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Abstract
In this paper, we determine the number of general points through which a Brill–Noether curve of fixed degree and
genus in any projective space can be passed.
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1. Introduction

The interpolation problem has occupied a central position in mathematics for several millennia. Roughly
speaking, it asks:
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Question. When can a curve of a given type be drawn through a given collection of points?

The first results on the interpolation problem date to classical antiquity. Two such results appear in
Euclid’s Elements (circa 300 B.C.): A line can be drawn through any two distinct points in the plane (the
first postulate), and a circle can be drawn through any three noncollinear points in the plane (Proposition
5 of Book IV).

The study of the interpolation problem in antiquity culminated in the work of Pappus (circa 340 A.D.),
who showed in his Collection that a conic section can be drawn through any five points in the plane
(Proposition 14 of Book VIII).

The introduction of algebraic techniques to geometry enabled a second wave of results in the 18th
century, and cast the interpolation problem firmly in the then-emerging field of algebraic geometry. For
example, Cramer generalized Pappus’s result to plane curves of arbitrary degree n, which he showed
can pass through 𝑛(𝑛 + 3)/2 general points in 1750 [11]. Then Waring solved the interpolation problem
for graphs of polynomial functions in 1779 [32]. (Lagrange independently rediscovered this result in
1795 [21] and thus it is often known as the ‘Lagrange interpolation formula’.) Cauchy [6], Hermite
and Borchardt [19] and Birkhoff [5], all subsequently generalized Waring’s result in several different
directions. These results are of interest far outside algebraic geometry and even outside of mathematics.
For example, they play essential roles in the Newton–Cotes method for numerical integration, in Shamir’s
cryptographic secret sharing protocol [28], and in Reed–Solomon error-correcting codes [26] (which
currently power most digital storage media).

The key prerequisite to the modern study of the interpolation problem was the development of Brill–
Noether theory in the 20th century, which studies maps from general curves to projective space, and
thus identifies the most natural class of curves for which to study the interpolation problem. Namely, let
C be a general curve of genus g. From our perspective here, the two key facts are:

1. There exists a nondegenerate map 𝐶 → P𝑟 of degree d if and only if the quantity

𝜌(𝑑, 𝑔, 𝑟) := (𝑟 + 1)𝑑 − 𝑟𝑔 − 𝑟 (𝑟 + 1)

satisfies 𝜌 ≥ 0. [Proven in 1980 by Griffiths and Harris [17].]
2. In this case, the universal space of such maps has a unique component dominating 𝑀𝑔. [Proven in

the 1980s by Fulton and Lazarsfeld [15], Gieseker [16] and Eisenbud and Harris [12].]

We call stable maps 𝑓 : 𝐶 → P𝑟 corresponding to points in this unique component Brill–Noether curves
(BN-curves). (The general such curve is an embedding of a smooth curve for 𝑟 ≥ 3.) This language then
gives us a precise and natural formulation of the interpolation problem:

Question. Let 𝑑, 𝑔, 𝑟, 𝑛 be nonnegative integers with 𝜌(𝑑, 𝑔, 𝑟) ≥ 0. When can we pass a BN-curve of
degree d and genus g through n general points in P𝑟?

Equivalently, writing 𝑀◦
𝑔,𝑛 (P

𝑟 , 𝑑) for the component corresponding to BN-curves, this question is
asking when the evaluation map 𝑀◦

𝑔,𝑛 (P
𝑟 , 𝑑) → (P𝑟 )𝑛 is dominant. It is evidently necessary for:

𝑟𝑛 = dim(P𝑟 )𝑛 ≤ dim 𝑀◦
𝑔,𝑛 (P

𝑟 , 𝑑) = (𝑟 + 1)𝑑 − (𝑟 − 3) (𝑔 − 1) + 𝑛,

or upon rearrangement,

(𝑟 − 1)𝑛 ≤ (𝑟 + 1)𝑑 − (𝑟 − 3) (𝑔 − 1).
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Despite cases where this is not sufficient, it is a folklore conjecture that it usually suffices:

Conjecture 1.1. Let 𝑑, 𝑔, 𝑟, 𝑛 be nonnegative integers with 𝜌(𝑑, 𝑔, 𝑟) ≥ 0. Then there is a BN-curve of
degree d and genus g through n general points in P𝑟 if and only if

(𝑟 − 1)𝑛 ≤ (𝑟 + 1)𝑑 − (𝑟 − 3) (𝑔 − 1),

apart from finitely many exceptions.

This conjecture has been studied intensely in recent years. As in previous eras, this attention has been
motivated by both intrinsic interest, as well as by striking applications to a wide range of other interesting
geometric problems. Recent examples of such problems include smoothing curve singularities [30],
constructing moving curves in 𝑀𝑔 [3, 7], the first author’s resolution of Severi’s 1915 maximal rank
conjecture [22], as well as various generalizations thereof [4].

The easiest cases of this conjecture are when d is large relative to g and r, and such cases have
therefore been the focus of significant work. For example, Sacchiero proved Conjecture 1.1 for rational
curves in 1980 [27]; Ran later gave an independent proof in this case in 2007 [25]. Subsequently, the first
author, in joint work with Atanasov and Yang, proved Conjecture 1.1 when 𝑑 ≥ 𝑔 + 𝑟 in characteristic
zero [2]. Another case of interest is the proof of Conjecture 1.1 for canonical curves in characteristic
zero in a pair of papers by Stevens from 1989 and 1996 [29, 30]. Many authors have also considered this
conjecture in low dimensions. For example, Ellingsrud and Hirschowitz in 1984 [13], Perrin in 1987
[24] and later Atanasov in 2014 [3], all made significant progress on Conjecture 1.1 for space curves,
but their analysis left infinitely many cases unsolved. This effort culminated in the proof of Conjecture
1.1 for space curves in characteristic zero by the second author in 2018 [31], and for curves in P4 in
characteristic zero by both authors in 2021 [23].

Nevertheless, despite this significant interest, fundamental limitations of previous techniques have
prevented the resolution of Conjecture 1.1 in general and limited even partial results largely to charac-
teristic zero. Our main result gives the first comprehensive answer to the interpolation problem.

Theorem 1.2. Conjecture 1.1 holds in full generality and in any characteristic. More precisely: Let
𝑑, 𝑔, 𝑟, 𝑛 be nonnegative integers with 𝜌(𝑑, 𝑔, 𝑟) ≥ 0. There is a BN-curve of degree d and genus g
through n general points in P𝑟 if and only if

(𝑟 − 1)𝑛 ≤ (𝑟 + 1)𝑑 − (𝑟 − 3) (𝑔 − 1), (1.1)

except in the following four exceptional cases:

(𝑑, 𝑔, 𝑟) ∈ {(5, 2, 3), (6, 4, 3), (7, 2, 5), (10, 6, 5)}.

Since the normal bundle 𝑁𝐶 controls the deformation theory of C, Conjecture 1.1 is closely related
to a certain property, also known as interpolation, for 𝑁𝐶 .

Definition 1.3. A vector bundle E on a curve C satisfies interpolation if 𝐻1(𝐸) = 0, and for every 𝑛 > 0,
there exists an effective divisor D of degree n such that

𝐻0 (𝐸 (−𝐷)) = 0 or 𝐻1(𝐸 (−𝐷)) = 0. (1.2)

For C irreducible, Sym𝑛 𝐶 is also irreducible, so interpolation is equivalent to (1.2) for D general.

Given 𝑝1, . . . , 𝑝𝑛 ∈ 𝐶 ⊂ P𝑟 , a standard argument in deformation theory (see [24, Theorem 1.5])
implies that the evaluation map 𝑀◦

𝑔,𝑛 (P
𝑟 , 𝑑) → (P𝑟 )𝑛 is smooth at the point (𝐶, 𝑝1, . . . , 𝑝𝑛), and hence

dominant, if 𝐻1 (𝑁𝐶 (−𝑝1−· · ·−𝑝𝑛)) = 0. Since 𝜒(𝑁𝐶 (−𝑝1−· · ·−𝑝𝑛)) = (𝑟+1)𝑑−(𝑟−3) (𝑔−1)−(𝑟−1)𝑛,
we have 𝜒(𝑁𝐶 (−𝑝1 − · · · − 𝑝𝑛)) ≥ 0 precisely when equation (1.1) is satisfied. Therefore, interpolation
for 𝑁𝐶 implies that 𝐻1 (𝑁𝐶 (−𝑝1 − · · · − 𝑝𝑛)) = 0 when equation (1.1) is satisfied, which implies
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Conjecture 1.1. In fact, interpolation for 𝑁𝐶 is a slightly stronger condition, the essential differences
being:

1. It implies an analog of Conjecture 1.1 where the general points are replaced by general linear spaces:
There is a BN-curve of degree d and genus g incident to general linear spaces Λ𝑖 of dimension 𝜆𝑖 if
and only if ∑

(𝑟 − 1 − 𝜆𝑖) ≤ (𝑟 + 1)𝑑 − (𝑟 − 3) (𝑔 − 1). (1.3)

(This implication can be deduced from [3, Theorem 8.1], cf. the introduction to loc. cit.)
2. It implies that 𝑀◦

𝑔,𝑛 (P
𝑟 , 𝑑) → (P𝑟 )𝑛 is generically smooth, rather than merely dominant. (This is of

course equivalent in characteristic zero but is a stronger statement in positive characteristic.)

Theorem 1.2 is a consequence of our main theorem, which asserts:
Theorem 1.4. Let 𝑑, 𝑔, 𝑟 be nonnegative integers with 𝜌(𝑑, 𝑔, 𝑟) ≥ 0, and 𝐶 ⊂ P𝑟 be a general BN-curve
of degree d and genus g. Then 𝑁𝐶 satisfies interpolation if and only if neither of the following hold:

1. The tuple (𝑑, 𝑔, 𝑟) is one of the following five exceptions:

(𝑑, 𝑔, 𝑟) ∈ {(5, 2, 3), (6, 4, 3), (6, 2, 4), (7, 2, 5), (10, 6, 5)}. (1.4)

2. The characteristic is 2, and 𝑔 = 0, and 𝑑 � 1 mod 𝑟 − 1.

There are several exceptions in Theorem 1.4 that are not exceptions for Theorem 1.2:

1. The case (𝑑, 𝑔, 𝑟) = (6, 2, 4): Such curves have the expected behavior for passing through points, but
not for incidence to linear spaces of arbitrary dimension. More precisely, a naive dimension count
suggests that they can pass through nine general points and meet a general line, but this is not true.

2. The cases in characteristic 2: In these cases, the evaluation map 𝑀◦
𝑔,𝑛 (P

𝑟 , 𝑑) → (P𝑟 )𝑛 is dominant
but not generically smooth.

We discuss these two cases in more depth in Sections 2 and 9.
Our approach to Theorem 1.4 will be via degeneration to reducible curves 𝑋∪𝑌 . In general, although

the restrictions 𝑁𝑋∪𝑌 |𝑋 and 𝑁𝑋∪𝑌 |𝑌 admit nice descriptions, fitting these together to describe 𝑁𝑋∪𝑌 is
extremely challenging outside a handful of special cases. This fundamental obstacle has limited previous
attempts to study the interpolation problem. For example, the key innovation of [2] was an essentially
complete description of 𝑁𝑋∪𝑌 in the special case that Y was a one- or two-secant line. Considering only
such degenerations leads to two severe limitations:

1. Only nonspecial curves can be obtained by successively adding one- and two-secant lines.
2. Since the set of degenerations used is so limited, only a few types of elementary modifications to the

normal bundle appear. Because there are only a few types of modifications, it is difficult to produce
desired modifications by combining them, in a way reminiscent of the Frobenius coin problem.
Circumventing this difficulty requires additional tools that work only in characteristic zero.

Previous attempts to overcome these difficulties were limited to ad-hoc constructions in low-dimensional
projective spaces. The present paper introduces two key innovations:

1. We consider a third degeneration, where Y is an (𝑟+1)-secant rational curve of degree 𝑟−1 contained
in a hyperplane H, which allows us to obtain any BN-curve. Describing how 𝑁𝑋∪𝑌 |𝑋 and 𝑁𝑋∪𝑌 |𝑌 fit
together to give 𝑁𝑋∪𝑌 is intractable even in a degeneration of this complexity. Nevertheless, thanks
to our detailed study of this setup in Sections 5.3 and 13.1, we are able to reduce interpolation for
𝑁𝑋∪𝑌 to interpolation for a certain modification of 𝑁𝑋 .

2. Although Y does not have many interesting degenerations in H, we show in Section 7 that as H
becomes tangent to C, a plethora of such degenerations appear. As in the Frobenius coin problem,
this plethora of additional degenerations makes it possible to produce the desired modifications by
combining them. This eliminates the restriction to characteristic zero that plagued previous work.
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The techniques we develop here hold promise of application to other problems about the geometry of
normal bundles. Indeed, in [10], they have already been applied to prove semistability of normal bundles
of canonical curves, thereby establishing a (slightly weaker version of a) conjecture of Aprodu, Farkas
and Orgeta [1]. (A vector bundle of integral slope which satisfies interpolation is necessarily semistable,
c.f. [31, Remark 1.6], but in these cases the slope is not integral. Nevertheless, our techniques may be
applied.)

Structure of the paper

We begin, in Section 2, by discussing the various exceptional cases appearing in Theorem 1.4. Then in
Section 3, we introduce the notation we shall use for the remainder of the paper and discuss a few other
preliminary points.

In Section 4, we explain the basic strategy of proof for the hard direction of Theorem 1.4, that is, that
there are no other exceptional cases besides those mentioned in the statement of Theorem 1.4 above.
After explaining the basic strategy, we give a roadmap to the proof, which occupies the remainder of
the paper.

2. Counterexamples

2.1. Counterexamples in all characteristics

We start with the five counterexamples to Theorem 1.4 that occur in all characteristics:

(𝑑, 𝑔, 𝑟) ∈ {(5, 2, 3), (6, 4, 3), (6, 2, 4), (7, 2, 5), (10, 6, 5)}.

In each of these cases, we will construct a certain surface S containing C, and see that S prevents Theorem
1.2 (or the generalization (1.3) thereof) from holding. Indeed, if S cannot be made to pass through the
requisite number of points (or be made incident to the requisite linear spaces), then C cannot either.
Since Theorem 1.4 implies Theorem 1.2 (and the generalization (1.3)), this implies that these five cases
must also be counterexamples to Theorem 1.4.

Remark 2.1. An alternative approach, the details of which we leave to the interested reader, would be
to see directly that the geometry of S obstructs Theorem 1.4. The basic idea is that, for any effective
divisor D on C, we have ℎ0 (𝑁𝐶 (−𝐷)) ≥ ℎ0 (𝑁𝐶/𝑆 (−𝐷)); in the five exceptional cases, this inequality
will prevent 𝑁𝐶 from satisfying interpolation.

2.1.1. The family (𝒅, 𝒈, 𝒓) = (𝒓 + 2, 2, 𝒓)
Let C be a curve of genus 2 and L be a line bundle of degree 𝑟 + 2 on C. Write 𝑓 : 𝐶 → P1 for the
hyperelliptic map. Then 𝐸 := 𝑓∗𝐿 is a vector bundle of rank 2 on P1 with

𝜒(𝐸) = 𝜒(𝐿) = 𝑟 + 1.

By Riemann–Roch, 𝑐1(𝐸) = 𝑟 − 1. The inclusion 𝐿 → 𝑓 ∗ 𝑓∗𝐿 embeds C in the projective bundle P𝐸∨

so that 𝑂P𝐸∨ (1) |𝐶 � 𝐿. Therefore, the image of C in P𝑟 under the complete linear series for L lies on the
image S of P𝐸∨ under the complete linear series for OP𝐸∨ (1). The surface S is a scroll of degree equal to

[OP𝐸∨ (1)]2 = −𝑐1(𝐸
∨) ·OP𝐸∨ (1) = 𝑟 − 1.

By [8, Lemma 2.6], the dimension of the space of such scrolls is 𝑟2 + 2𝑟 − 6.

If(𝒅, 𝒈, 𝒓) = (5, 2, 3) Then 𝑟2 + 2𝑟 − 6 = 9. Since it is 1 condition for a surface in P3 to pass through
a point, S cannot pass through more than nine general points. This contradicts (1.1), which predicts
that C should be able to pass through 10 general points.
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If(𝒅, 𝒈, 𝒓) = (6, 2, 4) Then 𝑟2 +2𝑟 −6 = 18. Since it is two conditions for a surface in P4 to pass through
a point and one condition to meet a line, S cannot pass through nine general points while meeting a
general line. This contradicts equation (1.3), which predicts that C should be able to pass through
nine general points points while meeting a general line.

If(𝒅, 𝒈, 𝒓) = (7, 2, 5) Then 𝑟2 + 2𝑟 − 6 = 29. Since it is three conditions for a surface in P5 to pass
through a point, S cannot pass through more than nine general points. This contradicts equation (1.1),
which predicts that C should be able to pass through 10 general points.

2.1.2. The case (𝒅, 𝒈, 𝒓) = (6, 4, 3)
A general canonical curve of genus 4 is a cubic section of a quadric surface S. There is a nine-dimensional
family of quadric surfaces, and it is one condition for a surface in P3 to pass through a point, so S cannot
pass through more than two points. This contradicts equation (1.1), which predicts that C should be able
to pass through 12 general points.

2.1.3. The case (𝒅, 𝒈, 𝒓) = (10, 6, 5)
A general canonical curve of genus 6 is a quadric section of a quintic del Pezzo surface S. There is a
35-dimensional family of quintic del Pezzo surfaces, and it is three conditions for a surface in P5 to pass
through a point, so S cannot pass through more than 11 points. This contradicts (1.1), which predicts
that C should be able to pass through 12 general points.

2.2. Rational curves in characteristic 2

In this section, we explain the final infinite family of counterexamples to Theorem 1.4 that occurs
only in characteristic 2. This phenomenon was already observed for space curves in [9] in relation to
semistability. We begin by describing which vector bundles on a rational curve satisfy interpolation in
terms of the Birkhoff–Grothendieck classification.

Lemma 2.2. The bundle 𝐸 =
⊕

𝑖 OP1 (𝑒𝑖) satisfies interpolation if and only if for all 𝑖, 𝑗 ,

|𝑒𝑖 − 𝑒 𝑗 | ≤ 1 and 𝑒𝑖 ≥ −1.

Proof. For any 𝑛 ≥ 0,

ℎ0 (𝐸 (−𝑛)) = 0 ⇔ 𝑛 ≥ 1 + max(𝑒𝑖)
ℎ1 (𝐸 (−𝑛)) = 0 ⇔ 𝑛 ≤ 1 + min(𝑒𝑖).

One of these two conditions holds for all 𝑛 ≥ 0 if and only if |𝑒𝑖 − 𝑒 𝑗 | ≤ 1 for all i and j, and the second
of these holds for 𝑛 = 0 if and only if 𝑒𝑖 ≥ −1 for all i. �

As a consequence of the Euler sequence, the conormal bundle of C sits in the exact sequence

0 → 𝑁∨
𝐶 (1) → O⊕𝑟+1

𝐶 → 𝒫1 (O𝐶 (1)) → 0,

where 𝒫1(O𝐶 (1)) is the bundle of first principle parts of O𝐶 (1). If the characteristic is 2, and we write
𝜋 : 𝐶 → 𝐶 (2) for the (relative) Frobenius morphism, then we have

𝒫1 (O𝐶 (1)) � 𝜋∗𝜋∗O𝐶 (1).

Therefore,𝑁∨
𝐶 (1) is isomorphic to the pullback of a bundle under the Frobenius morphism, so every

entry of its splitting type is even.
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Lemma 2.3. Assume that the characteristic of the ground field is 2. Let 𝐶 ⊂ P𝑟 be a rational curve of
degree d. Then 𝑁𝐶 satisfies interpolation only if

𝑑 ≡ 1(mod 𝑟 − 1).

Proof. Suppose that 𝑁𝐶 �
⊕𝑟−1

𝑖=1 OP1 (𝑒𝑖). Since 𝑁∨
𝐶 (1) �

⊕𝑟−1
𝑖=1 OP1 (𝑑 − 𝑒𝑖), and every entry of its

splitting type is even, every 𝑒𝑖 satisfies 𝑒𝑖 ≡ 𝑑 mod 2. Applying Lemma 2.2, we conclude that 𝑁𝐶 can
only satisfy interpolation if all 𝑒𝑖 are equal. This implies

(𝑟 + 1)𝑑 − 2 = 𝑐1 (𝑁𝐶 ) ≡ (𝑟 − 1)𝑑 (mod 2(𝑟 − 1)),

and therefore 𝑑 ≡ 1 mod 𝑟 − 1 as desired. �

3. Preliminaries

3.1. Elementary modifications of vector bundles

In this section, we give a brief overview of the key properties of elementary modifications of vector
bundles. Our presentation will roughly follow the more detailed exposition given in Sections 2–4 of [2].

Definition 3.1. Let E be a vector bundle on a scheme X, and 𝐷 ⊂ 𝑋 be a Cartier divisor and 𝐹 ⊂ 𝐸 |𝐷
be a subbundle of the restriction of E to D. We define the negative elementary modification of E along
D towards F by

𝐸 [𝐷
−
→ 𝐹] := ker (𝐸 → 𝐸 |𝐷/𝐹) .

We then define the (positive) elementary modification of E along D towards F as

𝐸 [𝐷 +
→ 𝐹] := 𝐸 [𝐷

−
→ 𝐹] (𝐷).

Remark 3.2. This notation differs slightly from [2], in which negative modifications were denoted by
𝐸 [𝐷 → 𝐹] (and no separate notation was given for positive modifications).

By construction, a modification of E along D is naturally isomorphic to E when restricted to the
complement of D. If 𝐷1 and 𝐷2 are disjoint, then we may easily make sense of multiple modifications
such as 𝐸 [𝐷1

+
→ 𝐹1] [𝐷2

+
→ 𝐹2] by working locally. However, if 𝐷1 and 𝐷2 meet, then we do not have

enough data to even define multiple modifications: For example, if 𝐷1 = 𝐷2 = 𝐷 and 𝐹1 = 𝐹2 = 𝐹,
then we should have 𝐸 [𝐷1

+
→ 𝐹1] [𝐷2

+
→ 𝐹2] � 𝐸 [2𝐷 +

→ 𝐹], so we must know how F extends over
2𝐷. To sidestep these issues, we suppose when defining multiple modifications – at least along divisors
that meet – that we are given not just a subbundle 𝐹𝑖 of 𝐸 |𝐷𝑖 , but a subbundle 𝐹𝑖 of 𝐸 |𝑈𝑖 where 𝑈𝑖 ⊂ 𝑋
is an open neighborhood of 𝐷𝑖 .

We first construct the modification 𝐸 [𝐷1
+
→ 𝐹1], which is naturally isomorphic to E on 𝑋\𝐷1, and

so in particular on 𝑈2\𝐷1. If the data of a subbundle 𝐹2 ⊂ 𝐸 |𝑈2\𝐷1 extend to 𝑈2, then it does so uniquely,
and we may modify along 𝐷2 towards this extension. However, this subbundle may not extend to 𝑈2.
The following situation where it does will include all situations we shall need in this paper.

Definition 3.3. Let 𝑀 = {(𝐷𝑖 ,𝑈𝑖 , 𝐹𝑖)}𝑖∈𝐼 be a collection of modification data. For each point 𝑥 ∈ 𝑋 ,
define 𝐼𝑥 ⊆ 𝐼 to be the set of indices for which 𝑥 ∈ 𝐷𝑖 . We say that M is tree-like if for all 𝑥 ∈ 𝑋 , and
all subsets 𝐼 ′ ⊂ 𝐼𝑥 , the following condition holds: Whenever the fibers {𝐹𝑖 |𝑥}𝑖∈𝐼 ′ are dependent, there
exist indices 𝑖, 𝑗 ∈ 𝐼 ′ and an open 𝑈 ⊆ 𝑈𝑖 ∩𝑈 𝑗 containing x such that 𝐹𝑖 |𝑈 ⊆ 𝐹𝑗 |𝑈 .

By [2, Proposition 2.17], we can transfer modification data as above when it is treelike. That is, given
modification data M for E such that {(𝐷,𝑈, 𝐹)} ∪ 𝑀 is treelike, we obtain modification data 𝑀 ′ for
𝐸 [𝐷 +

→ 𝐹]. In this way, we inductively define the multiple modification 𝐸 [𝑀] for treelike modification
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data M. This is independent of the order in which the modifications from M are applied [2, Proposition
2.20].

Example 3.4. A simplifying special case is when F is a direct summand of E. Writing 𝐸 � 𝐹 ⊕ 𝐸 ′,

𝐸 [𝐷 +
→ 𝐹] = ker(𝐹 ⊕ 𝐸 ′ → 𝐸 ′ |𝐷) (𝐷) � (𝐹 ⊕ 𝐸 ′(−𝐷)) (𝐷) � 𝐹 (𝐷) ⊕ 𝐸 ′.

In nice cases, a short exact sequence of vector bundles induces a short exact sequence of modifications.
To make this more precise, consider a short exact sequence

0 → 𝑆 → 𝐸 → 𝑄 → 0. (3.1)

For example, first suppose that 𝐹 ∩ 𝑆 is flat over the base X. Then equation (3.1) induces the short exact
sequence

0 → 𝑆[𝐷 +
→ 𝐹 ∩ 𝑆] → 𝐸 [𝐷 +

→ 𝐹] → 𝑄 [𝐷 +
→ 𝐹/(𝐹 ∩ 𝑆)] → 0. (3.2)

A more interesting example is when the base is a curve 𝑋 = 𝐶, and 𝐹 ⊂ 𝐸 is a line subbundle, and
𝐷 = 𝑛𝑝, where 𝑝 ∈ 𝐶 is a smooth point. Then we obtain an induced sequence for the modification
𝐸 [𝑛𝑝 +

→ 𝐹], as follows. Define 𝑘 ′ to be the order to which F is contained in S in a neighborhood of p.
In other words, if F is not contained in S, this is the length of the subscheme P𝑆 ∩ P𝐹 in P𝐸 ; if F is
contained in S, this is ∞. Let 𝑘 = max(𝑘 ′, 𝑛). Then equation (3.1) induces the short exact sequence

0 → 𝑆[𝑘 𝑝 +
→ 𝐹 |𝑘 𝑝] → 𝐸 [𝑛𝑝 +

→ 𝐹] → 𝑄 [(𝑛 − 𝑘)𝑝 +
→ 𝐹] → 0, (3.3)

where 𝐹 is the saturation of the image of F in Q. When 𝑘 ′ = ∞ or 𝑘 ′ = 0, this agrees with equation (3.2).

3.2. Pointing bundles

Given an unramified map 𝑓 : 𝐶 → P𝑟 , the sheaf 𝑁 𝑓 = ker( 𝑓 ∗ΩP𝑟 → Ω𝑋 )
∨ is a vector bundle, which

we refer to as the normal bundle of the map f . In almost all cases that we shall consider, f will be an
embedding, in which case 𝑁 𝑓 = 𝑁𝐶 coincides with the normal bundle of the image.

We will primarily deal with modifications of 𝑁 𝑓 towards pointing subbundles 𝑁 𝑓 →Λ, whose defini-
tion we now recall. Let Λ ⊂ P𝑟 be a linear space of dimension 𝜆. Let 𝜋Λ ◦ 𝑓 denote the composition of
f with the projection map

𝜋Λ : P𝑟 � P𝑟−𝜆−1.

Let 𝑈 = 𝑈Λ denote the open locus of 𝐶\(Λ∩𝐶) where 𝜋Λ ◦ 𝑓 is unramified; explicitly this is the locus
of points of C whose tangent space does not meet Λ. Assuming that U is dense and contains the singular
locus of C, we may define 𝑁 𝑓 →Λ as the unique subbundle of 𝑁 𝑓 whose restriction to U is

ker(𝑁 𝑓 |𝑈 → 𝑁𝜋Λ◦ 𝑓 |𝑈 ).

The notation 𝑁 𝑓 →Λ is evocative of the geometry of sections of 𝑁 𝑓 →Λ: Informally speaking, they ‘point
towards’ the subspace Λ ⊂ P𝑟 . When f is an embedding, we write 𝑁𝐶→Λ = 𝑁 𝑓 →Λ. If the projection
(𝜋Λ ◦ 𝑓 ) : 𝐶 → P𝑟−𝜆−1 is unramified, then 𝑁 𝑓 →Λ sits in the pointing bundle exact sequence

0 → 𝑁 𝑓 →Λ → 𝑁 𝑓 → 𝑁𝜋Λ◦ 𝑓 (Λ ∩ 𝐶) → 0. (3.4)

The same definitions work for families of curves in a projective bundle. For a treatment in this more
general setting, see [2, Section 5].
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The simplest case, and our primary interest, is when Λ = 𝑝 is a point in P𝑟 . In this case, by [2,
Propositions 6.2 and 6.3], we have the following explicit descriptions:

• If 𝑝 ∈ P𝑟 is a general point (in which case 𝑈𝑝 = 𝐶), then 𝑁 𝑓 →𝑝 � 𝑓 ∗OP𝑟 (1).
• If 𝑝 ∈ 𝐶 is a general point (in which case 𝑈𝑝 = 𝐶\𝑝), then 𝑁 𝑓 →𝑝 � 𝑓 ∗OP𝑟 (1) (2𝑝).

When modifying towards a pointing bundle, we use the simpler notation

𝑁 𝑓 [𝐷
+
→ Λ] := 𝑁 𝑓 [𝐷

+
→ 𝑁 𝑓 →Λ] .

For two points 𝑝, 𝑞 ∈ 𝐶, we also define the more compact notation

𝑁 𝑓 [𝑝
+
↔ 𝑞] := 𝑁 𝑓 [𝑝

+
→ 𝑞] [𝑞 +

→ 𝑝] .

We now restate a foundational result of Hartshorne–Hirschowitz, which describes the normal bundle
of a nodal curve in projective space, in this language of pointing bundles. Let 𝑋 ∪Γ 𝑌 be a reducible
nodal curve. For each point 𝑝𝑖 ∈ Γ, let 𝑞𝑖 denote any point on 𝑇𝑝𝑖𝑌\𝑝𝑖 . For simplicity, we introduce the
following notation. For any subset Γ′ = {𝑝1, . . . 𝑝𝑛} ⊆ Γ, we write

𝑁𝑋 [Γ
′ +� 𝑌 ] := 𝑁𝑋 [𝑝1

+
→ 𝑞1] . . . [𝑝𝑛

+
→ 𝑞𝑛] .

When Γ′ = Γ is the full set of points where 𝑋 and Y meet, we simplify further and write

𝑁𝑋 [
+� 𝑌 ] := 𝑁𝑋 [Γ

+� 𝑌 ] .

(We analogously define 𝑁𝑋 [Γ′ −
� 𝑌 ] and 𝑁𝑋 [

−
� 𝑌 ].)

Proposition 3.5 [18, Corollary 3.2]. As above, let 𝑋 ∪ 𝑌 ⊆ P𝑟 be a reducible nodal curve. Then

𝑁𝑋∪𝑌 |𝑋 � 𝑁𝑋 [
+� 𝑌 ] .

3.3. Interpolation for vector bundles

3.3.1. Interpolation for bundles on nodal curves
Let C be a nodal curve, and let E be a nonspecial vector bundle on C. Twisting down by a point can only
decrease ℎ0 and can only increase ℎ1. Therefore, E satisfies interpolation provided that there exist two
divisors 𝐷+ and 𝐷− for which

ℎ0 (𝐸 (−𝐷+)) = 0, ℎ1 (𝐸 (−𝐷−)) = 0, and deg 𝐷+ − deg 𝐷− ≤ 1. (3.5)

Alternatively, if E has rank r, then twisting down by a point either decreases ℎ0 by r or increases ℎ1.
Thus, E satisfies interpolation if and only if, for every 𝑛 > 0, some collection of n points impose the
expected number of conditions:

ℎ0(𝐸 (−𝑝1 − · · · − 𝑝𝑛)) = max(0, ℎ0 (𝐸) − 𝑟𝑛) for some 𝑝1, . . . , 𝑝𝑛.

More generally, we can use this idea to define interpolation for a space of sections of a vector bundle.
Given 𝑉 ⊆ 𝐻0 (𝐸), write

𝑉 (−𝑝1 − · · · − 𝑝𝑛) := {𝜎 ∈ 𝑉 : 𝜎 |𝑝1 = · · · = 𝜎 |𝑝𝑛 = 0}.

We say that 𝑉 ⊆ 𝐻0 (𝐸) satisfies interpolation if 𝐻1(𝐸) = 0 and, for every 𝑛 > 0, there are n points
𝑝1, . . . , 𝑝𝑛 such that

dim𝑉 (−𝑝1 − · · · − 𝑝𝑛) = max(0, dim𝑉 − 𝑟𝑛).
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The following basic result allows us to reduce interpolation for a vector bundle E on a reducible
curve 𝑋 ∪Γ 𝑌 to interpolation for a space of sections on one component.

Lemma 3.6 [23, Lemma 2.10]. Let E be a vector bundle on 𝑋 ∪Γ 𝑌 . If the restriction map on Y

res𝑌 ,Γ : 𝐻0(𝑌, 𝐸 |𝑌 ) → 𝐸 |Γ

is injective and the space of sections {𝜎 ∈ 𝐻0 (𝑋, 𝐸 |𝑋 ) : 𝜎 |Γ ∈ Im(res𝑌 ,Γ)} has dimension 𝜒(𝐸) and
satisfies interpolation, then E satisfies interpolation.

The main case of interest in this paper is when𝑌 = 𝑅 is a rational curve and 𝐸 |𝑅 is perfectly balanced,
that is, 𝐸 |𝑅 � OP1 (𝑎)⊕𝑟 for some 𝑎 ∈ Z.

Lemma 3.7. Let 𝐶∪Γ 𝑅 be a nodal curve with R rational, and let E be a vector bundle on 𝐶∪𝑅 with 𝐸 |𝑅
perfectly balanced of slope at least #Γ − 1. If 𝐸 |𝐶 satisfies interpolation, then E satisfies interpolation.

Proof. Let D be an effective divisor of degree 𝜇(𝐸 |𝑅) − #Γ + 1 supported on 𝑅\Γ. It suffices to prove
that 𝐸 (−𝐷) satisfies interpolation, as we now explain. Let 𝐷+ and 𝐷− be the two divisors satisfying
equation (3.5) for the vector bundle 𝐸 (−𝐷). Then the divisors 𝐷+ + 𝐷 and 𝐷− + 𝐷 satisfy equation
(3.5) for the vector bundle E. The bundle 𝐸 (−𝐷) |𝑅 is perfectly balanced of slope #Γ − 1, and so res𝑅,Γ
is an isomorphism. The result now follows from Lemma 3.6. �

3.3.2. Interpolation and twists
If E satisfies interpolation, then as in the proof of Lemma 3.7, the twist 𝐸 (𝐷) by any effective divisor
D also satisfies interpolation. Conversely, we have the following.

Lemma 3.8 [2, Proposition 4.12]. Suppose that E is a vector bundle on a genus g curve such that

𝜒(𝐸) ≥ rk(𝐸) · 𝑔.

If there exists an effective divisor D for which 𝐸 (𝐷) satisfies interpolation, then E also satisfies
interpolation.

3.3.3. Interpolation and modifications
Consider a vector bundle E and its modification 𝐸 [𝑝 +

→ 𝐹]. Given sufficient generality of either p or F,
or if the slope 𝜇(𝐸) ∈ Z, it is sometimes possible to deduce that 𝐸 [𝑝 +

→ 𝐹] satisfies interpolation from
the assumption that E satisfies interpolation.

Lemma 3.9. Let E be a vector bundle on C, let 𝑝 ∈ 𝐶 be a smooth point and let 𝐹 ⊆ 𝐸 |𝑝 . If E satisfies
interpolation and 𝜇(𝐸) ∈ Z, then 𝐸 [𝑝 +

→ 𝐹] satisfies interpolation.

Proof. Since 𝜇(𝐸) ∈ Z, there is an effective divisor D with

𝐻0 (𝐸 (−𝐷)) = 0 and 𝐻1(𝐸 (−𝐷)) = 0.

Then

𝐻0 (𝐸 [𝑝 +
→ 𝐹] (−𝐷 − 𝑝)) = 0 and 𝐻1 (𝐸 [𝑝 +

→ 𝐹] (−𝐷)) = 0.

�

Definition 3.10. We say that a collection of subspaces {𝑊𝑏}𝑏∈𝐵 of a vector space V are linearly general
if, for any subspace 𝑈 ⊂ 𝑉 , there is some 𝑏 ∈ 𝐵 so that 𝑊𝑏 is transverse to U.

Lemma 3.11 [2, Proposition 4.10]. Let E be a vector bundle on C, and let 𝑝 ∈ 𝐶 be a smooth point. Let
{𝐹𝑏}𝑏∈𝐵 be a collection of subspaces of 𝐸 |𝑝 that all contain a fixed subspace 𝐹0. Suppose that both E
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and 𝐸 [𝑝 → 𝐹0] satisfy interpolation. If the collection {𝐹𝑏/𝐹0}𝑏∈𝐵 is linearly general in 𝐸 |𝑝/𝐹0, then
for some 𝑏 ∈ 𝐵, the positive modification 𝐸 [𝑝 +

→ 𝐹𝑏] satisfies interpolation.

Lemma 3.12 [2, Proposition 4.21 for 𝑛 = 1]. Suppose E satisfies interpolation, 𝐿 ⊂ 𝐸 is a nonspecial
line subbundle, and the quotient 𝑄 = 𝐸/𝐿 also satisfies interpolation. If 𝜇(𝐿) ≤ 𝜇(𝐻), then 𝐸 [𝑝 +

→ 𝐿]
satisfies interpolation.

Remark 3.13. While [2] assumes characteristic zero, none of the specific results we quote from [2] use
this assumption – except for Proposition 4.21. This proposition states that if 𝜇(𝐿) ≤ 𝜇(𝐻) + 𝑛 − 1, then
𝐸 [𝑛𝑝 +

→ 𝐿] satisfies interpolation. The proof uses that vanishing at 𝑛𝑝 imposes n conditions on sections
of any linear series. This is true in any characteristic when 𝑛 = 1, but fails in positive characteristic for
𝑛 > 1. Since we will use Proposition 4.21 of [2] only when 𝑛 = 1, we do not need a restriction on the
characteristic.

Lemma 3.14. Let E be a vector bundle on an irreducible curve C. Let 𝑝1, . . . , 𝑝𝑛 ∈ 𝐶 be points, and let
𝐿𝑖 ⊆ 𝐸 |𝑝𝑖 be one-dimensional subspaces. Suppose that both E and 𝐸 [𝑝1

+
→ 𝐿1] · · · [𝑝𝑛

+
→ 𝐿𝑛] satisfy

interpolation. Then for any 0 < 𝑚 < 𝑛, there is a collection of distinct indices 𝑖1, . . . , 𝑖𝑚 such that

𝐸 [𝑝𝑖1
+
→ 𝐿𝑖1] · · · [𝑝𝑖𝑚

+
→ 𝐿𝑖𝑚 ]

satisfies interpolation.

Proof. By induction on n we reduce to the case 𝑚 = 𝑛− 1. Write 𝐸 ′ = 𝐸 [𝑝1
+
→ 𝐿1] · · · [𝑝𝑛

+
→ 𝐿𝑛] and

𝑁 = �𝜒(𝐸 ′)/rk 𝐸 ′�. Let 𝐷𝑁 and 𝐷𝑁−1 be general divisors of degrees N and 𝑁 − 1, respectively. Since
E and 𝐸 ′ both satisfy interpolation and 𝜒(𝐸) < 𝜒(𝐸 ′), we have

ℎ0(𝐸 ′(−𝐷𝑁 )) = 0, ℎ0(𝐸 ′(−𝐷𝑁−1)) ≠ 0, and ℎ0 (𝐸 (−𝐷𝑁−1)) < ℎ0 (𝐸 ′(−𝐷𝑁−1)).

Let 𝐸𝑖 = 𝐸 [𝑝1
+
→ 𝐿1] · · · [𝑝𝑖−1

+
→ 𝐿𝑖−1] [𝑝𝑖+1

+
→ 𝐿𝑖+1] · · · [𝑝𝑛

+
→ 𝐿𝑛]. Since 𝜒(𝐸𝑖) = 𝜒(𝐸 ′) − 1, it

suffices to show ℎ0 (𝐸𝑖 (−𝐷𝑁−1)) < ℎ0 (𝐸 ′(−𝐷𝑁−1)) for some i. This follows from the fact that⋂
𝑖

𝐻0 (𝐸𝑖 (−𝐷𝑁−1)) = 𝐻0(𝐸 (−𝐷𝑁−1)) � 𝐻0(𝐸 ′(−𝐷𝑁−1)). �

3.3.4. Interpolation and short exact sequences
Lemma 3.15. Consider an exact sequence

0 → 𝑆 → 𝐸 → 𝑄 → 0

of vector bundles on an irreducible curve C. Suppose that S and Q satisfy interpolation and

𝜇(𝑆) ≤ �𝜇(𝑄)� + 1 and 𝜇(𝑄) ≤ �𝜇(𝑆)� + 1. (3.6)

Then E also satisfies interpolation.

Proof. Since S and Q are nonspecial, E is nonspecial. By (3.6), there exists an integer 𝑛 ∈ Z such that
𝜇(𝑆) and 𝜇(𝑄) are contained in the closed interval [𝑛, 𝑛 + 1]. Since (3.5) is satisfied for 𝐷+ a general
divisor of degree 𝑛 + 1, and 𝐷− a general divisor of degree n, we conclude that E satisfies interpolation
as desired. �

We will most often use this result in the special case in which S is a line subbundle of E.

Corollary 3.16. Suppose that 𝑆 ⊂ 𝐸 is a nonspecial line subbundle and |𝜇(𝑆) − 𝜇(𝐸) | < 1. If the
quotient 𝑄 = 𝐸/𝑆 satisfies interpolation, then E does as well.
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Proof. By assumption −1 <
deg(𝑄)−rk(𝑄) deg(𝑆)

rk(𝑄)+1 < 1. Hence, we have strict inequalities

deg(𝑆) < 𝜇(𝑄) +
rk(𝑄) + 1

rk(𝑄)
and 𝜇(𝑄) < deg(𝑆) +

rk(𝑄) + 1
rk(𝑄)

,

which imply the required inequalities in Lemma 3.15, since 𝜇(𝑄) is a [1/rk(𝑄)]-integer. �

4. Overview

4.1. Base cases

We can reduce the number of base cases by extending Theorem 1.4 to 𝑟 = 1 and 𝑟 = 2. For 𝑟 = 2, we
replace 𝑁𝐶 with the normal sheaf 𝑁 𝑓 , where 𝑓 : 𝐶 → P2 is a general BN-curve. In this case, adjunction
implies that 𝑁 𝑓 = 𝐾𝐶 ⊗ 𝑓 ∗OP2 (3) is a nonspecial line bundle, and therefore satisfies interpolation. For
𝑟 = 1, we only consider the case where 𝑓 : 𝐶 → P1 is an isomorphism, so 𝑁 𝑓 = 0 satisfies interpolation.

4.2. first strategy: degeneration of C

The first inductive strategy we will use is degeneration of C to reducible curves 𝑋 ∪ 𝑌 . In Section 5
we will study certain such degenerations, for which Y has a prescribed form, and we can thus relate
interpolation for 𝑁𝐶 to interpolation for certain modifications of 𝑁𝑋 .

Since the sectional monodromy group of a general BN-curve always contains the alternating group
[20], and in particular is (𝑟 +1)-transitive, it makes sense to talk of a general (𝑟 +1)-secant rational curve
of degree 𝑟 − 1 in a hyperplane. While the following hypothesis does not encompass all modifications
that might appear using this method, it includes those modifications that will play the most central role
in our inductive argument:

Hypothesis 4.1 (𝐼 (𝑑, 𝑔, 𝑟, ℓ, 𝑚)). Let 𝐶 ⊂ P𝑟 be a general BN-curve of degree d and genus g. Let
𝑢1, 𝑣1, . . . , 𝑢ℓ , 𝑣ℓ be ℓ pairs of general points on C. Let 𝑅1, . . . , 𝑅𝑚 be m general (𝑟 + 1)-secant rational
curves of degree 𝑟 − 1 (contained in hyperplanes transverse to C). Then the modification

𝑁𝐶 [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅1] · · · [
+� 𝑅𝑚]

of the normal bundle of C satisfies interpolation.

A central complicating factor is that the inductive hypothesis 𝐼 (𝑑, 𝑔, 𝑟, ℓ, 𝑚) is not always true. The
following definition describes a set of tuples (𝑑, 𝑔, 𝑟, ℓ, 𝑚) for which we will prove that it holds.

Definition 4.2. A tuple (𝑑, 𝑔, 𝑟, ℓ, 𝑚) is called good if it satisfies all the following conditions:

• The following inequalities hold:

𝑑 ≥ 𝑔 + 𝑟, 0 ≤ ℓ ≤
𝑟

2
, and 0 ≤ 𝑚 ≤ 𝜌(𝑑, 𝑔, 𝑟).

• If 𝑔 = 𝑚 = 0, then

2ℓ ≥ (1 − 𝑑)%(𝑟 − 1),

where for integers a and b we write 𝑎%𝑏 for the reduced residue of a modulo b, and
• It is not the following set:⎧⎪⎪⎨⎪⎪⎩

(5, 2, 3, 0, 0), (4, 1, 3, 1, 0), (4, 1, 3, 0, 1), (4, 1, 3, 1, 1),
(6, 2, 4, 0, 0), (5, 1, 4, 1, 0), (5, 1, 4, 1, 1), (5, 1, 4, 2, 1), (6, 2, 4, 1, 1),
(7, 2, 5, 0, 0), (6, 1, 5, 0, 1), (6, 1, 5, 1, 1).

⎫⎪⎪⎬⎪⎪⎭ (XEx)
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Remark 4.3. By Clifford’s theorem, the first inequality 𝑑 ≥ 𝑔 + 𝑟 follows from 𝑔 ≤ 𝑟.

We conclude Section 5 by using this first strategy to show that if 𝐼 (𝑑, 𝑔, 𝑟, 0, 𝑚) holds for every good
tuple (𝑑, 𝑔, 𝑟, 0, 𝑚), then Theorem 1.4 holds except possibly for rational curves or canonical curves of
even genus.

4.3. Second Strategy: Limits of Modifications and Projection

The basic issue with the first strategy described above is that every time we apply it, we get more
modifications. In order to make an inductive argument work, we need a second inductive strategy that
decreases the number of modifications.

Hypothesis 𝐼 (𝑑, 𝑔, 𝑟, ℓ, 𝑚) asserts that 𝑁 ′
𝐶

:= 𝑁𝐶 [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅1] · · · [
+� 𝑅𝑚]

satisfies interpolation. Let p be a general point on C. The pointing bundle exact sequence induces the
exact sequence

0 → 𝑁𝐶→𝑝 → 𝑁 ′
𝐶 → 𝑁𝐶 (𝑝) [𝑢1

+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅1 ∪ · · · ∪ 𝑅𝑚] → 0, (4.1)

where 𝐶 and 𝑅 𝑗 denote the images of C and 𝑅 𝑗 , respectively under projection from p. In order to apply
Corollary 3.16 to relate interpolation for the original bundle 𝑁 ′

𝐶 to interpolation for the quotient bundle,
the sequence must be close to balanced. The failure of the sequence to be balanced is related to the
quantity

𝛿 = 𝛿(𝑑, 𝑔, 𝑟, ℓ, 𝑚) := 𝜇(𝑁 ′
𝐶 ) − 𝜇(𝑁𝐶→𝑝) =

2𝑑 + 2𝑔 − 2𝑟 + 2ℓ + (𝑟 + 1)𝑚
𝑟 − 1

.

We first apply these ideas in Section 6 to treat the family of good tuples (𝑑, 𝑔, 𝑟, 0, 0) with
𝛿(𝑑, 𝑔, 𝑟, 0, 0) = 1, which are difficult from the perspective of our more uniform inductive arguments.

