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Abstract
In this paper, we determine the number of general points through which a Brill-Noether curve of fixed degree and
genus in any projective space can be passed.
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1. Introduction

The interpolation problem has occupied a central position in mathematics for several millennia. Roughly
speaking, it asks:
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Question. When can a curve of a given type be drawn through a given collection of points?

The first results on the interpolation problem date to classical antiquity. Two such results appear in
Euclid’s Elements (circa 300 B.C.): A line can be drawn through any two distinct points in the plane (the
first postulate), and a circle can be drawn through any three noncollinear points in the plane (Proposition
5 of Book IV).

— O

The study of the interpolation problem in antiquity culminated in the work of Pappus (circa 340 A.D.),
who showed in his Collection that a conic section can be drawn through any five points in the plane
(Proposition 14 of Book VIII).

The introduction of algebraic techniques to geometry enabled a second wave of results in the 18th
century, and cast the interpolation problem firmly in the then-emerging field of algebraic geometry. For
example, Cramer generalized Pappus’s result to plane curves of arbitrary degree n, which he showed
can pass through n(n +3)/2 general points in 1750 [11]. Then Waring solved the interpolation problem
for graphs of polynomial functions in 1779 [32]. (Lagrange independently rediscovered this result in
1795 [21] and thus it is often known as the ‘Lagrange interpolation formula’.) Cauchy [6], Hermite
and Borchardt [19] and Birkhoff [5], all subsequently generalized Waring’s result in several different
directions. These results are of interest far outside algebraic geometry and even outside of mathematics.
For example, they play essential roles in the Newton—Cotes method for numerical integration, in Shamir’s
cryptographic secret sharing protocol [28], and in Reed—Solomon error-correcting codes [26] (which
currently power most digital storage media).

The key prerequisite to the modern study of the interpolation problem was the development of Brill-
Noether theory in the 20th century, which studies maps from general curves to projective space, and
thus identifies the most natural class of curves for which to study the interpolation problem. Namely, let
C be a general curve of genus g. From our perspective here, the two key facts are:

1. There exists a nondegenerate map C — P of degree d if and only if the quantity
pld,g,r) =(r+1)d-rg—r(r+1)

satisfies p > 0. [Proven in 1980 by Griffiths and Harris [17].] .
2. In this case, the universal space of such maps has a unique component dominating M. [Proven in
the 1980s by Fulton and Lazarsfeld [15], Gieseker [16] and Eisenbud and Harris [12].]

We call stable maps f: C — P” corresponding to points in this unique component Brill-Noether curves
(BN-curves). (The general such curve is an embedding of a smooth curve for » > 3.) This language then
gives us a precise and natural formulation of the interpolation problem:

Question. Let d, g, r, n be nonnegative integers with p(d, g,r) > 0. When can we pass a BN-curve of
degree d and genus g through n general points in P"?

Equivalently, writing M , (P, d) for the component corresponding to BN-curves, this question is
asking when the evaluation map Mg ,,(P", d) — (P")" is dominant. It is evidently necessary for:

rn=dim(P")" <dimM, ,(P",d) = (r+1)d — (r =3)(g — 1) +n,
Or upon rearrangement,

(r-=Dn<@r+)d-(r-3)(g-1).
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Despite cases where this is not sufficient, it is a folklore conjecture that it usually suffices:

Conjecture 1.1. Let d, g, r, n be nonnegative integers with p(d, g,r) > 0. Then there is a BN-curve of
degree d and genus g through n general points in P if and only if

(r—=Dn<(r+)d-(r-3)(g-1),

apart from finitely many exceptions.

This conjecture has been studied intensely in recent years. As in previous eras, this attention has been
motivated by both intrinsic interest, as well as by striking applications to a wide range of other interesting
geometric problems. Recent examples of such problems include smoothing curve singularities [30],
constructing moving curves in Mg [3, 7], the first author’s resolution of Severi’s 1915 maximal rank
conjecture [22], as well as various generalizations thereof [4].

The easiest cases of this conjecture are when d is large relative to g and r, and such cases have
therefore been the focus of significant work. For example, Sacchiero proved Conjecture 1.1 for rational
curves in 1980 [27]; Ran later gave an independent proof in this case in 2007 [25]. Subsequently, the first
author, in joint work with Atanasov and Yang, proved Conjecture 1.1 when d > g + r in characteristic
zero [2]. Another case of interest is the proof of Conjecture 1.1 for canonical curves in characteristic
zero in a pair of papers by Stevens from 1989 and 1996 [29, 30]. Many authors have also considered this
conjecture in low dimensions. For example, Ellingsrud and Hirschowitz in 1984 [13], Perrin in 1987
[24] and later Atanasov in 2014 [3], all made significant progress on Conjecture 1.1 for space curves,
but their analysis left infinitely many cases unsolved. This effort culminated in the proof of Conjecture
I.1 for space curves in characteristic zero by the second author in 2018 [31], and for curves in P* in
characteristic zero by both authors in 2021 [23].

Nevertheless, despite this significant interest, fundamental limitations of previous techniques have
prevented the resolution of Conjecture 1.1 in general and limited even partial results largely to charac-
teristic zero. Our main result gives the first comprehensive answer to the interpolation problem.

Theorem 1.2. Conjecture 1.1 holds in full generality and in any characteristic. More precisely: Let
d,g,r,n be nonnegative integers with p(d,g,r) > 0. There is a BN-curve of degree d and genus g
through n general points in P" if and only if

(r-Dn<(r+1)d-(r-3)(g-1), (1.1
except in the following four exceptional cases:
(d.g.r) €{(5,2,3),(6,4,3),(7,2,5),(10,6,5)}.

Since the normal bundle N¢ controls the deformation theory of C, Conjecture 1.1 is closely related
to a certain property, also known as interpolation, for N¢.

Definition 1.3. A vector bundle E on a curve C satisfies interpolation if H' (E) = 0, and for every n > 0,
there exists an effective divisor D of degree n such that

H%E(-D))=0 or H'(E(-D))=0. (1.2)

For C irreducible, Sym” C is also irreducible, so interpolation is equivalent to (1.2) for D general.

Given py,...,p, € C C P", a standard argument in deformation theory (see [24, Theorem 1.5])
implies that the evaluation map Mg ,,(P",d) — (P")" is smooth at the point (C, py, ..., pn), and hence
dominant, if H' (N¢c(=p1—--—pn)) = 0.Since y (Nc(=p1—- - —pn)) = (r+1)d—(r=3)(g=1)—(r—=1)n,
we have y (Nc(—p1 —---—pn)) = 0 precisely when equation (1.1) is satisfied. Therefore, interpolation
for Nc implies that H'(Nc(—p1 — --- — pn)) = 0 when equation (1.1) is satisfied, which implies
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Conjecture 1.1. In fact, interpolation for N¢ is a slightly stronger condition, the essential differences
being:

1. Itimplies an analog of Conjecture 1.1 where the general points are replaced by general linear spaces:
There is a BN-curve of degree d and genus g incident to general linear spaces A; of dimension A; if
and only if

Z(r—l—/li)S(r+1)d—(r—3)(g—l). (1.3)

(This implication can be deduced from [3, Theorem 8.1], cf. the introduction to loc. cit.)
2. Itimplies that My ,, (P", d) — (P")" is generically smooth, rather than merely dominant. (This is of
course equivalent in characteristic zero but is a stronger statement in positive characteristic.)

Theorem 1.2 is a consequence of our main theorem, which asserts:

Theorem 1.4. Let d, g, r be nonnegative integers with p(d, g,r) > 0, and C C P be a general BN-curve
of degree d and genus g. Then N¢ satisfies interpolation if and only if neither of the following hold:

1. The tuple (d, g,r) is one of the following five exceptions:
(d,g,r) €{(5,2,3),(6,4,3),(6,2,4),(7,2,5), (10,6,5)}. 1.4)

2. The characteristic is 2, and g =0, and d £ 1 mod r — 1.
There are several exceptions in Theorem 1.4 that are not exceptions for Theorem 1.2:

1. The case (d, g,r) = (6,2,4): Such curves have the expected behavior for passing through points, but
not for incidence to linear spaces of arbitrary dimension. More precisely, a naive dimension count
suggests that they can pass through nine general points and meet a general line, but this is not true.

2. The cases in characteristic 2: In these cases, the evaluation map M“g”n(IP’r, d) — (P")" is dominant
but not generically smooth.

We discuss these two cases in more depth in Sections 2 and 9.

