessarily subdivided.

Proof of Proposition 4.2. Let x, y, z, a, b, and c be the essential vertices of ∆, as
shown in Figure 4.5. We now define four cycles of ∆ as follows: D1 = (x, c, z, a),
D2 = (x, b, z, y), D3 = (c, b, a, y), and D4 = (b, z, y). Note that the branch [b, y] of
D4 is subdivided by hypothesis.

For 1 ≤ i ≤ 4, let Xi be the quasi-isometrically embedded copy of the Davis com-
plex of the special subgroup generated by Di which is based at the image identity
vertex in X∆. For each i, the cycle Di has length at least 4, so the corresponding
special subgroup is virtually a surface group, and ∂Xi

∼= S1. The intersections of
these circles are shown on the left in Figure 4.6. It follows that ∂XΓ contains an
embedded K3,3 as shown on the right in Figure 4.6. �

5. The case of the bad graph

In this section we deal with the case that our defining graph contains an induced
copy of the graph Π (which is subdivided along some of the black edges). As
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(by)∞

(ca)∞

(zx)∞(xz)∞

(ac)∞

(yb)∞

∂X1

∂X2

∂X3 ∂X4

(by)∞

(ca)∞

(zx)∞(xz)∞

(ac)∞

(yb)∞

Figure 4.6. The picture on the left shows the pairwise intersec-
tions of the circles ∂X1, ∂X2, ∂X3, and ∂X4. The picture on the
right shows an embedded K3,3 in ∂X1 ∪ ∂X2 ∪ ∂X3 ∪ ∂X4 ⊂ ∂XΓ.

discussed in the introduction, WΠ has a planar boundary. However, we will show
in this section that the action of the group WΠ on any CAT(0) boundary for WΠ

does not extend to the plane. Therefore, when Π is embedded in a graph Γ and
WΓ acts geometrically on a CAT(0) space X such that ∂X is connected, locally
connected, and without local cut points, then ∂X cannot be planar.

Theorem 5.1. Let Π be the graph in Figure 1.2, with the non-blue edges subdivided
so that Π does not contain triangles. Let WΠ be the corresponding right-angled
Coxeter group, and ∂XΠ be the boundary of any proper CAT(0) space that WΠ acts
upon geometrically. Then:
(a) ∂XΠ contains an embedded copy of the graph in Figure 5.2.
(b) The copies of the circles A, B, and C shown in Figure 5.2 are invariant under

the induced action of y on ∂XΠ.
(c) For any embedding of ∂XΠ in S2, the induced action of WΠ on ∂XΠ by home-

omorphisms does not extend to S2.

The proof of Theorem 5.1 is delayed until the end of the section. First we discuss
two corollaries. Recall that a topological space is planar if it embeds in S2.

Corollary 5.2. Let Γ be a triangle-free finite simplicial graph which contains an
induced copy of Π (with non-blue edges possibly subdivided). Suppose that ∂XΓ is
connected, locally connected, and has no local cut points. Then ∂XΓ is not planar.

Proof of Corollary 5.2 from Theorem 5.1. First, we claim that if ∂XΓ satisfies all
the hypotheses and is planar, then ∂XΓ is a Sierpinski carpet. Indeed, the Sierpinski
carpet is the unique 1-dimensional topological space which is compact, connected,
locally connected, planar, and has no cut points or local cut points [31]. Our
assumption of triangle-free ensures that the boundary is 1-dimensional by a the-
orem of Bestvina–Mess [1, 4]. Since ∂XΓ is compact, and has no cut points [26,
Theorem 1], this proves the claim.

Now suppose that ∂XΓ is a Sierpinski carpet S and Γ contains an induced copy
of the bad graph Π. Then since WΠ is a special subgroup of WΓ, the action of WΠ

on ∂XΠ ⊂ ∂XΓ extends to an action by homeomorphisms on the Sierpinski carpet.
Every homeomorphism of the Sierpinski carpet preserves the set of non-separating
circles. Let S ∼= S2 \

⋃
iDi, where {Di} is a dense null family of open round discs
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Di in S2 such that D̄i ∩ D̄j = ∅ if i 6= j. Then the non-separating circles in S
are exactly the boundaries of the Di. Thus every homeomorphism of S extends to
S2, so the action of WΠ on ∂WΓ extends to an action on S2. But this contradicts
Theorem 5.1, so ∂XΓ must be non-planar. �

We can now put the pieces together to prove Theorem 1.3, which we re-state for
the convenience of the reader.

Theorem 1.3 Let Γ be a triangle-free inseparable graph and let XΓ be a CAT(0)
space on which WΓ acts geometrically. If Γ is non-planar and ∂XΓ is locally con-
nected and contains no local cut points, then ∂XΓ is non-planar.

Proof. Suppose that Γ has no triangles and is non-planar. Then by Theorem 1.2
either ∂XΓ is non-planar, or WΓ contains a finite index subgroup WΛ such that Λ
contains an induced copy of Π. Then since Γ is inseparable, WΓ is one-ended. Thus
∂XΓ (∼= ∂XΛ) is connected. By hypothesis it is locally connected and has no local
cut points. Therefore, by Corollary 5.2, ∂XΓ is non-planar. �

Corollary 5.3. Suppose Γ is triangle-free and inseparable such that WΓ is either
hyperbolic or CAT(0) with isolated flats. Suppose further that Γ contains an induced
(with non-blue edges possibly subdivided) copy of the bad graph Π below in Figure 5.1.
Then ∂XΓ is the Menger curve, where XΓ is any proper CAT(0) that WΓ acts on
geometrically.