More generally, in order to make this sequence sufficiently close to balanced, we will appropriately
specialize the points on C at which the modifications occur. To illustrate this idea in the simplest possible
case, assume here that ℓ ≥ �𝛿�. Since the points 𝑣1, . . . , 𝑣 �𝛿� are general on C, we may specialize them
all to the point p. This induces the specialization of 𝑁 ′

𝐶 to

𝑁 ′′
𝐶 := 𝑁𝐶 [𝑢1 + · · · + 𝑢 �𝛿�

+
↔ 𝑝] [𝑢 �𝛿�+1

+
↔ 𝑣 �𝛿�+1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅1 ∪ · · · ∪ 𝑅𝑚] .

Using equation (3.1), the pointing bundle exact sequence becomes

0 → 𝑁𝐶→𝑝 (𝑢1 + · · · + 𝑢 �𝛿� ) → 𝑁 ′′
𝐶

→ 𝑁𝐶 (𝑝) [𝑝
+
→ 𝑢1 + · · · + 𝑢 �𝛿� ] [𝑢 �𝛿�+1

+
↔ 𝑣 �𝛿�+1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅1 ∪ · · · ∪ 𝑅𝑚] → 0.

By our auspicious choice to specialize exactly �𝛿� points to p, this sequence is now close enough to
balanced to reduce to proving interpolation for the quotient bundle. Furthermore, since 𝑢1, . . . , 𝑢 �𝛿� are
general, the modification at p in the quotient is linearly general and we can erase it by Lemma 3.12. It
therefore suffices to prove interpolation for

𝑁𝐶 [𝑢 �𝛿�+1
+
↔ 𝑣 �𝛿�+1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅1 ∪ · · · ∪ 𝑅𝑚],

which evidently has fewer modifications. However, there are two basic issues with this argument:

1. In general, we might not have ℓ ≥ �𝛿�.
2. Since 𝑅𝑖 is still an (𝑟 + 1)-secant curve of degree 𝑟 − 1, the argument does not reduce to another case

of our inductive hypothesis.

To surmount both of these two difficulties, we will need to specialize the 𝑅𝑖 as well.
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This second strategy will be fleshed out in Sections 7 and 8: In Section 7, we will study how to
specialize the 𝑅𝑖 so that they can also contribute modifications to 𝑁𝐶→𝑝 . Then in Section 8, we will
refine the basic argument outlined above to use these degenerations of the 𝑅𝑖 as well, and also explain
further degenerations that will be necessary to reduce to another case of our inductive hypothesis.

4.4. Outline of the remainder of paper

Section 9 is a brief interlude in which we use the inductive arguments of Section 8 to treat the case of
rational curves not implied by 𝐼 (𝑑, 𝑔, 𝑟, ℓ, 𝑚) for good tuples. We also explain the counterexamples to
Theorem 1.4 that are not counterexamples to Theorem 1.2. At this point, we will have reduced both
Theorem 1.4 and Theorem 1.2 to 𝐼 (𝑑, 𝑔, 𝑟, ℓ, 𝑚) for good tuples, as well as Theorem 1.4 for canonical
curves of even genus, which we treat at the end of the paper in Section 13. The intervening sections
10–12 inductively prove 𝐼 (𝑑, 𝑔, 𝑟, ℓ, 𝑚) for good tuples.

In Section 10, we complete a purely combinatorial analysis, in which we show that the inductive
arguments of Section 8 can be applied to reduce 𝐼 (𝑑, 𝑔, 𝑟, ℓ, 𝑚) for all good tuples to

• 𝐼 (𝑑, 𝑔, 𝑟, ℓ, 𝑚) for a certain large but finite list of sporadic cases (𝑑, 𝑔, 𝑟, ℓ, 𝑚) with 𝑟 ≤ 13.
• The infinite family of tuples (𝑑, 𝑔, 𝑟, 0, 0) with 𝛿 = 1, which was already treated in Section 6.

In Section 11, we give a more complicated, yet more flexible, inductive argument in the style of those in
Section 8 and verify by exhaustive computer search that it reduces the finitely many sporadic cases
identified above to a managable list of 30 base cases. These base cases are treated by ad-hoc techniques
in Section 12.

5. Basic degenerations

In this section, we discuss the three basic degenerations of BN-curves, to reducible curves 𝐶∪𝐷, that we
will use in the proof of Theorem 1.4. In each subsection, we will first show that these degenerations lie
in the Brill–Noether component. We will then relate interpolation for 𝑁𝐶∪𝐷 , or a modification thereof,
to interpolation for a particular modification of 𝑁𝐶 .

In what follows, write 𝑁 ′
𝐶∪𝐷 for a modification of 𝑁𝐶∪𝐷 away from D. In other words, 𝑁 ′

𝐶∪𝐷 is a
vector bundle on 𝐶 ∪ 𝐷, equipped with an isomorphism to 𝑁𝐶∪𝐷 over a dense open subset of 𝐶 ∪ 𝐷
containing the entire curve D, and in particular containing a neighborhood U of 𝐶 ∩ 𝐷 in C. Write 𝑁 ′

𝐶
for the bundle obtained by making the same modifications to 𝑁𝐶 . In other words, 𝑁 ′

𝐶 is obtained from
𝑁 ′
𝐶∪𝐷 |𝐶\(𝐶∩𝐷) by gluing along 𝑈\(𝐶 ∩ 𝐷) via our given isomorphism to 𝑁𝐶 |𝑈 .

𝐷 = 𝐿

𝐶

𝑣𝑢

Peeling off a one-secant line.

𝐶

𝐷 = 𝐿
𝑢

𝑣

Peeling off a one-secant line.

5.1. Peeling off one-secant lines

Our most basic degeneration will be when 𝐷 = 𝐿 is a quasitransverse one-secant line. (Recall that two
subschemes X and Y of a scheme Z are transverse (respectively, quasitransverse) at a point 𝑝 ∈ 𝑋 ∩ 𝑌
if the natural map of tangent spaces 𝑇𝑝𝑋 ⊕ 𝑇𝑝𝑌 → 𝑇𝑝𝑍 is surjective (respectively, either injective or
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surjective).) If C has degree d and genus g, then 𝐶 ∪ 𝐿 has degree 𝑑 + 1 and genus g. Write 𝑣 ∈ 𝐿\{𝑢}
for any other point on the line L.

Lemma 5.1. If C is a BN-curve, then 𝐶 ∪ 𝐿 is also a BN-curve.

Proof. Generalizing C, we may suppose C is a general BN-curve. We will show 𝐻1 (𝑇P𝑟 |𝐶∪𝐿) = 0,
which implies that the map 𝐶 ∪ 𝐿 → P𝑟 may be lifted as 𝐶 ∪ 𝐿 is deformed to a general curve.

Since C is a general BN-curve, 𝐻1 (𝑇P𝑟 |𝐶 ) = 0 by the Gieseker–Petri theorem. Furthermore, we have
𝐻1 (𝑇P𝑟 |𝐿 (−𝑢)) = 0 because 𝑇P𝑟 |𝐿 � OP1 (2) ⊕OP1 (1)⊕(𝑟−1) . This implies 𝐻1 (𝑇P𝑟 |𝐶∪𝐿) = 0 as desired,
using

0 → 𝑇P𝑟 |𝐿 (−𝑢) → 𝑇P𝑟 |𝐶∪𝐿 → 𝑇P𝑟 |𝐶 → 0. �

Lemma 5.2 (Lemma 8.5 of [2]). If 𝑁 ′
𝐶 (𝑢) [2𝑢

−
→ 𝑣] satisfies interpolation, then so does 𝑁 ′

𝐶∪𝐿 .

When C is nonspecial with genus small relative to r, we can combine Lemma 5.2 with Lemma 3.8
to reduce to a positive modification of 𝑁 ′

𝐶 .

Corollary 5.3. Suppose that 𝑁 ′
𝐶 is a positive modification of 𝑁𝐶 . If 𝑑 ≥ 𝑔 + 𝑟 and 𝑔 ≤ 𝑟 + 6 and

𝑁 ′
𝐶 [2𝑢 +

→ 𝑣] satisfies interpolation, then 𝑁 ′
𝐶∪𝐿 satisfies interpolation.

Proof. Since 𝑁 ′
𝐶 [2𝑢 +

→ 𝑣] �
(
𝑁 ′
𝐶 (𝑢) [2𝑢

−
→ 𝑣]

)
(𝑢), it suffices by Lemma 3.8 to show that

𝜒
(
𝑁 ′
𝐶 (𝑢) [2𝑢

−
→ 𝑣]

)
≥ (𝑟 − 1)𝑔. (5.1)

We have

𝜒(𝑁 ′
𝐶 (𝑢) [2𝑢

−
→ 𝑣]) ≥ 𝜒(𝑁𝐶 (𝑢) [2𝑢

−
→ 𝑣])

= (𝑟 + 1)𝑑 − (𝑟 − 3) (𝑔 − 1) − (𝑟 − 3)
≥ (𝑟 + 1) (𝑔 + 𝑟) − (𝑟 − 3)𝑔
= 4𝑔 + 𝑟 (𝑟 + 1).

If 𝑔 ≤ 𝑟 + 6, then

(𝑟 − 1)𝑔 − 4𝑔 = (𝑟 − 5)𝑔 ≤ (𝑟 − 5) (𝑟 + 6) ≤ 𝑟 (𝑟 + 1),

and the desired inequality (5.1) holds. �

5.2. Peeling off one-secant lines

Our next basic degeneration will be to the union of a curve C and a quasitransverse one-secant line L,
meeting C at points u and v. If C has degree d and genus g, then 𝐶 ∪ 𝐿 has degree 𝑑 + 1 and genus 𝑔 + 1.

Lemma 5.4. If C is a BN-curve, then 𝐶 ∪ 𝐿 is also a BN-curve.

Proof. As in the proof of Lemma 5.1, we have that 𝐻1 (𝑇P𝑟 |𝐶∪𝐿) = 0 by combining 𝐻1(𝑇P𝑟 |𝐶 ) = 0 (from
the Gieseker–Petri theorem) and 𝐻1(𝑇P𝑟 |𝐿 (−𝑢 − 𝑣)) = 0 (from 𝑇P𝑟 |𝐿 � OP1 (2) ⊕ OP1 (1)⊕𝑟−1). �

We generalize Lemma 5.2 to one-secant lines. In slightly greater generality, let 𝑝 ∈ 𝐿\{𝑢, 𝑣} be a
point, and Λ be a linear space disjoint from the span of the tangent lines to C at u and v.

Lemma 5.5 (Slight generalization of Lemma 8.8 of [2]). If 𝑁 ′
𝐶 (𝑢 + 𝑣) [𝑢

−
→ 𝑣] [𝑣

−
→ 𝑢] [𝑣

−
→ 2𝑢 + Λ]

satisfies interpolation, then so does 𝑁 ′
𝐶∪𝐿 [𝑝

+
→ Λ].
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Proof. Imitate the proof Lemma 8.8 of [2], mutatis mutandis.
(In the notation of [2]: Take T instead to have dimension 𝑟 − 5 − dimΛ, where by convention

dim ∅ = −1, and use instead the decomposition 𝑁𝐿 � 𝑁𝐿→𝑥 ⊕ 𝑁𝐿→𝑦 ⊕ 𝑁𝐿→Λ ⊕ 𝑁𝐿→𝑇 .) �

As in Corollary 5.3, we can reduce to a positive modification of 𝑁 ′
𝐶 .

Corollary 5.6. Suppose that 𝑁 ′
𝐶 is a positive modification of 𝑁𝐶 . If 𝑑 ≥ 𝑔 + 𝑟 and 𝑔 ≤ 𝑟 + 6 and

𝑁 ′
𝐶 [𝑢

+
→ 𝑣] [𝑣 +

→ 𝑢] [𝑣 +
→ 2𝑢] satisfies interpolation, then 𝑁 ′

𝐶∪𝐿 satisfies interpolation.

Proof. We have

𝜒
(
𝑁 ′
𝐶 (𝑢 + 𝑣) [𝑢

−
→ 𝑣] [𝑣

−
→ 𝑢] [𝑣

−
→ 2𝑢]

)
≥ 𝜒 (𝑁𝐶 (𝑢 + 𝑣) [𝑢

−
→ 𝑣] [𝑣

−
→ 𝑢] [𝑣

−
→ 2𝑢])

= (𝑟 + 1)𝑑 − (𝑟 − 3) (𝑔 − 1) − (𝑟 − 5)
≥ 4𝑔 + 𝑟 (𝑟 + 1) + 2.

As in the proof of Corollary 5.3, if 𝑔 ≤ 𝑟 + 6, then 4𝑔 + 𝑟 (𝑟 + 1) + 2 ≥ (𝑟 − 1)𝑔, and so

𝜒
(
𝑁 ′
𝐶 (𝑢 + 𝑣) [𝑢

−
→ 𝑣] [𝑣

−
→ 𝑢] [𝑣

−
→ 2𝑢]

)
≥ (𝑟 − 1)𝑔. (5.2)

Hence, by Lemma 3.8, 𝑁 ′
𝐶 (𝑢 + 𝑣) [𝑢

−
→ 𝑣] [𝑣

−
→ 𝑢] [𝑣

−
→ 2𝑢] satisfies interpolation. �

5.3. Peeling off rational normal curves in hyperplanes

The final of our basic degenerations is to the union of a BN-curve C of degree at least 𝑟 + 1 in P𝑟 , and
an (𝑟 + 1)-secant rational curve R of degree 𝑟 − 1 contained in a hyperplane H. If C has degree d and
genus g, then 𝐶 ∪ 𝑅 has degree 𝑑 + 𝑟 − 1 and genus 𝑔 + 𝑟. Observe that

𝜌(𝑑, 𝑔, 𝑟) = 𝜌(𝑑 + 𝑟 − 1, 𝑔 + 𝑟, 𝑟) + 1.

Lemma 5.7. If 𝜌(𝑑, 𝑔, 𝑟) ≥ 1, and C is a BN-curve, then 𝐶 ∪ 𝑅 is also a BN-curve.

Proof. Generalizing C, we may suppose C is a general BN-curve.
If 𝑔 > 0, then we can specialize C to the union 𝐶 ′ ∪ 𝐿, where 𝐶 ′ is a general BN-curve of degree

𝑑 − 1 and genus 𝑔 − 1, and L is a general one-secant line. Otherwise, if 𝑔 = 0, then we can specialize C
to the union 𝐶 ′ ∪ 𝐿, where 𝐶 ′ is a general BN-curve of degree 𝑑 − 1 and genus g, and L is a general
one-secant line. Either way, we can arrange for one of the points p of 𝐶 ∩ 𝑅 to specialize onto L, and
the rest to specialize onto 𝐶 ′.

𝐿 𝑅

𝑝

𝐶 ′

𝐿 𝑅

𝑝

𝐶 ′

Write Γ := (𝐿∪𝑅)∩𝐶. Note that this is a set of 𝑟+1 or 𝑟+2 points on 𝐶 ′. We will show the following:

(a) The curve 𝐶 ′ ∪ 𝐿 ∪ 𝑅 is a smooth point of the Hilbert scheme.
(b) The curve 𝐿 ∪ 𝑅 can be smoothed to a rational normal curve M while preserving the points of

incidence with 𝐶 ′.
(c) The curve 𝐶 ′ ∪ 𝑀 is in the Brill–Noether component.
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By part (a), the curves 𝐶∪𝑅 and 𝐶 ′∪𝑀 are both generalizations of a smooth point of the Hilbert scheme.
Hence, they are in the same component, which must be the Brill–Noether component by part (c).

Beginning with part (b), write N for the subsheaf of 𝑁𝐿∪𝑅 whose sections fail to smooth the node p.
It suffices to show that 𝐻1 (𝑁 (−Γ)) = 0. This follows from the exact sequence

0 → 𝑁𝑅∪𝐿 |𝑅 (−𝑝 − Γ) → 𝑁 (−Γ) → 𝑁 |𝐿 (−Γ) → 0,

together with the isomorphisms

𝑁𝑅∪𝐿 |𝑅 � 𝑁𝑅/𝐻 ⊕ O𝑅 (1) (𝑝) � OP1 (𝑟 + 2)⊕𝑟−2 ⊕ OP1 (𝑟),

𝑁 |𝐿 � 𝑁𝐿 � OP1 (1)⊕𝑟−1.

Since 𝑁𝐿∪𝑅 (−Γ) is a positive modification of 𝑁 (−Γ), we also have 𝐻1(𝑁𝐿∪𝑅 (−Γ)) = 0. Similarly,
𝑁𝐶′∪𝐿∪𝑅 |𝐶′ is a positive modification of 𝑁𝐶′ . As 𝐶 ′ is a general BN-curve, the Gieseker–Petri theorem
implies that 𝐻1 (𝑁𝐶′∪𝐿∪𝑅 |𝐶′ ) = 0. Hence, using the exact sequence

0 → 𝑁𝐿∪𝑅 (−Γ) → 𝑁𝐶′∪𝐿∪𝑅 → 𝑁𝐶′∪𝐿∪𝑅 |𝐶′ → 0,

we see that 𝐻1 (𝑁𝐶′∪𝐿∪𝑅) = 0, and part (a) follows.
Finally, for part (c), we will show that 𝐻1 (𝑇P𝑟 |𝐶′∪𝑀 ) = 0, and hence the map from 𝐶 ′ ∪ 𝑀 to P𝑟 can

be lifted as 𝐶 ′ ∪ 𝑀 is smoothed to a general curve. This vanishing follows from the exact sequence

0 → 𝑇P𝑟 |𝑀 (−Γ) → 𝑇P𝑟 |𝐶′∪𝑀 → 𝑇P𝑟 |𝐶′ → 0,

the isomorphism 𝑇P𝑟 |𝑀 � OP𝑟 (𝑟 + 1)⊕𝑟 , and the Gieseker–Petri theorem (𝐻1(𝑇P𝑟 |𝐶′ ) = 0). �

Our next goal is to study the restricted normal bundle 𝑁𝐶∪𝑅 |𝑅 � 𝑁𝑅 [
+� 𝐶], which is of slope 𝑟 + 2.

In most cases, this bundle is perfectly balanced (equivalently semistable):

Lemma 5.8. Unless r is odd and C is an elliptic normal curve, 𝑁𝑅 [
+� 𝐶] is perfectly balanced, that is

𝑁𝑅 [
+� 𝐶] � OP1 (𝑟 + 2)⊕(𝑟−1) . (5.3)

If r is odd and C is an elliptic normal curve, then 𝑁𝑅 [
+� 𝐶] is ‘almost balanced’, that is, is isomorphic

to one of the two bundles:

OP1 (𝑟 + 2)⊕(𝑟−1) or OP1 (𝑟 + 3) ⊕ OP1 (𝑟 + 2)⊕(𝑟−3) ⊕ OP1 (𝑟 + 1).

Proof. Write d and g for the degree and genus of C. First, we reduce to the cases where C is nonspecial,
that is, where 𝑑 ≥ 𝑔 + 𝑟. To do this, when 𝑑 < 𝑔 + 𝑟, we inductively specialize C to a union 𝐶 ′ ∪ 𝐷,
where 𝐶 ′ is a general BN-curve of degree 𝑑 ′ ≥ 𝑟 + 2. Since in particular 𝑑 ′ ≥ 𝑟 + 1, we may specialize
the points where R meets C onto 𝐶 ′, thereby replacing C by 𝐶 ′, which is not an elliptic normal curve
since 𝑑 ′ ≥ 𝑟 + 2. To find such a specialization, we break into cases as follows:

1. If 𝑑 < 𝑔 + 𝑟 and 𝜌(𝑑, 𝑔, 𝑟) > 0 (which forces 𝑑 ≥ 2𝑟 + 1 ≥ 𝑟 + 3), we apply Lemma 5.4 to degenerate
C to the union of a general BN-curve 𝐶 ′ of degree 𝑑 − 1 and genus 𝑔 − 1, with a one-secant line D.

2. If 𝑑 < 𝑔 + 𝑟 and 𝜌(𝑑, 𝑔, 𝑟) = 0, but C is not a canonical curve (which forces 𝑑 ≥ 3𝑟 ≥ 2𝑟 + 2), we
claim that we may specialize C to the union of a general BN-curve 𝐶 ′ of degree 𝑑 − 𝑟 and genus
𝑔 − 𝑟 − 1, with an (𝑟 + 2)-secant rational normal curve D. Indeed, as in the proof of Lemma 5.1, we
have that 𝐻1(𝑇P𝑟 |𝐶′∪𝐷) = 0 by combining 𝐻1(𝑇P𝑟 |𝐶′ ) = 0 (from the Gieseker–Petri theorem) and
𝐻1 (𝑇P𝑟 |𝐷 (−𝐷 ∩ 𝐶 ′)) = 0 (from 𝑇P𝑟 |𝐷 � OP1 (𝑟 + 1)⊕𝑟 ).
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3. If C is a canonical curve, we claim that we may specialize C to the union of a general BN-curve
𝐶 ′ of degree 𝑟 + 2 and genus 2, with a r-secant rational curve of degree 𝑟 − 2. Indeed, we glue an
abstract curve of genus 2 to P1 at r general points, and map it to projective space via the complete
linear series for the dualizing sheaf.

For C nonspecial, we will prove the lemma by induction on r. Let Γ be a collection of 𝑟 + 1 points
where C meets R; for 𝑟 ≥ 3, this is exactly the intersection 𝐶 ∩ 𝑅, and so 𝑁𝑅 [Γ

+� 𝐶] = 𝑁𝑅 [
+� 𝐶].

However, we can extend the lemma to cover the case 𝑟 = 2 as well, by replacing equation (5.3) with the
assertion that 𝑁𝑅 [Γ

+� 𝐶] � OP1 (𝑟 + 2)⊕(𝑟−1) . With this formulation, the base case of 𝑟 = 2 is clear
since 𝑁𝑅 [Γ

+� 𝐶] is a line bundle of degree 4. The base case 𝑟 = 3 is [9, Lemma 4.2].
For the inductive step, we suppose 𝑟 ≥ 4. Let 𝐻 ′ be a general hyperplane transverse to H. We will

degenerate C to a union 𝐶 ′ ∪ 𝐿, where 𝐶 ′ ⊂ 𝐻 ′ is a general BN-curve of degree 𝑑 − 1 and genus g.
By hypothesis, 𝑑 ≥ 𝑟 + 1, and so 𝐶 ′ meets H in at least r points, which are in linear general position in
𝐻 ∩ 𝐻 ′ � P𝑟−2 since the sectional monodromy group of a general curve always contains the alternating
group [20]. Since Aut P𝑟−2 acts transitively on r-tuples of points in linear general position, we can apply
an automorphism so that 𝑟−1 of these points are on R and the final point p lies on a one-secant line L to R.

𝐶 ′

𝐿

𝑅

𝑝

𝐻

𝐻 ′

𝑢 𝑣

We claim that 𝐶 ′ ∪ 𝐿 is a BN-curve of degree d and genus g, as 𝐻1(𝑇P𝑟 |𝐶′∪𝐿) = 0. Indeed,
𝐻1 (𝑇P𝑟 |𝐶′ ) = 0 because 𝐶 ′ is nonspecial (and 𝑇P𝑟 is a quotient of OP𝑟 (1)⊕𝑟+1). Furthermore, since
𝑇P𝑟 |𝐿 � OP1 (2) ⊕ OP𝑟 (1)⊕𝑟 , we have 𝐻1 (𝑇P𝑟 |𝐿 (−𝑝)) = 0. The result now follows by considering

0 → 𝑇P𝑟 |𝐿 (−𝑝) → 𝑇P𝑟 |𝐶′∪𝐿 → 𝑇P𝑟 |𝐶′ → 0.

Call u and v the points on R where L is one-secant. Projecting from L induces an exact sequence

0 → 𝑁𝑅→𝐿 [𝑢
+
→ 𝑣] [𝑣 +

→ 𝑢] � OP1 (𝑟 + 2)⊕2 → 𝑁𝑅 [
+� 𝐶 ′ ∪ 𝐿] → 𝑁𝑅 [

+� 𝐶 ′] (𝑢 + 𝑣) → 0.

The curve 𝑅 is again a rational curve of degree 𝑟 −3 in a hyperplane that is incident to 𝐶 ′ at 𝑟 −1 points.
Furthermore, if C is not an elliptic normal curve, then neither is 𝐶 ′. Applying our inductive hypothesis
(for P𝑟−2), in combination with the above exact sequence, completes the proof. �

It is natural to ask what happens when C is an elliptic normal curve and r is odd. This case is only
necessary to treat the special family of canonical curves of even genus. When we treat that case in
Section 13, we will show that 𝑁𝑅 [

+� 𝐶] is not perfectly balanced in this case. Moreover, we will give
a geometric construction of its Harder–Narasimhan filtration.
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5.4. Reduction to good tuples

In this section, we show that, apart from rational curves and canonical curves of even genus, all other
cases of Theorem 1.4 follow from 𝐼 (𝑑, 𝑔, 𝑟, 0, 𝑚) for good tuples with ℓ = 0.

Lemma 5.9. Suppose that 𝜌(𝑑, 𝑔, 𝑟) ≥ 0 and that (𝑑, 𝑔, 𝑟) ≠ (2𝑟, 𝑟 + 1, 𝑟) if r is odd. If 𝑔 ≥ 𝑟 and
𝐼 (𝑑 − 𝑟 + 1, 𝑔 − 𝑟, 𝑟, ℓ, 𝑚 + 1) holds, then 𝐼 (𝑑, 𝑔, 𝑟, ℓ, 𝑚) holds.

Proof. Let C be a general BN-curve of degree d and genus g in P𝑟 with 𝑔 ≥ 𝑟. Let 𝑢1, 𝑣1, . . . , 𝑢ℓ , 𝑣ℓ
be general points on C. Let 𝑅1, . . . , 𝑅𝑚 be general (𝑟 + 1)-secant rational curves of degree 𝑟 − 1. The
statement 𝐼 (𝑑, 𝑔, 𝑟, ℓ, 𝑚) asserts that

𝑁𝐶 [
+� 𝑅1 + · · · + 𝑅𝑚] [𝑢1

+
↔ 𝑣1] [𝑢2

+
↔ 𝑣2] · · · [𝑢ℓ

+
↔ 𝑣ℓ]

satisfies interpolation. Combining the assumptions that 𝜌(𝑑, 𝑔, 𝑟) ≥ 0 and 𝑔 ≥ 𝑟, we see that

𝑑 ≥ 𝑟 +
𝑟𝑔

𝑟 + 1
≥ 𝑟 +

𝑟2

𝑟 + 1
> 2𝑟 − 1.

We may therefore prove 𝐼 (𝑑, 𝑔, 𝑟, ℓ, 𝑚) by peeling off an additional (𝑟 + 1)-secant rational curve 𝑅𝑚+1
of degree 𝑟 − 1. That is, we specialize the curve C as in Lemma 5.7 to the union of a general BN-curve
𝐶 ′ of degree 𝑑 − 𝑟 + 1 and genus 𝑔 − 𝑟 and a rational curve 𝑅𝑚+1, in such a way that the points of
𝐶 ∩ (𝑅1 ∪ · · · ∪ 𝑅𝑚) and the 𝑢𝑖 and 𝑣𝑖 specialize onto 𝐶 ′. By virtue of specializing the auxilliary points
onto 𝐶 ′, we have(

𝑁𝐶′∪𝑅𝑚+1 [
+� 𝑅1 + · · · + 𝑅𝑚] [𝑢1

+
↔ 𝑣1] [𝑢2

+
↔ 𝑣2] · · · [𝑢ℓ

+
↔ 𝑣ℓ]

) ��
𝑅𝑚+1

� 𝑁𝐶′∪𝑅𝑚+1 |𝑅𝑚+1 .

Since we assume that (𝑑, 𝑔, 𝑟) ≠ (2𝑟, 𝑟 + 1, 𝑟) if r is odd, Lemma 5.8 implies that 𝑁𝐶′∪𝑅𝑚+1 |𝑅𝑚+1 is
perfectly balanced. By Lemma 3.7, it suffices to prove that 𝑁𝐶′∪𝑅𝑚+1 |𝐶′ satisfies interpolation. This
restriction is

𝑁𝐶′ [
+� 𝑅1 + · · · + 𝑅𝑚+1] [𝑢1

+
↔ 𝑣1] [𝑢2

+
↔ 𝑣2] · · · [𝑢ℓ

+
↔ 𝑣ℓ],

which satisfies interpolation by our assumption that 𝐼 (𝑑 − 𝑟 + 1, 𝑔 − 𝑟, 𝑟, ℓ, 𝑚 + 1) holds. �

Proposition 5.10. Suppose that 𝐼 (𝑑, 𝑔, 𝑟, 0, 𝑚) holds for all good (𝑑, 𝑔, 𝑟, 0, 𝑚). Then 𝐼 (𝑑, 𝑔, 𝑟, 0, 0)
holds whenever 𝜌(𝑑, 𝑔, 𝑟) ≥ 0, except if

• (𝑑, 𝑔, 𝑟) is in the list (1.4), or
• (𝑑, 𝑔, 𝑟) = (2𝑟, 𝑟 + 1, 𝑟) and r is odd, or
• 𝑔 = 0 and 𝑑 � 1(mod 𝑟 − 1).

Proof. When 𝑔 = 0, the tuple (𝑑, 𝑔, 𝑟, 0, 0) is good when 𝑑 ≡ 1 mod 𝑟 − 1, so the result is a tautology.
We therefore suppose 𝑔 ≥ 1.

We will prove by induction on g that 𝐼 (𝑑, 𝑔, 𝑟, 0, 𝑚) holds for 𝑔 ≥ 1 subject to the conditions that
𝑚 ≤ 𝜌(𝑑, 𝑔, 𝑟) and (𝑑, 𝑔, 𝑟, 0, 𝑚) is not in the list (XEx). (If (𝑑, 𝑔, 𝑟, 0, 0) is in the list (XEx), then
(𝑑, 𝑔, 𝑟) is in the list (1.4), so this is sufficient.) Our base cases will be 𝑔 ≤ 𝑟; in these cases, 𝑑 ≥ 𝑔+ 𝑟 by
Remark 4.3, and so (𝑑, 𝑔, 𝑟, 0, 𝑚) is good. For the inductive step, we apply Lemma 5.9 to reduce from
𝐼 (𝑑, 𝑔, 𝑟, 0, 𝑚) to 𝐼 (𝑑 − 𝑟 + 1, 𝑔 − 𝑟, 𝑟, 0, 𝑚 + 1). �

6. The family with 𝜹 = 1 and ℓ = m = 0

In this section, we establish 𝐼 (𝑑, 𝑔, 𝑟, 0, 0) for good tuples with 𝛿 = 1. When ℓ = 𝑚 = 0, the condition
𝛿 = 1 is equivalent to

2𝑑 + 2𝑔 = 3𝑟 − 1, (6.1)
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and 𝐼 (𝑑, 𝑔, 𝑟, 0, 0) asserts interpolation for 𝑁𝐶 (with no modifications). Our argument will be by
induction on 𝑑 − 𝑔 − 𝑟.

When 𝑑 − 𝑔 − 𝑟 = 0, then by equation (6.1), we have (𝑑, 𝑔, 𝑟) = (5𝑔 + 1, 𝑔, 4𝑔 + 1). We may therefore
conclude interpolation by [2, Lemma 11.3].

To complete the inductive step, observe that if 𝑔 = 0, then 𝑑 = (3𝑟 − 1)/2 by equation (6.1), and so
such tuples (𝑑, 0, 𝑟, 0, 0) are never good. It thus suffices to prove the following proposition in the case
𝑔 > 0. (The 𝑔 = 0 case is included here too since it will be useful later, when establishing Theorem 1.4
for rational curves, and it will follow via the same argument.)

Proposition 6.1. Suppose that ℓ = 𝑚 = 0, and 𝑑 > 𝑔+𝑟, and equation (6.1) holds. If 𝐼 (𝑑−3, 𝑔, 𝑟−2, 0, 0)
holds, and 𝑔 > 0 or the characteristic is not 2, then 𝐼 (𝑑, 𝑔, 𝑟, 0, 0) also holds.

In order to prove this proposition, we first establish the following lemmas.

Lemma 6.2. Let L be a line meeting C quasitransversely at a smooth point x. For any points 𝑦, 𝑦′ ∈ 𝐿\𝑥,
the sections of P𝑁𝐶 corresponding to 𝑁𝐶→𝑦 and 𝑁𝐶→𝑦′ are tangent over x.

Proof. We prove this by a calculation in local coordinates. We may choose an affine neighborhood of x in
P𝑟 , and a local coordinate t on C so that 𝑥 = 𝐶 (0) = 0, and C is given parametrically by the power series
𝐶 (𝑡) = 𝑡𝐶1 + 𝑡2𝐶2 +𝑂 (𝑡3). By assumption, 𝑦′ = 𝑎 · 𝑦 for some invertible scalar a. It suffices to show that
the three vectors 𝐶 (𝑡) − 𝑦, and 𝐶 (𝑡) − 𝑦′, and 𝐶 ′(𝑡), are dependent mod 𝑡2. The explicit dependence is

−𝑎(𝐶 (𝑡) − 𝑦) + (𝐶 (𝑡) − 𝑦′) + 𝑡 (𝑎 − 1)𝐶 ′(𝑡) ≡ −𝑎(𝑡𝐶1 − 𝑦) + (𝑡𝐶1 − 𝑦′) + 𝑡 (𝑎 − 1)𝐶1 = 0(mod 𝑡2).

�

Lemma 6.3. Let u, v, and x be general points on a BN-curve C of degree d and genus g with

2(𝑑 + 1) + 2𝑔 = 3𝑟 − 1 and 𝑑 ≥ 𝑔 + 𝑟. (6.2)

Let y be a general point on the one-secant line 𝑢𝑣. Then the bundle

(𝑁𝐶→𝑢 ⊕ 𝑁𝐶→𝑣 ) [2𝑥 +
→ 𝑦]

satisfies interpolation if and only if 𝑔 > 0 or the characteristic is not 2.

Proof. Subtracting the first equation in equation (6.2) from 6 times the second inequality implies
2𝑑 + 4 − 2𝑔 ≥ 2𝑔. By Lemma 3.8, interpolation for (𝑁𝐶→𝑢 ⊕ 𝑁𝐶→𝑣 ) [2𝑥 +

→ 𝑦] is thus equivalent to
interpolation for

𝑁 := (𝑁𝐶→𝑢 ⊕ 𝑁𝐶→𝑣 ) [2𝑥
−
→ 𝑦] .

By Lemma 6.2, the subbundles 𝑁𝐶→𝑦 and 𝑁𝐶→𝑣 agree to second order at u. Therefore, the composi-
tion 𝑁𝐶→𝑦 → 𝑁𝐶→𝑢 ⊕ 𝑁𝐶→𝑣 → 𝑁𝐶→𝑢 vanishes to order 2 at u. Similarly, 𝑁𝐶→𝑦 → 𝑁𝐶→𝑣 vanishes
to order 2 at v. Therefore, under the isomorphisms

𝑁𝐶→𝑦 � O𝐶 (1), 𝑁𝐶→𝑢 � O𝐶 (1) (2𝑢), and 𝑁𝐶→𝑣 � O𝐶 (1) (2𝑣), (6.3)

the map 𝑁𝐶→𝑦 → 𝑁𝐶→𝑢 ⊕ 𝑁𝐶→𝑣 is a diagonal inclusion

O𝐶 (1) → O𝐶 (1) (2𝑢) ⊕ O𝐶 (1) (2𝑣)
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given by constant sections of O𝐶 (2𝑢) and O𝐶 (2𝑣) that vanish at 2𝑢 and 2𝑣, respectively. Such a section
is indexed by two nonzero constants c and d. In other words,

𝑁 � (O𝐶 (1) (2𝑢) ⊕ O𝐶 (1) (2𝑣)) [2𝑥
−
→ O𝐶 (1)],

where 𝑂𝐶 (1) is the diagonal subbundle identified above.
Since 𝜇(𝑁) = 𝑑 + 1, it satisfies interpolation if and only if it has no cohomology when twisted down

by a general line bundle of degree 𝑑 + 2 − 𝑔. Write such a line bundle as 𝐿∨(1) (2𝑢 + 2𝑣), where L is a
general line bundle of degree 𝑔 + 2. We therefore want

𝑁 ⊗ 𝐿(−1) (−2𝑢 − 2𝑣) = (𝐿(−2𝑣) ⊕ 𝐿(−2𝑢)) [2𝑥 +
→ 𝐿(−2𝑢 − 2𝑣)] (6.4)

to have no global sections, where the diagonal subbundle 𝐿(−2𝑢 − 2𝑣) is indexed by [𝑐 : 𝑑] ∈ G𝑚 as
above.

As L is a general line bundle of degree 𝑔 + 2 and u and v are general points, ℎ0 (𝐿(−2𝑣)) =
ℎ0 (𝐿(−2𝑢)) = 1; write 𝜎 and 𝜏 for the unique (up to scaling) sections of L vanishing to order 2 at u and
v, respectively. Every section of 𝐿(−2𝑢) ⊕ 𝐿(−2𝑣) is a linear combination 𝑎𝜎 ⊕ 𝑏𝜏, viewed as a section
of 𝐿 ⊕ 𝐿. Such a global section comes from the subsheaf (𝐿(−2𝑣) ⊕ 𝐿(−2𝑢)) [2𝑥 +

→ 𝐿(−2𝑢 − 2𝑣)]
when it is dependent with the constant diagonal section 𝑐 ⊕ 𝑑 at 2𝑥, that is, when the section 𝑎𝑑𝜎 − 𝑏𝑐𝜏
of L vanishes at 2𝑥. Hence, equation (6.4) has no cohomology if x is not a ramification point of the map
𝜑 : 𝐶 → P1 determined by 〈𝜎, 𝜏〉 ⊆ 𝐻0(𝐿).

As x was a general point, this holds if and only if 𝜑 is separable. If 𝜑 is not separable, then the
characteristic p of the ground field is positive and 𝜑 factors through the Frobenius morphism F:

𝐶
𝐹
−→ 𝐶 ′ → P1.

In this case, L and the linear system 〈𝜎, 𝜏〉 are necessarily pulled back under F. In other words, 𝐿 � 𝐹∗𝑀
for a line bundle M (necessarily general because L is general), of degree (𝑔 + 2)/𝑝 with ℎ0 (𝑀) ≥ 2.
Therefore,

𝑔 + 2
𝑝

+ 1 − 𝑔 = ℎ0 (𝑀) ≥ 2,

or upon rearrangement,

𝑝 ≤
𝑔 + 2
𝑔 + 1

.

Thus 𝑔 = 0 and 𝑝 = 2.
Conversely, when 𝑔 = 0, there is a choice of coordinates [𝑡 : 𝑠] on C so that 〈𝜎, 𝜏〉 = 〈𝑡2, 𝑠2〉. If in

addition 𝑝 = 2, then the map 𝜑 is inseparable. �

Proof of Proposition 6.1. Specialize C to the union 𝐶 ′ ∪ 𝐿, where 𝐶 ′ is a general BN-curve of degree
𝑑−1 and genus g in P𝑟 , and L is a one-secant line 𝑥𝑦 meeting 𝐶 ′ at x. It suffices to show interpolation for

𝑁𝐶′ [2𝑥 +
→ 𝑦] .

Let 𝑢, 𝑣 ∈ 𝐶 ′ be general points, and specialize y to a general point on the line 𝑢𝑣. Projection from 𝑢𝑣
induces a pointing bundle exact sequence

0 → (𝑁𝐶′→𝑢 ⊕ 𝑁𝐶′→𝑣 ) [2𝑥 +
→ 𝑦] → 𝑁𝐶′ [2𝑥 +

→ 𝑦] → 𝑁𝐶′ (𝑢 + 𝑣) → 0. (6.5)
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By Lemma 6.3, the subbundle (𝑁𝐶′→𝑢 ⊕ 𝑁𝐶′→𝑣 ) [2𝑥 +
→ 𝑦] satisfies interpolation. By hypothesis, 𝑁𝐶′ ,

and hence the quotient 𝑁𝐶′ (𝑢 + 𝑣), also satisfies interpolation. Finally, by equation (6.1),

𝜇 ((𝑁𝐶′→𝑢 ⊕ 𝑁𝐶′→𝑣 ) [2𝑥 +
→ 𝑦]) = 𝑑 + 2 =

(𝑟 − 1)𝑑 + 2𝑔 − 𝑟 − 5
𝑟 − 3

= 𝜇(𝑁𝐶′ (𝑢 + 𝑣)).

Thus, 𝑁𝐶′ [2𝑥 +
→ 𝑦] satisfies interpolation by Lemma 3.15. �

7. Specializations of the Ri

In this section, for some integers 𝑛 = 𝑛𝑖 , we construct a specialization of one of the rational curves
𝑅 = 𝑅𝑖 so that exactly n modifications point towards a point p on C. We then show that this specialization
plays well with projection from p.

7.1. Setup

Let n be an integer satisfying 0 ≤ 𝑛 ≤ 𝑟 − 1 and 𝑛 ≡ 𝑟 − 1 mod 2. Let 𝑝, 𝑞1, 𝑞2, . . . , 𝑞𝑟−1 ∈ 𝐶 be points
such that 2𝑝 + 𝑞1 + · · · + 𝑞𝑟−1 lies in a hyperplane H. Assume that 2𝑝 + 𝑞1 + · · · + 𝑞𝑟−1 is otherwise
in linear general position, that is, 𝑝 + 𝑞1 + · · · + 𝑞𝑟−1 and each 2𝑝 + 𝑞1 + · · · + 𝑞𝑖−1 + 𝑞𝑖+1 + · · · + 𝑞𝑟−1
spans H. When C is a general nonspecial BN-curve, we claim this assumption is satisfied if p is general
and H is a general hyperplane containing 2𝑝. Indeed, in this case, the projection 𝐶 from p is a general
BN-curve, and p remains a general point on 𝐶. Since the sectional monodromy group of a general curve
always contains the alternating group [20], the corresponding points of 𝐶 are in linear general position
in the projection of H.

For i between 1 and n, write 𝐿𝑖 for the line joining p and 𝑞𝑖 . For j from 1e to 𝑛′ := (𝑟−1−𝑛)/2, let 𝑄 𝑗

be a plane conic passing through p, 𝑞𝑛+2 𝑗−1 and 𝑞𝑛+2 𝑗 . The following diagram illustrates the 𝐿𝑖 and 𝑄 𝑗 :

𝐶

𝑝

𝐿1𝐿𝑛 · · ·

𝑄1 · · · 𝑄𝑛′

𝑞1𝑞𝑛

𝑞𝑛+1

𝑞𝑛+2𝑞𝑟−2
𝑞𝑟−1

Define

𝑅◦ := 𝐿1 ∪ 𝐿2 ∪ · · · ∪ 𝐿𝑛 ∪ 𝑄1 ∪ 𝑄2 ∪ · · · ∪ 𝑄𝑛′ .

We will study when 𝑅◦ is a limit of (𝑟 + 1)-secant rational normal curves 𝑅𝑡 in hyperplanes that are
(𝑟+1)-secant to C, in such a way that exactly two points of secancy limit together to p while the remaining
points of secancy limit to 𝑞1, 𝑞2, . . . , 𝑞𝑟−1. For this, it is evidently necessary to have a containment of
Zariski tangent spaces 𝑇𝑝𝐶 ⊂ 𝑇𝑝𝑅◦. In what follows, we will show that this condition is sufficient.
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Suppose that 𝑇𝑝𝐶 ⊂ 𝑇𝑝𝑅◦ and 𝑚 := 𝑛 + 𝑛′ = (𝑟 − 1 + 𝑛)/2 ≥ 3. Then the tangent line to 𝐿𝑖
(respectively to 𝑄 𝑗 ) at p gives a distinguished point 𝑎𝑖 (respectively 𝑏 𝑗 ) in

Λ := P(𝑇𝑝𝑅◦/𝑇𝑝𝐶) � P𝑚−2 ⊂ P𝑁𝐶 |𝑝 .

Write Γ = {𝑎1, . . . , 𝑎𝑛, 𝑏1, . . . , 𝑏𝑛′ }, which is a collection of m points in Λ. Our linear gen-
erality assumption on 2𝑝 + 𝑞1 + · · · + 𝑞𝑟−1 implies that Γ is linearly general in Λ. Indeed, a
linear dependence between 𝑎𝑖1 , . . . , 𝑎𝑖𝛼 , 𝑏 𝑗1 , . . . , 𝑏 𝑗𝛽 in Λ implies a linear dependence between
2𝑝, 𝑞𝑖1 , . . . , 𝑞𝑖𝛼 , 𝑞𝑛+2 𝑗1−1, 𝑞𝑛+2 𝑗1 , . . . , 𝑞𝑛+2 𝑗𝛽−1, 𝑞𝑛+2 𝑗𝛽 in H. Let 𝑇 ⊂ Λ be a general rational normal
curve in Λ passing through Γ, and let M be a general one-secant line to T. Our argument will fur-
thermore show that we can choose the family 𝑅𝑡 so that the modifications along 𝑅𝑡 at the points
approaching p limit to M, that is, so that 𝑁𝐶 [

+� 𝑅𝑡 ] fits into a flat family whose central fiber is
𝑁𝐶 [𝑞1 + · · · + 𝑞𝑟−1

+� 𝑅◦] [𝑝 +
→ 𝑀].

7.2. The construction

To construct the desired family 𝑅𝑡 , let B be the spectrum of a DVR, with special point 𝑡 = 0. Consider
the blowup of P𝑟 ×𝐵 along 𝐶×0. The special fiber X over 0 has two components: The first is isomorphic
to the blowup Bl𝐶 P𝑟 , and contains the proper transform 𝑅̂◦ = 𝐿̂1 ∪ · · · ∪ 𝐿̂𝑛 ∪ 𝑄̂1 ∪ · · · ∪ 𝑄̂𝑛′ of
𝑅◦. The second is isomorphic to the normal cone P(𝑁𝐶 ⊕ O𝐶 ), and contains the special fiber of the
proper transform of 𝐶 × 𝐵, which coincides with PO𝐶 ⊂ P(𝑁𝐶 ⊕O𝐶 ) and is isomorphic to C. The two
components meet along P𝑁𝐶 , and the intersection 𝑅̂◦ ∩ P𝑁𝐶 is the finite set of points Γ ∪ Γ′, where
Γ = {𝑎1, . . . , 𝑎𝑛, 𝑏1, . . . , 𝑏𝑛′ } lies in the fiber over p, and Γ′ = {𝑞′

1, 𝑞
′
2, . . . , 𝑞

′
𝑟−1} contains one point 𝑞′

𝑖
in the fiber over each 𝑞𝑖 . The following diagram illustrates the central fiber X:

𝑄̂ 𝑗𝐿̂𝑖

𝑞′
1

𝑞′
𝑟−1

𝑎𝑖

𝑏 𝑗

𝑅̂◦

P𝑁𝐶

Bl𝐶 P𝑟

P(𝑁𝐶 ⊕ O𝐶 )

𝐶

𝑇

𝑀

𝑝

𝑓

𝑞1 𝑞𝑟−1· · ·

ℓ𝑟−1ℓ1

Λ

Let ℓ𝑘 ⊂ P(𝑁𝐶 ⊕O𝐶 ) |𝑞𝑘 denote the line joining 𝑞𝑘 to 𝑞′
𝑘 . These lines are pictured as dotted vertical

lines in the above diagram.
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Write Δ = 𝑀 ∩ 𝑇 . The linear series 𝑉 := 𝐻0 (O𝑇 (1)) ⊕ 𝐻0(O𝑇 (1) (Δ − Γ)) ⊂ 𝐻0 (O𝑇 (1) (Δ))
defines a map P1 � 𝑇 → P𝑉 � P𝑚−1 of degree m, which identifies the two points of Δ to a common
point. Fix an embedding P𝑉 ↩→ P(𝑁𝐶 ⊕ O𝐶 ), which agrees with the identification P𝐻0 (O𝑇 (1)) � Λ,
and sends this common point to 𝑝 := PO𝐶 |𝑝 ∈ P(𝑁𝐶 ⊕ O𝐶 ) |𝑝 . Composing these maps, we obtain
a map 𝑓 : P1 � 𝑇 → P(𝑁𝐶 ⊕ O𝐶 ), which is pictured as the dotted curve in the above diagram. By
construction, f passes through Γ and is nodal at p. Moreover, composing projection from p with f is the
identity on T, and projection from p sends the Zariski tangent space of the image of f at p to M.