Our approach to Theorem 1.4 will be via degeneration to reducible curves X UY. In general, although
the restrictions Nxuy |x and Nxyy |y admit nice descriptions, fitting these together to describe Nxyy is
extremely challenging outside a handful of special cases. This fundamental obstacle has limited previous
attempts to study the interpolation problem. For example, the key innovation of [2] was an essentially
complete description of Nxyy in the special case that Y was a one- or two-secant line. Considering only
such degenerations leads to two severe limitations:

1. Only nonspecial curves can be obtained by successively adding one- and two-secant lines.

2. Since the set of degenerations used is so limited, only a few types of elementary modifications to the
normal bundle appear. Because there are only a few types of modifications, it is difficult to produce
desired modifications by combining them, in a way reminiscent of the Frobenius coin problem.
Circumventing this difficulty requires additional tools that work only in characteristic zero.

Previous attempts to overcome these difficulties were limited to ad-hoc constructions in low-dimensional
projective spaces. The present paper introduces two key innovations:

1. We consider a third degeneration, where Y is an (7 +1)-secant rational curve of degree  — 1 contained
in a hyperplane H, which allows us to obtain any BN-curve. Describing how Nxyuy |x and Nxyy |y fit
together to give Nxyy is intractable even in a degeneration of this complexity. Nevertheless, thanks
to our detailed study of this setup in Sections 5.3 and 13.1, we are able to reduce interpolation for
Nxuy to interpolation for a certain modification of Nx.

2. Although Y does not have many interesting degenerations in H, we show in Section 7 that as H
becomes tangent to C, a plethora of such degenerations appear. As in the Frobenius coin problem,
this plethora of additional degenerations makes it possible to produce the desired modifications by
combining them. This eliminates the restriction to characteristic zero that plagued previous work.
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The techniques we develop here hold promise of application to other problems about the geometry of
normal bundles. Indeed, in [10], they have already been applied to prove semistability of normal bundles
of canonical curves, thereby establishing a (slightly weaker version of a) conjecture of Aprodu, Farkas
and Orgeta [1]. (A vector bundle of integral slope which satisfies interpolation is necessarily semistable,
c.f. [31, Remark 1.6], but in these cases the slope is not integral. Nevertheless, our techniques may be
applied.)

Structure of the paper

We begin, in Section 2, by discussing the various exceptional cases appearing in Theorem 1.4. Then in
Section 3, we introduce the notation we shall use for the remainder of the paper and discuss a few other
preliminary points.

In Section 4, we explain the basic strategy of proof for the hard direction of Theorem 1.4, that is, that
there are no other exceptional cases besides those mentioned in the statement of Theorem 1.4 above.
After explaining the basic strategy, we give a roadmap to the proof, which occupies the remainder of
the paper.

2. Counterexamples
2.1. Counterexamples in all characteristics

We start with the five counterexamples to Theorem 1.4 that occur in all characteristics:
(d,g,r) €{(5,2,3),(6,4,3),(6,2,4),(7,2,5), (10,6,5)}.

In each of these cases, we will construct a certain surface S containing C, and see that S prevents Theorem
1.2 (or the generalization (1.3) thereof) from holding. Indeed, if S cannot be made to pass through the
requisite number of points (or be made incident to the requisite linear spaces), then C cannot either.
Since Theorem 1.4 implies Theorem 1.2 (and the generalization (1.3)), this implies that these five cases
must also be counterexamples to Theorem 1.4.

Remark 2.1. An alternative approach, the details of which we leave to the interested reader, would be
to see directly that the geometry of S obstructs Theorem 1.4. The basic idea is that, for any effective
divisor D on C, we have h’(N¢(=D)) > h®(N¢ ;s(=D)); in the five exceptional cases, this inequality
will prevent N¢ from satisfying interpolation.

2.1.1. The family (d,g,r) = (r +2,2,r)
Let C be a curve of genus 2 and L be a line bundle of degree r + 2 on C. Write f: C — P! for the
hyperelliptic map. Then E := f,L is a vector bundle of rank 2 on P! with

X(E)=x(L)=r+1.

By Riemann—Roch, c¢;(E) = r — 1. The inclusion L — f*f,L embeds C in the projective bundle PE"
so that Opgv (1)|c = L. Therefore, the image of C in P" under the complete linear series for L lies on the
image S of PEY under the complete linear series for Opgv (1). The surface S is a scroll of degree equal to

[Opev (1)]? = =c1(EY) - Opv (1) = 7 = 1.

By [8, Lemma 2.6], the dimension of the space of such scrolls is 72 + 2r — 6.

If(d,g,r) = (5,2,3) Then > + 2r — 6 = 9. Since it is 1 condition for a surface in P? to pass through
a point, S cannot pass through more than nine general points. This contradicts (1.1), which predicts
that C should be able to pass through 10 general points.
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If(d,g,r) = (6,2,4) Then r>+2r —6 = 18. Since it is two conditions for a surface in P* to pass through
a point and one condition to meet a line, S cannot pass through nine general points while meeting a
general line. This contradicts equation (1.3), which predicts that C should be able to pass through
nine general points points while meeting a general line.

If(d,g,r) = (7,2,5) Then r?> + 2r — 6 = 29. Since it is three conditions for a surface in P> to pass
through a point, S cannot pass through more than nine general points. This contradicts equation (1.1),
which predicts that C should be able to pass through 10 general points.

2.1.2. The case (d,g,r) = (6,4,3)

A general canonical curve of genus 4 is a cubic section of a quadric surface S. There is a nine-dimensional
family of quadric surfaces, and it is one condition for a surface in P* to pass through a point, so S cannot
pass through more than two points. This contradicts equation (1.1), which predicts that C should be able
to pass through 12 general points.

2.1.3. The case (d,g,r) = (10,6, 5)

A general canonical curve of genus 6 is a quadric section of a quintic del Pezzo surface S. There is a
35-dimensional family of quintic del Pezzo surfaces, and it is three conditions for a surface in P> to pass
through a point, so S cannot pass through more than 11 points. This contradicts (1.1), which predicts
that C should be able to pass through 12 general points.

2.2. Rational curves in characteristic 2

In this section, we explain the final infinite family of counterexamples to Theorem 1.4 that occurs
only in characteristic 2. This phenomenon was already observed for space curves in [9] in relation to
semistability. We begin by describing which vector bundles on a rational curve satisfy interpolation in
terms of the Birkhoff—Grothendieck classification.

Lemma 2.2. The bundle E = @, Opi (e;) satisfies interpolation if and only if for all i, j,
le; —e;| <1 and e; > -1.
Proof. Foranyn > 0,

W(E(-n)) =0 & n>1+max(e;)
W'(E(-n)) =0 <& n<1+min(e).

One of these two conditions holds for all n > 0 if and only if |e; —e;| < 1 for all i and j, and the second
of these holds for n = 0 if and only if e; > —1 for all i. O

As a consequence of the Euler sequence, the conormal bundle of C sits in the exact sequence
0 — NE(1) = 02! — 21 (Oc (1)) — 0,

where 2! (O¢ (1)) is the bundle of first principle parts of O¢(1). If the characteristic is 2, and we write
7: C — C for the (relative) Frobenius morphism, then we have

P (Oc (1)) = 1 7.0c(1).

Therefore,N(\é(l) is isomorphic to the pullback of a bundle under the Frobenius morphism, so every
entry of its splitting type is even.
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Lemma 2.3. Assume that the characteristic of the ground field is 2. Let C C P" be a rational curve of
degree d. Then N satisfies interpolation only if

d=1(mod r—-1).

Proof. Suppose that N¢ =~ @;—11 Ogi(e;). Since NY(1) = EB;: Op1(d - e;), and every entry of its
splitting type is even, every e; satisfies ¢; = d mod 2. Applying Lemma 2.2, we conclude that N¢ can
only satisfy interpolation if all e; are equal. This implies

(r+1)d -2 = ¢ (N¢) = (r = 1)d(mod 2(r = 1)),

and therefore d = 1 mod r — 1 as desired. O

3. Preliminaries
3.1. Elementary modifications of vector bundles

In this section, we give a brief overview of the key properties of elementary modifications of vector
bundles. Our presentation will roughly follow the more detailed exposition given in Sections 2—4 of [2].

Definition 3.1. Let £ be a vector bundle on a scheme X, and D C X be a Cartier divisor and F C E|p
be a subbundle of the restriction of E to D. We define the negative elementary modification of E along
D towards F by

E[D — F] :=ker (E — E|p/F).
We then define the (positive) elementary modification of E along D towards F as
E[D 5 F] :=E[D - F|(D).

Remark 3.2. This notation differs slightly from [2], in which negative modifications were denoted by
E[D — F] (and no separate notation was given for positive modifications).

By construction, a modification of E along D is naturally isomorphic to E when restricted to the
complement of D. If D; and D are disjoint, then we may easily make sense of multiple modifications
such as E[D 5 F 11[D> 5 F»] by working locally. However, if D and D, meet, then we do not have
enough data to even define multiple modifications: For example, if D} = D, = D and F} = F, = F,
then we should have E[D| 5 Fi][D> 5 F»] ~ E[2D 5 F], so we must know how F extends over
2D. To sidestep these issues, we suppose when defining multiple modifications — at least along divisors
that meet — that we are given not just a subbundle F; of E|p,, but a subbundle F; of E|y, where U; C X
is an open neighborhood of D;.