Proof of Corollary 5.3. By a theorem of Bestvina–Mess [1, 4], the boundary ∂XΓ is
1-dimensional since Γ is triangle-free. AsWΓ is one-ended, ∂XΓ is connected. IfWΓ

is hyperbolic, then the assumption that Γ is inseparable (so in particular WΓ does
not split over any two-ended group) implies that ∂XΓ does not contain any local cut
points by a result of Bowditch [6]. When WΓ has isolated flats the analogous result
is due to Haulmark [18]. In both cases, ∂XΓ is locally connected; this follows by
Bestvina–Mess [4] or Bowditch [6] in the hyperbolic case and by Hruska–Ruane [21]
in the CAT(0) with isolated flats case. Therefore, all the hypotheses of Corollary 5.2
are satisfied, and the boundary is non-planar. Thus it must be a Menger curve [22,
18]. �

Proof of Theorem 5.1. Note that the boundary of XΠ is possibly planar; the double
over y of Π is a planar graph, see Lemma 2.5. The point of the proof is that the
action of y on any boundary ofWΠ is non-planar. Consider the graph Π in Figure 5.1
below. The black edges may be subdivided; the two edges connecting x to y and y
to z are not. We will also assume that our defining graph has no triangles, which
will force some of the edges to be subdivided.

x a

yb

z c

Figure 5.1. This is the bad graph Π.
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We now define three cycles in Π as follows: A = (x, a, y), B = (x, b, y), and
C = (x, c, y), where these denote the cycles defined by the branches traversing
these essential vertices (and back to the initial essential vertex).

The associated special subgroups WA, WB , and WC , intersect only in the finite
subgroup generated by x and y. Since every boundary of a CAT(0) space X that a
virtual surface group acts upon is S1, we denote their boundaries using ∂WA, etc.
It follows that their boundaries ∂WA, ∂WB , and ∂WC are disjoint circles, each of
which is invariant by the action of y. By slight abuse of notation, we label these
boundary circles in Figure 5.2 below by A, B, and C respectively.

A B C

(xz)∞

(zx)∞

Figure 5.2. This figure is planar but the action of y is non-planar

Furthermore, the two fixed points of the action of y in each circle are the end-
points of the loxodromic generated by the two vertices adjacent to y. For example,
if the branch [y, a] of Π is not subdivided this is the limit set of the loxodromic
element xa. Notice that the two points on the boundary ∂XΠ associated to the
sequences (xz)∞ and and (zx)∞ are also fixed by the action of y, since both x and
z commute with y.

We wish to construct an embedded copy of Figure 5.2 in ∂XΠ. Throughout we
will implicitly use Lemma 2.1. Consider the following two cases:

• xa is a loxodromic. In this case, use the cycle in Π defined by (x, a, z, b). The
induced special subgroup is virtually a surface group and so the boundary
of this special subgroup is a circle. This circle intersects the circle A in
the boundary of the subgroup defined by the branch [x, a]. The endpoint
associated to the sequence (xa)∞ can be connected to the endpoint of the
sequence (xz)∞ using the arc in this circle which avoids the boundary of
the subgroup associated to the branch [x, a]. Note that the endpoints of
the loxodromic element xz separate the endpoints of xa from the endpoints
of xb, when xb is loxodromic. This follows from the order of the elements
around A.

• xa is not loxodromic. In this case ya is loxodromic. In this case we will
use the cycle in Π defined by (x, a, z, y). Then we can connect the elements
(xz)∞ and (ya)∞ by an arc on this circle.

We do this for each of A, B, and C using the analogously defined circles. If xb
is loxodromic, use the cycle in Π defined by (x, a, z, b), and using the other side
from above, connect (xa)∞ to the endpoint of the sequence (xz)∞. If xb is not
loxodromic, use (x, b, z, y), connecting (xz)∞ to the endpoints of (yb)∞. Similarly,
if xc is loxodromic, we use the cycle in Π defined by (x, a, z, c). The endpoints
of xc are separated from the endpoints of xa by the endpoints of xz. If xc is not
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loxodromic, we use the cycle (x, c, z, y), connecting (xz)∞ to (yc)∞. Moving by
the action of x takes the arcs connecting the endpoint of the ray (xz)∞ to arcs
connecting the endpoints of the rays (zx)∞ and another point on the the circles
A, B and C. Therefore, in either case, we have a copy of the Figure 5.2 in any
CAT(0) boundary of WΠ, and hence in the boundary ∂XΓ, since Π is assumed to
be an induced subgraph of Γ. This proves (a) in the statement of Theorem 5.1.

Now we claim that the action of the group element y acting on Figure 5.2 does
not extend to the plane. Up to relabelling, any embedding of Figure 5.2 can be
moved via a homeomorphism of the pair (S2,Figure 5.2) to the embedding given.
The circles A, B and C are all invariant under the action of y, as are the boundary
points (xz)∞ and (zx)∞. The arcs connecting the points (xz)∞ and (zx)∞ to the
circles A, B, and C are not invariant, nor are the points where the arcs meet the
circles unless x and a are both adjacent to y in the graph Π, and the same for B
and C. Assuming that ∂XΓ is planar, y sends Figure 5.2 to a homeomorphic copy
where the circles A, B and C have been flipped and the boundary points (xz)∞

and (zx)∞ are fixed. Each of the arcs connecting the points to the circles go to
arcs connecting the same points to the same circles. Consider the components of
S2 \ Figure 5.2. The component containing the point at infinity must go to the
bounded component between A and B, since the circle A is flipped. It must also
go to the component between B and C, since the circle C is flipped. This is a
contradiction so the action does not extend to the plane. This proves that the
boundary ∂XΓ is not planar. �
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