We now glue 𝑅̂◦ to f and the ℓ𝑖 , that is, we consider the map 𝐹 : 𝑅̂◦ ∪𝑇 ∪ ℓ1 ∪ · · · ∪ ℓ𝑟−1 → 𝑋 defined
by the natural inclusions on 𝑅̂◦ and the ℓ𝑖 , and by f on T. To complete the argument, it suffices to deform
F to the general fiber in a way that preserves its incidence to C. To check that this is possible, we just
need to check that the corresponding obstruction space vanishes, that is, that 𝐻1(𝑁𝐹 [

−
� 𝐶]) = 0.

7.3. the normal space P𝑵𝑪 |𝒑
One tool that we will use – both to show in the next section that 𝐻1(𝑁𝐹 [

−
� 𝐶]) = 0, and in the

following section to analyze the transformation [𝑝 +
→ 𝑀] – is the natural identification of P𝑁𝐶 |𝑝 with

the projection of P𝑟 from 𝑇𝑝𝐶. Under this projection, 𝑞1, 𝑞2, . . . , 𝑞𝑟−1 are a collection of 𝑟 − 1 points,
which are general subject to the condition of being contained in a hyperplane H. The conics 𝑄 𝑗 project
to the lines through 𝑞𝑛+2 𝑗−1 and 𝑞𝑛+2 𝑗 . The image 𝑝 of p is identified with the osculating 2-plane, which
coincides with P𝑁𝐶→𝑝 |𝑝 ∈ P𝑁𝐶 |𝑝 . Under this identification, the points 𝑎𝑖 are identified with 𝑞𝑖 , and
the points 𝑏 𝑗 lie on 𝑄 𝑗 . The following diagram illustrates this setup:

𝑏1 𝑏𝑛′

𝑝

𝑞1 = 𝑎1 𝑞𝑛 = 𝑎𝑛· · ·

𝑞𝑛+1
𝑞𝑟−2

𝑞𝑛+2 𝑞𝑟−1· · ·

𝐶

𝑄1 𝑄𝑛′

𝐻

7.4. Vanishing of 𝑯1(𝑵𝑭 [
−
� 𝑪])

Given a vector bundle E on a reducible curve 𝑋 ∪Γ 𝑌 , recall that the Mayer–Vietoris sequence is

0 → 𝐸 → 𝐸 |𝑋 ⊕ 𝐸 |𝑌 → 𝐸 |Γ → 0.

Applying this to 𝐸 = 𝑁𝐹 [
−
� 𝐶], we obtain

0 → 𝑁𝐹 [
−
� 𝐶] → 𝑁𝑅̂◦/Bl𝐶 P𝑟 ⊕ 𝑁 𝑓 [

−
� 𝐶] ⊕

𝑟−1⊕
𝑘=1

𝑁ℓ𝑘/P(𝑁𝐶 ⊕O𝐶 ) [
−
� 𝐶] → 𝑇P𝑁𝐶 |Γ∪Γ′ → 0. (7.1)

For each of the direct summands in the middle term, we both show that 𝐻1 vanishes, and extract
information about the image of its global sections in 𝑇P𝑁𝐶 |Γ∪Γ′ . We then combine this information to
show that the rightmost map is surjective on global sections.

Lemma 7.1. We have 𝐻1(𝑁ℓ𝑘/P(𝑁𝐶 ⊕O𝐶 ) [
−
� 𝐶]) = 0, and 𝐻0(𝑁ℓ𝑘/P(𝑁𝐶 ⊕O𝐶 ) [

−
� 𝐶]) surjects onto

𝑇P𝑁𝐶 |𝑞′𝑘 .
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Proof. Both statements follow from 𝐻1(𝑁ℓ𝑘/P(𝑁𝐶 ⊕O𝐶 ) [
−
� 𝐶] (−𝑞′

𝑘 )) = 0, which can in turn be deduced
from

0 → 𝑁ℓ𝑘/P(𝑁𝐶 ⊕O𝐶 ) |𝑞𝑘
(−𝑞𝑘 − 𝑞′

𝑘 ) → 𝑁ℓ𝑘/P(𝑁𝐶 ⊕O𝐶 ) [
−
� 𝐶] (−𝑞′

𝑘 )

→ 𝑁P(𝑁𝐶 ⊕O𝐶 ) |𝑞𝑘 /P(𝑁𝐶 ⊕O𝐶 ) |ℓ𝑘 (−𝑞′
𝑘 ) → 0,

using the isomorphisms

𝑁ℓ𝑘/P(𝑁𝐶 ⊕O𝐶 ) |𝑞𝑘
� Oℓ𝑘 (1)

𝑟−1 and 𝑁P(𝑁𝐶 ⊕O𝐶 ) |𝑞𝑘 /P(𝑁𝐶 ⊕O𝐶 ) � OP(𝑁𝐶 ⊕O𝐶 ) |𝑞𝑘
. �

Lemma 7.2. We have 𝐻1(𝑁 𝑓 [
−
� 𝐶]) = 0. Moreover, the image 𝐻0(𝑁 𝑓 [

−
� 𝐶]) → 𝑇P𝑁𝐶 |Γ consists of

those deformations of Γ that can be lifted to deformations of Λ, that is, this image coincides with the
full preimage in 𝑇P𝑁𝐶 |Γ of the image of 𝐻0(𝑁Λ/P𝑁𝐶

) → 𝑁Λ/P𝑁𝐶
|Γ.

Proof. The map 𝜋𝑝 ◦ 𝑓 : 𝑇 → 𝑇 is the identity map, so the pointing bundle exact sequence yields a
surjection

𝑁 𝑓 [
−
� 𝐶] → 𝑁𝑇 ,

which we may further compose with the surjection 𝑁𝑇 → 𝑁Λ/P𝑁𝐶
|𝑇 coming from the inclusion 𝑇 ⊂ Λ.

Define K via the exact sequence

0 → 𝐾 → 𝑁 𝑓 [
−
� 𝐶] → 𝑁Λ/P𝑁𝐶

|𝑇 → 0.

By considering the diagram

𝐻1 (𝐾 (−Γ))

𝐻0 (𝐾) 𝐻0 (𝑁 𝑓 [
−
� 𝐶]) 𝐻0 (𝑁Λ/P𝑁𝐶

|𝑇 ) 𝐻1 (𝐾) 𝐻1 (𝑁 𝑓 [
−
� 𝐶]) 𝐻1 (𝑁Λ/P𝑁𝐶

|𝑇 )

𝐾 |Γ 𝑇P𝑁𝐶
|Γ 𝑁Λ/P𝑁𝐶

|Γ 0

𝐻1 (𝐾 (−Γ))

and noting that 𝐻0 (𝑁Λ) � 𝐻0(𝑁Λ |𝑇 ), it suffices to show that

𝐻1 (𝐾 (−Γ)) = 𝐻1(𝑁Λ/P𝑁𝐶
|𝑇 ) = 0.

The first vanishing statement follows from the pointing bundle sequence

0 → 𝑁 𝑓 →𝐶 (−Δ) � O𝑇 (Δ + Γ) → 𝐾 → 𝑁𝑇 /Λ � O𝑇 (Γ)
⊕(𝑚−3) → 0.

The second vanishing statement follows from the sequence:

0 → 𝑁Λ/P𝑁𝐶 |𝑝 |𝑇 � O𝑇 (1)𝑟−𝑚 → 𝑁Λ/P𝑁𝐶
|𝑇 → 𝑁P𝑁𝐶 |𝑝/P𝑁𝐶

|𝑇 � O𝑇 → 0. �
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We finally consider the bundle

𝑁𝑅̂◦/Bl𝐶 P𝑟 �

𝑛⊕
𝑖=1

𝑁𝐿̂𝑖/Bl𝐶 P𝑟 ⊕

𝑛′⊕
𝑗=1

𝑁𝑄̂ 𝑗/Bl𝐶 P𝑟 .

To describe the images of

𝐻0(𝑁𝐿̂𝑖/Bl𝐶 P𝑟 ) → 𝑇P𝑁𝐶 |𝑎𝑖 and 𝐻0 (𝑁𝑄̂ 𝑗/Bl𝐶 P𝑟 ) → 𝑇P𝑁𝐶 |𝑏 𝑗 ,

we define

𝐴𝑖 = 𝑇𝑞𝑖𝐶 and 𝐵 𝑗 = 〈𝑇𝑞𝑛+2 𝑗−1𝐶,𝑇𝑞𝑛+2 𝑗𝐶〉,

for the tangent line or span of tangent lines, and 𝐴𝑖 and 𝐵 𝑗 for their projections from 𝑇𝑝𝐶.

Lemma 7.3. We have 𝐻1 (𝑁𝐿̂𝑖/Bl𝐶 P𝑟 ) = 0. Moreover, the image of 𝐻0(𝑁𝐿̂𝑖/Bl𝐶 P𝑟 ) → 𝑇P𝑁𝐶 |𝑎𝑖 has the
following two properties:

1. It surjects onto 𝑇𝐶 |𝑝 .
2. The kernel of the map from the image to 𝑇𝐶 |𝑝 is precisely 𝑇𝑎𝑖 𝐴𝑖 .

Proof. We have an exact sequence

0 → 𝑁𝐿𝑖/P𝑟 [𝑞𝑖
−
� 𝐶] (−𝑝) → 𝑁𝐿̂𝑖/Bl𝐶 P𝑟 → 𝑇𝐶 |𝑝 → 0.

Using this, the kernel in equation (2) is the image of 𝐻0 (𝑁𝐿𝑖/P𝑟 [𝑞𝑖
−
� 𝐶] (−𝑝)) in 𝑇P𝑁𝐶 |𝑎𝑖 . Moreover,

the normal bundle exact sequence for 𝐿𝑖 in the span 𝐿𝑖𝐴𝑖 gives

0 → 𝑁𝐿𝑖/𝐿𝑖𝐴𝑖
(−𝑝) → 𝑁𝐿𝑖/P𝑟 [𝑞𝑖

−
� 𝐶] (−𝑝) → 𝑁𝐿𝑖𝐴𝑖/P𝑟

|𝐿𝑖 (−𝑞𝑖 − 𝑝) → 0,

and 𝑁𝐿𝑖/𝐿𝑖𝐴𝑖
(−𝑝) |𝑝 is identified with 𝑇𝑎𝑖 𝐴𝑖 under projection from 𝑇𝑝𝐶.

𝑞𝑖

𝐴𝑖𝐿𝑖𝐿𝑖𝐴𝑖

𝑝

𝐶

The same diagram chase as in Lemma 7.2 implies that it suffices to show:

𝐻1 (𝑁𝐿𝑖/𝐿𝑖𝐴𝑖
(−2𝑝)) = 𝐻0 (𝑁𝐿𝑖𝐴𝑖/P𝑟

|𝐿𝑖 (−𝑞𝑖 − 𝑝)) = 𝐻1 (𝑁𝐿𝑖𝐴𝑖/P𝑟
|𝐿𝑖 (−𝑞𝑖 − 𝑝)) = 0.

These statements follow from the isomorphisms

𝑁𝐿𝑖/𝐿𝑖𝐴𝑖
(−2𝑝) � O𝐿𝑖 (−1) and 𝑁𝐿𝑖𝐴𝑖/P𝑟

|𝐿𝑖 (−𝑝 − 𝑞𝑖) � O𝐿𝑖 (−1)𝑟−2.

�

Lemma 7.4. We have 𝐻1(𝑁𝑄̂ 𝑗/Bl𝐶 P𝑟 ) = 0. Moreover, the image of 𝐻0(𝑁𝑄̂ 𝑗/Bl𝐶 P𝑟 ) → 𝑇P𝑁𝐶 |𝑏 𝑗 has the
following two properties:

1. It surjects onto 𝑇𝐶 |𝑝 .
2. The kernel of the map from the image to 𝑇𝐶 |𝑝 is precisely 𝑇𝑏 𝑗 𝐵 𝑗 .
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Proof. We will imitate the proof of Lemma 7.3. We have an exact sequence

0 → 𝑁𝑄 𝑗/P𝑟 [𝑞𝑛+2 𝑗−1 + 𝑞𝑛+2 𝑗
−
� 𝐶] (−𝑝) → 𝑁𝑄̂ 𝑗/Bl𝐶 P𝑟 → 𝑇𝐶 |𝑏 𝑗 → 0.

Moreover, the normal bundle exact sequence for 𝑄 𝑗 in the span 𝑄 𝑗𝐵 𝑗 gives

0 → 𝑁𝑄 𝑗/𝑄 𝑗𝐵 𝑗
[𝑞𝑛+2 𝑗−1 + 𝑞𝑛+2 𝑗

−
� 𝐶] (−𝑝) → 𝑁𝑄 𝑗/P𝑟 [𝑞𝑛+2 𝑗−1 + 𝑞𝑛+2 𝑗

−
� 𝐶] (−𝑝)

→ 𝑁𝑄 𝑗𝐵 𝑗/P𝑟
|𝑄 𝑗 (−𝑞𝑛+2 𝑗−1 − 𝑞𝑛+2 𝑗 − 𝑝) → 0,

and 𝑁𝑄 𝑗/𝑄 𝑗𝐵 𝑗
[𝑞𝑛+2 𝑗−1 + 𝑞𝑛+2 𝑗

−
� 𝐶] (−𝑝) |𝑝 is identified with 𝑇𝑏 𝑗 𝐵 𝑗 under projection from 𝑇𝑝𝐶. Our

goal is therefore to show both

𝐻1(𝑁𝑄 𝑗/𝑄 𝑗𝐵 𝑗
[𝑞𝑛+2 𝑗−1 + 𝑞𝑛+2 𝑗

−
� 𝐶] (−2𝑝)) = 0

and

𝐻0 (𝑁𝑄 𝑗𝐵 𝑗/P𝑟
|𝑄 𝑗 (−𝑞𝑛+2 𝑗−1 − 𝑞𝑛+2 𝑗 − 𝑝)) = 𝐻1 (𝑁𝑄 𝑗𝐵 𝑗/P𝑟

|𝑄 𝑗 (−𝑞𝑛+2 𝑗−1 − 𝑞𝑛+2 𝑗 − 𝑝)) = 0.

The first vanishing statement follows from the exact sequence:

0 →
[
𝑁𝑄 𝑗/𝑄 𝑗

(−𝑞𝑛+2 𝑗−1 − 𝑞𝑛+2 𝑗 − 2𝑝) � OP1
]
→ 𝑁𝑄 𝑗/𝑄 𝑗𝐵 𝑗

[𝑞𝑛+2 𝑗−1 + 𝑞𝑛+2 𝑗
−
� 𝐶] (−2𝑝)

→
[
𝑁𝑄 𝑗/𝑄 𝑗𝐵 𝑗

|𝑄 𝑗 [𝑞𝑛+2 𝑗−1 + 𝑞𝑛+2 𝑗
−
� 𝐶] (−2𝑝) � OP1 (−1)⊕2] → 0.

The second vanishing statement follows from the isomorphism

𝑁𝑄 𝑗𝐵 𝑗/P𝑟
|𝑄 𝑗 (−𝑞𝑛+2 𝑗−1 − 𝑞𝑛+2 𝑗 − 𝑝) � 𝑂P1 (−1)⊕(𝑟−4) .

�

Combining these lemmas, we immediately see that 𝐻1 of the middle terms in the sequence (7.1)
vanish. We now see that the rightmost map of equation (7.1) is surjective on global sections, as follows.
First, we apply Lemma 7.1 to handle the points of Γ′; this reduces our problem to showing the surjectivity
of

𝐻0 (𝑁𝑅̂◦/Bl𝐶 P𝑟 ) ⊕ 𝐻0 (𝑁 𝑓 [
−
� 𝐶]) → 𝑇P𝑁𝐶 |Γ .

Applying Lemmas 7.3 and 7.4, we see that the composition to (𝑇𝐶 |𝑝)
𝑚 is surjective. It thus suffices to

show that the image contains the kernel of 𝑇P𝑁𝐶 |Γ → (𝑇𝐶 |𝑝)
𝑚, that is, 𝑇P𝑁𝐶 |𝑝 |Γ.

Since removing any point from Γ yields a linearly independent collection of points, any deformation
in P𝑁𝐶 |𝑝 of all but one point of Γ lifts to a deformation of Λ. Combining Lemma 7.2 with Lemma 7.3,
we therefore conclude that the image contains each 𝑇

〈Λ,𝐴𝑖 〉
|Γ. Similarly, combining Lemma 7.2 with

Lemma 7.4, we conclude that the image contains each 𝑇〈Λ,𝐵 𝑗 〉
|Γ. Since the 𝑇

〈Λ,𝐴𝑖 〉
|Γ and 𝑇〈Λ,𝐵 𝑗 〉

|Γ span
𝑇P𝑁𝐶 |𝑝 |Γ, the desired result follows.

7.5. The transformation [ 𝒑 +→ 𝑴]

We next show that 𝑀 is ‘suitably generic’ in P𝑁𝐶 |𝑝 .

Lemma 7.5. Fix a general BN-curve C and a general point 𝑝 ∈ 𝐶.

1. If 𝑛 ≥ 2: As 𝑞1, 𝑞2, . . . , 𝑞𝑟−1 vary, M is linearly general in P𝑁𝐶 |𝑝 .
2. If 𝑛 ≥ 3: This remains true if we fix 𝑞𝑛+1, 𝑞𝑛+2, . . . , 𝑞𝑟−1 ∈ 𝐶 to be general. In other words, as just

the remaining points 𝑞1, 𝑞2, . . . , 𝑞𝑛 vary, M is still linearly general in P𝑁𝐶 |𝑝 .
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Proof. Fix Λ ⊂ P𝑁𝐶 |𝑝 of codimension 2; we want to show that M can be disjoint from Λ. In the first
case, 𝑞1 and 𝑞2 are general points on 𝐶. In the second case, since any (𝑟 − 1− 𝑛) + 2 = 𝑟 + 1− 𝑛 ≤ 𝑟 − 2
points in P𝑟−2 lie in a hyperplane, the points 𝑞1 and 𝑞2 remain general even as 𝑞𝑛+1, 𝑞𝑛+2, . . . , 𝑞𝑟−1 ∈ 𝐶
are fixed. In either case, the line between 𝑞1 and 𝑞2 is therefore disjoint from Λ. This completes the
proof because M can be specialized to the line between 𝑞1 and 𝑞2. �

Lemma 7.5(2) is sharp, in the sense that the conclusion is always false if 𝑛 = 2 (the subspace M is
never transverse to Λ = 𝑞3𝑞4 · · · 𝑞𝑟−1). Nevertheless, there is a variant that does hold for 𝑛 = 2. By part
(1), the general such M is disjoint from 𝑝 = P𝑁𝐶→𝑝 |𝑝 ∈ P𝑁𝐶 |𝑝 . We may therefore ask for the weaker
conclusion that the image of M is linearly general in the quotient P(𝑁𝐶/𝑁𝐶→𝑝) |𝑝 , that is, that M is
transverse to any Λ containing 𝑝. In this case, the analog of Lemma 7.5(2) holds apart from a single
counterexample.

Lemma 7.6. Suppose 𝑛 = 2, and fix a general BN-curve C and general points 𝑝, 𝑞3, 𝑞4, . . . , 𝑞𝑟−1 ∈ 𝐶.
If C is not an elliptic normal curve, then as 𝑞1, 𝑞2 vary, M is linearly general in P(𝑁𝐶/𝑁𝐶→𝑝) |𝑝 .

Proof. By assumption, 𝑟 − 1 ≡ 𝑛 = 2 mod 2; hence, r is odd. If C is not an elliptic curve, then since
𝑑 ≥ 𝑟 + 1, either 𝑑 ≥ 𝑟 + 2 or (𝑑, 𝑔) = (𝑟 + 1, 0). We consider these two cases separately.

Case 1: 𝒅 ≥ 𝒓 + 2. Let Λ ⊂ P𝑁𝐶 |𝑝 be any codimension 2 plane containing 𝑝. We will show that M
can be chosen disjoint from Λ. Since any (𝑟 − 1 − 𝑛) + 1 = 𝑟 − 𝑛 = 𝑟 − 2 points lie in a hyperplane,
𝑞1 is a general point on 𝐶 and is therefore not contained in Λ. Let 𝐻 � P𝑟−3 be a general hyperplane
containing 𝑞3, 𝑞4, . . . , 𝑞𝑟−1. Since 𝑝 ∉ 𝐻 and 𝑝 ∈ Λ, it follows that Λ is transverse to H. As 𝑑 ≥ 𝑟 + 2,
the hyperplane section 𝐻 ∩ 𝐶 contains two points {𝑥, 𝑦} distinct from 𝑞1, 𝑞3, 𝑞4, . . . , 𝑞𝑟−1. Since the
sectional monodromy group of a general curve always contains the alternating group [20], the points
{𝑥, 𝑦, 𝑞1, 𝑞3, 𝑞4, . . . , 𝑞𝑟−1} are in linear general position. For any 𝑘 ≥ 0, there is a unique k-plane in
P2𝑘+2 meeting each of 𝑘 + 2 lines in linear general position. Applying this with 𝑘 = (𝑟 − 7)/2, we see
that there is a unique [(𝑟 − 3)/2]-plane Λ𝑥 ⊂ 𝐻 containing 𝑞1 and x, and meeting each of the lines
𝑄 𝑗 . If 𝑞2 = 𝑥, then by this uniqueness, Λ𝑥 coincides with the projection of 𝑇𝑝𝑅◦. Similarly define Λ𝑦 .
Because M can be linearly general in either Λ𝑥 or Λ𝑦 , it suffices to show that one of Λ𝑥 or Λ𝑦 contains
a line disjoint from Λ.

Note that Λ𝑥 ∩𝑄1 is the projection of x from 〈𝑞1, 𝑄2, . . . , 𝑄𝑛′ 〉 onto 𝑄1, and similarly for Λ𝑦 ∩𝑄1.
It follows that Λ𝑥 ∩𝑄1 ≠ Λ𝑦 ∩𝑄1, and thus that 〈Λ𝑥 ,Λ𝑦〉 contains 𝑄1. Similarly, 〈Λ𝑥 ,Λ𝑦〉 contains all
other 𝑄𝑖 . By inspection, 〈Λ𝑥 ,Λ𝑦〉 contains 𝑞1, x, and y. Therefore,〈Λ𝑥 ,Λ𝑦〉 = 𝐻. In particular, 〈Λ𝑥 ,Λ𝑦〉

is a distinct hyperplane from 〈Λ, 𝑞1〉. Without loss of generality, Λ𝑥 contains a point 𝑧 ∉ 〈Λ, 𝑞1〉. Then
〈𝑧, 𝑞1〉 gives the desired line contained in Λ𝑥 and disjoint from Λ.

Case 2: (𝒅, 𝒈) = (𝒓 + 1, 0). Since 𝑓 : P1 � 𝐶 → P𝑟−2 is a general rational curve of degree 𝑟 − 1, it
suffices to verify that M is linearly general for a particular choice of 𝑓 . We may therefore take

𝑓 (𝑡) =

[
𝑡2 + 1 : 𝑡 :

𝑡 − 𝑝3
𝑡 − 𝑞3

:
𝑡 − 𝑝4
𝑡 − 𝑞4

: · · · :
𝑡 − 𝑝𝑟−1
𝑡 − 𝑞𝑟−1

]
,

where 𝑝𝑖 ∈ P
1 are general. For 3 ≤ 𝑖 ≤ 𝑟 − 1, we have 𝑓 (𝑞𝑖) = [0 : · · · : 0 : 1 : 0 : · · · : 0], where the

1 occurs in the ith position. (The interested reader may verify that this is not actually a specialization,
that is, the general rational curve of degree 𝑟 − 1 in P𝑟−2 is of this form after applying automorphisms
of the source and target.)

Let 𝐻 = 𝐻𝑠 be a generic hyperplane passing through 𝑞3, 𝑞4, . . . , 𝑞𝑟−1, defined by the ratio of the
first two coordinates being equal to s. Note that H meets 𝑓 (P1) at two other points 𝑞1 = 𝑓 (𝑞1) and
𝑞2 = 𝑓 (𝑞2). The parameters 𝑞1 and 𝑞2 are the solutions of the equation 𝑡 + 𝑡−1 = (𝑡2 + 1)/𝑡 = 𝑠. The
projection Λ𝑠 of 𝑇𝑝𝑅◦ is the unique [(𝑟 − 3)/2]-plane Λ𝑠 containing 𝑞1 and 𝑞2 and meeting each of the
lines 𝑄𝑖 . We will show that, for 𝑠 ∈ P1 generic, Λ𝑠 is transverse to any fixed subspace Λ of codimension
2 containing 𝑝. Hence, a general line 𝑀 ⊆ Λ𝑠 is disjoint from Λ.
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To show this, we calculate Λ𝑠 explicitly. Since Λ𝑠 is unique, it suffices to exhibit a particular
[(𝑟 − 3)/2]-plane containing 𝑞1 and 𝑞2 and meeting each of the lines 𝑄𝑖 . We claim that we may take:

Λ𝑠 = 〈𝛼(𝑠), 𝛽1 (𝑠), 𝛽2 (𝑠), . . . , 𝛽(𝑟−3)/2(𝑠)〉,

where

𝛼(𝑠) =

[
𝑠 : 1 :

𝑝3𝑞4𝑠 − 𝑝3 − 𝑞4
𝑞3𝑞4 − 1

:
𝑝4𝑞3𝑠 − 𝑝4 − 𝑞3

𝑞3𝑞4 − 1
:

· · · :
𝑝𝑟−2𝑞𝑟−1𝑠 − 𝑝𝑟−2 − 𝑞𝑟−1

𝑞𝑟−2𝑞𝑟−1 − 1
:

𝑝𝑟−1𝑞𝑟−2𝑠 − 𝑝𝑟−1 − 𝑞𝑟−2
𝑞𝑟−2𝑞𝑟−1 − 1

]
𝛽𝑖 (𝑠) =

[
0 : 0 : · · · : 0 : 0 :

𝑝2𝑖+1
𝑞2𝑖+1

·
𝑠 − 𝑞2𝑖+1 − 𝑝−1

2𝑖+1

𝑠 − 𝑞2𝑖+1 − 𝑞−1
2𝑖+1

:
𝑝2𝑖+2
𝑞2𝑖+2

·
𝑠 − 𝑞2𝑖+2 − 𝑝−1

2𝑖+2

𝑠 − 𝑞2𝑖+2 − 𝑞−1
2𝑖+2

: 0 : 0 : · · · : 0 : 0

]
.

Here, the nonzero entries of 𝛽𝑖 (𝑠) occur in the (2𝑖+1)st and (2𝑖+2)nd coordinates. Indeed, Λ𝑠 meets 𝑄𝑖

at 𝛽𝑖 (𝑠), so it suffices to check that Λ𝑠 contains 𝑓 (𝑡) when 𝑠 = 𝑡 + 𝑡−1. This follows from the following
identity, which may be verified by separately considering the first coordinate, the second coordinate, the
(2𝑖 + 1)st coordinate, and the (2𝑖 + 2)nd coordinate:

𝑓 (𝑡) = 𝑡 · 𝛼(𝑡 + 𝑡−1) −
∑
𝑖

(𝑞2𝑖+1𝑡 − 1) (𝑞2𝑖+2𝑡 − 1)
𝑞2𝑖+1𝑞2𝑖+2 − 1

· 𝛽𝑖 (𝑡 + 𝑡−1).

This establishes that Λ𝑠 is given by the above explicit formula, as claimed.
From the above explicit formulas for 𝛼 and the 𝛽𝑖 , it is evident that 𝛼 is an isomorphism from P1

onto a line L, and the 𝛽𝑖 are quadratic maps from P1 onto lines 𝑀𝑖 such that 𝐿, 𝑀1, 𝑀2, . . . , 𝑀(𝑟−3)/2
are linearly independent and span P𝑟−2. In fact, the above formulas for the 𝛽𝑖 imply that, up to changing
coordinates on the 𝑀𝑖 , the 𝛽𝑖 are independently general quadratic maps – so in particular distinct (from
themselves and from 𝛼). Since the image of 𝑓 does not lie in any union of proper linear subspaces, and
Λ must meet 𝑝 (which is a general point on the image of 𝑓 ), all that remains is to prove Lemma 7.7
below. �

Lemma 7.7. Let 𝐿1, 𝐿2, . . . , 𝐿𝑘 ⊂ P2𝑘−1 be linearly independent lines, and 𝛽𝑖 : P1 → 𝐿𝑖 be maps which
are pairwise distinct (under every possible identification of 𝐿𝑖 with 𝐿 𝑗 ).

If Λ ⊂ P2𝑘+1 is a fixed codimension 2 subspace that is not transverse to 〈𝛽1 (𝑠), 𝛽2 (𝑠), . . . , 𝛽𝑘 (𝑠)〉
for 𝑠 ∈ P1 general, then Λ is the span of 𝑘 − 1 of the k given lines 𝐿1, 𝐿2, . . . , 𝐿𝑘 .

Proof. We argue by induction on k. For the base case, we take 𝑘 = 1, which is vacuous.
For the inductive step, we suppose 𝑘 ≥ 2, and we divide into cases based on how Λ meets

〈𝐿1, 𝐿2, . . . , 𝐿𝑘−1〉. If Λ = 〈𝐿1, 𝐿2, . . . , 𝐿𝑘−1〉, then the desired conclusion evidently holds.
Next, consider the case when Λ meets 〈𝐿1, 𝐿2, . . . , 𝐿𝑘−1〉 in codimension 1. Fix 𝑠 ∈ P1

general. Then the intersection Λ ∩ 〈𝐿1, 𝐿2, . . . , 𝐿𝑘−1〉 does not contain, and hence is transverse
to, 〈𝛽1(𝑠), 𝛽2 (𝑠), . . . , 𝛽𝑘−1(𝑠)〉 inside of 〈𝐿1, 𝐿2, . . . , 𝐿𝑘−1〉 � P2𝑘−3. Also, we have 𝛽𝑘 (𝑠) ∉
Λ + 〈𝐿1, 𝐿2, . . . , 𝐿𝑘−1〉, since 〈𝐿1, 𝐿2, . . . , 𝐿𝑘〉 = P2𝑘−1. Combining these, Λ is transverse to
〈𝛽1 (𝑠), 𝛽2 (𝑠), . . . , 𝛽𝑘 (𝑠)〉 in violation of our assumption.

Finally, consider the case when Λ is transverse to 〈𝐿1, 𝐿2, . . . , 𝐿𝑘−1〉. Applying our inductive hy-
pothesis, Λ∩ 〈𝐿1, 𝐿2, . . . , 𝐿𝑘−1〉 is the span of 𝑘 − 2 of the 𝑘 − 1 given lines 𝐿1, 𝐿2, . . . , 𝐿𝑘−1. If 𝑘 ≥ 3,
then Λ contains some 𝐿𝑖 , and projecting from this 𝐿𝑖 and applying our inductive hypothesis completes
the proof.

It thus remains only to rule out the case when 𝑘 = 2 and Λ is transverse to 𝐿1; exchanging the roles of
𝐿1 and 𝐿2, we may also suppose Λ is transverse to 𝐿2. Projection from Λ then defines an isomorphism
𝐿1 � 𝐿2. By assumption, 𝛽1 ≠ 𝛽2 with respect to this identification of 𝐿1 with 𝐿2, that is, Λ is disjoint
from 〈𝛽1 (𝑠), 𝛽2(𝑠)〉 for 𝑠 ∈ P1 generic, in violation of our assumption. �
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8. Inductive arguments

In this section, we suppose that (𝑑, 𝑔, 𝑟, ℓ, 𝑚) is good and give several inductive arguments that reduce
𝐼 (𝑑, 𝑔, 𝑟, ℓ, 𝑚) to cases where d is smaller or where d is the same and m is smaller. In the next section,
we will show that these arguments reduce all allowed instances 𝐼 (𝑑, 𝑔, 𝑟, ℓ, 𝑚) to the already considered
infinite family of cases with (𝛿, ℓ, 𝑚) = (1, 0, 0), plus finitely many sporadic base cases in small
projective spaces.

8.1. Outline of inductive arguments

In order to indicate the specializations and projections of the original BN-curve C, we introduce the
following notation. Write 𝐶 (0, 0; 0) = 𝐶 for our original general BN-curve of degree d and genus g in
P𝑟 . More generally, the notation 𝐶 (𝑎, 𝑏; 𝑐) will denote a curve obtained from 𝐶 (0, 0; 0) by peeling off
a one-secant lines (as described in equation (1) below), peeling off b two-secant lines (as described in
(2) below), and projecting from c general points on the curve (as described in equation (4) below). In
particular, 𝐶 (𝑎, 𝑏; 𝑐) is a BN-curve of degree 𝑑 − 𝑎 − 𝑏 − 𝑐 and genus 𝑔 − 𝑏 in P𝑟−𝑐 . The inductive
arguments we will give will make use of the following six key ingredients:

1. (cf. Section 5.1) We peel off a one-secant line, that is, we degenerate 𝐶 (𝑎, 𝑏; 𝑐) to 𝐶 (𝑎 + 1, 𝑏; 𝑐) ∪ 𝐿,
where L is a one-secant line to 𝐶 (𝑎 + 1, 𝑏; 𝑐), meeting 𝐶 (𝑎 + 1, 𝑏; 𝑐) at a point we will call x. In this
case, we write y for some point in 𝐿\{𝑥}. We always do this specialization so that all marked points
determining the modification data specialize onto 𝐶 (𝑎 + 1, 𝑏; 𝑐)\{𝑥}.

2. (cf. Section 5.2) We peel off a one-secant line, that is, we degenerate 𝐶 (𝑎, 𝑏; 𝑐) to 𝐶 (𝑎, 𝑏 + 1; 𝑐) ∪ 𝐿,
where L is one-secant to 𝐶 (𝑎, 𝑏 + 1; 𝑐), meeting 𝐶 (𝑎, 𝑏 + 1; 𝑐) at points we will denote {𝑧, 𝑤}. We
always do this specialization so that all marked points determining the modification data specialize
onto 𝐶 (𝑎, 𝑏 + 1; 𝑐)\{𝑧, 𝑤}.

3. We specialize the modification data. For the modifications [ +� 𝑅𝑖], we use the technology developed
in Section 7. For the remaining modifications, we specialize the marked points determining the
modification data (which start out general).

4. We project from a point 𝑝 ∈ 𝐶 (𝑎, 𝑏; 𝑐). Namely, if we write 𝐶 (𝑎, 𝑏; 𝑐 + 1) for the projection of
𝐶 (𝑎, 𝑏; 𝑐) from p, then the pointing bundle exact sequence induces (cf. equation (3.3)) an exact
sequence

0 → 𝑁𝐶 (𝑎,𝑏;𝑐)→𝑝 (mods to 𝑝) → 𝑁𝐶 (𝑎,𝑏;𝑐) [mods] → 𝑁𝐶 (𝑎,𝑏;𝑐+1) [residual mods] (𝑝) → 0.

If the number n of modifications towards p satisfies |𝑛 − 𝛿 | < 1, then by Corollary 3.16 interpolation
for 𝑁𝐶 (𝑎,𝑏;𝑐) [mods] follows from interpolation for 𝑁𝐶 (𝑎,𝑏;𝑐+1) [residual mods]. More generally, if n
satisfies |𝑛 − 𝛿 | ≤ 1 − 𝜖

𝑟−1 , then we may iterate this construction (i.e., first specialize as desired and
then project) a total of 𝜖 times.

5. We erase modifications that are linearly general. Namely, suppose that one of our modifications
[𝑝 +

→ 𝑀] is linearly general. Then interpolation for 𝑁 [𝑝 +
→ 𝑀] follows from interpolation for N

by Lemma 3.11. More generally, if M is not linearly general, but contains some subspace 𝑀0 and is
linearly general in the quotient 𝑁 |𝑝/𝑀0, then interpolation for 𝑁 [𝑝 +

→ 𝑀] follows from interpolation
for N and 𝑁 [𝑝 +

→ 𝑀0] by Lemma 3.11.
6. We specialize any remaining 𝑅𝑖 to pass through the center of projection. In more detail, suppose

that we projected from a point p, and that prior to this step, 𝑅𝑖 remains general; write 𝑅𝑖 for the
projection of 𝑅𝑖 from p. Specializing 𝑅𝑖 to pass through p then induces the specialization of 𝑅𝑖 to a
union 𝑅′

𝑖 ∪ 𝐿, where 𝑅′
𝑖 is an r-secant rational normal curve in a hyperplane (the projection from p

of the hyperplane containing 𝑅𝑖), and L is a line passing through p and a point 𝑡 ∈ 𝑅′
𝑖 . This has the

effect of replacing the modification [
+� 𝑅𝑖] with the modifications [ +� 𝑅′

𝑖] [𝑝
+
→ 𝑡]. By Lemma 8.1

below, 𝑅′
𝑖 is a general r-secant rational normal curve in a hyperplane, and 𝑡 ∈ 𝑅′

𝑖 is a general point.
The modification [𝑝 +

→ 𝑡] is therefore in a linearly general direction, and can be erased as above. In
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other words, at least when no other modifications are made at p, the combined effect of these steps
is to replace [

+� 𝑅𝑖] with [
+� 𝑅′

𝑖] (which fits well with our inductive hypothesis).

Lemma 8.1. Let 𝑝, 𝑞1, . . . , 𝑞𝑟 ∈ P𝑟−1 be a general set of points, and write 𝑞𝑖 ∈ P
𝑟−2 for the projection

of 𝑞𝑖 from p. Let 𝑅 ⊂ P𝑟−2 be a general rational normal curve passing through 𝑞1, 𝑞2, . . . , 𝑞𝑟 , and
𝑥 ∈ 𝑅 be a general point. Then there exists a rational normal curve R through 𝑝, 𝑞1, . . . , 𝑞𝑟 whose
tangent direction at p corresponds to x, and whose projection from p is 𝑅.

Proof. Such a rational curve, if it exists, is unique. We can therefore simply compare the dimension
of the space of rational curves through 𝑝, 𝑞1, . . . , 𝑞𝑟 , to the dimension of the space of rational curves
through 𝑞1, 𝑞2, . . . , 𝑞𝑟 together with a choice of point on that rational curve. Visibly both are equal to
𝑟 − 2. �

8.2. Main inductive arguments

We begin with the following proposition, which applies this method without utilizing specialization
(2) (peeling off a one-secant line) and which specializes the 𝑅𝑖 as in Section 7. Since this is the first
application of the method described above, we include some additional explanations which serve to
clarify this method, and will be omitted in subsequent applications.

Proposition 8.2. Let ℓ′ and 𝑚′ be integers satisfying 0 ≤ ℓ′ ≤ ℓ and 0 ≤ 𝑚′ ≤ 𝑚, with 𝑚′ = 0 if 𝑟 = 3.
Let 𝑑 ′ be an integer satisfying 𝑔+𝑟 ≤ 𝑑 ′ ≤ 𝑑, with 𝑑 ′ > 𝑔+𝑟 if both 𝑔 = 0 and 𝑚 ≠ 0. For 1 ≤ 𝑖 ≤ 𝑚′, let
𝑛𝑖 be an integer satisfying 𝑛𝑖 ≡ 𝑟 −1 mod 2 and 2 ≤ 𝑛𝑖 ≤ 𝑟 −1, with 𝑛𝑖 ≠ 2 if (𝑑 ′, 𝑔) = (𝑟 +1, 1). Define

ℓ = ℓ − ℓ′ +
(𝑟 − 1)𝑚′ −

∑
𝑛𝑖

2
and 𝑚 = 𝑚 − 𝑚′.

If

2𝑚′ + ℓ′ ≤ 𝑟 − 2 and
���𝛿 −

[
ℓ′ + 2(𝑑 − 𝑑 ′) +

∑
𝑛𝑖

] ��� ≤ 1 −
1

𝑟 − 1
,

and 𝐼 (𝑑 ′ − 1, 𝑔, 𝑟 − 1, ℓ, 𝑚) holds, then so does 𝐼 (𝑑, 𝑔, 𝑟, ℓ, 𝑚).

Proof. Our goal is to establish 𝐼 (𝑑, 𝑔, 𝑟, ℓ, 𝑚), which asserts interpolation for

𝑁𝐶 (0,0;0) [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅1 ∪ · · · ∪ 𝑅𝑚] .

Our assumption that 𝑔 + 𝑟 ≤ 𝑑 ′ ≤ 𝑑, with 𝑑 ′ > 𝑔 + 𝑟 if both 𝑔 = 0 and 𝑚 ≠ 0, implies that we may
peel off 𝑑 − 𝑑 ′ one-secant lines. (Recall from the discussion at the beginning of the section that this
means we specialize 𝐶 (0, 0; 0) to the union of a BN-curve 𝐶 (𝑑 − 𝑑 ′, 0; 0) ⊂ P𝑟 of degree 𝑑 ′ and genus
g, with 𝑑 − 𝑑 ′ one-secant lines, in such a way that all 𝑢𝑖 and 𝑣𝑖 , and all points of intersection with the
𝑅𝑖 , specialize onto 𝐶 (𝑑 − 𝑑 ′, 0; 0).) This reduces our problem to showing interpolation for

𝑁 := 𝑁𝐶 (𝑑−𝑑′,0;0) [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅1 ∪ · · · ∪ 𝑅𝑚] [2𝑥1
+
→ 𝑦1] · · · [2𝑥𝑑−𝑑′

+
→ 𝑦𝑑−𝑑′ ] .

For 1 ≤ 𝑖 ≤ 𝑚′, write 𝑛′
𝑖 = (𝑟 − 1 − 𝑛𝑖)/2, and degenerate 𝑅𝑖 as in Section 7 to the union 𝑅◦

𝑖 , of 𝑛𝑖
lines 𝐿𝑖, 𝑗 meeting C at 𝑝𝑖 and 𝑞𝑖, 𝑗 , and 𝑛′

𝑖 conics 𝑄𝑖, 𝑗 meeting C at 𝑝𝑖 and 𝑞𝑖,𝑛𝑖+2 𝑗−1 and 𝑞𝑖,𝑛𝑖+2 𝑗 . This
induces a specialization of N to

𝑁𝐶 (𝑑−𝑑′,0;0) [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅𝑚′+1 ∪ · · · ∪ 𝑅𝑚] [2𝑥1
+
→ 𝑦1] · · · [2𝑥𝑑−𝑑′

+
→ 𝑦𝑑−𝑑′ ]

[𝑞1,1 + · · · + 𝑞1,𝑟−1
+� 𝑅◦

1] · · · [𝑞𝑚′,1 + · · · + 𝑞𝑚′,𝑟−1
+� 𝑅◦

𝑚′ ] [𝑝1
+
→ 𝑀1] · · · [𝑝𝑚′

+
→ 𝑀𝑚′ ] .

Now, fix a general point 𝑝 ∈ 𝐶, and specialize 𝑝1, 𝑝2, . . . , 𝑝𝑚′ , 𝑣1, 𝑣2, . . . , 𝑣ℓ′ , 𝑦1, 𝑦2, . . . , 𝑦𝑑−𝑑′ all to p.
Because 2𝑚′ + ℓ′ ≤ 𝑟 − 2 ≤ 𝑟 − 1 by assumption, the limiting directions 𝑀1, . . . , 𝑀𝑚′ , 𝑢1, . . . , 𝑢ℓ′ are
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linearly independent in P𝑁𝐶 |𝑝 , and the limit is therefore treelike (cf. Defintion 3.3). Hence, this induces
a further specialization of N to

𝑁◦ := 𝑁𝐶 (𝑑−𝑑′,0;0) [𝑢ℓ′+1
+
↔ 𝑣ℓ′+1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅𝑚′+1 ∪ · · · ∪ 𝑅𝑚]

[𝑢1 + · · · + 𝑢ℓ′ + 2𝑥1 + · · · + 2𝑥𝑑−𝑑′
+
→ 𝑝]

[𝑞1,1 + · · · + 𝑞1,𝑟−1
+� 𝑅◦

1] · · · [𝑞𝑚′,1 + · · · + 𝑞𝑚′,𝑟−1
+� 𝑅◦

𝑚′ ] [𝑝
+
→ 𝑀],

where 𝑀 = Span(𝑀1, . . . , 𝑀𝑚′ , 𝑢1, . . . , 𝑢ℓ′ ) ⊂ P𝑁𝐶 |𝑝 . Furthermore, M is disjoint from P𝑁𝐶→𝑝 |𝑝
by combining the assumption 2𝑚′ + ℓ′ ≤ 𝑟 − 2 with Lemma 7.5(1). Finally, M is linearly general in
P(𝑁𝐶/𝑁𝐶→𝑝) |𝑝 by Lemmas 7.5(2) and 7.6.

It remains to see that 𝑁◦ satisfies interpolation. For this, we project from p. In other words, as
described at the beginning of the section, we use the following pointing bundle exact sequence:

0 → 𝑁𝐶 (𝑑−𝑑′,0;0)→𝑝 (𝑢1 + · · · + 𝑢ℓ′ + 2𝑥1 + · · · + 2𝑥𝑑−𝑑′ + (𝑞1,1 + · · · + 𝑞1,𝑛1 )

+ · · · + (𝑞𝑚′,1 + · · · + 𝑞𝑚′,𝑛𝑚′ )) → 𝑁◦ → 𝑄(𝑝) → 0, (8.1)

where

𝑄 := 𝑁𝐶 (𝑑−𝑑′,0;1) [𝑢ℓ′+1
+
↔ 𝑣ℓ′+1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅𝑚′+1 ∪ · · · ∪ 𝑅𝑚] [𝑝
+
→ 𝑀]

[𝑞1,𝑛1+1
+
↔ 𝑞1,𝑛1+2] · · · [𝑞1,𝑟−2

+
↔ 𝑞1,𝑟−1] · · · [𝑞𝑚′,𝑛𝑚′+1

+
↔ 𝑞𝑚′,𝑛𝑚′+2] · · · [𝑞𝑚′,𝑟−2

+
↔ 𝑞𝑚′,𝑟−1] .

The number of transformations towards p is ℓ′ + 2(𝑑 − 𝑑 ′) +
∑

𝑛𝑖 . (These transformations occur at
𝑢1, . . . , 𝑢ℓ′ , 𝑥1, . . . , 𝑥𝑑−𝑑′ , 𝑞1,1, . . . , 𝑞1,𝑛1 , . . . , 𝑞𝑚′,1, . . . , 𝑞𝑚′,𝑛𝑚′ , c.f. equation (8.1). In particular, this
specialization does not produce a positive transformation at p in the direction of p, because M is disjoint
from P𝑁𝐶→𝑝 |𝑝 as explained above.) Our assumption that |𝛿− [ℓ′ +2(𝑑−𝑑 ′) +

∑
𝑛𝑖] | ≤ 1− 1

𝑟−1 therefore
implies that interpolation for 𝑁◦ follows from interpolation for Q by Corollary 3.16.

We next erase the transformation at p. In other words, the only way that Q depends on the points
𝑢1, . . . , 𝑢ℓ′ , 𝑞1,1, . . . , 𝑞1,𝑛1 , . . . , 𝑞𝑚′,1, . . . , 𝑞𝑚′,𝑛𝑚′ is via the dependence of 𝑀 on these points. As only
these points vary, 𝑀 is linearly general. Thus interpolation for Q follows, by Lemma 3.11, from
interpolation for

𝑁𝐶 (𝑑−𝑑′,0;1) [𝑢ℓ′+1
+
↔ 𝑣ℓ′+1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅𝑚′+1 ∪ · · · ∪ 𝑅𝑚]

[𝑞1,𝑛1+1
+
↔ 𝑞1,𝑛1+2] · · · [𝑞1,𝑟−2

+
↔ 𝑞1,𝑟−1] · · · [𝑞𝑚′,𝑛𝑚′+1

+
↔ 𝑞𝑚′,𝑛𝑚′+2] · · · [𝑞𝑚′,𝑟−2

+
↔ 𝑞𝑚′,𝑟−1] .