We first construct the modification E[D; 5F 11, which is naturally isomorphic to E on X\D, and
so in particular on U, \ D . If the data of a subbundle F, C E |U2\ p, extend to U», then it does so uniquely,
and we may modify along D, towards this extension. However, this subbundle may not extend to U,.
The following situation where it does will include all situations we shall need in this paper.

Definition 3.3. Let M = {(D;, U;, F;)}ies be a collection of modification data. For each point x € X,
define I, C I to be the set of indices for which x € D;. We say that M is tree-like if for all x € X, and
all subsets I’ C I, the following condition holds: Whenever the fibers {F;|, }ic;- are dependent, there
exist indices i, j € I’ and an open U C U; N U; containing x such that F|y C Fj|y.

By [2, Proposition 2.17], we can transfer modification data as above when it is treelike. That is, given
modification data M for E such that {(D,U, F)} U M is treelike, we obtain modification data M’ for
E[D 5 F].In this way, we inductively define the multiple modification E [ M] for treelike modification
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data M. This is independent of the order in which the modifications from M are applied [2, Proposition
2.20].

Example 3.4. A simplifying special case is when F is a direct summand of E. Writing E ~ F @ E’,
E[D 5 F]=ker(F®E' — E'|p)(D) ~ (F® E'(-D))(D) ~ F(D) ® E'.

In nice cases, a short exact sequence of vector bundles induces a short exact sequence of modifications.
To make this more precise, consider a short exact sequence

0>S—>E—>Q—0. (3.1

For example, first suppose that ' N S is flat over the base X. Then equation (3.1) induces the short exact
sequence

0—-S[D5FnS]—>E[D5F]—-Q[D5F/(FNnS)] —0. (3.2)

A more interesting example is when the base is a curve X = C, and F C E is a line subbundle, and
D = np, where p € C is a smooth point. Then we obtain an induced sequence for the modification
E[np 35 F], as follows. Define &’ to be the order to which F is contained in S in a neighborhood of p.
In other words, if F is not contained in S, this is the length of the subscheme PS N PF in PE; if F is
contained in S, this is co. Let k = max(k’, n). Then equation (3.1) induces the short exact sequence

0—>S[kpl>F|kp]—>E[npi>F]—>Q[(n—k)pl>f]—>0, 3.3)

where F is the saturation of the image of F in Q. When k’ = oo or k’ = 0, this agrees with equation (3.2).

3.2. Pointing bundles

Given an unramified map f: C — P", the sheaf Ny = ker(f*Qpr — Qx)" is a vector bundle, which
we refer to as the normal bundle of the map f. In almost all cases that we shall consider, f will be an
embedding, in which case Ny = N¢ coincides with the normal bundle of the image.

We will primarily deal with modifications of Ny towards pointing subbundles Ny _, 5, whose defini-
tion we now recall. Let A C P” be a linear space of dimension A. Let mp o f denote the composition of
f with the projection map

aa: P P
Let U = U, denote the open locus of C\ (A N C) where 7 o f is unramified; explicitly this is the locus
of points of C whose tangent space does not meet A. Assuming that U is dense and contains the singular
locus of C, we may define N _, 5 as the unique subbundle of Ny whose restriction to U is
ker(Nylu = Nryor lu)-

The notation N ¢ _, 4 is evocative of the geometry of sections of Ny _,4: Informally speaking, they ‘point
towards’ the subspace A C P". When f is an embedding, we write Nc_,p = N¢_. If the projection
(mp o f): C = P41 is unramified, then N _,, sits in the pointing bundle exact sequence

0= Nj_n = N = Nepos (AN C) = 0. (3.4)

The same definitions work for families of curves in a projective bundle. For a treatment in this more
general setting, see [2, Section 5].
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The simplest case, and our primary interest, is when A = p is a point in P". In this case, by [2,
Propositions 6.2 and 6.3], we have the following explicit descriptions:

e If p € P" is a general point (in which case U, = C), then Ny_,, = f*Opr (1).
e If p € C is a general point (in which case U, = C\p), then Ny_,, = f*Opr (1)(2p).

When modifying towards a pointing bundle, we use the simpler notation
Nf[D 5 Al :=Ng[D 5 Nyl
For two points p, g € C, we also define the more compact notation
Nylp € ql:=Nglp = qllg 5 pl.

‘We now restate a foundational result of Hartshorne—Hirschowitz, which describes the normal bundle
of a nodal curve in projective space, in this language of pointing bundles. Let X Ur Y be a reducible
nodal curve. For each point p; € I', let ¢; denote any point on T}, Y\ p;. For simplicity, we introduce the
following notation. For any subset I'” = {py, ... p,} C I, we write

NX[F’ ’d—/) Y] = Nx[pl i) ql] PN [pn i) qn].
When I'" = T is the full set of points where X and Y meet, we simplify further and write
Nx[5 Y] := Nx [T ~5 Y.

(We analogously define Nx [I” ~> Y] and Nx [~ Y].)
Proposition 3.5 [18, Corollary 3.2]. As above, let X UY C P" be a reducible nodal curve. Then

Nxuylx = Nx[5 Y].

3.3. Interpolation for vector bundles

3.3.1. Interpolation for bundles on nodal curves

Let C be a nodal curve, and let E be a nonspecial vector bundle on C. Twisting down by a point can only
decrease h” and can only increase h'!. Therefore, E satisfies interpolation provided that there exist two
divisors D, and D_ for which

W(E(-D,)) =0, hY(E(-D.))=0, and degD,—-degD_ < 1. 3.5

Alternatively, if E has rank r, then twisting down by a point either decreases h° by r or increases h'.
Thus, E satisfies interpolation if and only if, for every n > 0, some collection of n points impose the
expected number of conditions:

W (E(=py — -+ — pp)) = max(0, i°(E) — rn) for some py,...,pn.

More generally, we can use this idea to define interpolation for a space of sections of a vector bundle.
Given V C HO(E), write

V(-p1—-—pu) ={oceV:icol, =-=0l,, =0}

We say that V C HO(E) satisfies interpolation if H'(E) = 0 and, for every n > 0, there are n points
P15 - - - Pn Such that

dimV(-p; —--- = p,) = max(0,dimV — rn).
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The following basic result allows us to reduce interpolation for a vector bundle £ on a reducible
curve X Ur Y to interpolation for a space of sections on one component.

Lemma 3.6 [23, Lemma 2.10]. Let E be a vector bundle on X Ur Y. If the restriction map on Y
resy r: H(Y,Ely) — Elr

is injective and the space of sections {0 € H*(X,E|x) : o|r € Im(resy r)} has dimension x(E) and

satisfies interpolation, then E satisfies interpolation.

The main case of interest in this paper is when Y = R is arational curve and E |, is perfectly balanced,
that is, E|gr =~ Opi(a)®" for some a € Z.

Lemma 3.7. Let C Ur R be a nodal curve with R rational, and let E be a vector bundle on CUR with E|g
perfectly balanced of slope at least #U" — 1. If E|c satisfies interpolation, then E satisfies interpolation.

Proof. Let D be an effective divisor of degree u(E|g) — #I" + 1 supported on R\I". It suffices to prove
that E(—D) satisfies interpolation, as we now explain. Let D, and D_ be the two divisors satisfying
equation (3.5) for the vector bundle E(—D). Then the divisors D, + D and D_ + D satisfy equation
(3.5) for the vector bundle E. The bundle E(—D)|g is perfectly balanced of slope #I" — 1, and so resg 1
is an isomorphism. The result now follows from Lemma 3.6. O

3.3.2. Interpolation and twists
If E satisfies interpolation, then as in the proof of Lemma 3.7, the twist E(D) by any effective divisor
D also satisfies interpolation. Conversely, we have the following.

Lemma 3.8 [2, Proposition 4.12]. Suppose that E is a vector bundle on a genus g curve such that
X(E) 2 1k(E) - g.

If there exists an effective divisor D for which E(D) satisfies interpolation, then E also satisfies
interpolation.

3.3.3. Interpolation and modifications

Consider a vector bundle E and its modification E[p = F]. Given sufficient generality of either p or F,
or if the slope u(E) € Z, it is sometimes possible to deduce that E[p -5 F] satisfies interpolation from
the assumption that E satisfies interpolation.

Lemma 3.9. Let E be a vector bundle on C, let p € C be a smooth point and let F C E|,. If E satisfies
interpolation and u(E) € Z, then E[p -5 F) satisfies interpolation.