Finally, we specialize the remaining 𝑅𝑖 , for 𝑚′ + 1 ≤ 𝑖 ≤ 𝑚, to pass through p. Namely, we first
specialize 𝑅𝑚′+1 to pass through p, which induces the specialization of 𝑅𝑚′+1 to a union 𝑅′

𝑚′+1 ∪ 𝐿
as described in Subsection 8.1(6). The effect of this specialization on the above bundle is to replace
the modification [

+� 𝑅𝑚′+1] with the modifications [
+� 𝑅′

𝑚′+1] [𝑝
+
→ 𝑡], where t is a general point on

𝑅′
𝑚′+1. In other words, the above bundle specializes to

𝑁𝐶 (𝑑−𝑑′,0;1) [𝑢ℓ′+1
+
↔ 𝑣ℓ′+1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅′
𝑚′+1] [

+� 𝑅𝑚′+2 ∪ · · · ∪ 𝑅𝑚] [𝑝
+
→ 𝑡]

[𝑞1,𝑛1+1
+
↔ 𝑞1,𝑛1+2] · · · [𝑞1,𝑟−2

+
↔ 𝑞1,𝑟−1] · · · [𝑞𝑚′,𝑛𝑚′+1

+
↔ 𝑞𝑚′,𝑛𝑚′+2] · · · [𝑞𝑚′,𝑟−2

+
↔ 𝑞𝑚′,𝑟−1] .

The modification [𝑝 +
→ 𝑡] is in a linearly general direction and may therefore be erased by Lemma 3.11.

In other words, interpolation for this bundle follows from interpolation for

𝑁𝐶 (𝑑−𝑑′,0;1) [𝑢ℓ′+1
+
↔ 𝑣ℓ′+1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅′
𝑚′+1] [

+� 𝑅𝑚′+2 ∪ · · · ∪ 𝑅𝑚]

[𝑞1,𝑛1+1
+
↔ 𝑞1,𝑛1+2] · · · [𝑞1,𝑟−2

+
↔ 𝑞1,𝑟−1] · · · [𝑞𝑚′,𝑛𝑚′+1

+
↔ 𝑞𝑚′,𝑛𝑚′+2] · · · [𝑞𝑚′,𝑟−2

+
↔ 𝑞𝑚′,𝑟−1] .
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Similarly specializing 𝑅𝑚′+2, then 𝑅𝑚′+3, and so on until 𝑅𝑚, we reduce to interpolation for the bundle

𝑁𝐶 (𝑑−𝑑′,0;1) [𝑢ℓ′+1
+
↔ 𝑣ℓ′+1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅′
𝑚′+1 ∪ · · · ∪ 𝑅′

𝑚]

[𝑞1,𝑛1+1
+
↔ 𝑞1,𝑛1+2] · · · [𝑞1,𝑟−2

+
↔ 𝑞1,𝑟−1] · · · [𝑞𝑚′,𝑛𝑚′+1

+
↔ 𝑞𝑚′,𝑛𝑚′+2] · · · [𝑞𝑚′,𝑟−2

+
↔ 𝑞𝑚′,𝑟−1],

which is just the assertion 𝐼 (𝑑 ′ − 1, 𝑔, 𝑟 − 1, ℓ, 𝑚). �

The 𝑛𝑖 appearing in Proposition 8.2 are constrained mod 2. It is thus often difficult to apply Proposition
8.2 in situations where 𝛿 is an integer with the ‘wrong’ parity. We introduce the following variant, which
has the advantage that its difficult parity is the opposite of the difficult parity for Proposition 8.2.

Proposition 8.3. Let ℓ′, 𝑚′, 𝑑 ′, the 𝑛𝑖 , ℓ and 𝑚 be as in Proposition 8.2. If

𝑚′ < 𝑚, 2𝑚′ + ℓ′ < 𝑟 − 2, and
���𝛿 −

[
1 + ℓ′ + 2(𝑑 − 𝑑 ′) +

∑
𝑛𝑖

] ��� ≤ 1 −
1

𝑟 − 1
,

and

𝐼 (𝑑 ′ − 1, 𝑔, 𝑟 − 1, ℓ, 𝑚), 𝐼 (𝑑 ′ − 1, 𝑔, 𝑟 − 1, ℓ, 𝑚 − 1), and 𝐼 (𝑑 ′ − 2, 𝑔, 𝑟 − 2, ℓ, 𝑚)

all hold, then so does 𝐼 (𝑑, 𝑔, 𝑟, ℓ, 𝑚).

Proof. As in the proof of Proposition 8.2, it suffices to show that 𝑁◦ satisfies interpolation, where

𝑁◦ := 𝑁𝐶 (𝑑−𝑑′,0;0) [𝑢ℓ′+1
+
↔ 𝑣ℓ′+1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅𝑚′+1 ∪ · · · ∪ 𝑅𝑚]

[𝑢1 + · · · + 𝑢ℓ′ + 2𝑥1 + · · · + 2𝑥𝑑−𝑑′
+
→ 𝑝]

[𝑞1,1 + · · · + 𝑞1,𝑟−1
+� 𝑅◦

1] · · · [𝑞𝑚′,1 + · · · + 𝑞𝑚′,𝑟−1
+� 𝑅◦

𝑚′ ] [𝑝
+
→ 𝑀] .

Write 𝑅𝑚′+1∩𝐶 = {𝑠0, 𝑠1, 𝑠2, . . . , 𝑠𝑟−1, 𝑠𝑟 }. We first specialize 𝑅𝑚′+1 to a union 𝑅∪𝐿, where L is the line
through 𝑠0 and 𝑠𝑟 , and R is a rational curve of degree 𝑟 − 2 passing through 𝑠1, 𝑠2, . . . , 𝑠𝑟−1 and meeting
L at a single point. We then specialize 𝑠𝑟 to p. These specializations induce a specialization of 𝑁◦ to

𝑁𝐶 (𝑑−𝑑′,0;0) [𝑢ℓ′+1
+
↔ 𝑣ℓ′+1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅] [
+� 𝑅𝑚′+2 ∪ · · · ∪ 𝑅𝑚]

[𝑠0 + 𝑢1 + · · · + 𝑢ℓ′ + 2𝑥1 + · · · + 2𝑥𝑑−𝑑′
+
→ 𝑝]

[𝑞1,1 + · · · + 𝑞1,𝑟−1
+� 𝑅◦

1] · · · [𝑞𝑚′,1 + · · · + 𝑞𝑚′,𝑟−1
+� 𝑅◦

𝑚′ ] [𝑝
+
→ 𝑀 ′],

where 𝑀 ′ = 〈𝑀, P𝑁𝐶→𝑠0 |𝑝〉. We then project from p, thereby reducing to interpolation for

𝑁𝐶 (𝑑−𝑑′,0;1) [𝑢ℓ′+1
+
↔ 𝑣ℓ′+1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [𝑠1 + · · · + 𝑠𝑟−1

+� 𝑅] [
+� 𝑅𝑚′+2 ∪ · · · ∪ 𝑅𝑚] [𝑝

+
→ 𝑀

′
]

[𝑞1,𝑛1+1
+
↔ 𝑞1,𝑛1+2] · · · [𝑞1,𝑟−2

+
↔ 𝑞1,𝑟−1] · · · [𝑞𝑚′,𝑛𝑚′+1

+
↔ 𝑞𝑚′,𝑛𝑚′+2] · · · [𝑞𝑚′,𝑟−2

+
↔ 𝑞𝑚′,𝑟−1] .

Here, we have written out the modification [𝑠1 + · · · + 𝑠𝑟−1
+� 𝑅] because 𝑅 also meets 𝐶 (𝑑 − 𝑑 ′, 0; 1)

at 𝑠0. Note that 𝑀
′ is not linearly general since it contains the fixed direction P𝑁𝐶 (𝑑−𝑑′,0;1)→𝑠0 |𝑝;

however, it is linearly general in the quotient by P𝑁𝐶 (𝑑−𝑑′,0;1)→𝑠0 |𝑝 . Using Lemma 3.11, we reduce to
interpolation for the pair of bundles

𝑄 := 𝑁𝐶 (𝑑−𝑑′,0;1) [𝑢ℓ′+1
+
↔ 𝑣ℓ′+1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [𝑠1 + · · · + 𝑠𝑟−1

+� 𝑅] [
+� 𝑅𝑚′+2 ∪ · · · ∪ 𝑅𝑚]

[𝑞1,𝑛1+1
+
↔ 𝑞1,𝑛1+2] · · · [𝑞1,𝑟−2

+
↔ 𝑞1,𝑟−1] · · · [𝑞𝑚′,𝑛𝑚′+1

+
↔ 𝑞𝑚′,𝑛𝑚′+2] · · · [𝑞𝑚′,𝑟−2

+
↔ 𝑞𝑚′,𝑟−1]

and 𝑄 [𝑝 +
→ 𝑠0] .
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Specializing 𝑅𝑚′+2, 𝑅𝑚′+3, . . . , 𝑅𝑚 to pass through p, interpolation for these two bundles follows from
interpolation for the two bundles

𝑄− := 𝑁𝐶 (𝑑−𝑑′,0;1) [𝑢ℓ′+1
+
↔ 𝑣ℓ′+1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [𝑠1 + · · · + 𝑠𝑟−1

+� 𝑅] [
+� 𝑅′

𝑚′+2 ∪ · · · ∪ 𝑅′
𝑚]

[𝑞1,𝑛1+1
+
↔ 𝑞1,𝑛1+2] · · · [𝑞1,𝑟−2

+
↔ 𝑞1,𝑟−1] · · · [𝑞𝑚′,𝑛𝑚′+1

+
↔ 𝑞𝑚′,𝑛𝑚′+2] · · · [𝑞𝑚′,𝑟−2

+
↔ 𝑞𝑚′,𝑟−1]

𝑄+ := 𝑄−[𝑝 +
→ 𝑠0] .

By Lemma 3.14, interpolation for 𝑄− follows from interpolation for the two closely related vector
bundles where all (respectively none) of the transformations along 𝑅 are performed:

𝑁𝐶 (𝑑−𝑑′,0;1) [𝑢ℓ′+1
+
↔ 𝑣ℓ′+1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅 ∪ 𝑅′
𝑚′+2 ∪ · · · ∪ 𝑅′

𝑚]

[𝑞1,𝑛1+1
+
↔ 𝑞1,𝑛1+2] · · · [𝑞1,𝑟−2

+
↔ 𝑞1,𝑟−1] · · · [𝑞𝑚′,𝑛𝑚′+1

+
↔ 𝑞𝑚′,𝑛𝑚′+2] · · · [𝑞𝑚′,𝑟−2

+
↔ 𝑞𝑚′,𝑟−1]

𝑁𝐶 (𝑑−𝑑′,0;1) [𝑢ℓ′+1
+
↔ 𝑣ℓ′+1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅′
𝑚′+2 ∪ · · · ∪ 𝑅′

𝑚]

[𝑞1,𝑛1+1
+
↔ 𝑞1,𝑛1+2] · · · [𝑞1,𝑟−2

+
↔ 𝑞1,𝑟−1] · · · [𝑞𝑚′,𝑛𝑚′+1

+
↔ 𝑞𝑚′,𝑛𝑚′+2] · · · [𝑞𝑚′,𝑟−2

+
↔ 𝑞𝑚′,𝑟−1] .

But these are the assertions 𝐼 (𝑑 ′ − 1, 𝑔, 𝑟 − 1, ℓ, 𝑚) and 𝐼 (𝑑 ′ − 1, 𝑔, 𝑟 − 1, ℓ, 𝑚 − 1), respectively, which
hold by assumption.

It remains to see that 𝑄+ satisfies interpolation. Applying Lemma 3.12 and noting that we have
already established interpolation for 𝑄− above, it suffices to check interpolation for 𝑄−/𝑁𝐶 (𝑑−𝑑′,0;1)→𝑠0 ,
which after twisting down by 𝑠0 is isomorphic to

𝑁𝐶 (𝑑−𝑑′,0;2) [𝑢ℓ′+1
+
↔ 𝑣ℓ′+1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅 ∪ 𝑅
′

𝑚′+2 ∪ · · · ∪ 𝑅
′

𝑚]

[𝑞1,𝑛1+1
+
↔ 𝑞1,𝑛1+2] · · · [𝑞1,𝑟−2

+
↔ 𝑞1,𝑟−1] · · · [𝑞𝑚′,𝑛𝑚′+1

+
↔ 𝑞𝑚′,𝑛𝑚′+2] · · · [𝑞𝑚′,𝑟−2

+
↔ 𝑞𝑚′,𝑟−1] .

Specializing 𝑅′
𝑚′+2, 𝑅

′
𝑚′+3, . . . , 𝑅

′
𝑚 to pass through 𝑠0, we reduce to interpolation for

𝑁𝐶 (𝑑−𝑑′,0;2) [𝑢ℓ′+1
+
↔ 𝑣ℓ′+1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅 ∪ 𝑅′′
𝑚′+2 ∪ · · · ∪ 𝑅′′

𝑚]

[𝑞1,𝑛1+1
+
↔ 𝑞1,𝑛1+2] · · · [𝑞1,𝑟−2

+
↔ 𝑞1,𝑟−1] · · · [𝑞𝑚′,𝑛𝑚′+1

+
↔ 𝑞𝑚′,𝑛𝑚′+2] · · · [𝑞𝑚′,𝑟−2

+
↔ 𝑞𝑚′,𝑟−1] .

But this is just the assertion 𝐼 (𝑑 ′ − 2, 𝑔, 𝑟 − 2, ℓ, 𝑚), which holds by assumption. �

8.3. Large parameters

Both of the main inductive arguments above impose upper bounds on 2𝑚′ + ℓ′ (depending on r). It is
thus difficult to apply them when any of the remaining parameters, that is, d, g, or m, is large. (Note that
ℓ is already bounded in terms of r by construction.) We therefore next give three inductive arguments
that apply for large values of d, g and m, respectively.

Proposition 8.4. Suppose that 𝑑 ≥ 𝑔+2𝑟−1. If 𝐼 (𝑑−(𝑟−1), 𝑔, 𝑟, ℓ, 𝑚) holds, then so does 𝐼 (𝑑, 𝑔, 𝑟, ℓ, 𝑚).

Proof. We want to show interpolation for

𝑁𝐶 [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅1 ∪ · · · ∪ 𝑅𝑚] .

Peeling off 𝑟 − 1 one-secant lines, it suffices to show interpolation for

𝑁𝐶 (𝑟−1,0;0) [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅1 ∪ · · · ∪ 𝑅𝑚] [2𝑥1
+
→ 𝑦1] · · · [2𝑥𝑟−1

+
→ 𝑦𝑟−1] .
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Specializing 𝑥1, 𝑥2, . . . , 𝑥𝑟−1 to a common point 𝑥 ∈ 𝐶 (while leaving 𝑦1, 𝑦2, . . . , 𝑦𝑟−1 general) reduces
to interpolation for

𝑁𝐶 (𝑟−1,0;0) [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅1 ∪ · · · ∪ 𝑅𝑚] (2𝑥).

Removing the twist, this bundle satisfies interpolation provided that

𝑁𝐶 (𝑟−1,0;0) [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅1 ∪ · · · ∪ 𝑅𝑚]

satisfies interpolation, which is the assertion 𝐼 (𝑑 − (𝑟 − 1), 𝑔, 𝑟, ℓ, 𝑚) that holds by assumption. �

Proposition 8.5. Suppose that 𝑔 ≥ 𝑟. If 𝐼 (𝑑−(𝑟−1), 𝑔−𝑟, 𝑟, ℓ, 𝑚+1) holds, then so does 𝐼 (𝑑, 𝑔, 𝑟, ℓ, 𝑚).

Proof. Since (𝑑, 𝑔, 𝑟, ℓ, 𝑚) is good, (𝑑, 𝑔, 𝑟) ≠ (2𝑟, 𝑟 + 1, 𝑟), and so this is a special case of Lemma
5.9. �

Proposition 8.6. Suppose that 𝑚 ≥ 𝑟 − 1. If 𝐼 (𝑑, 𝑔, 𝑟, ℓ, 𝑚 − (𝑟 − 1)) holds, then so does 𝐼 (𝑑, 𝑔, 𝑟, ℓ, 𝑚).

Proof. We want to show interpolation for

𝑁𝐶 [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅1 ∪ · · · ∪ 𝑅𝑚] .

Fix points 𝑞1, 𝑞2, . . . , 𝑞𝑟+1 lying in a general hyperplane section of C. For 𝑚−(𝑟−2) ≤ 𝑖 ≤ 𝑚, specialize
𝑅𝑖 to a general rational curve of degree 𝑟 −1 meeting C at 𝑞1, 𝑞2, . . . , 𝑞𝑟+1. This induces a specialization
of the above bundle to

𝑁𝐶 [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅1 ∪ · · · ∪ 𝑅𝑚−(𝑟−1) ] (𝑞1 + · · · + 𝑞𝑟+1).

Removing the twist, this bundle satisfies interpolation provided that

𝑁𝐶 [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅1 ∪ · · · ∪ 𝑅𝑚−(𝑟−1) ]

satisfies interpolation, which is the assertion 𝐼 (𝑑, 𝑔, 𝑟, ℓ, 𝑚 − (𝑟 − 1)) that holds by assumption. �

8.4. Small parameters

The remaining cases where our main inductive arguments do not apply are when various parameters are
small (which deprives us of flexibility in choosing ℓ′ and the 𝑛𝑖). Some of the arguments we give here
readily generalize to larger values of various parameters, but since we will not need them in that regime,
we opt to simplify the exposition as far as possible. We first consider two cases where ℓ = 0 and 𝑚 = 1.

Proposition 8.7. Suppose that ℓ = 0 and 𝑚 = 1. Let 𝜖 be an integer satisfying 0 ≤ 𝜖 ≤ (𝑑 − 𝑔 − 𝑟)/2,
with 𝜖 < (𝑑 − 𝑔 − 𝑟)/2 if 𝑔 = 0. If

|𝛿 − (2𝜖 + 1) | ≤ 1 −
2

𝑟 − 1
,

and 𝐼 (𝑑 − 2𝜖 − 2, 𝑔, 𝑟 − 2, 0, 1) holds, then so does 𝐼 (𝑑, 𝑔, 𝑟, 0, 1).

Proof. We want to show that 𝑁𝐶 [
+� 𝑅1] satisfies interpolation. Peeling off 2𝜖 one-secant lines, we

reduce to interpolation for

𝑁𝐶 (2𝜖 ,0;0) [
+� 𝑅1] [2𝑥1

+
→ 𝑦1] · · · [2𝑥2𝜖

+
→ 𝑦2𝜖 ] .

Write 𝑅1 ∩ 𝐶 = {𝑠0, 𝑠1, 𝑠2, . . . , 𝑠𝑟−1, 𝑠𝑟 }. As in the proof of Proposition 8.3, specialize 𝑅1 to a union
𝑅 ∪ 𝐿, where L is the line through 𝑠0 and 𝑠𝑟 , and R is a rational curve of degree 𝑟 − 2 passing
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through 𝑠1, 𝑠2, . . . , 𝑠𝑟−1 and meeting L at a single point. Then specialize 𝑦1, 𝑦2, . . . , 𝑦 𝜖 to 𝑠0, and
𝑦 𝜖 +1, 𝑦 𝜖 +2, . . . , 𝑦2𝜖 to 𝑠𝑟 . This reduces our problem to interpolation for

𝑁𝐶 (2𝜖 ,0;0) [
+� 𝑅] [𝑠𝑟 + 2𝑥1 + · · · + 2𝑥𝜖

+
→ 𝑠0] [𝑠0 + 2𝑥𝜖 +1 + · · · + 2𝑥2𝜖

+
→ 𝑠𝑟 ] .

Projecting from 𝑠0 and then from 𝑠𝑟 , we reduce to interpolation for 𝑁𝐶 (2𝜖 ,0;2) [
+� 𝑅], which is the

assertion 𝐼 (𝑑 − 2𝜖 − 2, 𝑔, 𝑟 − 2, 0, 1) that holds by assumption. �

Proposition 8.8. If 𝐼 (4𝑘 − 3, 2𝑘 − 2, 2𝑘 − 1, 𝑘 − 3, 0) holds, then so does 𝐼 (4𝑘 + 1, 2𝑘 − 1, 2𝑘 + 1, 0, 1),
provided that 𝑘 ≥ 3.

Proof. Note that 𝛿(4𝑘 + 1, 2𝑘 − 1, 2𝑘 + 1, 0, 1) = 5. Our goal is to show interpolation for 𝑁𝐶 [
+� 𝑅1].

Peeling off a one-secant line and a one-secant line, we reduce to interpolation for

𝑁𝐶 (1,1;0) [2𝑥 +
→ 𝑦] [𝑧 +

↔ 𝑤] [𝑧 +
→ 2𝑤] [

+� 𝑅1] .

Degenerate 𝑅1 as in Section 7 to the union 𝑅◦
1, of four lines 𝐿 𝑗 meeting C at p and 𝑞 𝑗 , and 𝑘 − 2 conics

𝑄 𝑗 meeting C at p and 𝑞2 𝑗+3 and 𝑞2 𝑗+4. This induces a specialization of the above bundle to

𝑁𝐶 (1,1;0) [2𝑥 +
→ 𝑦] [𝑧 +

↔ 𝑤] [𝑧 +
→ 2𝑤] [𝑞1 + 𝑞2 + 𝑞3 + 𝑞4

+
→ 𝑝] [𝑞5 + · · · + 𝑞2𝑘

+� 𝑅◦
1] [𝑝

+
→ 𝑀],

where M is linearly general as 𝑞1, 𝑞2, 𝑞3, 𝑞4 vary. Specializing z to p, we reduce to interpolation for

𝑁𝐶 (1,1;0) [2𝑥 +
→ 𝑦] [𝑝 +

→ 𝑤] [𝑝 +
→ 2𝑤] [𝑤 + 𝑞1 + 𝑞2 + 𝑞3 + 𝑞4

+
→ 𝑝] [𝑞5 + · · · + 𝑞2𝑘

+� 𝑅◦
1] [𝑝

+
→ 𝑀] .

Projecting from p, we reduce to interpolation for

𝑁𝐶 (1,1;1) [2𝑥 +
→ 𝑦] [𝑞5

+
↔ 𝑞6] · · · [𝑞2𝑘−1

+
↔ 𝑞2𝑘 ] [𝑝

+
→ 𝑤] [𝑝 +

→ 𝑀 + 2𝑤] .

Specializing y and 𝑞5 to w, we reduce to interpolation for

𝑁𝐶 (1,1;1) [𝑞7
+
↔ 𝑞8] · · · [𝑞2𝑘−1

+
↔ 𝑞2𝑘 ] [𝑝 + 𝑞6 + 2𝑥 +

→ 𝑤] [𝑝 +
→ 𝑀 + 2𝑤] [𝑤 +

→ 𝑞6] .

Projecting from w, we reduce to interpolation for

𝑁𝐶 (1,1;2) [𝑞7
+
↔ 𝑞8] · · · [𝑞2𝑘−1

+
↔ 𝑞2𝑘 ] [𝑝

+
→ 𝑀 + 𝑤] [𝑤 +

→ 𝑞6] .

Erasing the transformation [𝑤 +
→ 𝑞6], and then [𝑝 +

→ 𝑀 + 𝑤], we reduce to interpolation for

𝑁𝐶 (1,1;2) [𝑞7
+
↔ 𝑞8] · · · [𝑞2𝑘−1

+
↔ 𝑞2𝑘 ],

which is the assertion 𝐼 (4𝑘 − 3, 2𝑘 − 2, 2𝑘 − 1, 𝑘 − 3, 0) that holds by assumption. �

We finally consider several arguments that are adapted to the case 𝑚 = 0.

Proposition 8.9. Suppose 𝑚 = 0, and 𝑔 ≥ 3, and 𝑟 ≥ 6. Let 𝜖 be an integer with 0 ≤ 𝜖 ≤ (𝑑−𝑔−𝑟)/3. If

|𝛿 − (2𝜖 + 3) | ≤ 1 −
3

𝑟 − 1
,

and 𝐼 (𝑑−3𝜖 −6, 𝑔−3, 𝑟 −3, ℓ+1, 0) and 𝐼 (𝑑−3𝜖 −6, 𝑔−3, 𝑟 −3, ℓ, 0) hold, then so does 𝐼 (𝑑, 𝑔, 𝑟, ℓ, 0).

Proof. Our goal is to show interpolation for

𝑁𝐶 [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] .
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Peeling off three two-secant lines and 3𝜖 one-secant lines, we reduce to interpolation for

𝑁𝐶 (3𝜖 ,3;0) [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [2𝑥1

+
→ 𝑦1] · · · [2𝑥3𝜖

+
→ 𝑦3𝜖 ]

[𝑧1
+
↔ 𝑤1] [𝑧1

+
→ 2𝑤1] [𝑧2

+
↔ 𝑤2] [𝑧2

+
→ 2𝑤2] [𝑧3

+
↔ 𝑤3] [𝑧3

+
→ 2𝑤3] .

Specializing 𝑦1, 𝑦2, . . . , 𝑦 𝜖 , 𝑤1 to 𝑧2, and 𝑦 𝜖 +1, 𝑦 𝜖 +2, . . . , 𝑦2𝜖 , 𝑤2 to 𝑧3, we reduce to interpolation for

𝑁𝐶 (3𝜖 ,3;0) [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [2𝑥2𝜖 +1

+
→ 𝑦2𝜖 +1] · · · [2𝑥3𝜖

+
→ 𝑦3𝜖 ]

[𝑧3
+
→ 𝑤3] [𝑧3

+
→ 2𝑤3] [𝑧2

+
→ 𝑧1]

[2𝑥1 + · · · + 2𝑥𝜖 + 𝑧1 + 𝑧3
+
→ 𝑧2] [2𝑥𝜖 +1 + · · · + 2𝑥2𝜖 + 𝑧2 + 𝑤3

+
→ 𝑧3] [𝑧1

+
→ 2𝑧2] [𝑧2

+
→ 2𝑧3] .

Projecting from 𝑧2, and then 𝑧3, we reduce to interpolation for

𝑁𝐶 (3𝜖 ,3;2) [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [2𝑥2𝜖 +1

+
→ 𝑦2𝜖 +1] · · · [2𝑥3𝜖

+
→ 𝑦3𝜖 ]

[𝑧3
+
→ 𝑤3] [𝑧3

+
→ 2𝑤3] [𝑧1

+
↔ 𝑧2] [𝑧2

+
→ 𝑧3] .

Specializing 𝑦2𝜖 +1, 𝑦2𝜖 +2, . . . , 𝑦3𝜖 , 𝑤3 to 𝑧2, we reduce to interpolation for

𝑁𝐶 (3𝜖 ,3;2) [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [𝑧2

+
→ 𝑧1 + 𝑧3] [2𝑥2𝜖 +1 + · · · + 2𝑥3𝜖 + 𝑧1 + 𝑧3

+
→ 𝑧2] [𝑧3

+
→ 2𝑧2] .

Projecting from 𝑧2 (again), we reduce to interpolation for

𝑁𝐶 (3𝜖 ,3;3) [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [𝑧3

+
→ 𝑧2] [𝑧2

+
→ 𝑧1 + 𝑧3] .

Erasing the transformation [𝑧2
+
→ 𝑧1 + 𝑧3], we reduce to interpolation for the pair of bundles

𝑁𝐶 (3𝜖 ,3;3) [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [𝑧3

+
↔ 𝑧2] and 𝑁𝐶 (3𝜖 ,3;3) [𝑢1

+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [𝑧3

+
→ 𝑧2] .

The first is our assumption 𝐼 (𝑑−3𝜖 −6, 𝑔−3, 𝑟 −3, ℓ+1, 0). For the second, we erase the transformation
[𝑧3

+
→ 𝑧2] to reduce to interpolation for

𝑁𝐶 (3𝜖 ,3;3) [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ],

which is our assumption 𝐼 (𝑑 − 3𝜖 − 6, 𝑔 − 3, 𝑟 − 3, ℓ, 0). �

Proposition 8.10. Suppose 𝑚 = 0 and 𝑔 ≥ 1 and that

|𝛿 − 2| ≤ 1 −
1

𝑟 − 1
.

If 𝐼 (𝑑 − 2, 𝑔 − 1, 𝑟 − 1, ℓ + 1, 0) holds, then so does 𝐼 (𝑑, 𝑔, 𝑟, ℓ, 0).

Proof. Our goal is to show interpolation for 𝑁𝐶 [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ]. Peeling off a one-secant line,

we reduce to interpolation for

𝑁𝐶 (0,1;0) [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [𝑧

+
↔ 𝑤] [𝑧 +

→ 2𝑤] .

Projecting from w, we reduce to interpolation for

𝑁𝐶 (0,1;1) [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [𝑧

+
↔ 𝑤],

which is our assumption 𝐼 (𝑑 − 2, 𝑔 − 1, 𝑟 − 1, ℓ + 1, 0). �
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Proposition 8.11. Suppose 𝑚 = 0 and 𝑔 ≥ 3 and 𝑟 ≥ 6 and that

|𝛿 − 4| ≤ 1 −
2

𝑟 − 1
.

If 𝐼 (𝑑 − 5, 𝑔 − 3, 𝑟 − 2, ℓ + 1, 0) and 𝐼 (𝑑 − 5, 𝑔 − 3, 𝑟 − 2, ℓ, 0) hold, then so does 𝐼 (𝑑, 𝑔, 𝑟, ℓ, 0).

Proof. Our goal is to show interpolation for 𝑁𝐶 [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ]. Peeling off three two-secant

lines, we reduce to interpolation for

𝑁𝐶 (0,3;0) [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ]

[𝑧1
+
↔ 𝑤1] [𝑧1

+
→ 2𝑤1] [𝑧2

+
↔ 𝑤2] [𝑧2

+
→ 2𝑤2] [𝑧3

+
↔ 𝑤3] [𝑧3

+
→ 2𝑤3] .

Specializing 𝑤2 to 𝑤1, we reduce to interpolation for

𝑁𝐶 (0,3;0) [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [𝑧1 + 𝑧2

+
↔ 𝑤1] [𝑧1 + 𝑧2

+
→ 2𝑤1] [𝑧3

+
↔ 𝑤3] [𝑧3

+
→ 2𝑤3] .

Projecting from 𝑤1, we reduce to interpolation for

𝑁𝐶 (0,3;1) [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [𝑧1 + 𝑧2

+
↔ 𝑤1] [𝑧3

+
↔ 𝑤3] [𝑧3

+
→ 2𝑤3] .

Specializing 𝑤3 to 𝑤1, we reduce to interpolation for

𝑁𝐶 (0,3;1) [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [𝑧1 + 𝑧2 + 𝑧3

+
↔ 𝑤1] [𝑧3

+
→ 2𝑤1] .

Projecting from 𝑤1 (again), we reduce to interpolation for

𝑁𝐶 (0,3;2) [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [𝑧3

+
→ 𝑤1] [𝑤1

+
→ 𝑧1 + 𝑧2 + 𝑧3] .

Erasing the transformation [𝑤1
+
→ 𝑧2 + 𝑧2 + 𝑧3], we reduce to interpolation for the pair of bundles

𝑁𝐶 (0,3;2) [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [𝑧3

+
↔ 𝑤1] and 𝑁𝐶 (0,3;2) [𝑢1

+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [𝑧3

+
→ 𝑤1] .

The first is our assumption 𝐼 (𝑑 − 5, 𝑔 − 3, 𝑟 − 2, ℓ + 1, 0). For the second, we erase the transformation
[𝑧3

+
→ 𝑤1] to reduce to interpolation for

𝑁𝐶 (0,3;2) [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ],

which is our assumption 𝐼 (𝑑 − 5, 𝑔 − 3, 𝑟 − 2, ℓ, 0). �

9. Interlude: some cases not implied by I(d, g, r,ℓ,m)

As explained in Section 4, our main inductive argument will establish 𝐼 (𝑑, 𝑔, 𝑟, ℓ, 𝑚) for all good tuples.
We have already seen that:

• 𝐼 (𝑑, 𝑔, 𝑟, ℓ, 𝑚) for all good tuples implies Theorem 1.4 except in a couple of cases.
• Theorem 1.4 implies Theorem 1.2 except in a couple of cases.

Of course, we must also check Theorem 1.4 and Theorem 1.2, respectively, in these couple of cases.
The most difficult of these is Theorem 1.4 for canonical curves of even genus 𝑔 ≥ 8, which we defer to
Section 13. Here, we quickly take care of all the others.
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9.1. Theorem 1.4 for rational curves

Consulting Proposition 5.10, we may assume 𝑑 � 1 mod 𝑟 − 1. By assumption, this implies the
characteristic is distinct from 2. It thus suffices to argue that Theorem 1.4 holds for rational curves in
characteristic distinct from 2, which we do by induction on d as follows:

If 𝜹 < 1: We apply Proposition 8.2 with 𝑑 ′ = 𝑑.
If 𝜹 = 1: We apply Proposition 6.1 (the characteristic assumption enters here).
If 1 < 𝜹 < 2: We apply Proposition 8.2 with 𝑑 ′ = 𝑑 − 1.
If 2 ≤ 𝜹: Upon rearrangement this implies 𝑑 ≥ 2𝑟 − 1. We may thus apply Proposition 8.4.

9.2. Theorem 1.2 for rational curves

Using Theorem 1.4, we deduce Theorem 1.2 for rational curves when the characteristic is distinct from
2. Here, we show that Theorem 1.2 also holds for rational curves in characteristic 2.

Lemma 9.1. Suppose the evaluation map 𝑀𝑔,𝑛 (P
𝑟 , 𝑑) → (P𝑟 )𝑛 is dominant in characteristic 0. Then

it is dominant in all characteristics.

Proof. Because 𝑀𝑔,𝑛 (P
𝑟 , 𝑑) is proper over SpecZ, and the evaluation map is dominant in characteristic

0, the evaluation map is therefore surjective over SpecZ. �

If 𝑔 = 0, then 𝑀0,𝑛 (P
𝑟 , 𝑑) is irreducible in any characteristic, and so we conclude the truth of

Theorem 1.2 in characteristic 2 from the truth of Theorem 1.2 in characteristic 0.

Remark 9.2. The reader might hope to apply Lemma 9.1 to higher genus curves. Unfortunately, all we
learn is that some component of 𝑀𝑔,𝑛 (P

𝑟 , 𝑑) dominates (P𝑟 )𝑛 in positive characteristic. This is a fatal
flaw when the genus is positive, because there are other components, not corresponding to BN-curves,
which would tell us nothing about the interpolation problem for positive-genus curves. For example,
consider the component containing those stable maps which contract a smooth curve of genus g to a
point and map a rational tail to P𝑟 with degree d.

9.3. Theorem 1.2 for (𝒅, 𝒈, 𝒓) = (6, 2, 4)

We want to show such a BN-curve can pass through nine general points. It suffices to show
𝐻1 (𝑁𝐶 (−𝐷)) = 0 when D is a general divisor of degree 9 on C. Peeling off a one-secant line and
specializing one of the points of D onto the one-secant line, this reduces to

𝐻1 (𝑁𝐶 (0,1;0) [𝑢
+
→ 𝑣] [𝑣 +

→ 𝑢] [𝑣 +
→ 2𝑢] (−𝑣 − 𝐷 ′)) = 0,

where 𝐷 ′ is now a general divisor of degree 8 on 𝐶 (0, 1; 0). This follows in turn from

𝐻1(𝑁𝐶 (0,1;0) [2𝑣 +
→ 𝑢] (−𝑣 − 𝐷 ′)) = 0

because this is a subsheaf with punctual quotient. Since 𝑣 + 𝐷 ′ is a general divisor of degree 9 on
𝐶 (0, 1; 0), this follows from interpolation for

𝑁𝐶 (0,1;0) [2𝑣 +
→ 𝑢] .

Projecting from u, we reduce to interpolation for 𝑁𝐶 (0,1;1) , which is Theorem 1.4 for (𝑑, 𝑔, 𝑟) = (4, 1, 3).

10. Combinatorics

In this section, we show, by a purely combinatorial argument, that the inductive arguments in Section 8
apply to all good tuples (𝑑, 𝑔, 𝑟, ℓ, 𝑚) except for:
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• The infinite family (𝑑, 𝑔, 𝑟, 0, 0) with 𝛿 = 1 already treated in Section 6;
• A finite number of other cases.

We begin by showing that these inductive arguments apply to all but finitely many tuples for each
projective space, that is, for each value of r. To reduce casework, define:

𝜖0 = 𝜖0(𝑔) =

{
1 if 𝑔 = 0;
0 if 𝑔 ≠ 0.

and 𝜖1 = 𝜖1 (𝑑, 𝑔) =

{
1 if 𝑑 > 𝑔 + 𝑟;
0 if 𝑑 = 𝑔 + 𝑟.

Proposition 10.1. Let (𝑑, 𝑔, 𝑟, ℓ, 𝑚) be a good tuple. Then one of the arguments of Section 8.3 may be
applied unless

𝑑 ≤ 𝑔 + 2𝑟 − 1, 𝑔 ≤ 𝑟 − 1, and 𝑚 ≤ 𝑟 − 2 + 𝜖0, (10.1)

or unless

(𝑑, 𝑔, 𝑟, ℓ, 𝑚 − (𝑟 − 1)) lies in equation (XEx). (10.2)

Proof. If 𝑔 ≥ 𝑟 , then we may apply Lemma 8.5. If 𝑚 ≥ 𝑟 − 1 + 𝜖0, then we may apply Lemma 8.6,
unless (𝑑, 𝑔, 𝑟, ℓ, 𝑚 − (𝑟 − 1)) lies in equation (XEx).

We may thus assume 𝑚 ≤ 𝑟 − 2+ 𝜖0 ≤ 𝑟 − 1. For any 𝑑 ′ > 𝑔 + 𝑟, this implies 𝜌(𝑑 ′, 𝑔, 𝑟) ≥ 𝑟 + 1 ≥ 𝑚.
Therefore, if 𝑑 ≥ 𝑔 + 2𝑟, we may apply Lemma 8.4. �

For any fixed r, conditions (10.1) and (10.2) describe a finite set of tuples (𝑑, 𝑔, 𝑟, ℓ, 𝑚) as promised.
It therefore suffices to prove:

Theorem 10.2. If 𝑟 ≥ 14, one of the arguments in Section 8 may be applied, unless ℓ = 𝑚 = 0 and 𝛿 = 1.

The remainder of this section is devoted to a proof of Theorem 10.2, which is a purely combinatorial
exercise. Since all tuples in equation (XEx) have 𝑟 ≤ 5, by Proposition 10.1, we may suppose equation
(10.1) is satisfied.

10.1. The cases with 𝒎 ≠ 0

Our first step will be to show that Proposition 8.2 by itself handles the majority of these cases. This
consists of showing that we may assign integer values to the various parameters appearing in Proposition
8.2 that satisfy the desired inequalities. We shall accomplish this using the following lemma, which
gives a sufficient criterion for a system of inequalities to have an integer solution.

Lemma 10.3. Let 𝑎𝑖/𝑏𝑖 and 𝑐 𝑗/𝑑 𝑗 be rational numbers. There is an integer n satisfying

𝑛 ≥
𝑎𝑖
𝑏𝑖

for all 𝑖 and 𝑛 ≤
𝑐 𝑗

𝑑 𝑗
for all 𝑗 ,

provided that, for all i and j, we have

𝑎𝑖
𝑏𝑖

≤
𝑐 𝑗

𝑑 𝑗
−

(𝑏𝑖 − 1) (𝑑 𝑗 − 1)
𝑏𝑖𝑑 𝑗

.

Proof. The collection of intervals [𝑎𝑖/𝑏𝑖 , 𝑐 𝑗/𝑑 𝑗 ] is closed under intersection, so it suffices to check that
there is an integer n satisfying

𝑎

𝑏
≤ 𝑛 ≤

𝑐

𝑑
(10.3)
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provided that

𝑎

𝑏
≤

𝑐

𝑑
−

(𝑏 − 1) (𝑑 − 1)
𝑏𝑑

. (10.4)

For this, we note that equation (10.3) is equivalent to

𝑎 − 1
𝑏

< 𝑛 <
𝑐 + 1

𝑑
.

Since any interval of length greater than 1 contains an integer, it suffices to have

𝑐 + 1
𝑑

−
𝑎 − 1

𝑏
> 1,

or equivalently,

𝑐 + 1
𝑑

−
𝑎 − 1

𝑏
≥ 1 +

1
𝑏𝑑

.

Upon rearrangement this yields equation (10.4) as desired. �

The following simple observations will be used repeatedly in what follows.

Lemma 10.4. If r is even and 𝛿 is an integer, then 𝛿 ≡ 𝑚 mod 2.

Proof. This follows directly from examining the formula

𝛿 =
2𝑑 + 2𝑔 − 2𝑟 + 2ℓ + (𝑟 + 1)𝑚

𝑟 − 1
.

�

Lemma 10.5. In Propositions 8.2 and 8.3, suppose that 𝑑 ′ ≠ 𝑔 + 𝑟 if 𝑑 ≠ 𝑔 + 𝑟. Then

𝑚 ≤ 𝜌(𝑑 ′ − 1, 𝑔, 𝑟 − 1) and 𝑚 ≤ 𝜌(𝑑 ′ − 2, 𝑔, 𝑟 − 2).

Proof. We divide into cases as follows.

Case 1: 𝒅 = 𝒈+𝒓. This implies 𝑑 ′ = 𝑑 = 𝑔+𝑟; thus, 𝑔 = 𝜌(𝑑, 𝑔, 𝑟) = 𝜌(𝑑 ′−1, 𝑔, 𝑟−1) = 𝜌(𝑑 ′−2, 𝑔, 𝑟−2).
On the other hand, because 𝑚 ≤ 𝜌(𝑑, 𝑔, 𝑟), we have 𝑚 = 𝑚 − 𝑚′ ≤ 𝑚 ≤ 𝜌(𝑑, 𝑔, 𝑟).

Case 2: 𝒅 > 𝒈+𝒓. This implies 𝑑 ′ ≥ 𝑔+𝑟+1; thus, 𝜌(𝑑 ′−1, 𝑔, 𝑟−1) ≥ 𝑔+𝑟 and 𝜌(𝑑 ′−2, 𝑔, 𝑟−2) ≥ 𝑔+𝑟−1.
On the other hand, because 𝑚 ≤ 𝑟 − 2 + 𝜖0, we have 𝑚 = 𝑚 − 𝑚′ ≤ 𝑚 ≤ 𝑟 − 1. �

The first main step of our combinatorial analysis is the following.

Proposition 10.6. Let (𝑑, 𝑔, 𝑟, ℓ, 𝑚) be a good tuple satisfying (10.1) with 𝑚 ≠ 0 and 𝑟 ≥ 14. Then the
conditions of Proposition 8.2 can be satisfied unless one of the following holds:

1. ℓ = 0, and 𝛿 is an integer with the same parity as r, and 𝛿 < 𝑟 if r is even.
2. ℓ < 𝛿 < ℓ + 2 and 𝑔 > 0.
3. (𝑑, 𝑔, 𝑟, ℓ, 𝑚) = (3𝑘 + 1, 𝑘, 2𝑘, 0, 2𝑘 − 3) for some k.
4. (𝑑, 𝑔, 𝑟, ℓ, 𝑚) = (𝑘 + 1, 0, 𝑘, 0, 1) for some k.

Proof. We will show a slightly stronger statement: The conditions of Proposition 8.2 can be satisfied,
together with the additional conditions that

𝑚′ ≠ 𝑚 if 𝑔 = 0, and 𝑑 ′ ≠ 𝑔 + 𝑟 if 𝑑 ≠ 𝑔 + 𝑟,
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unless either one of the above-mentioned conditions holds or

(𝑑, 𝑔, 𝑟, ℓ, 𝑚) = (4𝑘 − 2, 0, 2𝑘, 0, 1) or (4𝑘 + 1, 2𝑘 − 1, 2𝑘, 0, 2𝑘 − 3) for some 𝑘.

This is indeed a stronger statement because if (𝑑, 𝑔, 𝑟, ℓ, 𝑚) = (4𝑘−2, 0, 2𝑘, 0, 1), then the conditions
of Proposition 8.2 can be satisfied by taking:

ℓ′ = 0, 𝑚′ = 𝑚 = 1, 𝑑 ′ = 𝑑 = 4𝑘 − 2, 𝑛1 = 3,

and if (𝑑, 𝑔, 𝑟, ℓ, 𝑚) = (4𝑘 + 1, 2𝑘 − 1, 2𝑘, 0, 2𝑘 − 3), then the conditions of Proposition 8.2 can be
satisfied by taking:

ℓ′ = 0, 𝑚′ = 1, 𝑑 ′ = 4𝑘 − 1, 𝑛1 = 2𝑘 − 1.

The advantage of this first additional condition is that 𝑚′ ≠ 𝑚 implies 𝑚 ≠ 0. In combination with
Lemma 10.5 (which applies because of the second additional condition), these conditions therefore
imply that (𝑑 ′ − 1, 𝑔, 𝑟 − 1, ℓ, 𝑚) is good provided only that

ℓ ≤
𝑟 − 1

2
.

A further advantage of this second additional condition is that
∑

𝑛𝑖 can be any integer of the form
(𝑟 − 1)𝑚′ − 2𝑛 where

0 ≤ 𝑛 ≤ 𝜅𝑚′ where 𝜅 = 𝜅(𝑑, 𝑔, 𝑟) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑟−4

2 if 𝑟 is even;
𝑟−5

2 if 𝑟 is odd and (𝑑, 𝑔) = (𝑟 + 1, 1);
𝑟−3

2 if 𝑟 is odd and (𝑑, 𝑔) ≠ (𝑟 + 1, 1).

We next write down a system of inequalities such that an integer solution (for ℓ′, 𝑚′, 𝑑 ′, and n) to
this system guarantees that the conditions of Proposition 8.2 can be satisfied:

0 ≤ 𝑚′ ≤ 𝑚 − 𝜖0 (10.5)

2𝑚′ + ℓ′ ≤ 𝑟 − 2 (10.6)

𝑔 + 𝑟 + 𝜖1 ≤ 𝑑 ′ ≤ 𝑑 (10.7)

0 ≤ 𝑛 ≤ 𝜅𝑚′ (10.8)

0 ≤ ℓ′ ≤ ℓ (10.9)

|𝛿 − [ℓ′ + 2(𝑑 − 𝑑 ′) + (𝑟 − 1)𝑚′ − 2𝑛] | ≤ 1 −
1

𝑟 − 1
(10.10)

ℓ − ℓ′ + 𝑛 ≤
𝑟 − 1

2
. (10.11)

Using equation (10.9), the inequality (10.6) follows from 2𝑚′ + ℓ ≤ 𝑟 − 2. We introduce a new variable
𝑠 = 𝑑 ′ + 𝑛. Replacing equation (10.6) with 2𝑚′ + ℓ ≤ 𝑟 − 2 and rewriting the resulting system in terms
of s and n, we obtain:

0 ≤ 𝑚′ ≤ 𝑚 − 𝜖0 (10.12)

2𝑚′ + ℓ ≤ 𝑟 − 2 (10.13)
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𝑠 − 𝑑 ≤ 𝑛 ≤ 𝑠 − 𝑔 − 𝑟 − 𝜖1 (10.14)

0 ≤ 𝑛 ≤ 𝜅𝑚′ (10.15)

0 ≤ ℓ′ ≤ ℓ (10.16)

𝛿 − [2𝑑 − 2𝑠 + (𝑟 − 1)𝑚′] −
𝑟 − 2
𝑟 − 1

≤ ℓ′ ≤ 𝛿 − [2𝑑 − 2𝑠 + (𝑟 − 1)𝑚′] +
𝑟 − 2
𝑟 − 1

(10.17)

𝑛 ≤
𝑟 − 1

2
+ ℓ′ − ℓ. (10.18)

We use Lemma 10.3 to eliminate the variable n. In other words, equations (10.14), (10.15) and
(10.18) involve n. Applying Lemma 10.3, there is such an integer n provided that:

𝑠 − 𝑑 ≤ 𝑠 − 𝑔 − 𝑟 − 𝜖1 (10.19)

𝑠 − 𝑑 ≤ 𝜅𝑚′ (10.20)

𝑠 − 𝑑 ≤
𝑟 − 1

2
+ ℓ′ − ℓ (10.21)

0 ≤ 𝑠 − 𝑔 − 𝑟 − 𝜖1 (10.22)

0 ≤ 𝜅𝑚′ (10.23)

0 ≤
𝑟 − 1

2
+ ℓ′ − ℓ. (10.24)

Inequalities (10.19) and (10.23) are immediate (they follow from 𝑑 ≥ 𝑔+𝑟+𝜖1 and 𝑚′ ≥ 0 respectively).
Rearranging the remaining inequalities, and including the inequalities (10.12), (10.13), (10.16) and
(10.17) that do not involve n, it therefore suffices to show that there is an integer solution to the following
system:

0 ≤ 𝑚′ ≤ 𝑚 − 𝜖0

2𝑚′ + ℓ ≤ 𝑟 − 2
0 ≤ ℓ′ ≤ ℓ

𝛿 − [2𝑑 − 2𝑠 + (𝑟 − 1)𝑚′] −
𝑟 − 2
𝑟 − 1

≤ ℓ′ ≤ 𝛿 − [2𝑑 − 2𝑠 + (𝑟 − 1)𝑚′] + 𝑟−2
𝑟−1

𝑠 ≤ 𝑑 + 𝜅𝑚′

𝑠 − 𝑑 + ℓ −
𝑟 − 1

2
≤ ℓ′

𝑔 + 𝑟 + 𝜖1 ≤ 𝑠

ℓ −
𝑟 − 1

2
≤ ℓ′.