Proof. Since u(E) € Z, there is an effective divisor D with
HY°(E(-D))=0 and H'(E(-D))=0.
Then
HYE[p 5 F](-D-p))=0 and HY(E[p > F](-D)) =0.
[m]

Definition 3.10. We say that a collection of subspaces {Wj, },cp of a vector space V are linearly general
if, for any subspace U C V, there is some b € B so that W}, is transverse to U.

Lemma 3.11 [2, Proposition 4.10]. Let E be a vector bundle on C, and let p € C be a smooth point. Let
{Fp}pep be a collection of subspaces of E|, that all contain a fixed subspace Fy. Suppose that both E
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and E[p — Fo] satisfy interpolation. If the collection {Fy, [Fo}pep is linearly general in E|, | Fo, then
for some b € B, the positive modification E[p = F,] satisfies interpolation.

Lemma 3.12 [2, Proposition 4.21 for n = 1]. Suppose E satisfies interpolation, L C E is a nonspecial
line subbundle, and the quotient Q = E | L also satisfies interpolation. If u(L) < u(H), then E[p = L]
satisfies interpolation.

Remark 3.13. While [2] assumes characteristic zero, none of the specific results we quote from [2] use
this assumption — except for Proposition 4.21. This proposition states that if u(L) < u(H)+n — 1, then
E[np 5 L] satisfies interpolation. The proof uses that vanishing at np imposes n conditions on sections
of any linear series. This is true in any characteristic when n = 1, but fails in positive characteristic for
n > 1. Since we will use Proposition 4.21 of [2] only when n = 1, we do not need a restriction on the

characteristic.

Lemma 3.14. Let E be a vector bundle on an irreducible curve C. Let p1, . .., pn € C be points, and let
L; C E|p, be one-dimensional subspaces. Suppose that both E and E [ p1 S L] [pn > L,] satisfy
interpolation. Then for any 0 < m < n, there is a collection of distinct indices iy, . . ., i,, such that

E[pi = Ly1--- [pi,, = Li,]
satisfies interpolation.

Proof. By induction on n we reduce to the case m = n— 1. Write E’ = E[p; -5 L] -+ [p, = L,] and
N =[x(E’)/tkE"].Let Dy and D y_; be general divisors of degrees N and N — 1, respectively. Since
E and E’ both satisfy interpolation and y(E) < y(E’), we have

R(E'(-Dn)) =0, h°(E'(-Dy-1))#0, and h°(E(=Dn-1)) < h°(E’(~Dn-1)).

Let E; = E[p1 = Li] -+~ [pi-1 © Li-t][piv1 = Lisi] -+ [pn = La]. Since x(E;) = x(E') - 1, it
suffices to show h°(E;(=Dy—_1)) < h°(E’(—=Dx_1)) for some i. This follows from the fact that

(VH(Ei(=Dn-1)) = H*(E(~=Dn-1)) € H(E'(~D-1)). D

3.3.4. Interpolation and short exact sequences
Lemma 3.15. Consider an exact sequence

0-S—>E—>Q—0
of vector bundles on an irreducible curve C. Suppose that S and Q satisfy interpolation and

u(S) < [u(@)+1 and u(Q) < [u(S)]+1. (3.6)

Then E also satisfies interpolation.

Proof. Since S and Q are nonspecial, E is nonspecial. By (3.6), there exists an integer n € Z such that
u(S) and u(Q) are contained in the closed interval [n,n + 1]. Since (3.5) is satisfied for D, a general
divisor of degree n + 1, and D_ a general divisor of degree n, we conclude that E satisfies interpolation
as desired. m]

We will most often use this result in the special case in which S is a line subbundle of E.

Corollary 3.16. Suppose that S C E is a nonspecial line subbundle and |u(S) — u(E)| < 1. If the
quotient Q = E /S satisfies interpolation, then E does as well.
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Proof. By assumption —1 < W < 1. Hence, we have strict inequalities

k(Q) +1 k(Q) +1
k(Q) k(Q)

which imply the required inequalities in Lemma 3.15, since u(Q) is a [1/rk(Q)]-integer. m

deg(8) < u(Q) + and p(Q) < deg(S) +

4. Overview
4.1. Base cases

We can reduce the number of base cases by extending Theorem 1.4 tor = 1 and r = 2. For r = 2, we
replace N¢ with the normal sheaf N¢, where f: C — P? is a general BN-curve. In this case, adjunction
implies that Ny = K¢ ® f*Op2(3) is a nonspecial line bundle, and therefore satisfies interpolation. For
r = 1, we only consider the case where f: C — P! is an isomorphism, so Ny = 0 satisfies interpolation.

4.2. first strategy: degeneration of C

The first inductive strategy we will use is degeneration of C to reducible curves X U Y. In Section 5
we will study certain such degenerations, for which Y has a prescribed form, and we can thus relate
interpolation for N¢ to interpolation for certain modifications of Nx.

Since the sectional monodromy group of a general BN-curve always contains the alternating group
[20], and in particular is (r + 1)-transitive, it makes sense to talk of a general (r + 1)-secant rational curve
of degree r — 1 in a hyperplane. While the following hypothesis does not encompass a/l modifications
that might appear using this method, it includes those modifications that will play the most central role
in our inductive argument:

Hypothesis 4.1 (I(d, g,r,{,m)). Let C c P" be a general BN-curve of degree d and genus g. Let
uy,Vvi,...,ue,ve be € pairs of general points on C. Let Ry, . .., R,, be m general (r + 1)-secant rational
curves of degree » — 1 (contained in hyperplanes transverse to C). Then the modification

Nclup S vil - [ue S vel[5 Ryl [5 Ryl

of the normal bundle of C satisfies interpolation.

A central complicating factor is that the inductive hypothesis 1(d, g, r, £, m) is not always true. The
following definition describes a set of tuples (d, g, r, £, m) for which we will prove that it holds.

Definition 4.2. A tuple (d, g, r, ¢, m) is called good if it satisfies all the following conditions:

e The following inequalities hold:

d>g+r, 0<€<=, and 0<m<p(dgr).

S

e If g =m =0, then
20> (1 =d)%(r - 1),

where for integers a and b we write a%>b for the reduced residue of @ modulo b, and
o It is not the following set:

(592’39030)9 (4a133a130)a (4’ 1’3,0’ 1)’ (4’ 1933 19 1)’
(6,2,4,0,0), (5,1,4,1,0), (5,1,4,1,1), (5,1,4,2,1), (6,2,4,1,1), (XEx)
(7,2,5,0,0), (6,1,5,0,1), (6,1,5,1,1).
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Remark 4.3. By Clifford’s theorem, the first inequality d > g + r follows from g < r.

We conclude Section 5 by using this first strategy to show that if 7(d, g, r, 0, m) holds for every good
tuple (d, g,r,0,m), then Theorem 1.4 holds except possibly for rational curves or canonical curves of
even genus.

4.3. Second Strategy: Limits of Modifications and Projection

The basic issue with the first strategy described above is that every time we apply it, we get more
modifications. In order to make an inductive argument work, we need a second inductive strategy that
decreases the number of modifications.

Hypothesis (d, g,r,{,m) asserts that N.. := Nc[u S vl fue S vel[5 Ril---[5 Ryl
satisfies interpolation. Let p be a general point on C. The pointing bundle exact sequence induces the
exact sequence

+ +

0— Ncop = N& = Na(p)[ug S vil -+ [ug S vl [5 Ry U~ URy] — 0, “.1)

where C and R ; denote the images of C and R}, respectively under projection from p. In order to apply
Corollary 3.16 to relate interpolation for the original bundle N, to interpolation for the quotient bundle,
the sequence must be close to balanced. The failure of the sequence to be balanced is related to the
quantity

2d+2g —2r+20+ (r+1)m

r—1

6= 6(61’ g’r’f’ m) = ﬂ(N,C) _:u(NC—>p) =

We first apply these ideas in Section 6 to treat the family of good tuples (d,g,r,0,0) with
o(d,g,r,0,0) = 1, which are difficult from the perspective of our more uniform inductive arguments.

More generally, in order to make this sequence sufficiently close to balanced, we will appropriately
specialize the points on C at which the modifications occur. To illustrate this idea in the simplest possible
case, assume here that £ > | ¢]. Since the points vi, ..., v| s are general on C, we may specialize them
all to the point p. This induces the specialization of N(. to

Ng :=Nelup+--+ups) & pllugsier © visper] - [ue S vel [ RiU--- URy].

Using equation (3.1), the pointing bundle exact sequence becomes

0— Neop(ur+---+ups)) — N/CI
— Nz(p)[p S ur+-+uys)ugsim & vispl - lue S vel [ R U---URp] — 0.
By our auspicious choice to specialize exactly |§] points to p, this sequence is now close enough to
balanced to reduce to proving interpolation for the quotient bundle. Furthermore, since u, ..., u|s) are
general, the modification at p in the quotient is linearly general and we can erase it by Lemma 3.12. It
therefore suffices to prove interpolation for

Nelusie1 & visil - [ue S vel[S R U+ URyl,

which evidently has fewer modifications. However, there are two basic issues with this argument:

1. In general, we might not have £ > [6].
2. Since R; is still an (r + 1)-secant curve of degree r — 1, the argument does not reduce to another case
of our inductive hypothesis.

To surmount both of these two difficulties, we will need to specialize the R; as well.
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This second strategy will be fleshed out in Sections 7 and 8: In Section 7, we will study how to
specialize the R; so that they can also contribute modifications to Nc_,,. Then in Section 8, we will
refine the basic argument outlined above to use these degenerations of the R; as well, and also explain
further degenerations that will be necessary to reduce to another case of our inductive hypothesis.

4.4. Outline of the remainder of paper

Section 9 is a brief interlude in which we use the inductive arguments of Section 8 to treat the case of
rational curves not implied by I(d, g, r, £, m) for good tuples. We also explain the counterexamples to
Theorem 1.4 that are not counterexamples to Theorem [.2. At this point, we will have reduced both
Theorem 1.4 and Theorem 1.2 to I(d, g, r, £, m) for good tuples, as well as Theorem 1.4 for canonical
curves of even genus, which we treat at the end of the paper in Section 13. The intervening sections
10-12 inductively prove I(d, g, r, £, m) for good tuples.

In Section 10, we complete a purely combinatorial analysis, in which we show that the inductive
arguments of Section & can be applied to reduce 1(d, g, r, £, m) for all good tuples to

e [(d,g,r,{, m) for a certain large but finite list of sporadic cases (d, g, r, {,m) with r < 13.
e The infinite family of tuples (d, g, r,0,0) with § = 1, which was already treated in Section 6.

In Section 11, we give a more complicated, yet more flexible, inductive argument in the style of those in
Section 8 and verify by exhaustive computer search that it reduces the finitely many sporadic cases
identified above to a managable list of 30 base cases. These base cases are treated by ad-hoc techniques
in Section 12.

5. Basic degenerations

In this section, we discuss the three basic degenerations of BN-curves, to reducible curves C U D, that we
will use in the proof of Theorem 1.4. In each subsection, we will first show that these degenerations lie
in the Brill-Noether component. We will then relate interpolation for Ncyp, or a modification thereof,
to interpolation for a particular modification of N¢.

In what follows, write N, ’CU p, for a modification of Ncyp away from D. In other words, N éu pisa
vector bundle on C U D, equipped with an isomorphism to Ncyp over a dense open subset of C U D
containing the entire curve D, and in particular containing a neighborhood U of C N D in C. Write N/,
for the bundle obtained by making the same modifications to Nc. In other words, N. is obtained from
N¢plevcnp) by gluing along U\(C N D) via our given isomorphism to Nc |y .

C C
v
u
u v D=L D=L
Peeling off a one-secant line. Peeling off a one-secant line.

5.1. Peeling off one-secant lines

Our most basic degeneration will be when D = L is a quasitransverse one-secant line. (Recall that two
subschemes X and Y of a scheme Z are transverse (respectively, quasitransverse) at a point p € X NY
if the natural map of tangent spaces 7, X @ T,Y — T,,Z is surjective (respectively, either injective or
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surjective).) If C has degree d and genus g, then C U L has degree d + 1 and genus g. Write v € L\{u}
for any other point on the line L.

Lemma 5.1. If C is a BN-curve, then C U L is also a BN-curve.

Proof. Generalizing C, we may suppose C is a general BN-curve. We will show H!(Tpr|cuz) = 0,
which implies that the map C U L — P" may be lifted as C U L is deformed to a general curve.

Since C is a general BN-curve, H'! (Tsr |c) = 0 by the Gieseker—Petri theorem. Furthermore, we have
H'(Ter|1.(—u)) = 0 because Tpr |1, = Opi (2) ® Opi (1)~ This implies H' (Tpr |cuz) = 0 as desired,
using

0 — Tpr|p(=u) = Tprlcur — Tprlc — 0. o

Lemma 5.2 (Lemma 8.5 of [2]). If N/ (u)[2u — v] satisfies interpolation, then so does Niop-

When C is nonspecial with genus small relative to r, we can combine Lemma 5.2 with Lemma 3.8
to reduce to a positive modification of N(..

Corollary 5.3. Suppose that N(. is a positive modification of Nc. If d > g +r and g < r +6 and
N [2u % v] satisfies interpolation, then N, ¢ satisfies interpolation.

Proof. Since N{.[2u Hy] = (NZ(u)[2u — v]) (u), it suffices by Lemma 3.8 to show that

X (NC(uw)[2u — v]) > (r - 1)g. (5.1
‘We have
X(NG(u)[2u = v]) = x(Ne (u)[2u — v])
=(r+1)d-(r-3)(g-1)—-(r-3)
>(r+1)(g+r)—(r-3)g
=4g+r(r+1).
If g <r+6,then

(r-lg—-4g=(r-5g<(r=-5F+6)<r(r+1),

and the desired inequality (5.1) holds. |

5.2. Peeling off one-secant lines

Our next basic degeneration will be to the union of a curve C and a quasitransverse one-secant line L,
meeting C at points u and v. If C has degree d and genus g, then C U L has degree d + 1 and genus g + 1.

Lemma 5.4. [f C is a BN-curve, then C U L is also a BN-curve.

Proof. Asin the proof of Lemma 5.1, we have that H' (T |cur ) = 0 by combining H! (Tr |¢) = 0 (from
the Gieseker—Petri theorem) and H' (Ter |1 (—u — v)) = 0 (from Tpr |1, = Op1 (2) ® Opi (1)), m|

We generalize Lemma 5.2 to one-secant lines. In slightly greater generality, let p € L\{u,v} be a
point, and A be a linear space disjoint from the span of the tangent lines to C at u and v.

Lemma 5.5 (Slight generalization of Lemma 8.8 of [2]). If N/ (u+v)[u — v][v — u][v — 2u + A]
satisfies interpolation, then so does N(. , [p 5 AL
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Proof. Imitate the proof Lemma 8.8 of [2], mutatis mutandis.
(In the notation of [2]: Take T instead to have dimension r — 5 — dim A, where by convention
dim @ = —1, and use instead the decomposition Ny ~ Ny _,x ® Np, ® N A © N 1) m]

As in Corollary 5.3, we can reduce to a positive modification of N(..

Corollary 5.6. Suppose that N(. is a positive modification of Nc. If d > g+r and g < r +6 and
N([u S v][v 5 ul[v 5 2u] satisfies interpolation, then N¢. ., satisfies interpolation.

Proof. We have
X (N'C(u+v)[u S v][v > ul[v— ZM]) > x (Nc(u+v)[u S v][v = u][v = 2u)])

=(r+1)d-(r-3)(g-1)-(r-5)
>4g+r(r+1)+2.

As in the proof of Corollary 5.3,if g <r +6,then4g+r(r+1)+2 > (r — 1)g, and so
X (NC(u+v)[u—v][v > ullv - 2u]) > (r - 1)g. (5.2)

Hence, by Lemma 3.8, N/ (u +v)[u — v][v — u] [v — 2u] satisfies interpolation. ]

5.3. Peeling off rational normal curves in hyperplanes

The final of our basic degenerations is to the union of a BN-curve C of degree at least r + 1 in P", and
an (r + 1)-secant rational curve R of degree r — 1 contained in a hyperplane H. If C has degree d and
genus g, then C U R has degree d + r — 1 and genus g + r. Observe that

pld,g,r)=pd+r—-1,g+r,r)+1.

Lemma 5.7. If p(d, g,r) > 1, and C is a BN-curve, then C U R is also a BN-curve.

Proof. Generalizing C, we may suppose C is a general BN-curve.

If g > 0, then we can specialize C to the union C’ U L, where C’ is a general BN-curve of degree
d — 1 and genus g — 1, and L is a general one-secant line. Otherwise, if g = 0, then we can specialize C
to the union C’ U L, where C’ is a general BN-curve of degree d — 1 and genus g, and L is a general
one-secant line. Either way, we can arrange for one of the points p of C N R to specialize onto L, and
the rest to specialize onto C’.

Write I' := (LUR)NC. Note that this is a set of ¥+ 1 or r+2 points on C’. We will show the following:

(a) The curve C’ U L U R is a smooth point of the Hilbert scheme.

(b) The curve L U R can be smoothed to a rational normal curve M while preserving the points of
incidence with C’.

(¢) The curve C’ U M is in the Brill-Noether component.
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By part (a), the curves CUR and C’U M are both generalizations of a smooth point of the Hilbert scheme.
Hence, they are in the same component, which must be the Brill-Noether component by part (c).