Using Lemma 10.3 to eliminate the variable ℓ′ replaces the inequalities involving ℓ′ with:

0 ≤ ℓ, (10.25)

0 ≤ 𝛿 − [2𝑑 − 2𝑠 + (𝑟 − 1)𝑚′] +
𝑟 − 2
𝑟 − 1

(10.26)
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𝛿 − [2𝑑 − 2𝑠 + (𝑟 − 1)𝑚′] −
𝑟 − 2
𝑟 − 1

≤ ℓ (10.27)

𝛿 − [2𝑑 − 2𝑠 + (𝑟 − 1)𝑚′] −
𝑟 − 2
𝑟 − 1

≤ 𝛿 − [2𝑑 − 2𝑠 + (𝑟 − 1)𝑚′] +
𝑟 − 2
𝑟 − 1

−
(𝑟 − 2)2

(𝑟 − 1)2 (10.28)

𝑠 − 𝑑 + ℓ −
𝑟 − 1

2
≤ ℓ (10.29)

𝑠 − 𝑑 + ℓ −
𝑟 − 1

2
≤ 𝛿 − [2𝑑 − 2𝑠 + (𝑟 − 1)𝑚′] +

𝑟 − 2
𝑟 − 1

−
𝑟 − 2
2𝑟 − 2

(10.30)

ℓ −
𝑟 − 1

2
≤ ℓ (10.31)

ℓ −
𝑟 − 1

2
≤ 𝛿 − [2𝑑 − 2𝑠 + (𝑟 − 1)𝑚′] +

𝑟 − 2
𝑟 − 1

−
𝑟 − 2
2𝑟 − 2

. (10.32)

Inequalities (10.25), (10.28) and (10.31) are immediate. Simplifying the remaining ones and including
the inequalities that do not involve ℓ′, we obtain:

𝑠 ≤ 𝑑 +
(𝑟 − 1)𝑚′ − 𝛿

2
+

ℓ

2
+

𝑟 − 2
2𝑟 − 2

(10.33)

𝑠 ≤ 𝑑 +
𝑟 − 1

2
𝑣 (10.34)

𝑠 ≤ 𝑑 + 𝜅𝑚′ (10.35)

𝑠 ≥ 𝑑 +
(𝑟 − 1)𝑚′ − 𝛿

2
−

𝑟 − 2
2𝑟 − 2

(10.36)

𝑠 ≥ 𝑑 + (𝑟 − 1)𝑚′ − 𝛿 + ℓ −
𝑟2 − 𝑟 − 1

2𝑟 − 2
(10.37)

𝑠 ≥ 𝑑 +
(𝑟 − 1)𝑚′ − 𝛿

2
+

ℓ

2
−

𝑟2 − 𝑟 − 1
4𝑟 − 4

(10.38)

𝑠 ≥ 𝑔 + 𝑟 + 𝜖1 (10.39)

0 ≤ 𝑚′ ≤ 𝑚 − 𝜖0 (10.40)

2𝑚′ + ℓ ≤ 𝑟 − 2. (10.41)

We now eliminate the variable s. Mostly, we will accomplish this by using Lemma 10.3, except
we will compare equations (10.33) and (10.36) by ad-hoc methods. Namely, for equations (10.33) and
(10.36), we want there to be an integer between

𝑑 +
(𝑟 − 1)𝑚′ − 𝛿

2
−

𝑟 − 2
2𝑟 − 2

and 𝑑 +
(𝑟 − 1)𝑚′ − 𝛿

2
+

ℓ

2
+

𝑟 − 2
2𝑟 − 2

.

By direct inspection, such an integer exists if and only if

ℓ ≠ 0 or (𝑟 − 1)𝑚′ − 𝛿 is not an odd integer. (10.42)

Eliminating s, we therefore have condition (10.42) plus the following system of inequalities:

𝑑 +
(𝑟 − 1)𝑚′ − 𝛿

2
−

𝑟 − 2
2𝑟 − 2

≤ 𝑑 +
𝑟 − 1

2
−

2𝑟 − 3
4𝑟 − 4

(10.43)
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𝑑 +
(𝑟 − 1)𝑚′ − 𝛿

2
−

𝑟 − 2
2𝑟 − 2

≤ 𝑑 + 𝜅𝑚′ (10.44)

𝑑 + (𝑟 − 1)𝑚′ − 𝛿 + ℓ −
𝑟2 − 𝑟 − 1

2𝑟 − 2
≤ 𝑑 +

(𝑟 − 1)𝑚′ − 𝛿

2
+

ℓ

2
+

𝑟 − 2
2𝑟 − 2

−
(2𝑟 − 3)2

(2𝑟 − 2)2 (10.45)

𝑑 + (𝑟 − 1)𝑚′ − 𝛿 + ℓ −
𝑟2 − 𝑟 − 1

2𝑟 − 2
≤ 𝑑 +

𝑟 − 1
2

−
2𝑟 − 3
4𝑟 − 4

(10.46)

𝑑 + (𝑟 − 1)𝑚′ − 𝛿 + ℓ −
𝑟2 − 𝑟 − 1

2𝑟 − 2
≤ 𝑑 + 𝜅𝑚′ (10.47)

𝑑 +
(𝑟 − 1)𝑚′ − 𝛿

2
+

ℓ

2
−

𝑟2 − 𝑟 − 1
4𝑟 − 4

≤ 𝑑 +
(𝑟 − 1)𝑚′ − 𝛿

2
+

ℓ

2
+

𝑟 − 2
2𝑟 − 2

−
(4𝑟 − 5) (2𝑟 − 3)
(4𝑟 − 4) (2𝑟 − 2)

(10.48)

𝑑 +
(𝑟 − 1)𝑚′ − 𝛿

2
+

ℓ

2
−

𝑟2 − 𝑟 − 1
4𝑟 − 4

≤ 𝑑 +
𝑟 − 1

2
−

4𝑟 − 5
8𝑟 − 8

(10.49)

𝑑 +
(𝑟 − 1)𝑚′ − 𝛿

2
+

ℓ

2
−

𝑟2 − 𝑟 − 1
4𝑟 − 4

≤ 𝑑 + 𝜅𝑚′ (10.50)

𝑔 + 𝑟 + 𝜖1 ≤ 𝑑 +
(𝑟 − 1)𝑚′ − 𝛿

2
+

ℓ

2
+

𝑟 − 2
2𝑟 − 2

(10.51)

𝑔 + 𝑟 + 𝜖1 ≤ 𝑑 +
𝑟 − 1

2
(10.52)

𝑔 + 𝑟 + 𝜖1 ≤ 𝑑 + 𝜅𝑚′ (10.53)

0 ≤ 𝑚′ ≤ 𝑚 − 𝜖0 (10.54)
2𝑚′ + ℓ ≤ 𝑟 − 2. (10.55)

Inequalities (10.48), (10.52) and (10.53) are immediate. Moreover, equations (10.43), (10.45), (10.46)
and (10.49) all follow from

(𝑟 − 1)𝑚′ − 𝛿 + ℓ ≤
𝑟2 − 2𝑟
𝑟 − 1

,

and equations (10.47) and (10.50) follow from

(𝑟 − 1)𝑚′ − 𝛿 + ℓ ≤ 𝜅𝑚′ +
𝑟2 − 𝑟 − 2

2𝑟 − 2
.

The above system of inequalities therefore follows from the following system:

(𝑟 − 1)𝑚′ − 𝛿 ≤ 2𝜅𝑚′ +
𝑟 − 2
𝑟 − 1

(10.56)

(𝑟 − 1)𝑚′ − 𝛿 + ℓ ≤
𝑟2 − 2𝑟
𝑟 − 1

(10.57)

(𝑟 − 1)𝑚′ − 𝛿 + ℓ ≤ 𝜅𝑚′ +
𝑟2 − 𝑟 − 2

2𝑟 − 2
(10.58)

𝑔 + 𝑟 + 𝜖1 ≤ 𝑑 +
(𝑟 − 1)𝑚′ − 𝛿

2
+

ℓ

2
+

𝑟 − 2
2𝑟 − 2

(10.59)

0 ≤ 𝑚′ ≤ 𝑚 − 𝜖0 (10.60)

2𝑚′ + ℓ ≤ 𝑟 − 2. (10.61)
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All that remains is therefore to show that there is an integer 𝑚′ satisfying equations10.56–10.61 plus
condition (10.42). For this, we divide into three cases as follows.

Case 1: ℓ = 0 and 𝒓 is even and 𝜹 is an even integer. In this case, we will take 𝑚′ = 2, which evidently
satisfies equation (10.42). Substituting ℓ = 0 and 𝑚′ = 2 into equations 10.56–10.61, it remains only to
verify:

2(𝑟 − 1) − 𝛿 ≤
2𝑟2 − 9𝑟 + 6

𝑟 − 1
(10.62)

2(𝑟 − 1) − 𝛿 ≤
𝑟2 − 2𝑟
𝑟 − 1

(10.63)

2(𝑟 − 1) − 𝛿 ≤
3𝑟2 − 11𝑟 + 6

2𝑟 − 2
(10.64)

𝑔 + 𝑟 + 𝜖1 ≤ 𝑑 +
2(𝑟 − 1) − 𝛿

2
+

𝑟 − 2
2𝑟 − 2

(10.65)

0 ≤ 2 ≤ 𝑚 − 𝜖0 (10.66)

4 ≤ 𝑟 − 2. (10.67)

Note that 𝛿 ≥ 𝑟 by our exclusion of the cases 𝛿 < 𝑟 in Proposition 10.6(1). This implies equations
(10.62), (10.63) and (10.64). Since 𝑑 ≥ 𝑔+ 𝑟 + 𝜖1, inequality (10.65) follows from 𝛿 ≤ 2𝑟 −2. Inequality
(10.66) follows from 𝑚 ≥ 2 + 𝜖0, and equation (10.67) is immediate. All that remains is therefore to
check the following pair of inequalities:

𝛿 ≤ 2𝑟 − 2 (10.68)

𝑚 ≥ 2 + 𝜖0. (10.69)

For equation (10.68), we note that

𝛿 =
2(𝑑 − 𝑔 − 2𝑟 + 1) + 4𝑔 + (𝑟 + 1)𝑚 + 2𝑟 − 2

𝑟 − 1
≤

4(𝑟 − 1) + (𝑟 + 1) (𝑟 − 1) + 2𝑟 − 2
𝑟 − 1

≤ 2𝑟 − 2.

For equation (10.69), we note that m is even by Lemma 10.4; in particular, 𝑚 ≥ 2. Inequality (10.69)
thus holds unless 𝑔 = 0 and 𝑚 = 2. But in this case,

𝛿 =
2𝑑 + 2
𝑟 − 1

≤
2(2𝑟 − 1) + 2

𝑟 − 1
< 𝑟,

contradicting our assumption that 𝛿 ≥ 𝑟.

Case 2: ℓ = 0 and 𝒓 is even and 𝜹 is an odd integer. In this case, we will take 𝑚′ = 1, which
again evidently satisfies equation (10.42). Substituting ℓ = 0 and 𝑚′ = 1 into equations 10.56–10.61, it
remains only to verify:

(𝑟 − 1) − 𝛿 ≤
𝑟2 − 4𝑟 + 2

𝑟 − 1
(10.70)

(𝑟 − 1) − 𝛿 ≤
𝑟2 − 2𝑟
𝑟 − 1

(10.71)

(𝑟 − 1) − 𝛿 ≤
𝑟2 − 3𝑟 + 1

𝑟 − 1
(10.72)
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𝑔 + 𝑟 + 𝜖1 ≤ 𝑑 +
(𝑟 − 1) − 𝛿

2
+

𝑟 − 2
2𝑟 − 2

(10.73)

0 ≤ 1 ≤ 𝑚 − 𝜖0 (10.74)

2 ≤ 𝑟 − 2. (10.75)

Inequalities (10.70), (10.71) and (10.72) follow from 𝛿 ≥ 3, inequality (10.73) from the inequality
𝛿 ≤ 2(𝑑 − 𝑔 − 𝑟 − 𝜖1) + (𝑟 − 1), inequality (10.74) from 𝑚 ≥ 1 + 𝜖0, and equation (10.75) is immediate.
All that remains is therefore to check the following system of inequalities:

𝛿 ≥ 3 (10.76)

𝛿 ≤ 2(𝑑 − 𝑔 − 𝑟 − 𝜖1) + (𝑟 − 1) (10.77)

𝑚 ≥ 1 + 𝜖0. (10.78)

For equation (10.76), since 𝑚 ≥ 1, we have 𝛿 > 1. Since 𝛿 is an odd integer, 𝛿 ≥ 3 as desired. For
equation (10.78), since 𝑚 ≥ 1, the inequality holds unless 𝑔 = 0 and 𝑚 = 1. But in this case,

𝛿 =
2𝑑

𝑟 − 1
− 1 ≤

2(2𝑟 − 1)
𝑟 − 1

− 1 < 5,

and so 𝛿 = 3, and so 𝑑 = 2𝑟 − 2. In other words, writing 𝑟 = 2𝑘 , we have

(𝑑, 𝑔, 𝑟, ℓ, 𝑚) = (4𝑘 − 2, 0, 2𝑘, 0, 1),

which is one of the cases excluded by assumption.
All that remains is to verify equation (10.77). Note that m is odd by Lemma 10.4; in particular, since

𝑚 ≤ 𝑟 − 2 + 𝜖0 by equation (10.1), we have one of:

𝑚 ≤ 𝑟 − 5, 𝑚 = 𝑟 − 3, or 𝑚 = 𝑟 − 1,

where the final case can only occur if 𝑔 = 0. Our argument will be via casework as follows.
Subcase 2.1: 𝑑 ≥ 𝑔 + 𝑟 + 2. By separately considering the cases 𝑔 = 0 (in which case 𝑚 ≤ 𝑟 − 1) and

𝑔 > 0 (in which case 𝑚 ≤ 𝑟 − 3), we have 4𝑔 + (𝑟 + 1)𝑚 ≤ 𝑟2 + 2𝑟 − 7, with equality only if 𝑔 = 𝑟 − 1
and 𝑚 = 𝑟 − 3. Therefore,

𝛿 = 2(𝑑 − 𝑔 − 𝑟 − 1) + (𝑟 + 1) −
(𝑟2 + 2𝑟 − 7) − 4𝑔 − (𝑟 + 1)𝑚 + (2𝑟 − 4) (𝑑 − 𝑔 − 𝑟 − 2)

𝑟 − 1
≤ 2(𝑑 − 𝑔 − 𝑟 − 𝜖1) + (𝑟 + 1),

with equality only if 𝑔 = 𝑟 − 1 and 𝑚 = 𝑟 − 3 and 𝑑 = 𝑔 + 𝑟 + 2 = 2𝑟 + 1. Since 𝛿 is an odd integer, we
therefore have 𝛿 ≤ 2(𝑑 − 𝑔 − 𝑟 − 𝜖1) + (𝑟 − 1) unless, writing 𝑟 = 2𝑘 , we have

(𝑑, 𝑔, 𝑟, ℓ, 𝑚) = (2𝑟 + 1, 𝑟 − 1, 𝑟, 0, 𝑟 − 3) = (4𝑘 + 1, 2𝑘 − 1, 2𝑘, 0, 2𝑘 − 3),

which is again one of the cases excluded by assumption.
Subcase 2.2: 𝑑 ≤ 𝑔 + 𝑟 + 1 and 𝑚 ≤ 𝑟 − 5. We have

𝛿 =
2(𝑑 − 𝑔 − 𝑟 − 1) + 4𝑔 + 2 + (𝑟 + 1)𝑚

𝑟 − 1
≤

4(𝑟 − 1) + 2 + (𝑟 + 1) (𝑟 − 5)
𝑟 − 1

= 𝑟 + 1 −
6

𝑟 − 1
< 𝑟 + 1.

Since 𝛿 is an odd integer, this implies 𝛿 ≤ 𝑟 − 1 as desired.
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Subcase 2.3: 𝑑 = 𝑔 + 𝑟 and 𝑚 = 𝑟 − 3. We have

𝛿 = 𝑟 − 1 +
4(𝑔 − 1)

𝑟 − 1
.

Since 𝛿 is an integer, and 𝑟 − 1 is odd, this implies 𝑔 ≡ 1 mod 𝑟 − 1, which since 0 ≤ 𝑔 ≤ 𝑟 − 1 in turn
implies 𝑔 = 1, and so 𝛿 = 𝑟 − 1.

Subcase 2.4: 𝑑 = 𝑔 + 𝑟 + 1 and 𝑚 = 𝑟 − 3. We have

𝛿 = 𝑟 − 1 +
2(2𝑔 − 1)

𝑟 − 1
.

Since 𝛿 is an integer, and 𝑟 − 1 is odd, this implies 2𝑔 ≡ 1 ≡ 𝑟 mod 𝑟 − 1, which since 0 ≤ 𝑔 ≤ 𝑟 − 1 in
turn implies 𝑔 = 𝑟/2. Writing 𝑟 = 2𝑘 , we therefore have 𝑔 = 𝑘 and 𝑑 = 𝑔+𝑟 +1 = 3𝑘 +1, that is, we have

(𝑑, 𝑔, 𝑟, ℓ, 𝑚) = (3𝑘 + 1, 𝑘, 2𝑘, 0, 2𝑘 − 3),

which is again one of the cases excluded by assumption.
Subcase 2.5: 𝑑 ≤ 𝑔+𝑟+1 and 𝑚 = 𝑟−1. Since 𝑚 ≤ 𝑟−2+𝜖0, we would have 𝑔 = 0, and thus 𝑑 = 𝑟+1.

But this would imply 𝛿 = (𝑟2+1)/(𝑟−1) ∉ Z, in contradiction to our assumption that 𝛿 is an odd integer.

Case 3: ℓ ≠ 0 or 𝒓 is odd or 𝜹 is not an integer. If ℓ ≠ 0 or 𝛿 is not an integer, then equation (10.42)
holds. Otherwise, the current assumption implies r is odd, so 𝛿 is even (the cases where 𝛿 is also odd
are excluded), and so equation (10.42) again holds. We conclude that equation (10.42) is automatic.

All that remains is therefore to check that there exists an integer 𝑚′ satisfying equations 10.56–10.61.
Rearranging to make the bounds on 𝑚′ explicit, this is the system:

𝑚′ ≤
1

𝑟 − 1 − 2𝜅
·

(
𝛿 +

𝑟 − 2
𝑟 − 1

)
(10.79)

𝑚′ ≤
1

𝑟 − 1
·

(
𝛿 − ℓ +

𝑟2 − 2𝑟
𝑟 − 1

)
(10.80)

≤
1

𝑟 − 1 − 𝜅
·

(
𝛿 − ℓ +

𝑟2 − 𝑟 − 2
2𝑟 − 2

)
(10.81)

𝑚′ ≤ 𝑚 − 𝜖0 (10.82)

𝑚′ ≤
𝑟 − 2 − ℓ

2
(10.83)

𝑚′ ≥
1

𝑟 − 1
·

(
𝛿 − 2(𝑑 − 𝑔 − 𝑟 − 𝜖1) − ℓ −

𝑟 − 2
𝑟 − 1

)
(10.84)

𝑚′ ≥ 0. (10.85)

We will compare the inequalities (10.79) and (10.81) to equation (10.84) using ad-hoc methods. But
first we handle all of the other comparisons using Lemma 10.3 by verifying the following system of
inequalities:

0 ≤
1

𝑟 − 1 − 2𝜅
·

(
𝛿 +

𝑟 − 2
𝑟 − 1

)
0 ≤

1
𝑟 − 1

·

(
𝛿 − ℓ +

𝑟2 − 2𝑟
𝑟 − 1

)
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0 ≤
1

𝑟 − 1 − 𝜅
·

(
𝛿 − ℓ +

𝑟2 − 𝑟 − 2
2𝑟 − 2

)
0 ≤ 𝑚 − 𝜖0

0 ≤
𝑟 − 2 − ℓ

2
1

𝑟 − 1
·

(
𝛿 − 2(𝑑 − 𝑔 − 𝑟 − 𝜖1) − ℓ −

𝑟 − 2
𝑟 − 1

)
≤

1
𝑟 − 1

·

(
𝛿 − ℓ +

𝑟2 − 2𝑟
𝑟 − 1

)
−

(𝑟 − 2)4

(𝑟 − 1)4

1
𝑟 − 1

·

(
𝛿 − 2(𝑑 − 𝑔 − 𝑟 − 𝜖1) − ℓ −

𝑟 − 2
𝑟 − 1

)
≤ 𝑚 − 𝜖0

1
𝑟 − 1

·

(
𝛿 − 2(𝑑 − 𝑔 − 𝑟 − 𝜖1) − ℓ −

𝑟 − 2
𝑟 − 1

)
≤

𝑟 − 2 − ℓ

2
−

(𝑟 − 1)2 − 1
2(𝑟 − 1)2 .

Substituting in the definition of 𝛿 and rearranging, these inequalities are equivalent to:

2(𝑑 − 𝑔 − 𝑟) + 4𝑔 + 2ℓ + (𝑟 + 1)𝑚 ≥ −𝑟 + 2 (10.86)

4(𝑑 − 𝑔 − 𝑟) + 8𝑔 + (𝑟 − 3) (𝑟 − 2ℓ) + 2(𝑟 + 1)𝑚 ≥ −𝑟2 + 𝑟 (10.87)

4(𝑑 − 𝑔 − 𝑟) + 8𝑔 + (𝑟 − 3) (𝑟 − 2ℓ) + 2(𝑟 + 1)𝑚 ≥ −2𝑟 + 2 (10.88)

𝑚 − 1 ≥ 𝜖0 − 1 (10.89)

𝑟 − 2ℓ ≥ −𝑟 + 4 (10.90)

2(𝑟 − 1)3(𝑑 − 𝑔 − 𝑟 − 𝜖1) ≥ −5𝑟3 + 23𝑟2 − 35𝑟 + 18 (10.91)

(2𝑟 − 4) (𝑑 − 𝑔 − 𝑟 − 𝜖1) + 4(𝑟 − 1 − 𝑔) + (𝑟 − 3)ℓ (10.92)

+ (𝑟2 − 3𝑟) (𝑚 − 1) + 2(1 − 𝜖1) ≥ (𝑟 − 1)2𝜖0 − 𝑟2 + 6𝑟

(8𝑟 − 16) (𝑑 − 𝑔 − 𝑟) + 16(𝑟 − 1 − 𝑔) + (𝑟2 − 4𝑟 + 7) (𝑟 − 2ℓ) (10.93)

+ (4𝑟 + 4) (𝑟 − 1 − 𝑚) + 8(1 − 𝜖1) ≥ −𝑟3 + 10𝑟2 + 5𝑟.

From these expressions, we see that all but equation (10.92) is immediate and that equation (10.92)
holds when 𝜖0 = 0. But when 𝜖0 = 1, then 𝑔 = 0 and 𝜖1 = 1, and so equation (10.92) becomes

(2𝑟 − 4) (𝑑 − 𝑟 − 1) + (𝑟2 − 3𝑟) (𝑚 − 1) + (𝑟 − 3)ℓ ≥ 5,

which holds unless 𝑑 = 𝑟 + 1 and 𝑚 = 1 and ℓ = 0, or equivalently unless

(𝑑, 𝑔, 𝑟, ℓ, 𝑚) = (𝑘 + 1, 0, 𝑘, 0, 1),

which is again one of the cases excluded by assumption.
All that remains is our promised ad-hoc comparison of equations (10.79) and (10.81) to equation

(10.84). That is, we want to show that there are integers between:

1
𝑟 − 1

·

(
𝛿 − 2(𝑑 − 𝑔 − 𝑟 − 𝜖1) − ℓ −

𝑟 − 2
𝑟 − 1

)
and

1
𝑟 − 1 − 2𝜅

·

(
𝛿 +

𝑟 − 2
𝑟 − 1

)
1

𝑟 − 1
·

(
𝛿 − 2(𝑑 − 𝑔 − 𝑟 − 𝜖1) − ℓ −

𝑟 − 2
𝑟 − 1

)
and

1
𝑟 − 1 − 𝜅

·

(
𝛿 − ℓ +

𝑟2 − 𝑟 − 2
2𝑟 − 2

)
.

https://doi.org/10.1017/fmp.2023.22 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.22


Forum of Mathematics, Pi 51

Remark ∗: If (𝑑, 𝑔) = (𝑟 + 1, 1) then 𝛿 < ℓ + 2. Indeed, if (𝑑, 𝑔) = (𝑟 + 1, 1), then 𝑚 ≤ 𝜌(𝑑, 𝑔, 𝑟) = 1,
and so

𝛿 =
4 + 2ℓ + (𝑟 + 1)𝑚

𝑟 − 1
≤

𝑟 + 5 + 2ℓ

𝑟 − 1
< ℓ + 2.

Subcase 3.1: 𝛿 < ℓ + 1 + 2(𝑑 − 𝑔 − 𝑟 − 𝜖1). In this case, the lower bound is nonpositive. We have
already shown that both upper bounds are nonnegative above, so there is nothing more to check.

Subcase 3.2: 𝛿 ≥ ℓ+3. By Remark ∗ above, 𝜅 ≥ 𝑟−4
2 . It suffices to show that there are integers between

1
𝑟 − 1

·

(
𝛿 − ℓ −

𝑟 − 2
𝑟 − 1

)
and

1
𝑟 − 1 − 2 · 𝑟−4

2
·

(
𝛿 − ℓ +

𝑟 − 2
𝑟 − 1

)
=

1
3
·

(
𝛿 − ℓ +

𝑟 − 2
𝑟 − 1

)
1

𝑟 − 1
·

(
𝛿 − ℓ −

𝑟 − 2
𝑟 − 1

)
and

1
𝑟 − 1 − 𝑟−4

2
·

(
𝛿 − ℓ +

𝑟2 − 𝑟 − 2
2𝑟 − 2

)
=

1
𝑟 + 2

·

(
2(𝛿 − ℓ) +

𝑟2 − 𝑟 − 2
𝑟 − 1

)
.

By Lemma 10.3, this follows from the following inequalities:

1
𝑟 − 1

·

(
𝛿 − ℓ −

𝑟 − 2
𝑟 − 1

)
≤

1
3
·

(
𝛿 − ℓ +

𝑟 − 2
𝑟 − 1

)
−

(3(𝑟 − 1) − 1) ((𝑟 − 1)2 − 1)
3(𝑟 − 1)3

1
𝑟 − 1

·

(
𝛿 − ℓ −

𝑟 − 2
𝑟 − 1

)
≤

1
𝑟 + 2

·

(
2(𝛿 − ℓ) +

𝑟2 − 𝑟 − 2
𝑟 − 1

)
−

((𝑟 + 2) (𝑟 − 1) − 1) ((𝑟 − 1)2 − 1)
(𝑟 + 2) (𝑟 − 1)3

But these are immediate for 𝛿 − ℓ ≥ 3, using the assumption 𝑟 ≥ 14.
Subcase 3.3: ℓ+1+2(𝑑−𝑔−𝑟−𝜖1) ≤ 𝛿 < ℓ+3. These inequalities force 𝑑 = 𝑔+𝑟+𝜖1 or equivalently

𝑑 = 𝑔 + 𝑟 or 𝑑 = 𝑔 + 𝑟 + 1. (10.94)

The inequality 𝛿 < ℓ + 3 also implies

1
𝑟 − 1

·

(
𝛿 − ℓ −

𝑟 − 2
𝑟 − 1

)
≤ 1.

It therefore suffices to show

1
𝑟 − 1 − 2𝜅

·

(
𝛿 +

𝑟 − 2
𝑟 − 1

)
≥ 1 and

1
𝑟 − 1 − 𝜅

·

(
𝛿 − ℓ +

𝑟2 − 𝑟 − 2
2𝑟 − 2

)
≥ 1,

or upon rearrangement

𝛿 ≥ 𝑟 − 2 − 2𝜅 +
1

𝑟 − 1
and 𝛿 ≥ ℓ +

𝑟

2
− 1 − 𝜅 +

1
𝑟 − 1

.

Subsubcase 3.3.1: 𝑔 = 0. By equation (10.94), we have 𝑑 = 𝑟 + 1. Since 𝑔 = 0, we have (𝑑, 𝑔) ≠
(𝑟 + 1, 1). Our goal is thus to show

𝛿 ≥

{
1 + 1

𝑟−1 if 𝑟 is odd,
2 + 1

𝑟−1 if 𝑟 is even;
and 𝛿 ≥ ℓ +

{
1
2 + 1

𝑟−1 if 𝑟 is odd,
1 + 1

𝑟−1 if 𝑟 is even.

When ℓ = 0, the first inequality implies the second. In this case, recall that (𝑑, 𝑔, 𝑟, ℓ, 𝑚) = (𝑘 +

1, 0, 𝑘, 0, 1) is excluded by assumption. Therefore,𝑚 ≥ 2, which implies the first inequality because

𝛿 =
2 + (𝑟 + 1)𝑚

𝑟 − 1
≥

2 + 2(𝑟 + 1)
𝑟 − 1

≥ 2 +
1

𝑟 − 1
.
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Now, suppose ℓ ≥ 1. Note that 𝛿 ≥ ℓ + 1 ≥ 2, which implies the first inequality unless r is even
and 𝛿 = ℓ + 1. Similarly, 𝛿 ≥ ℓ + 1 implies the second inequality unless r is even and 𝛿 = ℓ + 1. It thus
remains only to show that it is impossible to have 𝛿 = ℓ + 1 when r is even. To see this, observe that

ℓ + 1 = 𝛿 =
2 + 2ℓ + (𝑟 + 1)𝑚

𝑟 − 1

implies

(𝑟 − 3) (ℓ + 1) = (𝑟 + 1)𝑚.

But if r were even, then this would imply (𝑟 + 1) | (ℓ + 1), which forces ℓ + 1 ≥ 𝑟 + 1, contradicting our
assumption that ℓ ≤ 𝑟/2.

Subsubcase 3.3.2: 𝑔 > 0. We excluded the cases ℓ < 𝛿 < ℓ + 2 in Proposition 10.6(2). Since we have
ℓ+1 ≤ 𝛿 < ℓ+3, we therefore have ℓ+2 ≤ 𝛿 < ℓ+3. Moreover, by Remark ∗, we have (𝑑, 𝑔) ≠ (𝑟+1, 1).
As in the previous subsubcase, our goal thus is to show

𝛿 ≥

{
1 + 1

𝑟−1 if 𝑟 is odd,
2 + 1

𝑟−1 if 𝑟 is even;
and 𝛿 ≥ ℓ +

{
1
2 + 1

𝑟−1 if 𝑟 is odd,
1 + 1

𝑟−1 if 𝑟 is even.

Since 𝛿 ≥ ℓ+2, the second inequality is immediate in all cases. Also, the first inequality is immediate
if r is odd. To see the first inequality when r is even, note that 𝛿 ≥ ℓ + 2 ≥ 2, so the first inequality holds
unless we have equality everywhere, that is, unless ℓ = 0 and 𝛿 = 2. But this possibility is excluded by
assumption (recall that in Case 3 we have ℓ ≠ 0 or r odd or 𝛿 is not an integer). �

The majority of the remaining cases are handled by Proposition 8.3. More precisely:

Proposition 10.7. Let (𝑑, 𝑔, 𝑟, ℓ, 𝑚) be a good tuple satisfying (10.1) with 𝑚 ≠ 0 and 𝑟 ≥ 14. Suppose
in addition that either condition (1) or (2) of Lemma 10.6 is satisfied. Then the conditions of Proposition
8.3 can be satisfied unless one of the following holds:

1. (𝑑, 𝑔, 𝑟, ℓ, 𝑚) = (4𝑘, 0, 2𝑘 + 1, 0, 1) for some k.
2. (𝑑, 𝑔, 𝑟, ℓ, 𝑚) = (4𝑘 + 1, 2𝑘 − 1, 2𝑘 + 1, 0, 1) for some k.

Proof. We separately consider the following three cases.

Case 1: ℓ < 𝜹 < ℓ + 2 and 𝒈 > 0. We take 𝑚′ = 0, ℓ′ = ℓ, and 𝑑 ′ = 𝑑, which satisfy the conditions of
Proposition 8.3 by Lemma 10.5.

Case 2: ℓ = 0, and 𝜹 and 𝒓 are even integers with 𝜹 < 𝒓. We take

𝑚′ = 1, ℓ′ = 0, 𝑑 ′ = 𝑑, and 𝑛1 = 𝛿 − 1.

Applying Lemma 10.5, the conditions of Proposition 8.3 are satisfied provided that

𝑚 > 1 and

2 ≤ 𝑛1 = 𝛿 − 1 ≤ 𝑟 − 1 with 𝑛1 = 𝛿 − 1 ≠ 2 if (𝑑 ′, 𝑔) = (𝑟 + 1, 1).

Since 𝛿 is an even integer, 𝛿 − 1 ≠ 2; since 𝛿 < 𝑟 , we have 𝛿 − 1 ≤ 𝑟 − 1. All that remains to check is
therefore that 𝑚 ≥ 2 and that 2 ≤ 𝛿 − 1, which since 𝛿 is an even integer is equivalent to 𝛿 > 2.

To see this, we first apply Lemma 10.4 to conclude that m is even. Since 𝑚 ≠ 0, this implies 𝑚 ≥ 2
as desired. This in turn implies 𝛿 > 2 because

𝛿 =
2𝑑 + 2𝑔 − 2𝑟 + 2ℓ + (𝑟 + 1)𝑚

𝑟 − 1
≥

2(𝑟 + 1)
𝑟 − 1

> 2.
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Case 3: ℓ = 0, and 𝜹 and 𝒓 are odd integers. As in the proof of Proposition 10.6, we show a slightly
stronger statement: The conditions of Proposition 8.3 can be satisfied, together with the additional
conditions that

𝑚′ ≠ 𝑚 − 1 if 𝑔 = 0, and 𝑑 ′ ≠ 𝑔 + 𝑟 if 𝑑 ≠ 𝑔 + 𝑟,

unless either one of the above-mentioned conditions holds or

(𝑑, 𝑔, 𝑟, ℓ, 𝑚) = (3𝑘 + 1, 𝑘 − 1, 2𝑘 + 1, 0, 1) for some 𝑘.

This is indeed a stronger statement because if (𝑑, 𝑔, 𝑟, ℓ, 𝑚) = (3𝑘 + 1, 𝑘 − 1, 2𝑘 + 1, 0, 1), then the
conditions of Proposition 8.3 can be satisfied by taking:

ℓ′ = 0, 𝑚′ = 0, and 𝑑 ′ = 𝑑 − 1 = 3𝑘.

Again as in the proof of Proposition 10.6, Lemma 10.5 guarantees that the tuples (𝑑 ′−1, 𝑔, 𝑟−1, ℓ, 𝑚),
(𝑑 ′ − 1, 𝑔, 𝑟 − 1, ℓ, 𝑚 − 1), and (𝑑 ′ − 2, 𝑔, 𝑟 − 2, ℓ, 𝑚), are all good provided only that

ℓ ≤
𝑟 − 3

2
.

With 𝜅 as in the proof of Proposition 10.6, our task is thus to show that the following system of
inequalities can be satisfied for integers ℓ′, 𝑚′, 𝑑 ′, and n:

0 ≤ 𝑚′ ≤ 𝑚 − 1 − 𝜖0 (10.95)

2𝑚′ + ℓ′ ≤ 𝑟 − 3 (10.96)

𝑔 + 𝑟 + 𝜖1 ≤ 𝑑 ′ ≤ 𝑑 (10.97)

0 ≤ 𝑛 ≤ 𝜅𝑚′ (10.98)

0 ≤ ℓ′ ≤ ℓ = 0 (10.99)

|𝛿 − [1 + ℓ′ + 2(𝑑 − 𝑑 ′) + (𝑟 − 1)𝑚′ − 2𝑛] | ≤ 1 −
1

𝑟 − 1
(10.100)

ℓ − ℓ′ + 𝑛 ≤
𝑟 − 3

2
. (10.101)

Inequalities (10.99) and (10.100) are satisfied by taking

ℓ′ = 0 and 𝑛 = 𝑑 − 𝑑 ′ +
𝑟 − 1

2
𝑚′ −

𝛿 − 1
2

.

Substituting these into the remaining inequalities and rearranging, we reduce to the system of inequali-
ties:

0 ≤ 𝑚′ ≤ 𝑚 − 1 − 𝜖0 (10.102)

𝑚′ ≤
𝑟 − 3

2
(10.103)

𝑔 + 𝑟 + 𝜖1 ≤ 𝑑 ′ ≤ 𝑑 (10.104)
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𝑑 +
𝑟 − 1

2
𝑚′ −

𝛿 − 1
2

− 𝜅𝑚′ ≤ 𝑑 ′ ≤ 𝑑 +
𝑟 − 1

2
𝑚′ −

𝛿 − 1
2

(10.105)

𝑑 +
𝑟 − 1

2
𝑚′ −

𝛿 − 1
2

−
𝑟 − 3

2
≤ 𝑑 ′. (10.106)

All bounds on 𝑑 ′ are integers because r and 𝛿 are both odd integers. Using Lemma 10.3 to eliminate 𝑑 ′

replaces equations 10.104–10.106 with

𝑔 + 𝑟 + 𝜖1 ≤ 𝑑 (10.107)

𝑔 + 𝑟 + 𝜖1 ≤ 𝑑 +
𝑟 − 1

2
𝑚′ −

𝛿 − 1
2

(10.108)

𝑑 +
𝑟 − 1

2
𝑚′ −

𝛿 − 1
2

− 𝜅𝑚′ ≤ 𝑑 (10.109)

𝑑 +
𝑟 − 1

2
𝑚′ −

𝛿 − 1
2

− 𝜅𝑚′ ≤ 𝑑 +
𝑟 − 1

2
𝑚′ −

𝛿 − 1
2

(10.110)

𝑑 +
𝑟 − 1

2
𝑚′ −

𝛿 − 1
2

−
𝑟 − 3

2
≤ 𝑑 (10.111)

𝑑 +
𝑟 − 1

2
𝑚′ −

𝛿 − 1
2

−
𝑟 − 3

2
≤ 𝑑 +

𝑟 − 1
2

𝑚′ −
𝛿 − 1

2
. (10.112)

Inequalities (10.107) and (10.112) always hold, while equation (10.110) is implied by 𝑚′ ≥ 0. Rear-
ranging the others, and including equations (10.102) and (10.103), we arrive at the system

𝑚′ ≥ 0

𝑚′ ≥
𝛿 − 1 − 2(𝑑 − 𝑔 − 𝑟 − 𝜖1)

𝑟 − 1

𝑚′ ≤
𝛿 − 1

𝑟 − 1 − 2𝜅

𝑚′ ≤
𝛿 + 𝑟 − 4

𝑟 − 1
𝑚′ ≤ 𝑚 − 1 − 𝜖0

𝑚′ ≤
𝑟 − 3

2
.

Applying Lemma 10.3 to eliminate 𝑚′, we reduce to the system

0 ≤
𝛿 − 1

𝑟 − 1 − 2𝜅
(10.113)

0 ≤
𝛿 + 𝑟 − 4

𝑟 − 1
(10.114)

0 ≤ 𝑚 − 1 − 𝜖0 (10.115)

0 ≤
𝑟 − 3

2
(10.116)

𝛿 − 1 − 2(𝑑 − 𝑔 − 𝑟 − 𝜖1)

𝑟 − 1
≤

𝛿 − 1
𝑟 − 1 − 2𝜅

−

(
𝑟−1

2 − 1
) (

𝑟−1−2𝜅
2 − 1

)
(
𝑟−1

2

) (
𝑟−1−2𝜅

2

) (10.117)
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𝛿 − 1 − 2(𝑑 − 𝑔 − 𝑟 − 𝜖1)

𝑟 − 1
≤

𝛿 + 𝑟 − 4
𝑟 − 1

−

(
𝑟−1

2 − 1
)2(

𝑟−1
2

)2 (10.118)

𝛿 − 1 − 2(𝑑 − 𝑔 − 𝑟 − 𝜖1)

𝑟 − 1
≤ 𝑚 − 1 − 𝜖0 (10.119)

𝛿 − 1 − 2(𝑑 − 𝑔 − 𝑟 − 𝜖1)

𝑟 − 1
≤

𝑟 − 3
2

. (10.120)

Since 𝛿 is an odd integer, we have 𝛿 ≥ 1, which implies equations (10.113) and (10.114). The inequality
(10.116) is immediate. Inequality (10.118) follows from 𝑑 ≥ 𝑔 + 𝑟 + 𝜖1, which holds by construction.
For the remaining inequalities (10.115), (10.117), (10.119) and (10.120), we use the inequality 𝜖1 ≤ 1
to reduce to the system

𝑚 ≥ 1 + 𝜖0 (10.121)
𝛿 − 1 − 2(𝑑 − 𝑔 − 𝑟 − 1)

𝑟 − 1
≤

𝛿 − 1
𝑟 − 1 − 2𝜅

−
(𝑟 − 3) (𝑟 − 3 − 2𝜅)

(𝑟 − 1) (𝑟 − 1 − 2𝜅)
(10.122)

𝛿 − 1 − 2(𝑑 − 𝑔 − 𝑟 − 1)
𝑟 − 1

≤ 𝑚 − 1 − 𝜖0 (10.123)

𝛿 − 1 − 2(𝑑 − 𝑔 − 𝑟 − 1)
𝑟 − 1

≤
𝑟 − 3

2
. (10.124)

We divide our analysis as follows.
Inequality (10.121): This inequality asserts that we do not simultaneously have 𝑔 = 0 (hence, 𝜖0 = 1)

and 𝑚 = 1. So assume 𝑔 = 0 and 𝑚 = 1. Then

𝛿 =
2𝑑 + 2𝑔 − 2𝑟 + 2ℓ + (𝑟 + 1)𝑚

𝑟 − 1
=

2𝑑 − 𝑟 + 1
𝑟 − 1

.

Since 𝑟 = 𝑔 + 𝑟 ≤ 𝑑 ≤ 𝑔 + 2𝑟 − 1 = 2𝑟 − 1, we would have

1 <
2𝑟 − 𝑟 + 1

𝑟 − 1
≤ 𝛿 ≤

2(2𝑟 − 1) − 𝑟 + 1
𝑟 − 1

< 5.

Since 𝛿 is an odd integer, 𝛿 = 3, and so 𝑑 = 2𝑟 − 2. In other words, writing 𝑟 = 2𝑘 + 1, we would have
(𝑑, 𝑔, 𝑟, ℓ, 𝑚) = (4𝑘, 0, 2𝑘 + 1, 0, 1). But this case is excluded by assumption.

Inequality (10.122) when (𝑑, 𝑔) = (𝑟 + 1, 1): In this case, 𝜅 = (𝑟 − 5)/2 so upon rearrangement,
equation (10.122) becomes

𝛿 ≥
3𝑟 − 3
𝑟 − 5

.

However,

𝛿 =
2𝑑 + 2𝑔 − 2𝑟 + 2ℓ + (𝑟 + 1)𝑚

𝑟 − 1
=

(𝑟 + 1)𝑚 + 4
𝑟 − 1

;

since 𝛿 is an integer, this implies 2𝑚 + 4 ≡ (𝑟 + 1)𝑚 + 4 ≡ 0 mod 𝑟 − 1, and so 𝑚 ≡ −2 mod (𝑟 − 1)/2,
which implies 𝑚 ≥ (𝑟 − 1)/2 − 2 = (𝑟 − 5)/2. Therefore,

𝛿 =
(𝑟 + 1)𝑚 + 4

𝑟 − 1
≥

(𝑟 + 1) · (𝑟 − 5)/2 + 4
𝑟 − 1

=
𝑟 − 3

2
.

As 𝑟 ≥ 14, this implies 𝛿 ≥ (3𝑟 − 3)/(𝑟 − 5) as desired.
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Inequality (10.123) when 𝑚 ≤ 1 + 𝜖0: As we have already established 𝑚 ≥ 1 + 𝜖0, this implies
𝑚 = 1 + 𝜖0. In this case, equation (10.123) asserts

𝛿 ≤ 2𝑑 − 2𝑔 − 2𝑟 − 1.

By definition,

𝛿 =
2𝑑 + 2𝑔 − 2𝑟 + (𝑟 + 1) (1 + 𝜖0)

𝑟 − 1

= 2𝑑 − 2𝑔 − 2𝑟 + 5 −
(2𝑟 − 4) (𝑑 − 𝑔 − 𝑟) + (4𝑟 − 6) − (4𝑔 + (𝑟 + 1)𝜖0)

𝑟 − 1
.

Since 𝑑 ≥ 𝑔+𝑟, we have (2𝑟−4) (𝑑−𝑔−𝑟) ≥ 0, with (2𝑟−4) (𝑑−𝑔−𝑟) ≥ 2𝑟−4 ≥ 4 unless equality
holds. Similarly, since 𝑔 ≤ 𝑟−1, we have 4𝑔+(𝑟+1)𝜖0 ≤ 4𝑟−4, with 4𝑔+(𝑟+1)𝜖0 ≤ 4𝑟−8 unless equality
holds. Putting this together, we have 𝛿 ≤ 2𝑑−2𝑔−2𝑟 +5+2/(𝑟−1), with 𝛿 ≤ 2𝑑−2𝑔−2𝑟 +5−2/(𝑟−1)
unless equality holds. As 𝛿 is an odd integer, this implies 𝛿 ≤ 2𝑑 − 2𝑔 − 2𝑟 + 3.

If 𝑔 = 0, then 4𝑔 + (𝑟 + 1)𝜖0 = 𝑟 + 1. Therefore 𝛿 ≤ 2𝑑 − 2𝑔 − 2𝑟 + 5 − (3𝑟 − 7)/(𝑟 − 1), with
𝛿 ≤ 2𝑑 − 2𝑔 − 2𝑟 + 5 − (5𝑟 − 11)/(𝑟 − 1) < 2𝑑 − 2𝑔 − 2𝑟 + 1 unless equality holds. As 𝛿 is an odd
integer, this implies 𝛿 ≤ 2𝑑 − 2𝑔 − 2𝑟 − 1 as desired.

It thus remains only to rule out the cases where 𝑔 > 0 and 𝛿 = 2𝑑−2𝑔−2𝑟 +3 or 𝛿 = 2𝑑−2𝑔−2𝑟 +1.
Upon rearrangement, this is equivalent to

(𝑟 − 2) (𝑑 − 𝑔 − 𝑟) − 2𝑔 = −(𝑟 − 2) or 1.

Since r is odd, considering the above equation mod 2 implies that 𝑑−𝑔−𝑟 must also be odd. If 𝑑−𝑔−𝑟 ≥ 3,
then since 𝑔 ≤ 𝑟 − 1, the left-hand side is at least 3(𝑟 − 2) − 2(𝑟 − 1) = 𝑟 − 4, which is impossible.
Therefore,in this case we must have 𝑑 − 𝑔 − 𝑟 = 1. Solving for g we obtain 𝑔 = 𝑟 − 2 or 𝑔 = (𝑟 − 3)/2.
In other words, writing 𝑟 = 2𝑘 + 1, we would have (𝑑, 𝑔, 𝑟, ℓ, 𝑚) = (4𝑘 + 1, 2𝑘 − 1, 2𝑘 + 1, 0, 1) or
(𝑑, 𝑔, 𝑟, ℓ, 𝑚) = (3𝑘 + 1, 𝑘 − 1, 2𝑘 + 1, 0, 1). But these cases are excluded by assumption.

Inequalities (10.122) when (𝑑, 𝑔) ≠ (𝑟 + 1, 1), and (10.123) when 𝑚 ≥ 2 + 𝜖0, and (10.124) (in all
cases): Since (𝑑, 𝑔) ≠ (𝑟 + 1, 1) for equation (10.122), we may substitute 𝜅 = (𝑟 − 3)/2. Substituting in
the definition of 𝛿 and rearranging equations (10.122), (10.123) and (10.124), we obtain

(6𝑟 − 10) (𝑑 − 𝑔 − 𝑟) + (𝑟2 − 2𝑟 − 3) (𝑚 − 1 − 𝜖0) + (4𝑟 − 12) (𝑔 + 𝜖0 − 1)
+ (𝑟2 − 6𝑟 + 9)𝜖0 + 2𝑟 − 14 ≥ 0

(2𝑟 − 4) (𝑑 − 𝑔 − 𝑟) + (𝑟2 − 3𝑟) (𝑚 − 2 − 𝜖0) + 4(𝑟 − 1 − 𝑔) + (𝑟 + 1) (1 − 𝜖0) + 𝑟2 − 10𝑟 + 3 ≥ 0
(4𝑟 − 8) (𝑑 − 𝑔 − 𝑟) + (2𝑟 + 2) (𝑟 − 1 − 𝑚) − 8(𝑟 − 1 − 𝑔) + 𝑟3 − 7𝑟2 − 3𝑟 + 9 ≥ 0.

This establishes the desired inequalities (using that 𝑚 ≥ 2 + 𝜖0 for equation (10.123)). �

Finally, we complete our analysis of the case 𝑚 ≠ 0 by verifying the desired result in the four
remaining one-parameter infinite families of cases:

Case (3) of Lemma 10.6: This follow from Proposition 8.3 with the following parameters:

ℓ′ = 0, 𝑚′ = 2, 𝑑 ′ = 𝑑 = 3𝑘 + 1, and (𝑛1, 𝑛2) = (3, 2𝑘 − 3).

Case (4) of Lemma 10.6: This follows from Proposition 8.7 with 𝜖 = 0.
Case (1) of Lemma 10.7: This follows from Proposition 8.7 with 𝜖 = 1.
Case (2) of Lemma 10.7: This follows from Proposition 8.8.
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10.2. The cases with 𝒎 = 0 and 𝒈 ≠ 0

As in the case 𝑚 ≠ 0, we will begin by showing that Proposition 8.2 handles ‘most’ of the cases by itself.

Proposition 10.8. Let (𝑑, 𝑔, 𝑟, ℓ, 0) be a good tuple (with 𝑚 = 0) satisfying equation (10.1), such that
𝑔 ≠ 0 and 𝑟 ≥ 14. Then the conditions of Proposition 8.2 can be satisfied unless one of the following
holds:

1. 𝛿 ≥ ℓ + 1 + 2(𝑑 − 𝑔 − 𝑟).
2. ℓ = 0 and 𝛿 is an odd integer.

Proof. Our goal is to show the existence of integers 𝑑 ′ and ℓ′, such that (𝑑 ′ −1, 𝑔, 𝑟 −1, ℓ−ℓ′, 0) is good
(which is equivalent to ℓ − ℓ′ = ℓ ≤ (𝑟 − 1)/2), and the inequalities of Proposition 8.2 are satisfied:

ℓ − ℓ′ ≤
𝑟 − 1

2
(10.125)

0 ≤ ℓ′ ≤ ℓ (10.126)

𝑔 + 𝑟 ≤ 𝑑 ′ ≤ 𝑑 (10.127)

|𝛿 − [ℓ′ + 2(𝑑 − 𝑑 ′)] | ≤ 1 −
1

𝑟 − 1
(10.128)

ℓ′ ≤ 𝑟 − 2. (10.129)

Inequality (10.129) follows from equation (10.126) and the hypothesis ℓ ≤ 𝑟/2. Rewriting equations
10.125–10.128, we obtain the system

ℓ −
𝑟 − 1

2
≤ ℓ′

0 ≤ ℓ′ ≤ ℓ

𝛿 − 2(𝑑 − 𝑑 ′) −
𝑟 − 2
𝑟 − 1

≤ ℓ′ ≤ 𝛿 − 2(𝑑 − 𝑑 ′) +
𝑟 − 2
𝑟 − 1

𝑔 + 𝑟 ≤ 𝑑 ′ ≤ 𝑑.

Applying Lemma 10.3 to eliminate ℓ′, it suffices to show there is an integer solution 𝑑 ′ to the system:

ℓ −
𝑟 − 1

2
≤ ℓ (10.130)

ℓ −
𝑟 − 1

2
≤ 𝛿 − 2(𝑑 − 𝑑 ′) +

𝑟 − 2
𝑟 − 1

−
𝑟 − 2
2𝑟 − 2

(10.131)

0 ≤ ℓ (10.132)

0 ≤ 𝛿 − 2(𝑑 − 𝑑 ′) +
𝑟 − 2
𝑟 − 1

(10.133)

𝛿 − 2(𝑑 − 𝑑 ′) −
𝑟 − 2
𝑟 − 1

≤ ℓ (10.134)

𝛿 − 2(𝑑 − 𝑑 ′) −
𝑟 − 2
𝑟 − 1

≤ 𝛿 − 2(𝑑 − 𝑑 ′) +
𝑟 − 2
𝑟 − 1

−
(𝑟 − 2)2

(𝑟 − 1)2 (10.135)

𝑔 + 𝑟 ≤ 𝑑 ′ ≤ 𝑑. (10.136)
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Inequalities (10.130), (10.132) and (10.135) are immediate. Rearranging the remaining inequalities, we
obtain

𝑑 ′ ≥ 𝑑 −
𝛿

2
+

ℓ

2
−

𝑟2 − 𝑟 − 1
4𝑟 − 4

(10.137)

𝑑 ′ ≥ 𝑑 −
𝛿

2
−

𝑟 − 2
2𝑟 − 2

(10.138)

𝑑 ′ ≥ 𝑔 + 𝑟 (10.139)

𝑑 ′ ≤ 𝑑 −
𝛿

2
+

ℓ

2
+

𝑟 − 2
2𝑟 − 2

(10.140)

𝑑 ′ ≤ 𝑑. (10.141)

We next eliminate 𝑑 ′. Comparing equation (10.138) to equation (10.140), we want there to be an integer
between

𝑑 −
𝛿

2
−

𝑟 − 2
2𝑟 − 2

and 𝑑 −
𝛿

2
+

ℓ

2
+

𝑟 − 2
2𝑟 − 2

.

By inspection, such an integer exists unless 𝛿 is an odd integer and ℓ = 0, which is excluded by
assumption Proposition 10.8(2). Applying Lemma 10.3 for the remaining pairs of inequalities, we
reduce to verifying

𝑑 −
𝛿

2
+

ℓ

2
−

𝑟2 − 𝑟 − 1
4𝑟 − 4

≤ 𝑑 −
𝛿

2
+

ℓ

2
+

𝑟 − 2
2𝑟 − 2

−
(2𝑟 − 3) (4𝑟 − 5)
(2𝑟 − 2) (4𝑟 − 4)

(10.142)

𝑑 −
𝛿

2
+

ℓ

2
−

𝑟2 − 𝑟 − 1
4𝑟 − 4

≤ 𝑑 (10.143)

𝑑 −
𝛿

2
−

𝑟 − 2
2𝑟 − 2

≤ 𝑑 (10.144)

𝑔 + 𝑟 ≤ 𝑑 −
𝛿

2
+

ℓ

2
+

𝑟 − 2
2𝑟 − 2

(10.145)

𝑔 + 𝑟 ≤ 𝑑. (10.146)

Upon rearrangement, equation (10.145) is equivalent to

𝛿 ≤ ℓ + 1 + 2(𝑑 − 𝑔 − 𝑟) −
1

𝑟 − 1
,

which holds by our assumption Proposition 10.8(1). The remaining inequalities rearrange to

2𝑟3 − 8𝑟2 + 10𝑟 − 5 ≥ 0

(𝑟 − 3) (𝑟 − 2ℓ) + 4(𝑑 − 𝑔 − 𝑟) + 8𝑔 + 2𝑟 − 1 ≥ 0

2ℓ + 2(𝑑 − 𝑔 − 𝑟) + 4𝑔 + 𝑟 − 2 ≥ 0

𝑑 − 𝑔 − 𝑟 ≥ 0,

which hold because (𝑑, 𝑔, 𝑟, ℓ, 0) is good and 𝑟 ≥ 14. �
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Lemma 10.9. Suppose that condition (1) or (2) of Proposition 10.8 is satisfied, but (ℓ, 𝛿) ≠ (0, 1) and
𝑟 ≥ 14. Then one of the following two conditions holds:

ℓ ≤ 3, 𝑔 ≥ 4, and 1 +
1

𝑟 − 1
≤ 𝛿 ≤ 5 −

2
𝑟 − 1

(10.147)

or

ℓ = 0, 𝑔 ≥ 4, 𝑑 ≥ 𝑔 + 𝑟 + 3, and 𝛿 = 5. (10.148)

Proof. We divide into cases according to whether equation (1) or equation (2) is satisfied.

Case 1: equation (1) holds. In this case, we establish equation (10.147). Because ℓ and g are integers, the
first two inequalities follow from ℓ < 4 and 𝑔 > 3 respectively. Upon rearrangement, these inequalities
become

(𝑟 − 1) (𝛿 − (ℓ + 1 + 2(𝑑 − 𝑔 − 𝑟))) + (2𝑟 − 4) (𝑑 − 𝑔 − 𝑟) + 4(𝑟 − 1 − 𝑔) + (𝑟 − 9) > 0
(𝑟 − 1) (𝛿 − (ℓ + 1 + 2(𝑑 − 𝑔 − 𝑟))) + (2𝑟 − 4) (𝑑 − 𝑔 − 𝑟) + (𝑟 − 3)ℓ + (𝑟 − 13) > 0,

and therefore hold for 𝑟 ≥ 14 as desired. Since ℓ ≥ 0 and 𝑑 ≥ 𝑔 + 𝑟, we have

𝛿 ≥ ℓ + 1 + 2(𝑑 − 𝑔 − 𝑟) ≥ 1,

with equality only if ℓ = 0. But equality is excluded by assumption (as (ℓ, 𝛿) ≠ (0, 1)). Finally, the
inequality 𝛿 ≤ 5 − 2/(𝑟 − 1) becomes upon rearrangement

(2𝑟 − 2)(𝛿 − (ℓ + 1 + 2(𝑑 − 𝑔 − 𝑟))) + (2𝑟 − 2)(𝑑 − 𝑔 − 𝑟) + (4𝑟 − 4)(𝑟 − 1 − 𝑔) + (𝑟2 − 12𝑟 + 15) ≥ 0.

Case 2: equation (2) holds. In this case,

(𝑟 − 1) (7 − 𝛿) = 2(𝑔 + 2𝑟 − 1 − 𝑑) + 4(𝑟 − 1 − 𝑔) + (𝑟 − 1) > 0.

Since 𝛿 is an odd integer, but 𝛿 ≠ 1 (because ℓ = 0 so 𝛿 = 1 is excluded by assumption), we therefore
have 𝛿 = 3 or 𝛿 = 5. In particular,

4(𝑔 − 3) = (𝑟 − 1) (𝛿 − 3) + 2(𝑔 + 2𝑟 − 1 − 𝑑) + (𝑟 − 13) > 0;

since g is an integer, this implies 𝑔 ≥ 4.
Subcase 2.1: 𝛿 = 3. Then equation (10.147) is satisfied.
Subcase 2.2: 𝛿 = 5. In this case, 2(𝑑 − 𝑔 − 𝑟 − 3) = (𝑟 − 1) (𝛿 − 5) + 4(𝑟 − 1 − 𝑔) + (𝑟 − 7) ≥ 0, so

equation (10.148) is satisfied. �

Recall that the case 𝛿 = 1 and ℓ = 𝑚 = 0 is excluded in Theorem 10.2. Therefore, to complete our
analysis of the case 𝑚 = 0 and 𝑔 ≠ 0, we just have to handle the following two cases:

If equation (10.147) holds Then we apply one of the following propositions according to the value
of 𝛿:
• If 1 + 1

𝑟−1 ≤ 𝛿 ≤ 3 − 1
𝑟−1 : Proposition 8.10.

• If 2 + 3
𝑟−1 ≤ 𝛿 ≤ 4 − 3

𝑟−1 : Proposition 8.9 with 𝜖 = 0.
• If 3 + 2

𝑟−1 ≤ 𝛿 ≤ 5 − 2
𝑟−1 : Proposition 8.11.

Note that the union of these intervals covers the entire interval for 𝛿 given by the final inequality
of equation (10.147). Moreover, the conditions ℓ ≤ 3 and 𝑔 ≥ 4 imply that all tuples appearing in
these lemmas are good (they have positive genus and at most ℓ + 1 ≤ 5 lines in a projective space of
dimension at least 𝑟 − 3 ≥ 11).
If equation (10.148) holds Then we apply Proposition 8.9 with 𝜖 = 1.
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10.3. The cases with 𝒎 = 𝒈 = 0

Since 𝑚 = 0, Lemma 8.4 can be applied unless 𝑑 ≤ 2𝑟 − 2. In the remaining cases, we will show that
Proposition 8.2 always applies.

Proposition 10.10. Let (𝑑, 0, 𝑟, ℓ, 0) be a good tuple (with 𝑚 = 𝑔 = 0) satisfying 𝑑 ≤ 2𝑟 −2 and 𝑟 ≥ 14.
Then the conditions of Proposition 8.2 can be satisfied.

Proof. As in the proof of Lemma 10.8, our goal is to show the existence of certain integers 𝑑 ′ and ℓ′

which in particular must satisfy:

ℓ −
𝑟 − 1

2
≤ ℓ′ (10.149)

0 ≤ ℓ′ ≤ ℓ (10.150)

𝛿 − 2(𝑑 − 𝑑 ′) −
𝑟 − 2
𝑟 − 1

≤ ℓ′ ≤ 𝛿 − 2(𝑑 − 𝑑 ′) +
𝑟 − 2
𝑟 − 1

(10.151)

𝑟 ≤ 𝑑 ′ ≤ 𝑑, (10.152)

plus possibly some additional conditions to guarantee that (𝑑 ′ − 1, 0, 𝑟 − 1, ℓ − ℓ′, 0) is good. For this,
we divide into cases as follows:
Case 1: 𝒅 = 𝒓. In this case, we take 𝑑 ′ = 𝑟. With this choice (1 − (𝑑 ′ − 1))%((𝑟 − 1) − 1) = 0, and
so equations (10.149)–(10.152) are sufficient for (𝑑 ′ − 1, 𝑔, 𝑟 − 1, ℓ − ℓ′, 0) to be good. Substituting
𝑑 = 𝑑 ′ = 𝑟 and 𝛿 = 2ℓ/(𝑟 − 1), our goal is thus to show that there is an integer ℓ′ satisfying

ℓ −
𝑟 − 1

2
≤ ℓ′

0 ≤ ℓ′ ≤ ℓ

2ℓ − 𝑟 + 2
𝑟 − 1

≤ ℓ′ ≤
2ℓ + 𝑟 − 2

𝑟 − 1
.

Applying Lemma 10.3, it suffices to verify

0 ≤ ℓ (10.153)

0 ≤
2ℓ + 𝑟 − 2

𝑟 − 1
(10.154)

2ℓ − 𝑟 + 2
𝑟 − 1

≤ ℓ (10.155)

2ℓ − 𝑟 + 2
𝑟 − 1

≤
2ℓ + 𝑟 − 2

𝑟 − 1
−

(𝑟 − 2)2

(𝑟 − 1)2 (10.156)

ℓ −
𝑟 − 1

2
≤ ℓ (10.157)

ℓ −
𝑟 − 1

2
≤

2ℓ + 𝑟 − 2
𝑟 − 1

−
𝑟 − 2
2𝑟 − 2

. (10.158)

Inequalities (10.153)–(10.155) follow from ℓ ≥ 0, and equations (10.156) and (10.157) are automatic,
and equation (10.158) follows from ℓ ≤ 𝑟/2.

Case 2: 𝒅 ≥ 𝒓 + 1. Since 𝑟 + 1 ≤ 𝑑 ≤ 2𝑟 − 2, we have (1− 𝑑)%(𝑟 − 1) = (1− 𝑑) + 2(𝑟 − 1) = 2𝑟 − 1− 𝑑.
Therefore, as (𝑑, 𝑔, 𝑟, ℓ, 0) is good by assumption, ℓ satisfies

2𝑟 − 1 − 𝑑

2
≤ ℓ ≤

𝑟

2
. (10.159)
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Similarly, because 𝑑 ′−1 ≤ 2𝑟−3, we have (1−(𝑑 ′−1))%((𝑟−1)−1) ≤ (2−𝑑 ′) +2(𝑟−2) = 2𝑟−2−𝑑 ′.
Therefore,(𝑑 ′ −1, 𝑔, 𝑟 −1, ℓ− ℓ′, 0) is good provided equations (10.149)–(10.152) are satisfied, and also
2(ℓ − ℓ′) ≥ 2𝑟 − 2 − 𝑑 ′. In other words, we want to show that there are integers ℓ′ and 𝑑 ′ satisfying the
following system (here we have substituted in 𝛿 = (2𝑑 − 2𝑟 + 2ℓ)/(𝑟 − 1)):

ℓ −
𝑟 − 1

2
≤ ℓ′ (10.160)

0 ≤ ℓ′ ≤ ℓ (10.161)

2𝑑 − 2𝑟 + 2ℓ

𝑟 − 1
− 2(𝑑 − 𝑑 ′) −

𝑟 − 2
𝑟 − 1

≤ ℓ′ ≤
2𝑑 − 2𝑟 + 2ℓ

𝑟 − 1
− 2(𝑑 − 𝑑 ′) +

𝑟 − 2
𝑟 − 1

(10.162)

𝑟 ≤ 𝑑 ′ ≤ 𝑑 (10.163)

ℓ′ ≤ ℓ −
2𝑟 − 2 − 𝑑 ′

2
. (10.164)

Subcase 2.1: 𝑑 = 𝑟 + 1. In this case, equation (10.159) becomes 𝑟/2 − 1 ≤ ℓ ≤ 𝑟/2. In other words,
(𝑑, 𝑟, ℓ) is of one of the following forms:

(𝑑, 𝑟, ℓ) = (2𝑘 + 1, 2𝑘, 𝑘 − 1), (𝑑, 𝑟, ℓ) = (2𝑘 + 1, 2𝑘, 𝑘), or (𝑑, 𝑟, ℓ) = (2𝑘 + 2, 2𝑘 + 1, 𝑘).

These cases may satisfy equations 10.160–10.164 by taking

(𝑑 ′, ℓ′) = (2𝑘, 0), (𝑑 ′, ℓ′) = (2𝑘 + 1, 1), respectively (𝑑 ′, ℓ′) = (2𝑘 + 1, 0).

Subcase 2.2: 𝑑 ≥ 𝑟+2. In this case, we take ℓ′ = 2−2(𝑑−𝑑 ′), in which case equations 10.160–10.164
become

𝑑 ′ ≥
4𝑑 + 2ℓ − 𝑟 − 3

4

𝑑 − 1 ≤ 𝑑 ′ ≤ 𝑑 − 1 +
ℓ

2
3𝑟 ≤ 2𝑑 + 2ℓ ≤ 5𝑟 − 4

𝑟 ≤ 𝑑 ′ ≤ 𝑑

𝑑 ′ ≤
4𝑑 + 2ℓ − 2𝑟 − 2

3
.

The inequality 𝑑 ′ ≥ 𝑟 follows from 𝑑 ′ ≥ 𝑑 − 1 since 𝑑 = 𝑟 + 2. Deleting the inequality 𝑑 ′ ≥ 𝑟 and
eliminating 𝑑 ′ via Lemma 10.3, we reduce to the system

4𝑑 + 2ℓ − 𝑟 − 3
4

≤ 𝑑 − 1 +
ℓ

2
−

3
8

(10.165)

4𝑑 + 2ℓ − 𝑟 − 3
4

≤ 𝑑 (10.166)

4𝑑 + 2ℓ − 𝑟 − 3
4

≤
4𝑑 + 2ℓ − 2𝑟 − 2

3
−

1
2

(10.167)

𝑑 − 1 ≤ 𝑑 − 1 +
ℓ

2
(10.168)

𝑑 − 1 ≤ 𝑑 (10.169)
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𝑑 − 1 ≤
4𝑑 + 2ℓ − 2𝑟 − 2

3
(10.170)

3𝑟 ≤ 2𝑑 + 2ℓ (10.171)

2𝑑 + 2ℓ ≤ 5𝑟 − 4. (10.172)

Inequalities (10.165), (10.168) and (10.169) are immediate. Rearranging the others, we obtain

(𝑟 − 2ℓ) + 3 ≥ 0
(2ℓ − 2𝑟 + 1 + 𝑑) + 3(𝑑 − 𝑟 − 2) ≥ 0

2ℓ − 2𝑟 + 1 + 𝑑 ≥ 0
(2ℓ − 2𝑟 + 1 + 𝑑) + (𝑑 − 𝑟 − 2) + 1 ≥ 0

(𝑟 − 2ℓ) + 2(2𝑟 − 2 − 𝑑) + 8 ≥ 0,

which all follow from equation (10.159), our assumption 𝑟 + 2 ≤ 𝑑 ≤ 2𝑟 − 2, and the hypotheses in
(10.1). �

11. Most of the sporadic cases

The finite set of sporadic cases identified in the previous section is unfortunately rather large. Our next
task is to introduce an additional argument that, in combination with the arguments of Section 8, applies
to handle most of the sporadic cases, that is, all but a list that is short enough to write down explicitly.

This argument will, essentially, be a variant on Proposition 8.2, but where we allow transformations to
come together at p in a less restricted way. In particular, we will weaken the hypothesis ‘2𝑚′ + ℓ ≤ 𝑟 −2’
in the statement of Proposition 8.2 by allowing more modifications to limit to the point p than the rank
of the normal bundle. In this regime, the limiting bundle can depend on how the points are specialized
into p. We will be able to give a description of some possible limits by limiting the marked points into
p one at a time inductively. At each step, we will be able to identify what the limiting modifications are
at p. Suppose that, after limiting some collection of marked points into p, we have a transformation at p
of the form

(𝑛𝑝) [𝑝 +
→ Λ1] [𝑝

+
→ Λ2] where Λ1 ⊇ Λ2, (†)

where Λ1 and Λ2 are linear spaces in P𝑁𝐶 |𝑝 . Let S and W be sets of parameters varying in irreducible
bases with 𝑆 ⊆ 𝑊 . (For us, W will be the collection of all corresponding marked points, and S will be
those marked points at which the projected normal bundle is not modified.) Assume that Λ2 is linearly
general as the parameters S vary, and assume that Λ1 is either:

• Linearly general as the parameters W vary (‘weakly general’);
• Weakly general and its image in P(𝑁𝐶/𝑁𝐶→𝑝) |𝑝 is linearly general as only the parameters S vary

(‘strongly general’).

We will summarize this situation by three pieces of data: the linear dimensions 𝑡1 = rkΛ1 = dimΛ1+1
and 𝑡2 = rkΛ2 = dimΛ2 + 1, and whether we are in the weak or strong case. Note that we always have
𝑡2 ≤ 𝑡1 ≤ 𝑟 − 2. (We do not need to keep track of the integer n since this is can be deduced from the
Euler characteristic of the limit bundle, which is the same as the original bundle.)

Modifications of type (†) occur naturally when considering the degenerations that make up the key
inductive argument outlined in Section 8.1. We review them here (and add one additional argument that
we will use in this section) in order to motivate the shape of equation (†).
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1. If we peel off a one-secant line 𝑥𝑦 and limit the point x to p, we obtain [𝑝 +
→ 𝑦] [𝑝 +

→ 𝑦] at p. This
is of the form (†) with Λ1 = Λ2 = 𝑦; hence, we have 𝑡1 = 𝑡2 = 1. Since y is a general point, and no
modifications occur at y in the quotient by projection from p, both Λ1 and Λ2 are strongly linearly
general.

2. If we peel off a one-secant line 𝑧𝑤 and limit the point z to p, we obtain [𝑝 +
→ 2𝑤] [𝑝 +

→ 𝑤] at p. This
is of the form (†) with Λ1 = 𝑇𝑤𝐶 and Λ2 = 𝑤; hence, we have (𝑡1, 𝑡2) = (2, 1). Since w is a general
point on the curve, at which no modifications occur in the quotient by projection from p, both Λ1
and Λ2 are strongly linearly general.

3. If we specialize R as in Section 7 to contain n lines through p, then at p we obtain the modification
[𝑝 +

→ Λ], where rkΛ = 2. This is of the form (†) with (𝑡1, 𝑡2) = (2, 0). By Lemmas 7.5 and 7.6, the
subspace Λ is strongly linearly general if

𝑛 ≥

{
3 if 𝐶 is an elliptic normal curve
2 otherwise.

(3′) If we specialize one of the 𝑣𝑖 to p, we obtain modification [𝑝 +
→ 𝑢𝑖] at p. This is of the form

(†) with (𝑡1, 𝑡2) = (1, 0) and is strongly linearly general since 𝑢𝑖 is a general point, at which no
modifications occur in the quotient by projection from p.

7. We allow ourselves one new degeneration in our more general inductive step, which is similar to
equation (6) from Section 8.1 but crucially different in that we specialize R to pass through p before
we project. We first specialize R to the union of a line L through 2 points 𝑠0, 𝑠𝑟 on C and a rational
curve 𝑅′ of degree 𝑟−2 through 𝑟−1 points on C and meeting L at one point. Then we specialize 𝑠0 to
p. This results in the modification [𝑝 +

→ 𝑠𝑟 ] at p, which is of type (𝑡1, 𝑡2) = (1, 0). This modification
is linearly general as all the points of contact between C and 𝑅′ move. However, 𝑠𝑟 is constrained to
be one of the points at which the r-secant rational curve 𝑅′ meets 𝐶, and modifications occur at the
remainder of these points, so it is only weakly linearly general.
Our first goal is to understand what happens when we limit into p another point 𝑝′, at which we

have another transformation (𝑛′𝑝′) [𝑝′ +
→ Λ′

1] [𝑝
′ +
→ Λ′

2] of the same form (†) (depending on sets of
parameters 𝑆′ ⊆ 𝑊 ′ disjoint from W). In the following five cases, which we consider separately, we
will see that in the limit we obtain another transformation of the form (†) (depending on parameters
𝑆 ∪ 𝑆′ ⊆ 𝑊 ∪𝑊 ′).

Most of the subspaces whose generality we must assess are of the form Λ+Λ′ (the span of Λ and Λ′).
If Λ and Λ′ are both linearly general as independent parameters X and 𝑋 ′ vary, then their span is linearly
general, as we now show. Let M be a fixed subspace; there is a choice of the parameters X for which the
corresponding subspace Λ meets M transversely. Then there is a choice of the parameters 𝑋 ′ for which
the corresponding subspace Λ′ meets 𝑀 + Λ transversely. For this choice of 𝑋 ∪ 𝑋 ′, the subspace M
meets Λ+Λ′ transversely. The only case where the resulting modification is not of this form is (c) below.
(a) If 𝑡1 + 𝑡 ′1 < 𝑟 − 1: In this case, the limiting transformation is

((𝑛 + 𝑛′)𝑝) [𝑝 +
→ Λ1 + Λ′

1] [𝑝
+
→ Λ2 + Λ′

2] .

This transformation is of the desired form. The subspace Λ1 + Λ′
1 is strongly general if Λ1 and Λ′

1
are both strongly general and weakly general otherwise.

(b) If 𝑡2 + 𝑡 ′2 < 𝑡1 + 𝑡 ′1 = 𝑟 − 1: In this case, the limiting transformation is

((𝑛 + 𝑛′ + 1)𝑝) [𝑝 +
→ Λ2 + Λ′

2] [𝑝
+
→ ∅] .

This transformation is of the desired form, and the subspace Λ2 + Λ′
2 is always strongly general.

(c) If 𝑡 ′2 = 0 and 𝑡 ′1 + 𝑡2 ≤ 𝑟 − 1 ≤ 𝑡 ′1 + 𝑡1: In this case, the limiting transformation is

((𝑛 + 𝑛′ + 1)𝑝) [𝑝 +
→ Λ2 + (Λ1 ∩ Λ′

1)] [𝑝
+
→ ∅] .
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We now show that Λ2 + (Λ1 ∩Λ′
1) is strongly linearly general if both Λ1 and Λ′

1 are strongly general
and weakly linearly general otherwise. Indeed, let M be any fixed subspace; we want to show that M
is transverse to Λ2 + (Λ1 ∩ Λ′

1). Both Λ1 and Λ2 are linearly general; since the parameters W vary
in an irreducible base, there is a single choice of the parameters W for which M is simultaneously
transverse to both Λ1 and Λ2. Since Λ1 is transverse to M for our choice of parameters W, and
Λ2 ⊂ Λ1, we can restrict to Λ1 and consider transversality as subspaces of Λ1. The subspace 𝑀 ∩Λ1
is transverse to Λ2 for our choice of parameters W. The subspace Λ′

1 ∩ Λ1 is transverse to Λ2 since
Λ′

1 is linearly general, varying with independent parameters. Therefore,the transversality of 𝑀 ∩Λ1
and Λ2 + (Λ′

1 ∩ Λ1) is equivalent to the transversality of Λ1 ∩ Λ′
1 and Λ2 + (𝑀 ∩ Λ1), which again

follows by the linear generality of Λ′
1.

(d) If 𝑡 ′1 + 𝑡2 < 𝑡1 + 𝑡 ′2 = 𝑟 − 1: In this case, the limiting transformation is

((𝑛 + 𝑛′ + 1)𝑝) [𝑝 +
→ Λ2 + Λ′

1] [𝑝
+
→ ∅] .

This transformation is of the desired form, with Λ2 + Λ′
1 strongly general if Λ′

1 is strongly general,
and weakly general otherwise.

(e) If 𝑡1 + 𝑡 ′2 = 𝑡 ′1 + 𝑡2 = 𝑟 − 1: In this case, the limiting transformation is

((𝑛 + 𝑛′ + 2)𝑝) [𝑝 +
→ ∅][𝑝 +

→ ∅] .

This transformation is of the desired form, with ∅ always strongly general.

Definition 11.1. For integers 0 ≤ 𝑖, 𝑗 < 𝑟 − 1, let {𝑠𝑖 𝑗 } and {𝑤𝑖 𝑗 } be collections of nonnegative
integers, and consider 𝑠𝑖 𝑗 (respectively 𝑤𝑖 𝑗 ) marked points decorated with modifications of type (†)
with (𝑡1, 𝑡2) = (𝑖, 𝑗) and Λ1 strongly (respectively weakly) general. Consider all ways of limiting these
marked points into p, one at a time in some order, such that at every step of the process, we are in one
of the five cases discussed above. If there is such an order for which the final resulting transformation
at p satisfies 𝑡2 = 0 and Λ1 is strongly general, then we say that {𝑠𝑖 𝑗 } and {𝑤𝑖 𝑗 } is erasable.

We are now ready to state our more flexible variant on Proposition 8.2. The high-level overview is
that, in some order, we do the following specializations:

• Peel off 𝑔 − 𝑔′ two-secant lines. Specialize all of them into p as in equation (1).
• Peel off 𝜖in + 𝜖out = 𝑑 − 𝑔 − 𝑑 ′ + 𝑔′ one-secant lines. Specialize 𝜖in of these into p as in the proof of

Proposition 8.2 and the remaining 𝜖out of them into p as in equation (2).
• Specialize 𝑚′ of the rational curves 𝑅𝑖 as in Section 7 to lines and conics through 𝑝𝑖 . Specialize all

of the 𝑝𝑖 to p as in equation (3).
• Specialize ℓ′ of the points 𝑣𝑖 to p as in (3′).
• Specialize 𝑚′′ of the rational curves 𝑅𝑖 to the union 𝐿𝑖 ∪ 𝑅′

𝑖 as in equation (7). Specialize one of the
points where 𝐿𝑖 meets C into p.

• Specialize the remaining 𝑚 − 𝑚′ − 𝑚′′ rational curves 𝑅𝑖 to pass through p as in Section 8.1(6).

After projecting from p, we will reduce to a case of our inductive hypothesis plus a single linearly
general modification at p precisely when the modifications at p above are erasable.

Proposition 11.2. Let ℓ′, 𝑚′, and 𝑚′′ be nonnegative integers satisfying ℓ′ ≤ ℓ and 𝑚′ + 𝑚′′ ≤ 𝑚, with
𝑚′ = 0 if 𝑟 = 3. Let 𝑑 ′ and 𝑔′ be integers satisfying 0 ≤ 𝑔′ ≤ 𝑔 and 𝑔′ + 𝑟 ≤ 𝑑 ′ ≤ 𝑑 − 𝑔 + 𝑔′, with
𝑑 ′ > 𝑔′+𝑟 if both 𝑔′ = 0 and 𝑚 ≠ 0. Let 𝜖in and 𝜖out be nonnegative integers with 𝜖in+𝜖out = 𝑑−𝑔−𝑑 ′+𝑔′.
For 1 ≤ 𝑖 ≤ 𝑚′, let 𝑛𝑖 be an integer satisfying 𝑛𝑖 ≡ 𝑟 − 1 mod 2 and 2 ≤ 𝑛𝑖 ≤ 𝑟 − 1, with 𝑛𝑖 ≠ 2 if
(𝑑 ′, 𝑔′) = (𝑟 + 1, 1). Define

ℓ = ℓ − ℓ′ +
(𝑟 − 1)𝑚′ −

∑
𝑛𝑖

2
and 𝑚max = 𝑚 − 𝑚′ and 𝑚min = 𝑚 − 𝑚′ − 𝑚′′.
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Suppose that the following collection is erasable:

𝑠10 = ℓ′ + 𝑚 − 𝑚′ − 𝑚′′

𝑠11 = 𝜖out

𝑠20 = 𝑚′ (11.1)
𝑠21 = 𝑔 − 𝑔′

𝑤10 = 𝑚′′.

If ����𝛿 −

[
2𝜖in + 𝑔 − 𝑔′ + 𝑚′′ + ℓ′ +

⌊
2𝜖out + 3(𝑔 − 𝑔′) + 𝑚 + 𝑚′ + ℓ′

𝑟 − 1

⌋
+
∑

𝑛𝑖

] ���� ≤ 1 −
1

𝑟 − 1
,

and 𝐼 (𝑑 ′ − 1, 𝑔′, 𝑟 − 1, ℓ, 𝑚) holds for all 𝑚 with 𝑚min ≤ 𝑚 ≤ 𝑚max, then so does 𝐼 (𝑑, 𝑔, 𝑟, ℓ, 𝑚).

Proof. Our goal is to show interpolation for

𝑁𝐶 (0,0;0) [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅1 ∪ · · · ∪ 𝑅𝑚] .

Peeling off 𝜖in+𝜖out = 𝑑−𝑔−𝑑 ′ +𝑔′ one-secant lines and 𝑔−𝑔′ two-secant lines reduces to interpolation
for

𝑁𝐶 (𝑑−𝑔−𝑑′+𝑔′,𝑔−𝑔′;0) [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅1 ∪ · · · ∪ 𝑅𝑚]

[2𝑥1
+
→ 𝑦1] · · · [2𝑥𝜖in+𝜖out

+
→ 𝑦 𝜖in+𝜖out]

[𝑧1
+
↔ 𝑤1] [𝑧1

+
→ 2𝑤1] · · · [𝑧𝑔−𝑔′

+
↔ 𝑤𝑔−𝑔′ ] [𝑧𝑔−𝑔′

+
→ 2𝑤𝑔−𝑔′ ] .

For 1 ≤ 𝑖 ≤ 𝑚′, write 𝑛′
𝑖 = (𝑟 − 1 − 𝑛𝑖)/2, and degenerate 𝑅𝑖 as in Section 7 to the union 𝑅◦

𝑖 , of
𝑛𝑖 lines 𝐿𝑖, 𝑗 meeting C at 𝑝𝑖 and 𝑞𝑖, 𝑗 , and 𝑛′

𝑖 conics 𝑄𝑖, 𝑗 meeting C at 𝑝𝑖 and 𝑞𝑖,𝑛𝑖+2 𝑗−1 and 𝑞𝑖,𝑛𝑖+2 𝑗 .
For 𝑚′ + 1 ≤ 𝑖 ≤ 𝑚, write 𝑅𝑖 ∩ 𝐶 = {𝑠𝑖0, 𝑠

𝑖
1, 𝑠

𝑖
2, . . . , 𝑠

𝑖
𝑟−1, 𝑠

𝑖
𝑟 }. For 𝑚′ + 1 ≤ 𝑖 ≤ 𝑚′ + 𝑚′′, specialize 𝑅𝑖

to a union 𝑅−
𝑖 ∪ 𝐿𝑖 , where 𝐿𝑖 is the line through 𝑠𝑖0 and 𝑠𝑖𝑟 , and 𝑅−

𝑖 is a rational curve of degree 𝑟 − 2
passing through 𝑠𝑖1, 𝑠

𝑖
2, . . . , 𝑠

𝑖
𝑟−1 and meeting 𝐿𝑖 at a single point. This induces a specialization of the

above bundle to

𝑁𝐶 (𝑑−𝑔−𝑑′+𝑔′,𝑔−𝑔′;0) [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅−
𝑚′+1 ∪ · · · ∪ 𝑅−

𝑚′+𝑚′′ ] [
+� 𝑅𝑚′+𝑚′′+1 ∪ · · · ∪ 𝑅𝑚]

[𝑞1,1 + · · · + 𝑞1,𝑟−1
+� 𝑅◦

1] · · · [𝑞𝑚′,1 + · · · + 𝑞𝑚′,𝑟−1
+� 𝑅◦

𝑚′ ]

[𝑠𝑚
′+1

0
+
↔ 𝑠𝑚

′+1
𝑟 ] · · · [𝑠𝑚

′+𝑚′′

0
+
↔ 𝑠𝑚

′+𝑚′′

𝑟 ] [𝑝1
+
→ 𝑀1] · · · [𝑝𝑚′

+
→ 𝑀𝑚′ ]

[2𝑥1
+
→ 𝑦1] · · · [2𝑥𝜖in+𝜖out

+
→ 𝑦 𝜖in+𝜖out]

[𝑧1
+
↔ 𝑤1] [𝑧1

+
→ 2𝑤1] · · · [𝑧𝑔−𝑔′

+
↔ 𝑤𝑔−𝑔′ ] [𝑧𝑔−𝑔′

+
→ 2𝑤𝑔−𝑔′ ] .

Fix a general point 𝑝 ∈ 𝐶, and specialize 𝑝1, 𝑝2, . . . , 𝑝𝑚′ , 𝑣1, 𝑣2, . . . , 𝑣ℓ′ , 𝑦1, 𝑦2, . . . , 𝑦 𝜖in , 𝑥𝜖in+1,
𝑥𝜖in+2, . . . , 𝑥𝜖in+𝜖out , 𝑧1, 𝑧2, . . . , 𝑧𝑔−𝑔′ , 𝑠

𝑚′+1
0 , 𝑠𝑚

′+2
0 , . . . , 𝑠𝑚0 all to p in some order. Our assumption that

equation (11.1) is erasable implies that we may choose the order so that the limiting bundle is

𝑁𝐶 (𝑑−𝑔−𝑑′+𝑔′,𝑔−𝑔′;0) [𝑢ℓ′+1
+
↔ 𝑣ℓ′+1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅−
𝑚′+1 ∪ · · · ∪ 𝑅−

𝑚′+𝑚′′ ]

[𝑠𝑚
′+𝑚′′+1

1 + 𝑠𝑚
′+𝑚′′+1

2 + · · · + 𝑠𝑚
′+𝑚′′+1

𝑟
+� 𝑅𝑚′+𝑚′′+1] · · · [𝑠

𝑚
1 + 𝑠𝑚2 + · · · + 𝑠𝑚𝑟

+� 𝑅𝑚]

[𝑞1,1 + · · · + 𝑞1,𝑟−1
+� 𝑅◦

1] · · · [𝑞𝑚′,1 + · · · + 𝑞𝑚′,𝑟−1
+� 𝑅◦

𝑚′ ]

[2𝑥1 + · · · + 2𝑥𝜖in + 𝑤1 + · · · + 𝑤𝑔−𝑔′ + 𝑠𝑚
′+1

𝑟 + · · · + 𝑠𝑚
′+𝑚′′

𝑟 + 𝑢1 + · · · + 𝑢ℓ′
+
→ 𝑝] (𝑛𝑝) [𝑝 +

→ Λ],

for some integer n and subspace Λ ⊂ P𝑁𝐶 (𝑑−𝑔−𝑑′+𝑔′,𝑔−𝑔′;0) |𝑝 , disjoint from P𝑁𝐶 (𝑑−𝑔−𝑑′+𝑔′,𝑔−𝑔′;0)→𝑝 |𝑝

and whose image Λ in P(𝑁𝐶 (𝑑−𝑔−𝑑′+𝑔′,𝑔−𝑔′;0) /𝑁𝐶 (𝑑−𝑔−𝑑′+𝑔′,𝑔−𝑔′;0)→𝑝) |𝑝 is linearly general. Computing
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the Euler characteristic, we obtain

(𝑟 − 1)𝑛 + rkΛ = 2𝜖out + 3(𝑔 − 𝑔′) + 𝑚 + 𝑚′ + ℓ′,

and so

𝑛 =

⌊
2𝜖out + 3(𝑔 − 𝑔′) + 𝑚 + 𝑚′ + ℓ′

𝑟 − 1

⌋
.

Projecting from p, we reduce to interpolation for

𝑁𝐶 (𝑑−𝑔−𝑑′+𝑔′,𝑔−𝑔′;1) [𝑢ℓ′+1
+
↔ 𝑣ℓ′+1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅𝑚′+𝑚′′+1 ∪ · · · ∪ 𝑅𝑚]

[𝑠𝑚
′+1

1 + · · · + 𝑠𝑚
′+1

𝑟−1
+� 𝑅−

𝑚′+1] · · · [𝑠
𝑚′+𝑚′′

1 + · · · + 𝑠𝑚
′+𝑚′′

𝑟−1
+� 𝑅−

𝑚′+𝑚′′ ]

[𝑞1,𝑛1+1
+
↔ 𝑞1,𝑛1+2] · · · [𝑞1,𝑟−2

+
↔ 𝑞1,𝑟−1]

· · · [𝑞𝑚′,𝑛𝑚′+1
+
↔ 𝑞𝑚′,𝑛𝑚′+2] · · · [𝑞𝑚′,𝑟−2

+
↔ 𝑞𝑚′,𝑟−1] (𝑛𝑝) [𝑝 +

→ Λ] .

Erasing the transformation at p, we reduce to interpolation for

𝑁𝐶 (𝑑−𝑔−𝑑′+𝑔′,𝑔−𝑔′;1) [𝑢ℓ′+1
+
↔ 𝑣ℓ′+1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅𝑚′+𝑚′′+1 ∪ · · · ∪ 𝑅𝑚]

[𝑠𝑚
′+1

1 + · · · + 𝑠𝑚
′+1

𝑟−1
+� 𝑅−

𝑚′+1] · · · [𝑠
𝑚′+𝑚′′

1 + · · · + 𝑠𝑚
′+𝑚′′

𝑟−1
+� 𝑅−

𝑚′+𝑚′′ ]

[𝑞1,𝑛1+1
+
↔ 𝑞1,𝑛1+2] · · · [𝑞1,𝑟−2

+
↔ 𝑞1,𝑟−1] · · · [𝑞𝑚′,𝑛𝑚′+1

+
↔ 𝑞𝑚′,𝑛𝑚′+2] · · · [𝑞𝑚′,𝑟−2

+
↔ 𝑞𝑚′,𝑟−1] .

By Lemma 3.14, this follows in turn from interpolation for the bundles

𝑁𝐶 (𝑑−𝑔−𝑑′+𝑔′,𝑔−𝑔′;1) [𝑢ℓ′+1
+
↔ 𝑣ℓ′+1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅𝑚′+𝑚′′+1 ∪ · · · ∪ 𝑅𝑚] [
+� 𝑅−

𝑖1
∪ 𝑅−

𝑖2
∪ · · · ∪ 𝑅−

𝑖 𝑗
]

[𝑞1,𝑛1+1
+
↔ 𝑞1,𝑛1+2] · · · [𝑞1,𝑟−2

+
↔ 𝑞1,𝑟−1] · · · [𝑞𝑚′,𝑛𝑚′+1

+
↔ 𝑞𝑚′,𝑛𝑚′+2] · · · [𝑞𝑚′,𝑟−2

+
↔ 𝑞𝑚′,𝑟−1],

with 𝑚′ + 1 ≤ 𝑖1 < 𝑖2 < · · · < 𝑖 𝑗 ≤ 𝑚′ + 𝑚′′. Finally, specializing 𝑅𝑚′+𝑚′′+1, 𝑅𝑚′+𝑚′′+2, . . . , 𝑅𝑚 to pass
through p (as in the proof of Proposition 8.2), we reduce to interpolation for

𝑁𝐶 (𝑑−𝑔−𝑑′+𝑔′,𝑔−𝑔′;1) [𝑢ℓ′+1
+
↔ 𝑣ℓ′+1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅′
𝑚′+𝑚′′+1 ∪ · · · ∪ 𝑅′

𝑚] [
+� 𝑅−

𝑖1
∪ 𝑅−

𝑖2
∪ · · · ∪ 𝑅−

𝑖 𝑗
]

[𝑞1,𝑛1+1
+
↔ 𝑞1,𝑛1+2] · · · [𝑞1,𝑟−2

+
↔ 𝑞1,𝑟−1] · · · [𝑞𝑚′,𝑛𝑚′+1

+
↔ 𝑞𝑚′,𝑛𝑚′+2] · · · [𝑞𝑚′,𝑟−2

+
↔ 𝑞𝑚′,𝑟−1] .