Beginning with part (b), write N for the subsheaf of Ny g whose sections fail to smooth the node p.
It suffices to show that H' (N (=T")) = 0. This follows from the exact sequence

0 = Nrurlr(=p —=T) = N(-T') = N|.(-I) = 0,
together with the isomorphisms

Nrurlr = Ngja ® Or(1)(p) = Opi (r +2)%" 72 @ Opi (1),
N|p = Np =~ O (1)® 71,

Since Nyur(~T) is a positive modification of N(-T"), we also have H' (N g (~T")) = 0. Similarly,
Ncrururlcer is a positive modification of N¢. As C’ is a general BN-curve, the Gieseker—Petri theorem
implies that H' (Ncururlcr) = 0. Hence, using the exact sequence

0 — Nrur(-T') = Ncwurur — Newrorler — 0,

we see that H' (N¢crurur) = 0, and part (a) follows.
Finally, for part (c), we will show that H 1 (Tpr |crusr) = 0, and hence the map from C’ U M to P" can
be lifted as C’ U M is smoothed to a general curve. This vanishing follows from the exact sequence

0 = Ter|p (=T) = Ter|lcrum — Terlcr — 0,
the isomorphism Tpr |3y =~ Opr (r + 1)®", and the Gieseker—Petri theorem (H' (Tpr|¢r) = 0). O

Our next goal is to study the restricted normal bundle Ncyg|g = Ng [«5 C], which is of slope r + 2.
In most cases, this bundle is perfectly balanced (equivalently semistable):

Lemma 5.8. Unless r is odd and C is an elliptic normal curve, Ng [~ C] is perfectly balanced, that is
Ng[5 C] = Opi(r+2)200, (5.3)

If ris odd and C is an elliptic normal curve, then Ng[~> C| is ‘almost balanced’, that is, is isomorphic
to one of the two bundles:

Opi (r+2)°7 ) or Op(r+3)® Ou(r+2)° > @ Opi(r+1).

Proof. Write d and g for the degree and genus of C. First, we reduce to the cases where C is nonspecial,
that is, where d > g + r. To do this, when d < g + r, we inductively specialize C to a union C’ U D,
where C’ is a general BN-curve of degree d” > r + 2. Since in particular d” > r + 1, we may specialize
the points where R meets C onto C’, thereby replacing C by C’, which is not an elliptic normal curve
since d’ > r + 2. To find such a specialization, we break into cases as follows:

1. Ifd < g+rand p(d, g,r) > 0 (which forces d > 2r +1 > r +3), we apply Lemma 5.4 to degenerate
C to the union of a general BN-curve C’ of degree d — 1 and genus g — 1, with a one-secant line D.

2. Ifd < g+rand p(d,g,r) =0, but C is not a canonical curve (which forces d > 3r > 2r +2), we
claim that we may specialize C to the union of a general BN-curve C’ of degree d — r and genus
g —r — 1, with an (r + 2)-secant rational normal curve D. Indeed, as in the proof of Lemma 5.1, we
have that H' (Tpr |crup) = 0 by combining H' (Tpr|¢+) = 0 (from the Gieseker—Petri theorem) and
H'(Ter |p (=D N C")) = 0 (from Ter |p = Opi (r + 1)®7).
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3. If C is a canonical curve, we claim that we may specialize C to the union of a general BN-curve
C’ of degree r + 2 and genus 2, with a r-secant rational curve of degree r — 2. Indeed, we glue an
abstract curve of genus 2 to P! at r general points, and map it to projective space via the complete
linear series for the dualizing sheaf.

For C nonspecial, we will prove the lemma by induction on r. Let I" be a collection of r + 1 points
where C meets R; for r > 3, this is exactly the intersection C N R, and so Ng[[" <5 C] = Ng[~5 C].
However, we can extend the lemma to cover the case r = 2 as well, by replacing equation (5.3) with the
assertion that Ng[I" ~5> C| = Ogi (r +2)®"~D_ With this formulation, the base case of = 2 is clear
since Ng[I" ~5 C] is a line bundle of degree 4. The base case r = 3 is [9, Lemma 4.2].

For the inductive step, we suppose r > 4. Let H’ be a general hyperplane transverse to H. We will
degenerate C to a union C’ U L, where C’ ¢ H’ is a general BN-curve of degree d — 1 and genus g.
By hypothesis, d > r + 1, and so C’ meets H in at least r points, which are in linear general position in
H N H’ =~ P"~2 since the sectional monodromy group of a general curve always contains the alternating
group [20]. Since Aut P"~2 acts transitively on r-tuples of points in linear general position, we can apply
an automorphism so that 7 — 1 of these points are on R and the final point p lies on a one-secant line L to R.

/HI
C/

We claim that C’ U L is a BN-curve of degree d and genus g, as H'(Ter|crur) = 0. Indeed,
H'(Tpr|c) = 0 because C’ is nonspecial (and Tpr is a quotient of Op (1)®*1). Furthermore, since
Ter|p = Opi(2) ® Opr (1)®", we have H' (Tpr |1 (—=p)) = 0. The result now follows by considering

O e TIP'|L(—P) — Tpr |C’UL e TPF|CI el 0

Call u and v the points on R where L is one-secant. Projecting from L induces an exact sequence

0— Nrorlu5v][vSu] = OPI("+2)$2 — Ng[5 C'UL] — Nﬁ[f:r» Mu+v) —0.

The curve R is again a rational curve of degree r —3 in a hyperplane that is incident to Cratr—1 points.
Furthermore, if C is not an elliptic normal curve, then neither is C’. Applying our inductive hypothesis
(for P"~2), in combination with the above exact sequence, completes the proof. O

It is natural to ask what happens when C is an elliptic normal curve and r is odd. This case is only
necessary to treat the special family of canonical curves of even genus. When we treat that case in
Section 13, we will show that Ng [~ C] is not perfectly balanced in this case. Moreover, we will give
a geometric construction of its Harder—Narasimhan filtration.
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5.4. Reduction to good tuples

In this section, we show that, apart from rational curves and canonical curves of even genus, all other
cases of Theorem 1.4 follow from I(d, g, r, 0, m) for good tuples with £ = 0.

Lemma 5.9. Suppose that p(d, g,r) > 0 and that (d,g,r) # Qr,r+ 1,r) ifrisodd. If g > r and
I(d-r+1,g—r,r,{,m+1) holds, then I1(d, g, 7, €, m) holds.

Proof. Let C be a general BN-curve of degree d and genus g in P” with g > r. Let uy, vy, ..., ue, vy
be general points on C. Let Ry, ..., R, be general (r + 1)-secant rational curves of degree r — 1. The
statement 1(d, g, r,{, m) asserts that

Nc[5 Ry +- -+ Ryl [ur & villua & va] - [ue & vl

satisfies interpolation. Combining the assumptions that p(d, g,r) > 0 and g > r, we see that

2

d>r+ 2r+r—>2r—1.
r+1 r+1

We may therefore prove I(d, g, r,{, m) by peeling off an additional (r + 1)-secant rational curve R,,+|
of degree r — 1. That is, we specialize the curve C as in Lemma 5.7 to the union of a general BN-curve
C’ of degree d — r + 1 and genus g — r and a rational curve R,,.1, in such a way that the points of
CN (R U---URy) and the u; and v; specialize onto C’. By virtue of specializing the auxilliary points
onto C’, we have

(NCURy [ R+ -4+ Rl [ S vil[uz & val -+ [ue S vel)|g = NEURy Ryt -

Since we assume that (d,g,r) # (2r,r + 1,r) if r is odd, Lemma 5.8 implies that Nciyg,,.,, |R,..; 1S
perfectly balanced. By Lemma 3.7, it suffices to prove that Ncur,,,, |c satisfies interpolation. This
restriction is

Ne [ Ry + -+ + Ryt [ [ur & vil{ua & val - [ue & vel,

which satisfies interpolation by our assumption that I(d —r + 1,g — r,r,£,m + 1) holds. O

Proposition 5.10. Suppose that 1(d, g,r,0,m) holds for all good (d,g,r,0,m). Then 1(d, g,r,0,0)
holds whenever p(d, g,r) > 0, except if

o (d,g,r)isinthe list (1.4), or
o (d,g,r)=Qr,r+1,r) and r is odd, or
e g=0andd # 1(mod r — 1).

Proof. When g = 0, the tuple (d, g, 7,0, 0) is good when d = 1 mod r — 1, so the result is a tautology.
We therefore suppose g > 1.

We will prove by induction on g that /(d, g,r,0,m) holds for g > 1 subject to the conditions that
m < p(d,g,r) and (d, g,r,0,m) is not in the list (XEx). (If (d, g,r,0,0) is in the list (XEx), then
(d, g,r) isinthe list (1.4), so this is sufficient.) Our base cases will be g < r; in these cases, d > g+r by
Remark 4.3, and so (d, g, r, 0, m) is good. For the inductive step, we apply Lemma 5.9 to reduce from
I(d,g,r,00m)tol(d—r+1,g—r,r,0,m+1). |

6. The family withd =1landf{=m =0

In this section, we establish 1(d, g, r,0,0) for good tuples with § = 1. When £ = m = 0, the condition
6 = 1 is equivalent to

2d+2g =3r -1, 6.1)
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and I(d, g,r,0,0) asserts interpolation for N¢ (with no modifications). Our argument will be by
inductionond — g —r.

When d — g — r = 0, then by equation (6.1), we have (d, g,r) = (5g+1, g,4g + 1). We may therefore
conclude interpolation by [2, Lemma 11.3].

To complete the inductive step, observe that if g = 0, then d = (3r — 1)/2 by equation (6.1), and so
such tuples (d,0,r,0,0) are never good. It thus suffices to prove the following proposition in the case
g > 0. (The g = 0 case is included here too since it will be useful later, when establishing Theorem 1.4
for rational curves, and it will follow via the same argument.)

Proposition 6.1. Suppose that{ = m = 0, and d > g+r, and equation (6.1) holds. If [(d-3, g,r—2,0,0)
holds, and g > 0 or the characteristic is not 2, then I(d, g, r,0,0) also holds.

In order to prove this proposition, we first establish the following lemmas.

Lemma 6.2. Let L be a line meeting C quasitransversely at a smooth point x. For any points y,y’ € L\x,
the sections of PN¢ corresponding to Nc_,y and Nc_y are tangent over X.

Proof. We prove this by a calculation in local coordinates. We may choose an affine neighborhood of x in
P", and a local coordinate # on C so that x = C(0) = 0, and C is given parametrically by the power series
C(t) =tCy +1*Co+0(#). By assumption, y’ = a - y for some invertible scalar a. It suffices to show that
the three vectors C () — y, and C(7) — y’, and C’(¢), are dependent mod 2. The explicit dependence is
—a(C(t) —y) + (C(t) = y") +t(a— 1)C'(t) = —a(tC; — y) + (tC; — y') + t(a — 1)C; = 0(mod #?).

]

Lemma 6.3. Let u, v, and x be general points on a BN-curve C of degree d and genus g with
2(d+1)+2g=3r—1 and d=>g+r. 6.2)
Let y be a general point on the one-secant line uv. Then the bundle
(Ncou © Ney) [2x 5 y]

satisfies interpolation if and only if g > 0 or the characteristic is not 2.

Proof. Subtracting the first equation in equation (6.2) from 6 times the second inequality implies
2d + 4 — 2g > 2g. By Lemma 3.8, interpolation for (Nc_, ® Nc_,) [2x > y] is thus equivalent to
interpolation for
N = (Nc—u ® Nc—y) [2x - vl
By Lemma 6.2, the subbundles Nc_,, and Nc_,, agree to second order at u. Therefore, the composi-
tion Nc_,y, = Nc—u ® Nc—, — N, vanishes to order 2 at u. Similarly, Nc_,, — Nc_,, vanishes
to order 2 at v. Therefore, under the isomorphisms
NC—>y = OC(I)’ NC—m = Oc(l)(2u), and NC—W = Oc(l)(2\)), (63)

the map Nc_,y, — Nc—y, ® Nc—, is a diagonal inclusion

Oc(1) = Oc(1)(2u) ® Oc(1)(2v)
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given by constant sections of O¢ (2u) and O¢ (2v) that vanish at 2u and 2v, respectively. Such a section
is indexed by two nonzero constants ¢ and d. In other words,

N = (Oc(1)(2u) ® Oc(1)(2v)) [2x = Oc(D)],

where O ¢ (1) is the diagonal subbundle identified above.

Since u(N) = d + 1, it satisfies interpolation if and only if it has no cohomology when twisted down
by a general line bundle of degree d + 2 — g. Write such a line bundle as LV (1) (2u + 2v), where L is a
general line bundle of degree g + 2. We therefore want

N ® L(=1)(=2u — 2v) = (L(-2v) & L(-2u)) [2x 5 L(-2u — 2v)] (6.4)

to have no global sections, where the diagonal subbundle L(—2u — 2v) is indexed by [c : d] € G,, as
above.

As L is a general line bundle of degree g + 2 and u and v are general points, h°(L(-2v)) =
h(L(=2u)) = 1; write o and 7 for the unique (up to scaling) sections of L vanishing to order 2 at u and
v, respectively. Every section of L(—2u) @ L(—2v) is a linear combination ao- @ b, viewed as a section
of L & L. Such a global section comes from the subsheaf (L(-2v) & L(—2u)) [2x -5 L(=2u — 2v)]
when it is dependent with the constant diagonal section ¢ @ d at 2x, that is, when the section ado — bet
of L vanishes at 2x. Hence, equation (6.4) has no cohomology if x is not a ramification point of the map
¢: C — P! determined by (o, 7) € H(L).

As x was a general point, this holds if and only if ¢ is separable. If ¢ is not separable, then the
characteristic p of the ground field is positive and ¢ factors through the Frobenius morphism F:

cLoop
In this case, L and the linear system (o, T) are necessarily pulled back under F. In other words, L ~ F*M
for a line bundle M (necessarily general because L is general), of degree (g + 2)/p with h%(M) > 2.

Therefore,

2
82 1 _g=h(M) =2,
P

or upon rearrangement,

Thus g =0and p = 2.
Conversely, when g = 0, there is a choice of coordinates [¢ : s] on C so that (o, 7) = (¢, s?). If in
addition p = 2, then the map ¢ is inseparable. O

Proof of Proposition 6.1. Specialize C to the union C’ U L, where C’ is a general BN-curve of degree
d—1and genus g in P, and L is a one-secant line xy meeting C’ at x. It suffices to show interpolation for

Ner[2x 5 y].

Let u,v € C’ be general points, and specialize y to a general point on the line uv. Projection from uv
induces a pointing bundle exact sequence

0 — (N ® Nory) [2x 5 y] = Nev[2x 5 y] = Ng(u+v) — 0. (6.5)
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By Lemma 6.3, the subbundle (N¢—, ® Nc/—,,) [2x =5 y] satisfies interpolation. By hypothesis, N=;,
and hence the quotient N (u + v), also satisfies interpolation. Finally, by equation (6.1),

(r—-1)d+2g-r-5

H((Nc—u ® Ncr—v) [2xi>y])=d+2= r_3

= p(Nes(u+v).

Thus, N/ [2x 55 y] satisfies interpolation by Lemma 3.15. O

7. Specializations of the R;

In this section, for some integers n = n;, we construct a specialization of one of the rational curves
R = R; so that exactly n modifications point towards a point p on C. We then show that this specialization
plays well with projection from p.

7.1. Setup

Let n be an integer satisfying0 <n <r—1landn =r -1 mod 2. Let p,q1,¢q2,...,q9r--1 € C be points
such that 2p + g1 + - -+ + g,—1 lies in a hyperplane H. Assume that 2p + g1 + - - - + g,—1 is otherwise
in linear general position, thatis, p + g1 +---+¢g,—1 andeach2p + g1 + -+ qi—1 + Gi+1 + - + ¢r-1
spans H. When C is a general nonspecial BN-curve, we claim this assumption is satisfied if p is general
and H is a general hyperplane containing 2p. Indeed, in this case, the projection C from p is a general
BN-curve, and p remains a general point on C. Since the sectional monodromy group of a general curve
always contains the alternating group [20], the corresponding points of C are in linear general position
in the projection of H.

For i between 1 and n, write L, for the line joining p and ¢;. For j from leton’ := (r—1-n)/2,letQ;
be a plane conic passing through p, g,42j-1 and g,.42;. The following diagram illustrates the L; and Q ;:

Ql Qn’
qr-1 ¢
qn+1 ‘Q
4dn q1
L, Ly

Define
RC:=LiUL,U---UL,UQiUQyU---UQ,.
We will study when R° is a limit of (r + 1)-secant rational normal curves R’ in hyperplanes that are
(r+1)-secant to C, in such a way that exactly two points of secancy limit together to p while the remaining

points of secancy limit to g1, g2, . . ., g-1. For this, it is evidently necessary to have a containment of
Zariski tangent spaces 7,C C T, R°. In what follows, we will show that this condition is sufficient.
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Suppose that 7,C C T,R° and m := n+n’ = (r — 1 +n)/2 > 3. Then the tangent line to L;
(respectively to Q) at p gives a distinguished point a; (respectively b;) in

A =P(T,R°/T,C) =~ P"% c PN¢|,.