But these are precisely our assumptions 𝐼 (𝑑 ′ − 1, 𝑔′, 𝑟 − 1, ℓ, 𝑚) for 𝑚min ≤ 𝑚 ≤ 𝑚max. �

We then write a computer program in python [14] (see Appendix 1) which iterates over all of
the finitely many sporadic cases identified in the previous section, that is, those tuples (𝑑, 𝑔, 𝑟, ℓ, 𝑚)

satisfying 𝑟 ≤ 13 and equation (10.1) or (10.2), but excluding those tuples with (𝛿, ℓ, 𝑚) = (1, 0, 0).
In each case, all possible parameters for every inductive argument in Section 8, as well as all possible
parameters for Proposition 11.2, are tried. In all but the following 30cases, one of these arguments
applies:

(4, 0, 3, 0, 1) (4, 0, 3, 0, 2) (4, 0, 3, 1, 1) (5, 0, 3, 0, 1) (5, 1, 3, 0, 1) (5, 1, 3, 1, 1)
(5, 2, 3, 0, 1) (5, 2, 3, 0, 2) (5, 2, 3, 1, 1) (6, 2, 3, 0, 1) (5, 0, 4, 0, 1) (5, 0, 4, 2, 0)
(6, 2, 4, 0, 2) (7, 3, 4, 0, 1) (7, 3, 4, 1, 1) (7, 1, 5, 0, 1) (7, 2, 5, 0, 1) (7, 2, 5, 2, 2)
(9, 2, 5, 0, 0) (8, 3, 5, 2, 0) (9, 4, 5, 0, 0) (9, 4, 5, 1, 0) (7, 0, 6, 0, 1) (7, 1, 6, 2, 1)
(7, 1, 6, 3, 1) (8, 2, 6, 2, 0) (11, 5, 6, 0, 0) (8, 1, 7, 0, 1) (8, 1, 7, 1, 1) (11, 4, 7, 1, 0)

Our remaining task is therefore to verify 𝐼 (𝑑, 𝑔, 𝑟, ℓ, 𝑚) in these 30 base cases (as well as to prove
Theorem 1.4 for canonical curves of even genus).
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12. The remaining sporadic cases

12.1. The cases (𝒅, 𝒈, 𝒓, ℓ, 𝒎) = (7, 1, 6, 2, 1), (7, 1, 6, 3, 1), and (8, 2, 6, 2, 0)

In these three cases, our previous arguments apply provided that 𝐼 (6, 1, 5, 3, 0) holds. (Note that
(6, 1, 5, 3, 0) is, however, not good, which is why we were not able to deal with these cases in the
previous section and need to separately consider them here.) Indeed:

If (𝒅, 𝒈, 𝒓, ℓ, 𝒎) = (7, 1, 6, 2, 1) We apply Proposition 8.2 with parameters

ℓ′ = 0, 𝑚′ = 1, 𝑑 ′ = 7, and 𝑛1 = 3.

If (𝒅, 𝒈, 𝒓, ℓ, 𝒎) = (7, 1, 6, 3, 1) We apply Proposition 8.2 with parameters

ℓ′ = 1, 𝑚′ = 1, 𝑑 ′ = 7, and 𝑛1 = 3.

If (𝒅, 𝒈, 𝒓, ℓ, 𝒎) = (8, 2, 6, 2, 0) We apply Proposition 8.10.

It thus remains to check 𝐼 (6, 1, 5, 3, 0). For this, we simply apply Proposition 8.2 with parameters

ℓ′ = 3, 𝑚′ = 0, and 𝑑 ′ = 6,

thereby reducing 𝐼 (6, 1, 5, 3, 0) to 𝐼 (5, 1, 4, 0, 0), which suffices because (5, 1, 4, 0, 0) is good.

12.2. The cases (𝒅, 𝒈, 𝒓, ℓ, 𝒎) = (4, 0, 3, 1, 1), (5, 1, 3, 1, 1), and (5, 2, 3, 1, 1)

In each of these cases, we want to show interpolation for

𝑁𝐶 [𝑢
+
↔ 𝑣] [

+� 𝑅] .

Write 𝑅∩𝐶 = {𝑞1, 𝑞2, 𝑞3, 𝑞4}. Specializing u to 𝑞1 and v to 𝑞2 induces a specialization of this bundle to

𝑁𝐶 [𝑞3 + 𝑞4
+� 𝑅] (𝑞1 + 𝑞2).

Removing the twists at 𝑞1 and 𝑞2, we reduce to interpolation for

𝑁𝐶 [𝑞3 + 𝑞4
+� 𝑅] .

Specializing R to the union of the lines 𝑞1𝑞2 ∪ 𝑞3𝑞4 induces a specialization of this bundle to

𝑁𝐶 [𝑞3
+
↔ 𝑞4] .

Interpolation for this bundle is the assertion 𝐼 (𝑑, 𝑔, 3, 1, 0), and (𝑑, 𝑔, 3, 1, 0) is good in each of these
cases.

12.3. The cases (𝒅, 𝒈, 𝒓, ℓ, 𝒎) = (5, 1, 3, 0, 1) and (6, 2, 3, 0, 1)

In both of these cases, we we want to show interpolation for 𝑁𝐶 [
+� 𝑅]. Peeling off a one-secant line,

we reduce to interpolation for

𝑁𝐶 (1,0;0) [
+� 𝑅] [𝑧 +

↔ 𝑤] [𝑧 +
→ 2𝑤] � 𝑁𝐶 (1,0;0) [

+� 𝑅] [𝑧 +
↔ 𝑤] (𝑧).

Removing the twist at z, we reduce to interpolation for

𝑁𝐶 (1,0;0) [
+� 𝑅] [𝑧 +

↔ 𝑤] .
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Interpolation for this bundle is the assertion 𝐼 (𝑑 − 1, 𝑔 − 1, 3, 1, 1), and (𝑑 − 1, 𝑔 − 1, 3, 1, 1) is good in
both of these cases.

12.4. The cases (𝒅, 𝒈, 𝒓, ℓ, 𝒎) = (4, 0, 3, 0, 2) and (5, 2, 3, 0, 2)

Let 𝑥1, 𝑦1, 𝑥2, 𝑦2 ∈ 𝐶 be four general points. Projection from 𝑥𝑖𝑦𝑖 defines a general map 𝜋𝑖 : 𝐶 → P1

of degree 𝑑 − 2, which is in particular separable. Since 𝑥2 and 𝑦2 are general, 𝑥2𝑦2 does not meet the
tangent line to C at either 𝑥1, 𝑦1, or any of the ramification points of 𝜋1. Thus, (𝜋1, 𝜋2) : 𝐶 → P1 × P1

is birational onto its image, an isomorphism near 𝑥1 and 𝑦1 (and by symmetry near 𝑥2 and 𝑦2), and its
image is nodal.

The number of nodes is the difference between the arithmetic and geometric genus, which is (𝑑 −

3)2 − 𝑔 ≠ 0. Therefore, there is a pair of points 𝑧, 𝑤 ∈ 𝐶, distinct from each other and 𝑥1, 𝑥2, 𝑦1, 𝑦2, with
𝜋𝑖 (𝑧) = 𝜋𝑖 (𝑤) for both i. Geometrically, 𝑥𝑖 , 𝑦𝑖 , 𝑧, 𝑤 are four distinct coplanar points. Since 𝑥𝑖 and 𝑦𝑖 are
general, 𝑥𝑖𝑦𝑖 is not a trisecant to C, so in particular, (𝑥𝑖 , 𝑦𝑖 , 𝑧) and (𝑥𝑖 , 𝑦𝑖 , 𝑤) are not collinear. Because
𝑥𝑖 and 𝑦𝑖 can be exchanged via monodromy, this implies no three of 𝑥𝑖 , 𝑦𝑖 , 𝑧, 𝑤 are collinear.

Our goal is to show interpolation for 𝑁𝐶 [
+� 𝑅1 ∪ 𝑅2]. Specializing 𝑅𝑖 to meet C at 𝑥𝑖 , 𝑦𝑖 , 𝑧, 𝑤, this

bundle specializes to

𝑁𝐶 [𝑥1 + 𝑦1
+� 𝑅1] [𝑥2 + 𝑦2

+� 𝑅2] (𝑧 + 𝑤).

Removing the twists at z and w, we reduce to interpolation for

𝑁𝐶 [𝑥1 + 𝑦1
+� 𝑅1] [𝑥2 + 𝑦2

+� 𝑅2] .

Specializing 𝑅𝑖 to the union of lines 𝑥𝑖𝑦𝑖 ∪ 𝑧𝑤, this bundle specializes to

𝑁𝐶 [𝑥1
+
↔ 𝑦1] [𝑥2

+
↔ 𝑦2] .

Interpolation for this bundle is the assertion 𝐼 (𝑑, 𝑔, 3, 2, 0). Although the (𝑑, 𝑔, 3, 2, 0) are not good, our
previous arguments still apply in these cases:

If (𝒅, 𝒈) = (4, 0) We apply Proposition 8.2 with parameters:

ℓ′ = 1, 𝑚′ = 0, and 𝑑 ′ = 3.

If (𝒅, 𝒈) = (5, 2) We apply Proposition 11.2 with parameters:

ℓ′ = 1, 𝑚′ = 𝑚′′ = 𝜖in = 𝜖out = 0, 𝑑 ′ = 3, and 𝑔′ = 0.

(The required erasability of (𝑠10, 𝑠11, 𝑠20, 𝑠21, 𝑤10) = (1, 0, 0, 2, 0) can be checked by specializing
the points in any order.)

12.5. The cases (𝒅, 𝒈, 𝒓, ℓ, 𝒎) = (4, 0, 3, 0, 1) and (5, 0, 3, 0, 1)

In both of these cases, we want to show interpolation for 𝑁𝐶 [
+� 𝑅]. Write 𝐶 ∩ 𝑅 = {𝑞1, 𝑞2, 𝑞3, 𝑞4}.

Peel off a one-secant line, that is, degenerate C to 𝐶 (1, 0; 0) ∪ 𝐿 – but in such a way that 𝑞4 specializes
onto L, while 𝑞1, 𝑞2, and 𝑞3 specialize onto 𝐶 (1, 0; 0). The restriction of the modified normal bundle
to L is perfectly balanced of slope 2, so by Lemma 3.7, this reduces interpolation for 𝑁𝐶 [

+� 𝑅] to
interpolation for

𝑁𝐶 (1,0;0) [𝑞1 + 𝑞2 + 𝑞3
+� 𝑅] [𝑧 +

→ 𝑞4] .
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Erasing the transformation [𝑧 +
→ 𝑞4], we reduce to interpolation for

𝑁𝐶 (1,0;0) [𝑞1 + 𝑞2 + 𝑞3
+� 𝑅] .

Specializing R to the union of lines 𝑞1𝑞2 ∪ 𝑞3𝑞4 induces a specialization of this bundle to

𝑁𝐶 (1,0;0) [𝑞1
+
↔ 𝑞2] [𝑞3

+
→ 𝑞4] .

Erasing the transformation at 𝑞3, we reduce to interpolation for

𝑁𝐶 (1,0;0) [𝑞1
+
↔ 𝑞2],

which is the assertion 𝐼 (𝑑 − 1, 0, 3, 1, 0). Both (3, 0, 3, 1, 0) and (4, 0, 3, 1, 0) are good.

12.6. The case (𝒅, 𝒈, 𝒓, ℓ, 𝒎) = (5, 2, 3, 0, 1)

In this case, we want to show interpolation for 𝑁𝐶 [
+� 𝑅]. Write 𝐶∩𝑅 = {𝑞1, 𝑞2, 𝑞3, 𝑞4}. Peel off a one-

secant line, that is, degenerate C to 𝐶 (0, 1; 0) ∪ 𝐿 – but in such a way that 𝑞3 and 𝑞4 specialize onto L,
while 𝑞1 and 𝑞2 specialize onto 𝐶 (0, 1; 0). The restriction of the modified normal bundle to L is perfectly
balanced of slope 3, so by Lemma 3.7, this reduces interpolation for 𝑁𝐶 [

+� 𝑅] to interpolation for

𝑁𝐶 (0,1;0) [𝑞1 + 𝑞2
+� 𝑅] [𝑧 +

↔ 𝑤] .

Let Q be the unique quadric containing 𝐶 (0, 1; 0) and the line 𝑧𝑤. Then interpolation for this bundle
follows from the balanced exact sequence

0 → 𝑁𝐶 (0,1;0)/𝑄 (𝑧 + 𝑤) → 𝑁𝐶 (0,1;0) [𝑞1 + 𝑞2
+� 𝑅] [𝑧 +

↔ 𝑤] → 𝑁𝑄 |𝐶 (0,1;0) (𝑞1 + 𝑞2) → 0.

12.7. The case (𝒅, 𝒈, 𝒓, ℓ, 𝒎) = (5, 0, 4, 2, 0)

In this case, we want to show interpolation for

𝑁𝐶 [𝑢1
+
↔ 𝑣1] [𝑢2

+
↔ 𝑣2] .

Peel off a one-secant line, that is, degenerate C to 𝐶 (1, 0; 0) ∪ 𝐿 – but in such a way that 𝑣1 and 𝑣2
specialize onto L, while 𝑢1 and 𝑢2 specialize onto 𝐶 (1, 0; 0). By Lemma 3.7, this reduces to interpolation
for

𝑁𝐶 (1,0;0) [𝑢1
+
→ 𝑣1] [𝑢2

+
→ 𝑣2] [𝑧

+
→ 𝑣2] .

Specializing 𝑣1 to z, we reduce to interpolation for

𝑁𝐶 (1,0;0) [𝑢1
+
→ 𝑧] [𝑢2

+
→ 𝑣2] [𝑧

+
→ 𝑣2] .

Projecting from z, we reduce to interpolation for

𝑁𝐶 (1,0;1) [𝑢2
+
→ 𝑣2] [𝑧

+
→ 𝑣2] .

Specializing 𝑣2 onto the line 𝑧𝑢2, we reduce to interpolation for

𝑁𝐶 (1,0;1) [𝑧
+
↔ 𝑢2] .

This is the assertion 𝐼 (3, 0, 3, 1, 0), and (3, 0, 3, 1, 0) is good.
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12.8. The cases (𝒅, 𝒈, 𝒓, ℓ, 𝒎) = (6, 2, 4, 0, 2) and (7, 3, 4, 0, 1)

In these cases, we want to show interpolation for 𝑁𝐶 [
+� 𝑅1 ∪ · · · ∪ 𝑅𝑚]. Write 𝑅𝑖 ∩ 𝐶 =

{𝑞𝑖1, 𝑞𝑖2, 𝑞𝑖3, 𝑞𝑖4, 𝑞𝑖5}. Note that 𝑚 ≤ 𝑔 in both cases, so we may peel off m two-secant lines, that is, de-
generate C to 𝐶 (0, 𝑚; 0)∪𝐿1∪· · ·∪𝐿𝑚 – but in such a way that 𝑞𝑖5 specializes onto 𝐿𝑖 , while the remain-
ing 𝑞𝑖 𝑗 specialize onto 𝐶 (0, 𝑚; 0). By Lemma 3.7, this reduces interpolation for 𝑁𝐶 [

+� 𝑅1 ∪ · · · ∪ 𝑅𝑚]
to interpolation for

𝑁𝐶 (0,𝑚;0) [𝑞11 + 𝑞12 + 𝑞13 + 𝑞14
+� 𝑅1] · · · [𝑞𝑚1 + 𝑞𝑚2 + 𝑞𝑚3 + 𝑞𝑚4

+� 𝑅𝑚] [𝑧1
+
↔ 𝑤1] · · · [𝑧𝑚

+
↔ 𝑤𝑚] .

Specialize 𝑅𝑖 to the union of lines 𝑞𝑖1𝑞𝑖2, 𝑞𝑖3𝑞𝑖4 and the unique line through 𝑞𝑖5 meeting both of these
two lines. This induces a specialization of the above bundle to

𝑁𝐶 (0,𝑚;0) [𝑞11
+
↔ 𝑞12] [𝑞13

+
↔ 𝑞14] · · · [𝑞𝑚1

+
↔ 𝑞𝑚2] [𝑞𝑚3

+
↔ 𝑞𝑚4] [𝑧1

+
↔ 𝑤1] · · · [𝑧𝑚

+
↔ 𝑤𝑚] .

In other words, all that remains is to check the assertion 𝐼 (𝑑 − 𝑚, 𝑔 − 𝑚, 4, 3𝑚, 0).

If (𝒅, 𝒈, 𝒎) = (6, 2, 2) In this case, writing C for a curve of degree 𝑑 −𝑚 = 4 and genus 𝑔 −𝑚 = 0, we
want to establish interpolation for

𝑁𝐶 [𝑢1
+
↔ 𝑣1] · · · [𝑢6

+
↔ 𝑣6] .

Specializing ‘to a tetrahedron’, that is, specializing 𝑢1, 𝑢2 to 𝑢3, and 𝑢4, 𝑣6 to 𝑣1, and 𝑣4, 𝑢5 to 𝑣2, and
𝑣5, 𝑢6 to 𝑣3, this bundle specializes to

𝑁𝐶 (𝑢3 + 𝑣1 + 𝑣2 + 𝑣3).

Removing the twists at 𝑢3, 𝑣1, 𝑣2, and 𝑣3, we reduce to interpolation for 𝑁𝐶 , which is the assertion
𝐼 (4, 0, 4, 0, 0). Note that (4, 0, 4, 0, 0) is good.

If (𝒅, 𝒈, 𝒎) = (7, 3, 1) In this case, writing C for a curve of degree 𝑑 −𝑚 = 6 and genus 𝑔 −𝑚 = 2, we
want to establish interpolation for

𝑁𝐶 [𝑢1
+
↔ 𝑣1] [𝑢2

+
↔ 𝑣2] [𝑢3

+
↔ 𝑣3] .

Note that 𝛿 = 42
3 . Peeling off two one-secant lines, we reduce to interpolation for

𝑁𝐶 (0,2;0) [𝑢1
+
↔ 𝑣1] [𝑢2

+
↔ 𝑣2] [𝑢3

+
↔ 𝑣3] [𝑧1

+
↔ 𝑤1] [𝑧1

+
→ 2𝑤1] [𝑧2

+
↔ 𝑤2] [𝑧2

+
→ 2𝑤2] .

Limiting 𝑤1 to 𝑤2, this bundle specializes to

𝑁𝐶 (0,2;0) [𝑢1
+
↔ 𝑣1] [𝑢2

+
↔ 𝑣2] [𝑢3

+
↔ 𝑣3] [𝑧1 + 𝑧2

+
↔ 𝑤2] [𝑧1 + 𝑧2

+
→ 2𝑤2] .

Projecting from 𝑤2, we reduce to interpolation for

𝑁𝐶 (0,2;1) [𝑢1
+
↔ 𝑣1] [𝑢2

+
↔ 𝑣2] [𝑢3

+
↔ 𝑣3] [𝑧1 + 𝑧2

+
→ 𝑤2] .

Limiting 𝑣3 to 𝑤2, and 𝑣2 to 𝑣1, we reduce to interpolation for

𝑁𝐶 (0,2;1) [𝑢1 + 𝑢2
+
→ 𝑣1] [𝑧1 + 𝑧2 + 𝑢3

+
→ 𝑤2] [𝑤2

+
→ 𝑢3] .

Projecting from 𝑤2 again, we reduce to interpolation for

𝑁𝐶 (0,2;2) (𝑢1 + 𝑢2 + 𝑤2),

which is a nonspecial line bundle and therefore satisfies interpolation.
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12.9. The cases (𝒅, 𝒈, 𝒓, ℓ, 𝒎) = (5, 0, 4, 0, 1), and (7, 3, 4, 1, 1)

We want to show interpolation for a vector bundle of rank 3, and degree 28 and 46, respectively. By
Lemma 3.9, it suffices to check interpolation for corresponding vector bundles of rank 27 and 45 where
one positive transformation is omitted.

For (𝑑, 𝑔, 𝑟, ℓ, 𝑚) = (5, 0, 4, 0, 1), the bundle of degree 28 for which we want to show interpolation
is 𝑁𝐶 [

+� 𝑅]. Write 𝐶 ∩ 𝑅 = {𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5}. It suffices to establish interpolation for the degree 27
vector bundle 𝑁𝐶 [𝑞1 + 𝑞2 + 𝑞3 + 𝑞4

+� 𝑅]. Specialize R to the union of the lines 𝑞1𝑞2, 𝑞3𝑞4 and the
unique line through 𝑞5 meeting both of these two lines. This induces a specialization of this bundle to
𝑁𝐶 [𝑞1

+
↔ 𝑞2] [𝑞3

+
↔ 𝑞4], which is the assertion 𝐼 (5, 0, 4, 2, 0). Observe that (5, 0, 4, 2, 0) was already

considered above in Section 12.7.
For (𝑑, 𝑔, 𝑟, ℓ, 𝑚) = (7, 3, 4, 1, 1), our bundle of degree 46 is 𝑁𝐶 [𝑢

+
↔ 𝑣] [

+� 𝑅], and we can reduce
to interpolation for the degree 45 vector bundle 𝑁𝐶 [𝑢

+
→ 𝑣] [

+� 𝑅]. Erasing the transformation at u, this
reduces to interpolation for 𝑁𝐶 [

+� 𝑅], which is the assertion 𝐼 (7, 3, 4, 0, 1). Observe that (7, 3, 4, 0, 1)
was already considered above in Section 12.8.

12.10. The case (𝒅, 𝒈, 𝒓, ℓ, 𝒎) = (7, 1, 5, 0, 1)

In this case we want to show interpolation for 𝑁𝐶 [
+� 𝑅]. Write 𝑅∩𝐶 = {𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6}. Peel off

a one-secant line, that is, degenerate C to 𝐶 (0, 1; 0) ∪ 𝐿 — but in such a way that 𝑞2 and 𝑞4 specialize
onto L and the remaining points specialize onto 𝐶 (0, 1; 0). By Lemma 3.7, this reduces interpolation
for 𝑁𝐶 [

+� 𝑅] to interpolation for

𝑁𝐶 (0,1;0) [𝑞1 + 𝑞3 + 𝑞5 + 𝑞6
+� 𝑅] [𝑢 +

↔ 𝑣] .

Specializing R to the union of the three lines 𝑞1𝑞2, 𝑞3𝑞4, 𝑞5𝑞6, and the unique fourth line in P5 meeting
these three lines, we reduce to interpolation for

𝑁𝐶 (0,1;0) [𝑞1
+
→ 𝑞2] [𝑞3

+
→ 𝑞4] [𝑞5

+
↔ 𝑞6] [𝑢

+
↔ 𝑣] .

Limiting 𝑞2 to u and 𝑞4 to v, we reduce to proving interpolation for

𝑁𝐶 (0,1;0) [𝑞1 + 𝑣 +
→ 𝑢] [𝑞3 + 𝑢 +

→ 𝑣] [𝑞5
+
↔ 𝑞6] .

Projecting from u and then v, we reduce to interpolation for

𝑁𝐶 (0,1;1) [𝑞5
+
↔ 𝑞6] .

This is the assertion 𝐼 (4, 0, 3, 1, 0), and (4, 0, 3, 1, 0) is good.

12.11. The case (𝒅, 𝒈, 𝒓, ℓ, 𝒎) = (7, 2, 5, 0, 1)

We want to show that 𝑁𝐶 [
+� 𝑅] satisfies interpolation. Peeling off a one-secant line, we reduce to

interpolation for

𝑁𝐶 (0,1;0) [
+� 𝑅] [𝑧 +

↔ 𝑤] [𝑧 +
→ 2𝑤] .

We now specialize R as in Section 7 to the union of two lines 𝑞1𝑝 and 𝑞2𝑝, and a three-secant conic
through 𝑞3, 𝑞4, 𝑝. Then limit w to p. This induces a specialization of our bundle to

𝑁𝐶 (0,1;0) [𝑞3 + 𝑞4
+� 𝑅◦] [𝑧 + 𝑞1 + 𝑞2

+
→ 𝑝] [𝑧 +

→ 2𝑝] [𝑝 +
→ 𝑧 + 𝑞1 + 𝑞2] .
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Projecting from p we reduce to interpolation for

𝑁𝐶 (0,1;1) [𝑞3
+
↔ 𝑞4] [𝑧

+
→ 𝑝] .

Limiting 𝑞4 to p, we reduce to interpolation for

𝑁𝐶 (0,1;1) [𝑞3 + 𝑧 +
→ 𝑝] [𝑝 +

→ 𝑞3] .

Projecting from p, we reduce to interpolation for 𝑁𝐶 (0,1;2) [𝑝
+
→ 𝑞3]. Erasing the transformation

[𝑝 +
→ 𝑞3], this reduces to 𝐼 (4, 1, 3, 0, 0), and (4, 1, 3, 0, 0) is good.

12.12. The case (𝒅, 𝒈, 𝒓, ℓ, 𝒎) = (7, 2, 5, 2, 2)

This case asserts interpolation for

𝑁𝐶 [
+� 𝑅1 + 𝑅2] [𝑢1

+
↔ 𝑣1] [𝑢2

+
↔ 𝑣2] .

We first specialize each 𝑅𝑖 as in Section 7 to the union of two lines 𝑞𝑖1𝑝𝑖 , 𝑞𝑖2𝑝𝑖 and a three-secant
conic through {𝑝𝑖 , 𝑞𝑖3, 𝑞𝑖4}. We then specialize 𝑝1 and 𝑝2 together to a common point p. This induces
a specialization of our bundle to

𝑁𝐶 (𝑝) [𝑞11 + 𝑞12 + 𝑞21 + 𝑞22
+
→ 𝑝] [𝑞13 + 𝑞14

+� 𝑅◦
1] [𝑞23 + 𝑞24

+� 𝑅◦
2] [𝑢1

+
↔ 𝑣1] [𝑢2

+
↔ 𝑣2] .

Limiting 𝑢1 to p and removing the overall twist at p reduces us to interpolation for

𝑁𝐶 [𝑣1 + 𝑞11 + 𝑞12 + 𝑞21 + 𝑞22
+
→ 𝑝] [𝑞13 + 𝑞14

+
→ 𝑄1] [𝑞23 + 𝑞24

+
→ 𝑄2] [𝑝

+
→ 𝑣1] [𝑢2

+
↔ 𝑣2] .

Projecting from p, we reduce to interpolation for

𝑁𝐶 (0,0;1) [𝑞13
+
↔ 𝑞14] [𝑞23

+
↔ 𝑞24] [𝑝

+
→ 𝑣1] [𝑢2

+
↔ 𝑣2] .

Erasing the transformation [𝑝 +
→ 𝑣1] and peeling off two one-secant lines, we reduce to

𝑁𝐶 (0,2;1) [𝑞13
+
↔ 𝑞14] [𝑞23

+
↔ 𝑞24] [𝑢2

+
↔ 𝑣2] [𝑧1

+
↔ 𝑤1] [𝑧1

+
→ 2𝑤1] [𝑧2

+
↔ 𝑤2] [𝑧2

+
→ 2𝑤2] .

Limiting 𝑤1 and 𝑤2 to p, we reduce to interpolation for

𝑁𝐶 (0,2;1) [𝑞13
+
↔ 𝑞14] [𝑞23

+
↔ 𝑞24] [𝑢2

+
↔ 𝑣2] [𝑧1 + 𝑧2

+
↔ 𝑝] [𝑧1 + 𝑧2

+
→ 2𝑝] .

Projecting from p, we reduce to interpolation for

𝑁𝐶 (0,2;2) [𝑞13
+
↔ 𝑞14] [𝑞23

+
↔ 𝑞24] [𝑢2

+
↔ 𝑣2] [𝑧1 + 𝑧2

+
→ 𝑝] .

Limiting 𝑞24 to 𝑞14, and 𝑣2 to p, and removing the resulting twist at 𝑞14, we reduce to

𝑁𝐶 (0,2;2) [𝑞13 + 𝑞23
+
→ 𝑞14] [𝑢2 + 𝑧1 + 𝑧2

+
→ 𝑝] [𝑝 +

→ 𝑢2] .

Projecting from p, we reduce to interpolation for 𝑁𝐶 (0,2;3) , which is a nonspecial line bundle.
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12.13. The case (𝒅, 𝒈, 𝒓, ℓ, 𝒎) = (9, 2, 5, 0, 0)

Peeling off two one-secant lines reduces to interpolation for

𝑁𝐶 (0,2;0) [𝑧1
+
↔ 𝑤1] [𝑧1

+
→ 2𝑤1] [𝑧2

+
↔ 𝑤2] [𝑧2

+
→ 2𝑤2] .

Limit the points 𝑧1 and 𝑤2 to a common point p. This induces the specialization of our bundle to

𝑁𝐶 (0,2;0) [𝑝
+
↔ 𝑤1 + 𝑧2] [𝑝

+
→ 2𝑤1] [𝑧2

+
→ 2𝑝] .

Projection from p reduces to interpolation for

𝑁𝐶 (0,2;1) [𝑝
+
→ 𝑤1] [𝑧2

+
→ 𝑝] .

Erasing the transformation [𝑝 +
→ 𝑤1] and then projecting from p, we reduce to interpolation for

𝑁𝐶 (0,2;2) . This is 𝐼 (5, 0, 3, 0, 0), and (5, 0, 3, 0, 0) is good.

12.14. The cases (𝒅, 𝒈, 𝒓, ℓ, 𝒎) = (9, 4, 5, 0, 0) and (9, 4, 5, 1, 0)

We want that both 𝑁𝐶 and 𝑁𝐶 [𝑢
+
↔ 𝑣] satisfy interpolation. Peeling off four one-secant lines, we reduce

to interpolation for

𝑁𝐶 (0,4;0) [𝑧1
+
↔ 𝑤1] [𝑧1

+
→ 2𝑤1] [𝑧2

+
↔ 𝑤2] [𝑧2

+
→ 2𝑤2] [𝑧3

+
↔ 𝑤3] [𝑧3

+
→ 2𝑤3] [𝑧4

+
↔ 𝑤4] [𝑧4

+
→ 2𝑤4]

and

𝑁𝐶 (0,4;0) [𝑧1
+
↔ 𝑤1] [𝑧1

+
→ 2𝑤1] [𝑧2

+
↔ 𝑤2] [𝑧2

+
→ 2𝑤2] [𝑧3

+
↔ 𝑤3] [𝑧3

+
→ 2𝑤3]

[𝑧4
+
↔ 𝑤4] [𝑧4

+
→ 2𝑤4] [𝑢

+
↔ 𝑣] .

Specializing 𝑤2 to 𝑤1, and 𝑤4 to 𝑤3, we reduce to interpolation for

𝑁𝐶 (0,4;0) [𝑧1 + 𝑧2
+
↔ 𝑤1] [𝑧1 + 𝑧2

+
→ 2𝑤1] [𝑧3 + 𝑧4

+
↔ 𝑤3] [𝑧3 + 𝑧4

+
→ 2𝑤3] and

𝑁𝐶 (0,4;0) [𝑧1 + 𝑧2
+
↔ 𝑤1] [𝑧1 + 𝑧2

+
→ 2𝑤1] [𝑧3 + 𝑧4

+
↔ 𝑤3] [𝑧3 + 𝑧4

+
→ 2𝑤3] [𝑢

+
↔ 𝑣] .

Projecting from 𝑤1 and then 𝑤3, we reduce to interpolation for

𝑁𝐶 (0,4;2) [𝑧1 + 𝑧2
+
→ 𝑤1] [𝑧3 + 𝑧4

+
→ 𝑤3] and 𝑁𝐶 (0,4;2) [𝑧1 + 𝑧2

+
→ 𝑤1] [𝑧3 + 𝑧4

+
→ 𝑤3] [𝑢

+
↔ 𝑣] .

Specializing v to 𝑤1, we reduce to interpolation for

𝑁𝐶 (0,4;2) [𝑧1 + 𝑧2
+
→ 𝑤1] [𝑧3 + 𝑧4

+
→ 𝑤3] and 𝑁𝐶 (0,4;2) [𝑧1 + 𝑧2 + 𝑢 +

→ 𝑤1] [𝑧3 + 𝑧4
+
→ 𝑤3] [𝑤1

+
→ 𝑢] .

Projecting from 𝑤1, we reduce to interpolation for 𝑁𝐶 (0,4;3) , which is a nonspecial line bundle.

12.15. The cases (𝒅, 𝒈, 𝒓, ℓ, 𝒎) = (8, 3, 5, 2, 0) and (11, 5, 6, 0, 0)

We first reduce interpolation for both of these bundles to the same statement.

For(𝒅, 𝒈, 𝒓, ℓ, 𝒎) = (11, 5, 6, 0, 0) Note that 𝛿 = 4. Our goal is to establish interpolation for 𝑁𝐶 . We
first peel off one two-secant lines, which reduces our problem to interpolation for

𝑁𝐶 (2,0;0) [𝑧1
+
↔ 𝑤1] [𝑧1

+
→ 2𝑤1] [𝑧2

+
↔ 𝑤2] [𝑧2

+
→ 2𝑤2] .

https://doi.org/10.1017/fmp.2023.22 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.22


74 E. Larson and I. Vogt

Limiting 𝑤2 to 𝑤1 induces a specialization of this bundle to

𝑁𝐶 (2,0;0) [𝑧1
+
↔ 𝑤1] [𝑧1

+
→ 2𝑤1] [𝑧2

+
↔ 𝑤1] [𝑧2

+
→ 2𝑤1] .

Projecting from 𝑤1, we reduce to interpolation for

𝑁𝐶 (2,0;1) [𝑧1 + 𝑧2
+
↔ 𝑤1] .

For (𝒅, 𝒈, 𝒓, ℓ, 𝒎) = (8, 3, 5, 2, 0), our goal is to establish interpolation for

𝑁𝐶 [𝑢1
+
↔ 𝑣1] [𝑢2

+
↔ 𝑣2] .

Limiting 𝑣2 to 𝑣1, we reduce to interpolation for

𝑁𝐶 [𝑢1 + 𝑢2
+
↔ 𝑣1] .

To finish the argument, let C be a general BN-curve of degree 8 and genus 3 in P5, and 𝑝, 𝑞1, 𝑞2 ∈ 𝐶
be general points. Above, we have shown that both of the desired assertions reduce to interpolation for
the modified normal bundle

𝑁𝐶 [𝑞1 + 𝑞2
+
↔ 𝑝] .

We next peel off two one-secant lines, that is, degenerate C to 𝐶 ∪ 𝐿1 ∪ 𝐿2, where 𝐿1 and 𝐿2 are one-
secant lines to C – but in such a way that 𝑞𝑖 limits onto 𝐿𝑖 , and p limits onto C. Applying Lemma 5.5,
we reduce to interpolation for

𝑁𝐶 (0,2;0) [𝑧1
+
↔ 𝑤1] [𝑧1

+
→ 2𝑤1 + 𝑝] [𝑧2

+
↔ 𝑤2] [𝑧2

+
→ 2𝑤2 + 𝑝] [𝑝 +

→ 𝑞1 + 𝑞2] .

Over the function field of the moduli space of unordered pairs of triples {(𝑧1, 𝑤1, 𝑞1), (𝑧2, 𝑤2, 𝑞2)},
the transformation [𝑝 +

→ 𝑞1 + 𝑞2] is linearly general as just 𝑞1 and 𝑞2 vary. Indeed, geometrically,
it is transverse to any subspace of the normal space at p except for the two subspaces 𝑁𝐶→𝐿1 |𝑝 and
𝑁𝐶→𝐿2 |𝑝 – but neither of these subspaces is rational over this function field. Therefore, we may erase
the transformation at p, thereby reducing to interpolation for

𝑁𝐶 (0,2;0) [𝑧1
+
↔ 𝑤1] [𝑧1

+
→ 2𝑤1 + 𝑝] [𝑧2

+
↔ 𝑤2] [𝑧2

+
→ 2𝑤2 + 𝑝] .

Note that 𝛿 = 31
2 for this bundle. Peeling off a one-secant line, we reduce to interpolation for

𝑁𝐶 (0,3;0) [𝑧1
+
↔ 𝑤1] [𝑧1

+
→ 2𝑤1 + 𝑝] [𝑧2

+
↔ 𝑤2] [𝑧2

+
→ 2𝑤2 + 𝑝] [𝑧3

+
↔ 𝑤3] [𝑧3

+
→ 2𝑤3] .

Specializing 𝑤3 to p, and 𝑤2 to 𝑤1, we reduce to interpolation for

𝑁𝐶 (0,3;0) [𝑧1 + 𝑧2
+
↔ 𝑤1] [𝑧1 + 𝑧2

+
→ 2𝑤1] [𝑧1 + 𝑧2 + 𝑧3

+
→ 𝑝] [𝑧3

+
→ 2𝑝] [𝑝 +

→ 𝑧3] .

Projecting from 𝑤1 and then p, we reduce to interpolation for

𝑁𝐶 (0,3;2) [𝑧1 + 𝑧2
+
→ 𝑤1] [𝑧3

+
↔ 𝑝] .

Finally, projecting from 𝑤1 again, we reduce to interpolation for 𝑁𝐶 (0,3;3) , which is a nonspecial line
bundle.
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12.16. The case (𝒅, 𝒈, 𝒓, ℓ, 𝒎) = (7, 0, 6, 0, 1)

Arguing as in the proof of Proposition 8.3, it suffices to show that 𝑄− and 𝑄+ satisfy interpolation, where

𝑄− = 𝑁𝐶 (0,0;1) [𝑠1 + · · · + 𝑠5
+� 𝑅], and 𝑄+ = 𝑄−[𝑝 +

→ 𝑠0] .

As in the proof of Proposition 8.3, interpolation for 𝑄+ follows from interpolation for 𝑄− given the
assertion 𝐼 (5, 0, 4, 0, 1). Since (5, 0, 4, 0, 1) is good, it suffices to prove interpolation for 𝑄−. By Lemma
3.8, this follows in turn from interpolation for

𝑄−(𝑠0) = 𝑄−[𝑠0
+� 𝑅] [𝑠0

+
→ Λ],

where Λ ⊂ 𝑄−|𝑠0 is codimension 1. By Lemma 3.9, since 𝜇(𝑄−[𝑠0
+� 𝑅]) ∈ Z, interpolation for

𝑄−(𝑠0) follows from interpolation for

𝑄−[𝑠0
+� 𝑅] = 𝑁𝐶 (0,0;1) [

+� 𝑅] .

This is the assertion 𝐼 (6, 0, 5, 0, 1), and (6, 0, 5, 0, 1) is good.

12.17. The cases (𝒅, 𝒈, 𝒓, ℓ, 𝒎) = (8, 1, 7, 0, 1) and (8, 1, 7, 1, 1)

In both of these cases, our goal is to show interpolation for

𝑁𝐶 [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [

+� 𝑅1] .

We specialize 𝑅1 to the union of the lines 𝑞1𝑞2, 𝑞3𝑞4, 𝑞5𝑞6, 𝑞7𝑞8, together with a plane conic meeting
each of these four lines. This induces a specialization of this bundle to

𝑁𝐶 [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [𝑞1

+
↔ 𝑞2] [𝑞3

+
↔ 𝑞4] [𝑞5

+
↔ 𝑞6] [𝑞7

+
↔ 𝑞8] .

Note that the points 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6, 𝑞7, 𝑞8 are not general, as they are constrained to lie in a
hyperplane.

Let 𝑝1, 𝑝2, 𝑝3, 𝑝4 ∈ 𝐶 be points with O𝐶 (1) = 2𝑝1 +2𝑝2 +2𝑝3 +2𝑝4 (such points exist by Riemann–
Roch because C is an elliptic curve). By construction, 𝐻0(O𝐶 (1) (−2𝑝1 − 2𝑝2 − 2𝑝3 − 2𝑝4)) = 1; as C
is embedded by a complete linear series, we conclude that the tangent lines to C at 𝑝1, 𝑝2, 𝑝3, 𝑝4 span
a hyperplane H. Specializing the hyperplane containing 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6, 𝑞7, 𝑞8 to H, in such a way
that 𝑞1 and 𝑞8 specialize to 𝑝1, and 𝑞2 and 𝑞3 specialize to 𝑝2, and 𝑞4 and 𝑞5 specialize to 𝑝3, and 𝑞6
and 𝑞7 specialize to 𝑝4, we obtain a further specialization of the above bundle to

𝑁𝐶 [𝑢1
+
↔ 𝑣1] · · · [𝑢ℓ

+
↔ 𝑣ℓ] [𝑝1 + 𝑝3

+
↔ 𝑝2 + 𝑝4] . (12.1)

Note that, since 𝐻0(O𝐶 (1) (−𝑝1 − 𝑝2 − 𝑝3 − 𝑝4)) = 4, the points 𝑝1, 𝑝2, 𝑝3, 𝑝4 are linearly independent.
We claim interpolation for (12.1) reduces to interpolation for 𝑁𝐶 (0,0;4) . To see this, we divide into cases
as follows.

If ℓ = 0 Note that 𝛿 = 2. Our goal is to show interpolation for

𝑁𝐶 [𝑝1 + 𝑝3
+
↔ 𝑝2 + 𝑝4] .

Projecting from each of 𝑝1, 𝑝2, 𝑝3, 𝑝4 in turn, we reduce to interpolation for 𝑁𝐶 (0,0;4) .
If ℓ = 1 Note that 𝛿 = 21

3 . Our goal is to show interpolation for

𝑁𝐶 [𝑢1
+
↔ 𝑣1] [𝑝1 + 𝑝3

+
↔ 𝑝2 + 𝑝4] .
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Specializing 𝑢1 to 𝑝1 and 𝑣1 to 𝑝3, we reduce to interpolation for

𝑁𝐶 [𝑝1
+
↔ 𝑝3] [𝑝1 + 𝑝3

+
↔ 𝑝2 + 𝑝4] .

Projecting from 𝑝1, 𝑝2, 𝑝3, and 𝑝4, we reduce to interpolation for 𝑁𝐶 (0,0;4) .

It remains to check interpolation for 𝑁𝐶 (0,0;4) , which is the assertion 𝐼 (4, 1, 3, 0, 0), and (4, 1, 3, 0, 0)
is good.

12.18. The case (𝒅, 𝒈, 𝒓, ℓ, 𝒎) = (11, 4, 7, 1, 0)

Our goal is to show interpolation for 𝑁𝐶 [𝑢
+
↔ 𝑣]. Note that 𝛿 = 3. Peeling off a one-secant line, we

reduce to interpolation for

𝑁𝐶 (0,1;0) [𝑧
+
↔ 𝑤] [𝑧 +

→ 2𝑤] [𝑢 +
↔ 𝑣] .

Specializing v to w, we reduce to interpolation for

𝑁𝐶 (0,1;0) [𝑧 + 𝑢 +
↔ 𝑤] [𝑧 +

→ 2𝑤] .

Projecting from w, we reduce to interpolation for

𝑁𝐶 (0,1;1) [𝑧
+
→ 𝑤] [𝑤 +

→ 𝑧 + 𝑢] .

Erasing the transformation [𝑤 +
→ 𝑧 + 𝑢], we reduce to interpolation for the two bundles

𝑁𝐶 (0,1;1) [𝑧
+
↔ 𝑤] and 𝑁𝐶 (0,1;1) [𝑧

+
→ 𝑤] .

The first of these statements is the assertion 𝐼 (9, 3, 6, 1, 0). For the second, erasing the transformation at z
reduces it to interpolation for 𝑁𝐶 (0,1;1) , which is the assertion 𝐼 (9, 3, 6, 0, 0). Note that both (9, 3, 6, 0, 0)
and (9, 3, 6, 1, 0) are good.

13. Canonical curves of even genus

In this section, we prove interpolation for the normal bundle of a general canonical curve of even genus
𝑔 ≥ 8, which is the last remaining case (cf. Proposition 5.10 and Section 9). These cases are difficult,
in part, because interpolation does not hold for canonical curves of genus 4 and 6, that is, when 𝑟 = 3
or 𝑟 = 5.

We will do this via degeneration to 𝐸 ∪ 𝑅, as in Section 5.3. That is, E is an elliptic normal curve in
P𝑟 , and R is a general (𝑟 + 1)-secant rational curve of degree 𝑟 − 1, where 𝑟 = 𝑔 − 1 is odd.

13.1. Reduction to a bundle on E

Recall that, due to the exceptional case of elliptic normal curves in odd-dimensional projective spaces
in Lemma 5.8, we cannot reduce interpolation for 𝑁𝐸∪𝑅 to interpolation for 𝑁𝐸∪𝑅 |𝐸 . Instead, we will
reduce interpolation for 𝑁𝐸∪𝑅 to interpolation for a certain modification of 𝑁𝐸∪𝑅 |𝐸 . Our first step
will be to show that 𝑁𝐸∪𝑅 |𝑅 is not perfectly balanced, and give a geometric description of its Harder–
Narasimhan (HN) filtration.

Lemma 13.1. Let 𝑞1, . . . , 𝑞2𝑛+2 be a general collection of points on P1. Let 𝑝1, . . . , 𝑝2𝑛+2 be a general
collection of points on a general elliptic curve E. Then there exist exactly two maps of degree 𝑛 + 1 from
E to P1 that send 𝑝𝑖 to 𝑞𝑖 .
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Proof. If 𝑓 : 𝐸 → P1 is a general map of degree 𝑛 + 1, then 𝑓 ∗𝑇P1 (−𝑝1 − · · · − 𝑝2𝑛+2) has vanishing
cohomology. Therefore, deformations of f are in bijection with deformations of the 𝑓 (𝑝𝑖). The number
of maps of degree 𝑛 + 1 from E to P1 that send 𝑝𝑖 to 𝑞𝑖 is therefore finite and nonzero.

To calculate this number, we degenerate the target P1 to a binary curve, with 𝑞1, 𝑞2, . . . , 𝑞𝑛+1 on
the left P1, and 𝑞𝑛+2, 𝑞𝑛+3, . . . , 𝑞2𝑛+2 on the right P1. This degeneration is illustrated in the following
diagram:

𝑞1
𝑞2

𝑞𝑛+1· · ·
𝑞𝑛+2 𝑞𝑛+3 · · ·

𝑞2𝑛+2

Such a map 𝐸 → P1 then degenerates to an admissible cover from a marked curve whose sta-
ble model is (𝐸, 𝑝1, 𝑝2, . . . , 𝑝2𝑛+2). One can construct two such admissible covers (both with no in-
finitesimal deformations sending 𝑝𝑖 to 𝑞𝑖): In one such cover, E maps to the left component, with
𝑝1, 𝑝2, . . . , 𝑝𝑛+1 mapping to 𝑞1, 𝑞2, . . . , 𝑞𝑛+1, and 𝑝𝑛+2, 𝑝𝑛+3, . . . , 𝑝2𝑛+2 mapping to the node; each of
the points 𝑝𝑛+2, 𝑝𝑛+3, . . . , 𝑝2𝑛+2 is then attached to a rational tail mapping isomorphically onto the right
component. Similarly, in the other such cover, E maps to the right component, with 𝑝𝑛+2, 𝑝𝑛+3, . . . , 𝑝2𝑛+2
mapping to 𝑞𝑛+2, 𝑞𝑛+3, . . . , 𝑞2𝑛+2, and 𝑝1, 𝑝2, . . . , 𝑝𝑛+1 mapping to the node and attached to a ratio-
nal tail mapping isomorphically onto the left component. These covers are pictured in the following
diagrams:

𝑝1
𝑝2 · · · 𝑝𝑛+1

𝑞1
𝑞2

𝑞𝑛+1· · ·

𝑝𝑛+2

𝑝2𝑛+2

...

𝑞𝑛+2 𝑞𝑛+3 · · · 𝑞2𝑛+2

𝑝2𝑛+2
· · ·

𝑝𝑛+3𝑝𝑛+2

𝑞2𝑛+2
· · ·

𝑞𝑛+2 𝑞𝑛+3

𝑝𝑛+1

𝑝1

...

𝑞𝑛+1
𝑞2

· · ·
𝑞1

In fact, these are the only two such admissible covers. Indeed, the curve E must map to one of the
two components of the above degeneration of the target P1, say without loss of generality to the left
component. Then 𝑝𝑛+2, . . . , 𝑝2𝑛+2 must map to the node, which we normalize to [1 : 0]. Hence, the map
𝐸 → P1 is given by [𝑠 : 1] for a section 𝑠 ∈ 𝐻0(O(𝑝𝑛+2 + · · · + 𝑝2𝑛+2)). Since 𝑝1, . . . , 𝑝𝑛+1 are general,
the evaluation map 𝐻0(O(𝑝𝑛+2 + · · · + 𝑝2𝑛+2)) →

⊕𝑛+1
𝑖=1 O(𝑝𝑛+2 + · · · + 𝑝2𝑛+2) |𝑝𝑖 is an isomorphism.

Hence, s is uniquely determined. We conclude that, when 𝑞1, 𝑞2, . . . , 𝑞2𝑛+2 ∈ P1 are general, there are
exactly two such maps. �

Write 𝑓𝑖 : 𝐸 → P1 (for 𝑖 ∈ {1, 2}) for these two maps, and 𝑓 = ( 𝑓1, 𝑓2) : 𝐸 → P1×P1 for the resulting
map.

Lemma 13.2. In the setup of Lemma 13.1, the map 𝑓 is a general map from E to P1 × P1 of bidegree
(𝑛 + 1, 𝑛 + 1). In particular:

• 𝑓 is birational onto its image, and its image is nodal.
• 𝑓

∗OP1×P1 (1,−1) ∈ Pic0(𝐸) is general (and thus nontrivial).

Proof. Fix a general elliptic curve E. Let 𝑓 : 𝐸 → P1 × P1 be a general map. Write Δ ⊂ P1 × P1 for
the diagonal. Then the {𝑝1, 𝑝2, . . . , 𝑝2𝑛+2} = 𝑓 −1(Δ) ⊂ 𝐸 , and their images {𝑞1, 𝑞2, . . . , 𝑞2𝑛+2} ⊂ P1

https://doi.org/10.1017/fmp.2023.22 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.22


78 E. Larson and I. Vogt

under the composition of either projection with f, satisfy all the hypotheses of Lemma 13.1 except for
possibly genericity.

To complete the proof, it remains to check that there is no obstruction to deforming f so that these
points become general. In other words, we must check 𝐻1 ( 𝑓 ∗𝑇P1×P1 (−Δ)) = 0. But this is true because
f is general and 𝑓 ∗𝑇P1×P1 (−Δ) � 𝑓 ∗OP1×P1 (1,−1) ⊕ 𝑓 ∗OP1×P1 (−1, 1). �

Lemma 13.3. In the setup of Lemma 13.1, we have

𝑓
∗OP1×P1 (1, 1) � O𝐸 (𝑝1 + 𝑝2 + · · · + 𝑝2𝑛+2).

Proof. The isomorphism class of the line bundle 𝑓
∗OP1×P1 (1, 1) is independent of the moduli of the

points 𝑞1, . . . , 𝑞2𝑛+2 because they vary in a rational base. Hence, we may calculate it in the degeneration
of Lemma 13.1, where the result clearly holds. �

Lemma 13.4. In the setup of Lemma 13.1, the pushforward of O𝐸 (𝑝1 + 𝑝2 + · · · + 𝑝2𝑛+2) along either
map is perfectly balanced, that is,

( 𝑓𝑖)∗O𝐸 (𝑝1 + 𝑝2 + · · · + 𝑝2𝑛+2) � OP1 (1)⊕(𝑛+1) .

Proof. Since 𝑓𝑖 is of degree 𝑛 + 1, the pushforward ( 𝑓𝑖)∗O𝐸 (𝑝1 + 𝑝2 + · · · + 𝑝2𝑛+2) is a rank 𝑛 + 1 vector
bundle on P1, that is, we can write

( 𝑓𝑖)∗O𝐸 (𝑝1 + 𝑝2 + · · · + 𝑝2𝑛+2) �

𝑛+1⊕
𝑗=1

OP1 (𝑎 𝑗 ).

The integers 𝑎 𝑗 satisfy

∑
𝑎 𝑗 = 𝜒

 !"
𝑛+1⊕
𝑗=1

OP1 (𝑎 𝑗 )
#$% − (𝑛 + 1) = 𝜒(O𝐸 (𝑝1 + 𝑝2 + · · · + 𝑝2𝑛+2)) − (𝑛 + 1)

= 2𝑛 + 2 − (𝑛 + 1) = 𝑛 + 1,

so to see that 𝑎 𝑗 = 1 for all j, it suffices to see that 𝑎 𝑗 < 2 for all j, that is, that

0 = 𝐻0  !"
𝑛+1⊕
𝑗=1

OP1 (𝑎 𝑗 − 2)#$% = 𝐻0(O𝐸 (𝑝1 + 𝑝2 + · · · + 𝑝2𝑛+2) ⊗ 𝑓 ∗𝑖 OP1 (−2)),

or equivalently that

O𝐸 (𝑝1 + 𝑝2 + · · · + 𝑝2𝑛+2) � 𝑓
∗OP1×P1 (2, 0) = 𝑓

∗OP1×P1 (1, 1) ⊗ 𝑓
∗OP1×P1 (1,−1),

which follows from Lemmas 13.2 and 13.3. �

Write 𝑟 = 2𝑛 + 1. Applying Lemma 13.1, there are exactly two maps 𝑓𝑖 : 𝐸 → P1 � 𝑅, of degree
𝑛 + 1, sending Γ|𝐸 to Γ|𝑅, where Γ = 𝐸 ∩ 𝑅. Write 𝑓 = ( 𝑓1, 𝑓2) : 𝐸 → P1 × P1. Let S denote the blowup
of P1 × P1 at the nodes of the image of E under 𝑓 , so that the 𝑓𝑖 give rise to an embedding 𝑓 : 𝐸 ↩→ 𝑆.
Writing 𝐹1, . . . , 𝐹𝑛2−1 for the exceptional divisors, define

𝐿 := O𝑆 (𝑛, 𝑛)
(
−
∑

𝐹𝑖

)
= 𝐾𝑆 (1, 1) (𝐸).
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By adjunction on S and Lemma 13.3, we have 𝐿 |𝐸 � O𝑆 (1, 1) |𝐸 � O𝐸 (1). Let 𝜋1 : 𝑆 → P1 and
𝜋2 : 𝑆 → P1 denote the two projections. By intersection theory, for 𝑥 ∈ P1, the restriction of the
line bundle 𝐿(−𝐸) to the corresponding fiber 𝜋−1

𝑖 (𝑥) is the (unique) line bundle of total degree −1
that is isomorphic to OP1 (−1) on any exceptional divisors lying over x. In particular, it has vanishing
cohomology, so by the theorem on cohomology and base-change, (𝜋𝑖)∗𝐿(−𝐸) = 𝑅1(𝜋𝑖)∗𝐿(−𝐸) = 0.
Combining this with Lemma 13.4, we therefore have a natural identification

(𝜋𝑖)∗𝐿 � ( 𝑓𝑖)∗O𝐸 (1) � OP1 (1)𝑛+1. (13.1)

The map 𝑆 → P2𝑛+1 via |𝐿 | thus factors through a (uniquely defined) embedding of P[(𝜋𝑖)∗𝐿] �

P1 × P𝑛, via the complete linear system of the relative O(1) on P[(𝜋𝑖)∗𝐿], which corresponds to
|OP1×P𝑛 (1, 1) | on P1 × P𝑛. In particular, since 𝑆 → P[(𝜋𝑖)∗𝐿] is an embedding, so is 𝑆 → P2𝑛+1. Write
Σ𝑖 ⊂ P2𝑛+1 for the scroll obtained as the image of the map P1 × P𝑛 → P2𝑛+1.

Putting all of this together, we can summarize this situation with the following diagram of
inclusions:

Σ1

𝐸 𝑆 P𝑟

Σ2

Lemma 13.5. The intersection Σ1 ∩ Σ2 coincides with S.

Proof. Let 𝑥1, 𝑥2 ∈ P1 be any two points, and write Λ𝑖 for the fiber of Σ𝑖 over 𝑥𝑖 . Note that Λ𝑖 is the
span of the divisor 𝑓 −1

𝑖 (𝑥𝑖).
First, suppose that (𝑥1, 𝑥2) is not a node of 𝑓 (𝐸). If (𝑥1, 𝑥2) does not lie on 𝑓 (𝐸), then the span of Λ1

and Λ2 is the span of the divisor 𝑓 −1
1 (𝑥1) + 𝑓 −1

2 (𝑥2). Since this divisor is linearly equivalent to 𝑂𝐸 (1),
the span is a hyperplane. Otherwise, if (𝑥1, 𝑥2) = 𝑓 (𝑦) lies on 𝑓 (𝐸), then the span of Λ1 and Λ2 is the
span of the divisor 𝑓 −1

1 (𝑥1) + 𝑓 −1
2 (𝑥2) − 𝑦. Since any 2𝑛 + 1 points on E are linearly general, this span is

again a hyperplane. Either way, since Λ1 and Λ2 span a hyperplane, they must meet at the single point
that is the image of (𝑥1, 𝑥2) on S.

Next, suppose that (𝑥1, 𝑥2) is a node of 𝑓 (𝐸), say (𝑥1, 𝑥2) = 𝑓 (𝑦1) = 𝑓 (𝑦2). Then the span of Λ1 and
Λ2 is the span of the divisor 𝑓 −1

1 (𝑥1) + 𝑓 −1
2 (𝑥2) − 𝑦1 − 𝑦2. Since any 2𝑛 points on E are linearly general,

this span is codimension 2, and so Λ1 and Λ2 meet along the line that is the image of the exceptional
divisor over (𝑥1, 𝑥2).

Combining these two cases, we see that Σ1 ∩ Σ2 coincides with S set-theoretically. To upgrade this
to a scheme-theoretic equality, we must show that Σ1 and Σ2 are quasi-transverse along S, meaning that
the tangent spaces to Σ1 and Σ2 at points of S span a hyperplane. (They cannot span all of P𝑟 , because
Σ1∩Σ2 is pure of dimension 2.) Away from the exceptional divisors, this is straightforward: The tangent
space to Σ𝑖 contains Λ𝑖 , so it suffices to note that Λ1 and Λ2 span a hyperplane.

It remains to consider an exceptional divisor 𝑀 = Λ1 ∩ Λ2. Write Λ for the span of Λ1 and Λ2. As
in the previous case, the span of the tangent spaces to the Σ𝑖 contains Λ; however, in this case Λ is
codimension 2. It thus remains to show that the natural map 𝑁𝑀/Σ1 ⊕ 𝑁𝑀/Σ2 → 𝑁Λ/P𝑟 |𝑀 is everywhere
nonzero along M. Recall that we write 𝑦𝑖 for the points on E lying over the node, that is, satisfying
𝑓 (𝑦1) = 𝑓 (𝑦2) = (𝑥1, 𝑥2) so that M is the line spanned by 𝑦1 and 𝑦2. Let 𝑦

𝑗
𝑖 be nontrivial first-order

deformations of the 𝑦𝑖 satisfying 𝑓 𝑗 (𝑦
𝑗
1) = 𝑓 𝑗 (𝑦

𝑗
2). Such deformations are pictured in the following

diagram:
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𝐸

𝑦1
1

𝑦1
2

𝑦2
1 𝑦2

2

𝑥1

𝑥2

P1 × P1

The lines joining 𝑦
𝑗
1 and 𝑦

𝑗
2 give first-order deformations of M in Σ 𝑗 , that is, sections 𝜎𝑗 of 𝑁𝑀/Σ 𝑗 .

It suffices to see that the images of the 𝜎𝑗 in 𝑁Λ/P𝑟 |𝑀 do not simultaneously vanish anywhere along M.
The span of Λ and the tangent line to E at 𝑦1 is the span of the divisor 𝑓 −1

1 (𝑥1) + 𝑓 −1
2 (𝑥2) − 𝑦2. Since

any 2𝑛 + 1 points on E are linearly general, this span is a hyperplane. Similarly, the span of Λ and the
tangent line to E at 𝑦2 is a hyperplane. Moreover, the span of Λ and the tangent lines to E at both 𝑦1 and
𝑦2 is the span of the divisor 𝑓 −1

1 (𝑥1) + 𝑓 −1
2 (𝑥2), which is linearly equivalent to O𝐸 (1), and therefore

again spans a hyperplane. Since this hyperplane contains the first two of these hyperplanes, all three of
these hyperplanes must be equal. Write Λ′ for this hyperplane.

By construction, the images of both 𝜎𝑗 are nonzero sections in the subspace 𝑁Λ/Λ′ |𝑀 � O𝑀 (1).
Because 𝑓 (𝐸) is nodal, the deformations (𝑦1

1, 𝑦
1
2), (𝑦

2
1, 𝑦

2
2) form a basis of 𝑇𝑦1 𝐸 ⊕ 𝑇𝑦2 𝐸 . The images

of these two sections thus form a basis of 𝐻0(𝑁Λ/Λ′ |𝑀 ) = 𝐻0(O𝑀 (1)) and so do not simultaneously
vanish anywhere along M as desired. �

The upshot of this is that we have a natural filtration of 𝑁𝐸∪𝑅, whose successive quotients are vector
bundles of ranks 1, 2𝑛 − 2 and 1, respectively:

0 ⊂ 𝑁𝐸∪𝑅/𝑆 ⊂ 𝑁𝐸∪𝑅/Σ1 + 𝑁𝐸∪𝑅/Σ2 ⊂ 𝑁𝐸∪𝑅 . (13.2)

Lemma 13.6. We have 𝑐1 (𝑁𝐸∪𝑅/Σ 𝑗 |𝑅) = 𝑛(2𝑛 + 3) + 1.

Proof. The Picard group of Σ 𝑗 is spanned by the class 𝛾 of one n-plane and the restriction of the
hyperplane class h from P2𝑛+1. One computes that 𝐾Σ 𝑗 = (𝑛 − 1)𝛾 − (𝑛 + 1)ℎ for such a scroll. By
adjunction we have

𝑐1 (𝑁𝑅/Σ 𝑗 ) = 𝑐1 (𝐾𝑅) − 𝑐1 (𝐾𝑆 |𝑅)

= −2 − ((𝑛 − 1)𝛾 − (𝑛 + 1)ℎ) · 𝑅
= −2 − (𝑛 − 1) (𝛾 · 𝑅) + (𝑛 + 1) (ℎ · 𝑅)

= −2 − (𝑛 − 1) · 1 + (𝑛 + 1) · 2𝑛

= 2𝑛2 + 𝑛 − 1.
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Therefore,

𝑐1 (𝑁𝐸∪𝑅/Σ 𝑗 |𝑅) = 𝑐1(𝑁𝑅/𝑆) + #Γ = (2𝑛2 + 𝑛 − 1) + (2𝑛 + 2) = 𝑛(2𝑛 + 3) + 1.

�

Proposition 13.7. The vector bundle 𝑁𝐸∪𝑅 |𝑅 � 𝑁𝑅 [
+� 𝐸] is isomorphic to

OP1 (2𝑛 + 4) ⊕ OP1 (2𝑛 + 3)⊕(2𝑛−2) ⊕ OP1 (2𝑛 + 2).

Moreover, its HN-filtration is precisely the restriction of the filtration (13.2) to R.

Proof. By Lemma 5.8, we have either 𝑁𝑅 [
+� 𝐸] � OP1 (2𝑛 + 4) ⊕ OP1 (2𝑛 + 3)⊕(2𝑛−2) ⊕ OP1 (2𝑛 + 2)

or 𝑁𝑅 [
+� 𝐸] � OP1 (2𝑛 + 3)⊕2𝑛. Lemma 13.6 rules out the second case since OP1 (2𝑛 + 3)⊕2𝑛 admits

no subbundle of rank n and first Chern class 𝑛(2𝑛 + 3) + 1.
Moreover, any subbundle of OP1 (2𝑛+4) ⊕OP1 (2𝑛+3)⊕(2𝑛−2) ⊕OP1 (2𝑛+2) of rank n and first Chern

class 𝑛(2𝑛 + 3) + 1 contains 𝑂P1 (2𝑛 + 4) and is contained in 𝑂P1 (2𝑛 + 4) ⊕ OP1 (2𝑛 + 3)⊕(2𝑛−2) . Since
the graded pieces of equation (13.2) are the intersection and span of the 𝑁𝐸∪𝑅/Σ 𝑗 , they must therefore
coincide with the HN-filtration. �

This provides the promised determination of 𝑁𝑅 [
+� 𝐸], and the promised geometric construction

of its HN-filtration. This geometric description of the HN-filtration of 𝑁𝐸∪𝑅 |𝑅 allows us to reduce
interpolation for 𝑁𝐸∪𝑅 to interpolation for a modification of 𝑁𝐸∪𝑅 |𝐸 � 𝑁𝐸 [

+� 𝑅] as follows.

Lemma 13.8. Let p and q be two distinct points of 𝐸 ∩ 𝑅. Then 𝑁𝐸∪𝑅 satisfies interpolation provided
that

𝑁𝐸 [
+� 𝑅] [𝑝 +

→ 𝑁𝐸/𝑆] [𝑞
−
→ 𝑁𝐸/Σ1 + 𝑁𝐸/Σ2] (13.3)

satisfies interpolation.

Proof. We imitate the basic idea of the proof of [2, Lemma 8.8]. Write Γ := 𝐸 ∩ 𝑅, which has size 𝑟 +1.
Write 𝑥, 𝑦, 𝑧 for three general points on R. Twisting down, we have

𝑁𝐸∪𝑅 (−𝑥 − 𝑦 − 𝑧) |𝑅 � OP1 (𝑟 − 2) ⊕ OP1 (𝑟 − 1)⊕𝑟−3 ⊕ OP1 (𝑟).

Therefore,the evaluation map

ev𝑅,Γ : 𝐻0 (𝑁𝐸∪𝑅 |𝑅) → 𝑁𝐸∪𝑅 |Γ

is injective when restricted to the subspace 𝐻0 (𝑁𝐸∪𝑅 |𝑅 (−𝑥 − 𝑦 − 𝑧)). Our aim is to suitably specialize
the points 𝑥, 𝑦, 𝑧 so as to be able to identify the subspace of sections of 𝑁𝐸∪𝑅 |𝐸

𝑉𝑥,𝑦,𝑧 :=
{
𝜎 ∈ 𝐻0 (𝐸, 𝑁𝐸∪𝑅 |𝐸 ) : 𝜎 |Γ ∈ Im

(
ev𝑅,Γ |𝐻 0 (𝑁𝐸∪𝑅 |𝑅 (−𝑥−𝑦−𝑧))

)}
that glues to the image of 𝐻0(𝑁𝐸∪𝑅 |𝑅 (−𝑥 − 𝑦 − 𝑧)) under ev𝑅,Γ. By Lemma 3.6, it suffices to show
that this subspace of sections has the correct dimension and satisfies interpolation to conclude that
𝑁𝐸∪𝑅 (−𝑥 − 𝑦 − 𝑧) satisfies interpolation, which implies that 𝑁𝐸∪𝑅 satisfies interpolation.

Since #Γ = 𝑟 + 1, the evaluation map ev𝑅,Γ restricted to the sections of the largest factor OP1 (𝑟) is
already an isomorphism. The evaluation on the other factors is not an isomorphism: On the OP1 (𝑟 − 1)
factors, the image is a codimension 1 subspace of OP1 (𝑟 − 1) |Γ, and on the OP1 (𝑟 − 2) factor, the image
is a codimension 2 subspace of OP1 (𝑟 − 2) |Γ. We will appropriately specialize so as to force these
subspaces to be ‘coordinate’ planes.
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First, limit x to p. The gluing data across the nodes (in particular at p) is fixed, and therefore the limiting
codimension 1 subspace ofOP1 (𝑟−1) |Γ contains the subspaceOP1 (𝑟−1) |Γ\𝑝⊕0|𝑝 of sections vanishing
at p. Since this subspace has the correct dimension, it must be the flat limit. Then limit y to q. In the limit,
the codimension 2 subspace of OP1 (𝑟 − 2) |Γ must contain the subspace OP1 (𝑟 − 2) |Γ\{𝑝,𝑞 } ⊕ 0|𝑝 ⊕ 0|𝑞
of sections vanishing at p and q. Since this has the correct dimension, it must be the flat limit. Since the
HN-filtration on 𝑁𝐸∪𝑅 |𝑅 is the restriction of equation (13.2) to R, this flat limit is

𝐻0 (
𝐸, 𝑁𝐸 [

+� 𝑅] [𝑝
−
→ 𝑁𝐸/𝑆] [𝑞

−
→ 𝑁𝐸/Σ1 + 𝑁𝐸/Σ2]

)
.

Since this subspace is the space of sections of a vector bundle, it suffices to show that this bundle satisfies
interpolation. To complete the proof, we note that 𝜇(𝑁𝐸 [

+� 𝑅] [𝑝
−
→ 𝑁𝐸/𝑆] [𝑞

−
→ 𝑁𝐸/Σ1 +𝑁𝐸/Σ2 ]) ≥ 1,

and so it suffices by Lemma 3.8 to prove interpolation after twisting up by p. �

13.2. The case 𝒓 ≥ 9

By Lemma 13.8, it suffices to show equation (13.3) satisfies interpolation. On an elliptic curve, we can
characterize which bundles satisfy interpolation in terms of the Atiyah classification.

Lemma 13.9. Letℰ be a vector bundle on an elliptic curve E. Thenℰ satisfies interpolation if and only
if there is a nonnegative integer a for which every Jordan–Holder (JH) factor ℱ ofℰ satisfies

𝑎 ≤ 𝜇(ℱ) ≤ 𝑎 + 1 and ℱ � O𝐸 . (13.4)

Proof. By the Atiyah classification, every JH-factor ofℰ is both a subbundle and quotient ofℰ.
First, supposeℰ satisfies interpolation. Thenℰ is nonspecial, so every JH-factor ℱ is nonspecial or

equivalently satisfies 𝜇(ℱ) ≥ 0 and ℱ � O𝐸 . If no such nonnegative integer a exists, then there would
be a positive integer b and JH-factors ℱ1 and ℱ2 with 𝜇(ℱ1) < 𝑏 < 𝜇(ℱ2). This is a contradiction,
since for general points 𝑝1, 𝑝2, . . . , 𝑝𝑏 ∈ 𝐸 , we would have

𝐻0 (ℰ(−𝑝1 − · · · − 𝑝𝑏)) ≠ 0 and 𝐻1 (ℰ(−𝑝1 − · · · − 𝑝𝑏)) ≠ 0.

In the other direction, suppose there is a nonnegative integer a for which every JH-factor ℱ satisfies
equation (13.4). Then for general points 𝑝1, 𝑝2, . . . , 𝑝𝑎+1 ∈ 𝐸 ,

𝐻0(ℰ(−𝑝1 − · · · − 𝑝𝑎+1)) = 0 and 𝐻1(ℰ(−𝑝1 − · · · − 𝑝𝑎)) = 0.

Therefore,ℰ satisfies interpolation. �

Lemma 13.10. Let ℰ be a vector bundle on an elliptic curve E, and let a and b be integers. For two
points 𝑝, 𝑞 ∈ 𝐸 , consider subspaces Δ ⊆ ℰ |𝑝 of rank 1 and Λ ⊆ ℰ |𝑞 of corank 1. If every JH-factor
ℱ of ℰ satisfies 𝑎 < 𝜇(ℱ) < 𝑏, then every JH-factor ℱ′ of ℰ′ := ℰ[𝑝 +

→ Δ] [𝑞
−
→ Λ] satisfies

𝑎 ≤ 𝜇(ℱ′) ≤ 𝑏.

Proof. Up to replacing ℰ′ with its dual, it suffices to show that every JH-factor ℱ′ of ℰ′ satisfies
𝜇(ℱ′) ≤ 𝑏. Since every JH-factor is a subbundle, and ℰ′ is a subsheaf of ℰ[𝑝 +

→ Δ], it suffices to
show that every subsheaf ℱ′ ofℰ[𝑝 +

→ Δ] satisfies 𝜇(ℱ′) ≤ 𝑏.
If ℱ′ is a subsheaf of ℰ, we are done by assumption. Otherwise, write x for the degree of ℱ′ and y

for the rank of ℱ′ so that 𝜇(ℱ′) = 𝑥/𝑦. Write ℱ = ℱ′ ∩ℰ for the corresponding subsheaf ofℰ. Then
(𝑥 − 1)/𝑦 = 𝜇(ℱ) < 𝑏. Since b is an integer, 𝜇(ℱ′) = 𝑥/𝑦 ≤ 𝑏 as desired. �

Combining Lemmas 13.9 and 13.10, it suffices to prove:

Proposition 13.11. If 𝑟 ≥ 9 is odd, every JH-factor ℱ of 𝑁𝐸 [
+� 𝑅] satisfies 𝑟 + 4 < 𝜇(ℱ) < 𝑟 + 5.
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Our proof of Proposition 13.11 will be by induction on r.
When 𝑟 = 7, we have 𝜇(𝑁𝐸 [

+� 𝑅]) = 12 = 𝑟 +5. Since 𝐼 (8, 1, 7, 0, 1) holds, we deduce from Lemma
13.9 that every JH-factorℱ of 𝑁𝐸 [

+� 𝑅] has slope exactly 𝑟+5 in this case. Although Proposition 13.11
does not hold in this case, it is close enough that we will be able to leverage it to establish the case 𝑟 = 9.

In general, our strategy will be to use our inductive hypothesis to show that Proposition 13.11 is close
enough to holding that naturality of the HN-filtration forces it to hold exactly.

Definition 13.12. Let E be a genus 1 curve. We say that a map

Pic𝑎 𝐸
𝑓
−→ Pic𝑏 𝐸

is natural if for any automorphism 𝜃 : 𝐸 → 𝐸 , the following diagram commutes:

Pic𝑎 𝐸 Pic𝑏 𝐸

Pic𝑎 𝐸 Pic𝑏 𝐸

𝑓

𝜃∗ 𝜃∗

𝑓

Proposition 13.13. If Pic𝑎 𝐸 → Pic𝑏 𝐸 is natural, then 𝑎 divides b.

Proof. Translation by an a-torsion point acts as the identity on Pic𝑎 𝐸 , and so it must also act as the
identity on Pic𝑏 𝐸 . �

Proof of Proposition 13.11. It suffices to prove that 𝑁𝐸 [
+� 𝑅] has no subbundles of slope 𝑟 +5 or more

and no quotient bundles of slope 𝑟 + 4 or less. We will prove this by induction on r, using the case 𝑟 = 7
discussed above as our base case. Our argument will consist of two steps:

1. We specialize so that the statement of the proposition becomes false but still close enough to true
that we can gather information about the possible limits of subbundles of large slope (respectively
quotient bundles of small slope).

2. Leveraging this information, we apply Proposition 13.13 to the general fiber.

Our specialization will be of R to the union 𝑅◦ = 𝑝𝑞 ∪ 𝑅−, of a one-secant line 𝑝𝑞 and an (𝑟 − 1)-
secant rational curve 𝑅− of degree 𝑟 − 2 meeting 𝑝𝑞 at a single point. Projection from 𝑝𝑞 induces an
exact sequence

0 →
[
𝑆 := O𝐸 (1) (2𝑝 + 𝑞) ⊕ O𝐸 (1) (2𝑞 + 𝑝)

]
→ 𝑁𝐸 [

+� 𝑅◦]

→
[
𝑄 := 𝑁𝐸 (0,0;2) (𝑝 + 𝑞) [

+� 𝑅−]
]
→ 0. (13.5)

The bundle S is perfectly balanced of slope 𝑟 + 4. The bundle Q is a twist of another instance of our
problem in P𝑟−2. If 𝑟 ≥ 11, then by induction, every JH-factor of Q has slope strictly between 𝑟 + 4 and
𝑟 + 5; if 𝑟 = 9, then every JH-factor of Q has slope exactly 𝑟 + 5.

We begin by showing 𝑁𝐸 [
+� 𝑅] has no quotient bundles of slope 𝑟 + 4 or less. Since Q has no

quotient bundles of slope 𝑟 +4 or less, any such quotient must specialize to a quotient of S, and therefore
must have slope exactly 𝑟 + 4 and rank at most 2. Let G be the maximal such quotient of 𝑁𝐸 [

+� 𝑅] (i.e.,
on the general fiber). Our above specialization of R shows that 𝜇(𝐺) = 𝑟 + 4 and 𝑛 := rk 𝐺 ≤ rk 𝑆 = 2.
The determinant det 𝐺 depends on the following data:

• A line bundle O𝐸 (1).
• A basis for 𝐻0 (O𝐸 (1)).
• A hyperplane 𝐻 ⊂ P𝐻0 (O𝐸 (1))∨.
• A rational curve 𝑅 ⊂ 𝐻 of degree 𝑟 − 1 passing through the 𝑟 + 1 points of 𝐸 ∩ 𝐻.
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Except for the choice of line bundle O𝐸 (1), all of these data vary in a rational family. Since any map
from a rational variety to an abelian variety is constant, det 𝐺 depends only on the choice of line bundle
O𝐸 (1). Extracting the determinant of G therefore gives a natural map

Pic𝑟+1 𝐸 → Pic𝑛(𝑟+4) 𝐸.

Hence, by Proposition 13.13, we have (𝑟 + 1) | 𝑛(𝑟 + 4), and therefore (𝑟 + 1) | 3𝑛. Since we have
3𝑛 ≤ 6 < 10 ≤ 𝑟 + 1, we must have 3𝑛 = 0, that is, 𝑛 = 0 as desired.

We next show that 𝑁𝐸 [
+� 𝑅] has no subbundles of slope 𝑟+5 or more. If 𝑟 > 9, then the specialization

𝑁𝐸 [
+� 𝑅◦] has no such subbundle because S and Q do not. It therefore remains only to consider the case

𝑟 = 9, in which every JH-factor of S has slope 13 and every JH-factor of Q has slope 14. Let G be the
maximal such subbundle of 𝑁𝐸 [

+� 𝑅] (i.e., on the general fiber). Our above specialization of R shows
that 𝜇(𝐺) = 14 and 𝑛 := rk 𝐺 ≤ rk 𝑄 = 6. Extracting the determinant of G therefore gives a natural map

Pic10 𝐸 → Pic14𝑛 𝐸.

Hence, by Proposition 13.13, we have that 10 | 14𝑛, so 5 | 𝑛. If 𝑛 = 0, we are done, so suppose that 𝑛 = 5.
To obtain a contradiction, we analyze what happens in our specialization, in which G specializes to

a subbundle 𝐺◦ of Q with slope 14 and rank 5. We consider the determinant det[𝐺◦(−𝑝 − 𝑞)]. A priori
this depends only on O𝐸 (1), p, and q (the remaining data vary in a rational family). In fact, we claim it
depends only on

O𝐸 (0,0;2) (1) = O𝐸 (1) − 𝑝 − 𝑞.

Indeed, det[𝐺◦(−𝑝 − 𝑞)] is a product of JH-factors of 𝑁𝐸 (0,0;2) [
+� 𝑅−], which is a discrete set of

possibilities once we fix O𝐸 (0,0;2) (1) and some additional data varying in a rational family. As we fix
O𝐸 (0,0;2) (1) and these additional data, we may allow {𝑝, 𝑞} to vary arbitrarily in 𝐸 × 𝐸 by Lemma 8.1.
In this way, we obtain a map from 𝐸 × 𝐸 to this discrete set, which must therefore be constant because
𝐸 ×𝐸 is connected. Therefore,det[𝐺◦(−𝑝− 𝑞)] depends only on O𝐸 (0,0;2) (1) plus these additional data
varying in a rational family and thus only on O𝐸 (0,0;2) (1). The determinant of 𝐺◦(−𝑝 − 𝑞) therefore
gives a natural map

Pic8 𝐸 → Pic60 𝐸.

This is a contradiction by Proposition 13.13 since 8 � 60. �

13.3. The case 𝒓 = 7

To handle this case, we will first have to study the restriction of equation (13.2) to E, which we do for
arbitrary odd r. This is a filtration of 𝑁𝐸 [

+� 𝑅] whose successive quotients are:

𝑁𝐸/𝑆 (1), 𝑁𝑆/Σ1 |𝐸 ⊕ 𝑁𝑆/Σ2 |𝐸 , and
𝑁𝐸

𝑁𝐸/Σ1 + 𝑁𝐸/Σ2

.

We write 𝐻𝑖 := 𝑓 ∗𝑖 OP1 (1) for the corresponding hyperplane class.

Proposition 13.14. We have 𝑁𝐸/𝑆 � O𝐸 (3 − 𝑛) (and so 𝑁𝐸/𝑆 (1) � O𝐸 (4 − 𝑛)).

Proof. We consider the sequence (not exact) of maps

[𝑁𝐸/𝑆 � 𝑁 𝑓 ] → 𝑁 𝑓 → 𝑓
∗
𝑁 𝑓 (𝐸)/P1×P1 .
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By inspection, both of these maps drop rank exactly at the points of E lying over the nodes of 𝑓 .
Therefore,their Chern classes lie in a linear progression, that is,

𝑐1 (𝑁𝐸/𝑆) = 2 · 𝑐1 (𝑁 𝑓 ) − 𝑐1 ( 𝑓
∗
𝑁 𝑓 (𝐸)/P1×P1 )

= −2𝑐1 ( 𝑓
∗
𝐾P1×P1) − 𝑐1 ( 𝑓

∗OP1×P1 (𝑛 + 1, 𝑛 + 1))
= −2(−2𝐻1 − 2𝐻2) − (𝑛 + 1) (𝐻1 + 𝐻2)

= (3 − 𝑛) (𝐻1 + 𝐻2).

�Proposition 13.15. We have 𝑐1 (𝑁𝑆/Σ1 |𝐸 ⊕ 𝑁𝑆/Σ2 |𝐸 ) = O𝐸 (3𝑛 − 3).

Proof. As in the proof of Proposition 13.7, define the classes 𝛾 𝑗 and h in PicΣ 𝑗 to be the class of one
n-plane, and the restriction of the hyperplane class from P2𝑛+1, respectively. By adjunction,

𝑐1 (𝑁𝐸/Σ 𝑗 ) = −𝑐1(𝐾Σ 𝑗 |𝐸 ) = −
(
(𝑛 − 1)𝛾 𝑗 − (𝑛 + 1)ℎ

)
· 𝐸.

Therefore,

𝑐1 (𝑁𝑆/Σ1 |𝐸 ⊕ 𝑁𝑆/Σ2 |𝐸 ) = 𝑐1 (𝑁𝐸/Σ1) + 𝑐1 (𝑁𝐸/Σ2 ) − 2𝑐1 (𝑁𝐸/𝑆)

= −(𝑛 − 1) (𝛾1 + 𝛾2) · 𝐸 + 2(𝑛 + 1) (ℎ · 𝐸) − 2(3 − 𝑛) (𝐻1 + 𝐻2)

= −(𝑛 − 1) (𝐻1 + 𝐻2) + 2(𝑛 + 1) (𝐻1 + 𝐻2) − 2(3 − 𝑛) (𝐻1 + 𝐻2)

= (3𝑛 − 3) (𝐻1 + 𝐻2).

�

Proposition 13.16. We have 𝑁𝐸
𝑁𝐸/Σ1+𝑁𝐸/Σ2

� O𝐸 (2).

Proof. Since 𝐾P2𝑛+1 = OP2𝑛+1 (−(2𝑛 + 2)), we have 𝑐1 (𝑁𝐸 ) = O𝐸 (2𝑛 + 2). Combined with the previous
two propositions, this implies the statement of the proposition ((2𝑛 + 2) − (3 − 𝑛) − (3𝑛 − 3) = 2). �

We now take 𝑟 = 7 (equivalently 𝑛 = 3) and let p and q be points of 𝐸 ∩ 𝑅. By Lemma 13.8, it
suffices to show interpolation for

𝑁𝐸 [
+� 𝑅] [𝑝 +

→ 𝑁𝐸/𝑆] [𝑞
−
→ 𝑁𝐸/Σ1 + 𝑁𝐸/Σ2 ] .

This bundle has slope 12, so it suffices to show that for a general effective divisor D of degree 12,

𝐻0 (𝑁𝐸 [
+� 𝑅] [𝑝 +

→ 𝑁𝐸/𝑆] [𝑞
−
→ 𝑁𝐸/Σ1 + 𝑁𝐸/Σ2] (−𝐷)) = 0. (13.6)

Furthermore, 𝐼 (8, 1, 7, 0, 1) holds, so ℎ0 (𝑁𝐸 [
+� 𝑅] (−𝐷)) = ℎ1 (𝑁𝐸 [

+� 𝑅] (−𝐷)) = 0, which implies
that ℎ0(𝑁𝐸 [

+� 𝑅] [𝑝 +
→ 𝑁𝐸/𝑆] (−𝐷)) = 1. Call the unique section 𝜎. If there is any point 𝑞 ∈ 𝐸∩𝑅\{𝑝}

for which 𝜎 |𝑞 ∉ (𝑁𝐸/Σ1 +𝑁𝐸/Σ2 ) |𝑞 , then we have proved the desired vanishing (13.6). We may therefore
assume that at all points of 𝐸∩𝑅\{𝑝}, the value of 𝜎 lies in the subbundle 𝑁𝐸/Σ1+𝑁𝐸/Σ2 . By Proposition
13.16, we have the exact sequence

0 →
(
𝑁𝐸/Σ1 + 𝑁𝐸/Σ2

)
[
+� 𝑅] (−𝐷) → 𝑁𝐸 [

+� 𝑅] (−𝐷) → O𝐸 (2) (−𝐷) → 0. (13.7)

Since deg (O𝐸 (2) (−𝐷) (−𝐸 ∩ 𝑅 + 𝑝)) = −3, we must have that 𝜎 comes from a section of(
𝑁𝐸/Σ1 + 𝑁𝐸/Σ2

)
[
+� 𝑅] [𝑝 +

→ 𝑁𝐸/𝑆] (−𝐷).

It therefore suffices to show that for some 𝑝 ∈ 𝐸 ∩ 𝑅, this bundle has no global sections
(or, equivalently since the degree is −3 such that ℎ1 = 3). Using equation (13.7), we have
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ℎ1 ( (
𝑁𝐸/Σ1 + 𝑁𝐸/Σ2

)
[
+� 𝑅] (−𝐷)

)
= 4, so such a point 𝑝 ∈ 𝐸 ∩ 𝑅 exists unless making positive

modifications towards all points of 𝐸 ∩ 𝑅 does not decrease the ℎ1:

ℎ1 ( (
𝑁𝐸/Σ1 + 𝑁𝐸/Σ2

)
[
+� 𝑅] (−𝐷) [𝐸 ∩ 𝑅 +

→ 𝑁𝐸/𝑆]
)
= 4.

Equivalently, we are done unless

ℎ0 ( (
𝑁𝐸/Σ1 + 𝑁𝐸/Σ2

)
[
+� 𝑅] (−𝐷) [𝐸 ∩ 𝑅 +

→ 𝑁𝐸/𝑆]
)
= 8. (13.8)

Taking the sum of the two normal bundle exact sequences for 𝑆 ↩→ Σ1 and 𝑆 ↩→ Σ2 along E yields

0 → 𝑁𝐸/𝑆 (2(𝐸 ∩ 𝑅)) →
(
𝑁𝐸/Σ1 + 𝑁𝐸/Σ2

)
[
+� 𝑅] [𝐸 ∩ 𝑅 +

→ 𝑁𝐸/𝑆] → 𝑁𝑆/Σ1 |𝐸 ⊕ 𝑁𝑆/Σ2 |𝐸 → 0.
(13.9)

Twisting down by D, the line subbundle 𝑁𝐸/𝑆 (2(𝐸 ∩ 𝑅)) (−𝐷) has degree 4, and hence four global
sections and vanishing 𝐻1. The quotient twisted down by D (which has degree 0) must therefore also
have four global section in order for equation (13.8) to hold. Furthermore, the two scrolls Σ1 and Σ2
are exchanged by monodromy because the two maps 𝑓𝑖 : 𝐸 → P1 in Lemma 13.1 have degree 𝑛 + 1,
which is not a multiple of 2𝑛 + 2, and hence by Proposition 13.13 they cannot be individually naturally
defined. Thus, the two rank 2 bundles 𝑁𝑆/Σ𝑖 |𝐸 (−𝐷) necessarily both have 2 sections. If 𝑁𝑆/Σ𝑖 |𝐸 were
indecomposable, then by the Atiyah classification, it would necessarily be an extension of a degree 12 line
bundle M by itself. As long as O𝐸 (𝐷) � 𝑀 , we would have ℎ0 (𝑁𝑆/Σ𝑖 |𝐸 (−𝐷)) = 0. Therefore,𝑁𝑆/Σ𝑖 |𝐸
is a direct sum of line bundles. Since ℎ0 (𝑁𝑆/Σ𝑖 |𝐸 (−𝐷)) = 2:

𝑁𝑆/Σ𝑖 |𝐸 � 𝐿𝑖1 ⊕ 𝐿𝑖2 where deg(𝐿𝑖1) = 14 and deg(𝐿𝑖2) = 10.

Then det[𝐿11 ⊕ 𝐿21] gives a natural map

Pic8 𝐸 → Pic28 𝐸,

which is a contradiction by Proposition 13.13, since 8 � 28.

A. Code for Section 11

#!/usr/bin/python

XX = set([(5,2,3,0,0), (4,1,3,1,0), (4,1,3,0,1), (4,1,3,1,1),
(6,2,4,0,0), (5,1,4,1,0), (5,1,4,1,1), (5,1,4,2,1), (6,2,4,1,1),
(7,2,5,0,0), (6,1,5,0,1), (6,1,5,1,1)])

def good(d, g, r, l, m):
if not (d >= g+r and 0 <= 2*l <= r and 0 <= m <= (r+1)*d - r*g - r*(r+1)):
return False

if m == g == 0 and 2 * l < (1 - d) % (r - 1):
return False

if (d,g,r,l,m) in XX:
return False

return True

def n_lower_bound(d, g, r):
if r % 2 == 0:
return 3

elif (d, g) == (r + 1, 1):
return 4

else:
return 2

def erasable(r, s10, s11, s20, s21, w10, t1=0, t2=0, strong=True):
if s10 == s11 == s20 == s21 == w10 == 0:
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return (strong and t2 == 0)

if s10 > 0:
if t1 + 1 < r - 1:
if erasable(r, s10 - 1, s11, s20, s21, w10, t1 + 1, t2, strong):
return True

elif t2 < t1 + 1 == r - 1:
if erasable(r, s10 - 1, s11, s20, s21, w10, t2, 0, True):
return True

if s11 > 0:
if t1 + 1 < r - 1:
if erasable(r, s10, s11 - 1, s20, s21, w10, t1 + 1, t2 + 1, strong):
return True

elif t2 + 1 < t1 + 1 == r - 1:
if erasable(r, s10, s11 - 1, s20, s21, w10, t2 + 1, 0, True):
return True

if s20 > 0:
if t1 + 2 < r - 1:
if erasable(r, s10, s11, s20 - 1, s21, w10, t1 + 2, t2, strong):
return True

elif t2 < t1 + 2 == r - 1:
if erasable(r, s10, s11, s20 - 1, s21, w10, t2, 0, True):
return True

elif t2 + 2 <= r - 1 <= t1 + 2:
if erasable(r, s10, s11, s20 - 1, s21, w10, t2 + t1 + 2-(r-1), 0, strong):
return True

if s21 > 0:
if t1 + 2 < r - 1:
if erasable(r, s10, s11, s20, s21 - 1, w10, t1 + 2, t2 + 1, strong):
return True

elif t2 + 1 < t1 + 2 == r - 1:
if erasable(r, s10, s11, s20, s21 - 1, w10, t2 + 1, 0, True):
return True

elif t2 + 2 < t1 + 1 == r - 1:
if erasable(r, s10, s11, s20, s21 - 1, w10, t2 + 2, 0, True):
return True

elif t1 + 1 == t2 + 2 == r - 1:
if erasable(r, s10, s11, s20, s21 - 1, w10, 0, 0, True):
return True

if w10 > 0:
if t1 + 1 < r - 1:
if erasable(r, s10, s11, s20, s21, w10 - 1, t1 + 1, t2, False):
return True

return False

def can_induct(d, g, r, l, m):
# Proposition 8.4
if d >= g + 2 * r - 1 and good(d - (r - 1), g, r, l, m):
return True

# Proposition 8.6
if m >= r - 1 and good(d, g, r, l, m - (r - 1)):
return True

deltanum = 2 * d + 2 * g - 2 * r + 2 * l + (r + 1) * m

for lp in range(l + 1):
for mp in range(m + 1):
if (2 * mp + lp > r - 2) or (mp > 0 and r == 3):
continue

mbar = m - mp
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for dp in range(g + r, d + 1):
if g == 0 and m != 0 and dp == g + r:
continue

in0 = lp + 2 * (d - dp)

for sum_n in range(n_lower_bound(dp, g, r) * mp, (r - 1) * mp + 1, 2):
lbar = l - lp + ((r - 1) * mp - sum_n) // 2

# Proposition 8.2
if (r-1)*(in0 + sum_n - 1) + 1 <= deltanum <= (r-1)*(in0 + sum_n + 1) - 1:
if good(dp - 1, g, r - 1, lbar, mbar):
return True

# Proposition 8.3
if mp < m and 2 * mp + lp < r - 2:
if (r-1)*(in0 + sum_n) + 1 <= deltanum <= (r-1)*(in0 + sum_n + 2) - 1:
if good(dp - 1, g, r - 1, lbar, mbar):
if good(dp - 1, g, r - 1, lbar, mbar - 1):
if good(dp - 2, g, r - 2, lbar, mbar):
return True

# Proposition 8.7
if l == 0 and m == 1:
for epsilon in range(0, (d - g - r) // 2 + 1):
if g > 0 or 2 * epsilon < d - g - r:
if 2 * epsilon * (r - 1) + 2 <= deltanum <= (2 * epsilon + 2) * (r - 1) - 2:
if good(d - 2 * epsilon - 2, g, r - 2, 0, 1):
return True

# Proposition 8.8
k = r // 2
if k >= 3 and (d, g, r, l, m) == (4 * k + 1, 2 * k - 1, 2 * k + 1, 0, 1):
if good(4 * k - 3, 2 * k - 2, 2 * k - 1, k - 3, 0):
return True

# Proposition 8.9
if m == 0 and g >= 3 and r >= 6:
for epsilon in range((d - g - r) // 3 + 1):
if ((2*epsilon+2)*(r-1) + 3 <= deltanum <= (2*epsilon+4)*(r-1) - 3):
if good(d - 3 * epsilon - 6, g - 3, r - 3, l + 1, 0):
if good(d - 3 * epsilon - 6, g - 3, r - 3, l, 0):
return True

# Proposition 8.10
if m == 0 and g >= 1 and (r - 1) + 1 <= deltanum <= 3 * (r - 1) - 1:
if good(d - 2, g - 1, r - 1, l + 1, 0):
return True

# Proposition 8.11
if m == 0 and g >= 3 and r >= 6 and 3*(r-1) + 2 <= deltanum <= 5*(r-1) - 2:
if good(d - 5, g - 3, r - 2, l + 1, 0) and good(d - 5, g - 3, r - 2, l, 0):
return True

## Proposition 11.2... ##
for lp in range(l + 1):
for mp in range(m + 1):
if r == 3 and mp > 0:
continue

for mpp in range(m - mp + 1):
mbar_max = m - mp
mbar_min = m - mp - mpp

for gp in range(g + 1):
for dp in range(gp + r, d - g + gp + 1):
if gp == 0 and m != 0 and dp == gp + r:
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continue

for epsin in range(d - g - dp + gp + 1):
epsout = d - g - dp + gp - epsin
out = 2 * epsout + 3 * (g - gp) + m + mp + lp
in0 = 2 * epsin + g - gp + mpp + lp + out // (r - 1)

for sum_n in range(n_lower_bound(dp, g, r) * mp, (r - 1) * mp + 1, 2):
lbar = l - lp + ((r - 1) * mp - sum_n) // 2

if (r - 1) * (in0 + sum_n - 1) + 1 <= deltanum:
if deltanum <= (r - 1) * (in0 + sum_n + 1) - 1:
if erasable(r, lp + m - mp - mpp, epsout, mp, g - gp, mpp):
ok = True
for mbar in range(mbar_min , mbar_max + 1):
if not good(dp - 1, gp, r - 1, lbar, mbar):
ok = False
break

if ok:
return True

return False

base_cases = []
for r in range(3, 14):
for g in range(r):
for d in range(g + r, g + 2 * r):
for l in range(r//2 + 1):
for m in range(r):
if (l, m) == (0, 0) and 2 * d + 2 * g == 3 * r - 1: #cf. Section 6
continue

if good(d, g, r, l, m):
if not can_induct(d, g, r, l, m):
base_cases.append((d, g, r, l, m))

for (d, g, r, l, m) in XX:
if good(d, g, r, l, m + r - 1):
if not can_induct(d, g, r, l, m + r - 1):
if (d, g, r, l, m + r - 1) not in base_cases:
base_cases.append((d, g, r, l, m + r - 1))

print(’�&�’.join([str(i) for i in base_cases]))
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