Write I' = {ai,...,a,,b1,...,by}, which is a collection of m points in A. Our linear gen-
erality assumption on 2p + g + --- + q,— implies that " is linearly general in A. Indeed, a
linear dependence between a;,...,a;,, bj,...,b jg in A implies a linear dependence between
2D, Giys s Qigs Gna2j1-15 Gnajys - - - Gna2jg—1qn+2js 0 H. Let T C A be a general rational normal

curve in A passing through I', and let M be a general one-secant line to 7. Our argument will fur-
thermore show that we can choose the family R’ so that the modifications along R’ at the points
approaching p limit to M, that is, so that Nc[~5> R’] fits into a flat family whose central fiber is
Nclgi+---+qr-1°5 R°][p 5 M].

7.2. The construction

To construct the desired family R’, let B be the spectrum of a DVR, with special point ¢ = 0. Consider
the blowup of P” x B along C x 0. The special fiber X over 0 has two components: The first is isomorphic
to the blowup Blc P”, and contains the proper transform R° = L, U--- UL, UQ; U---UQ, of
R°. The second is isomorphic to the normal cone P(N¢c @ O¢), and contains the special fiber of the
proper transform of C x B, which coincides with PO¢c ¢ P(N¢ @ Oc¢) and is isomorphic to C. The two
components meet along PN¢, and the intersection R° N PN is the finite set of points I' U I, where
I'={ay,...,an,by,...,by} lies in the fiber over p, and I'" = {¢], g}, ..., q,_, } contains one point g;
in the fiber over each g;. The following diagram illustrates the central fiber X:

\ Blc P

! P(N¢c @ Oc¢) !

Let £y € P(Nc ® Oc)lg, denote the line joining gy to g, . These lines are pictured as dotted vertical
lines in the above diagram.
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Write A = M N T. The linear series V := H*(Or (1)) ® H*(Or (1)(A = T)) c H°(Or(1)(A))
defines a map P! =~ T — PV ~ P! of degree m, which identifies the two points of A to a common
point. Fix an embedding PV < P(N¢ @ Oc¢), which agrees with the identification PH?(Or (1)) = A,
and sends this common point to p := POc|, € P(Nc ® Oc)|,. Composing these maps, we obtain
amap f: P! ~T — P(Nc ® O¢), which is pictured as the dotted curve in the above diagram. By
construction, f passes through I" and is nodal at p. Moreover, composing projection from p with f is the
identity on 7, and projection from p sends the Zariski tangent space of the image of f at p to M.

We now glue R° to f and the ¢, that is, we consider the map F': R°UTUG U---Ul._; — X defined
by the natural inclusions on R° and the £;, and by f on T. To complete the argument, it suffices to deform
F to the general fiber in a way that preserves its incidence to C. To check that this is possible, we just
need to check that the corresponding obstruction space vanishes, that is, that H' (N[~ C]) = 0.

7.3. the normal space PNc|,

One tool that we will use — both to show in the next section that H'(Ng[~ C]) = 0, and in the
following section to analyze the transformation [p = M| — is the natural identification of PN¢| p with
the projection of P” from 7T,C. Under this projection, g, ¢, ..., q,_; are a collection of r — 1 points,
which are general subject to the condition of being contained in a hyperplane H. The conics Q; project
to the lines through g,,,,;_; and g,,,, ;. The image p of p is identified with the osculating 2-plane, which
coincides with PNc_,,|, € PNc|,. Under this identification, the points a; are identified with g;, and
the points b; lie on 0 ;- The following diagram illustrates this setup:

7.4. Vanishing of H' (Np[~> C])

Given a vector bundle E on a reducible curve X Ur Y, recall that the Mayer—Vietoris sequence is
0—>E—>E|x®Ely - Elr—0.

Applying this to E = N[~ C], we obtain

r—1

0 = Np[~5 Cl = Ngogpr ® Ny [ C1 @ @D No pvesoe) [~ €1 = Tenelror = 0. (7.1)
k=1

For each of the direct summands in the middle term, we both show that H' vanishes, and extract
information about the image of its global sections in Tpp,. |rur-. We then combine this information to
show that the rightmost map is surjective on global sections.
Lemma 7.1. We have H'(Ny, /p(Neooc) [~ C1) = 0, and H*(Ny, jp(neooc) [~ C)) surjects onto
Tonelq, -

k
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Proof. Both statements follow from H! (N, /B(Ne®Oc) [~ C] (=4;)) = 0, which can in turn be deduced
from

0 = Ng /p(Nco0c)ly, (—9k = 41) = Nep(veooc) [~ Cl(=q1)

= Ne(Ne8Oc) Iy, [B(Nc 0l (=q;) = 0,

using the isomorphisms

Nt p(Neooe)ly, = O (1) and - No(neeoc)ly, B(Nc©0c) = OB(Nc©0C) g, - o

Lemma 7.2. We have H' (N [~ C]) = 0. Moreover, the image HO(Nf [~ C]) = TengIr consists of
those deformations of T that can be lifted to deformations of A, that is, this image coincides with the
full preimage in Ten. |r of the image OfHO(NA/]pNC) — Na/pne|Ir.

Proof. The map nr;, o f: T — T is the identity map, so the pointing bundle exact sequence yields a
surjection

N¢[~ C] - Nr,

which we may further compose with the surjection Nyt — Napn,. |[r coming from the inclusion T C A.
Define K via the exact sequence

0— K — N[~ C]l = Napnelr — 0.

By considering the diagram

HY (K(-T))

!

HY(K) — HO(Nf [~ C1) » HO(Npjpnelr) —> HY(K) — H' (Nf[~ C1) 3 H' (NpjpneIr)

| l l |

Klr —— TencIr —— Najpnelr —— 0

l

H'(K(-T))

and noting that H(N,) =~ H°(N,|r), it suffices to show that
H'(K(-T)) = H'(Naenclr) =0,
The first vanishing statement follows from the pointing bundle sequence
0— Nfoc(=A) = Or(A+T) = K — Npjp =~ Op (D)2 - 0.
The second vanishing statement follows from the sequence:

0 — Naene |, lr = Or (1)"™ — Npjpnelr — Neney,enelr = Or — 0. o
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We finally consider the bundle

n n
Nge gl pr = @N}/BIC pr @ @Né_i/BIC Pr-
i=1 j=1

To describe the images of
HO(Nﬁi/Blc pr) = Tenela, and HO(NQ,/Blc pr) = Tene b,
we define

Ai=T,C and B;=(T,., ,C,T,.,C),

n+2j-1"2 " qn+2j

for the tangent line or span of tangent lines, and A; and B ; for their projections from 7,,C.

Lemma 7.3. We have H! (Ni,/Biepr) = 0. Moreover, the image OfHO(NE,-/Blc pr) = Tpnela; has the
following two properties:

1. It surjects onto Tc | .
2. The kernel of the map from the image to Tc|, is precisely Ta,.Zi.

Proof. We have an exact sequence
0 — Np,er[gi ~ Cl(-p) — Ni,gicer = Tclp = 0.

Using this, the kernel in equation (2) is the image of H(Ny, /e qi ~> C|(=p)) in Tpn,|a, - Moreover,
the normal bundle exact sequence for L; in the span L;A; gives

0= Ny -z (=p) = Nryer[qi ~ C1(=p) = Npxjpr 1, (=qi = p) — 0,

and N L /m(— P)|p is identified with Tal.Zi under projection from 7},C.

The same diagram chase as in Lemma 7.2 implies that it suffices to show:
Hl(NL,./m(—ZP)) = HO(NE/PV L. (=qi — p)) = HI(NH/W lL:(=qi = p)) =0.
These statements follow from the isomorphisms
Ny, ma(=2p) = Op(=1) and N ln(=p = qi) = O, (=1)" .
O

Lemma 7.4. We have H' (N 0,/Ble o) = 0. Moreover, the image of H°(N, 0, /Ble pr) = Tenc b, has the
following two properties:

1. It surjects onto Tc|p.
2. The kernel of the map from the image to Tc|, is precisely TbjEj.
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Proof. We will imitate the proof of Lemma 7.3. We have an exact sequence
0 — Ng, /pr [qns2j-1 + Gns2j ~ Cl(-p) — Ny, gicer = Telp; = 0.
Moreover, the normal bundle exact sequence for Q in the span Q ;B gives
0= No o8 Ldns2j-1 + dns2j ~ CJ(=p) = No, /b [qns2j-1 + qnszj ~ Cl(=p)
— Ng g, prlo; (=ne2j-1 = qni2j = p) =0,
and NQj/ﬁ[!Znuj—l + qni2j ~ C](=p) |, is identified with TbjEj under projection from 7}, C. Our
goal is therefore to show both
HI(NQJ./@[%Q/—] +qni2j ~ C1(=2p)) =0
and
HO(N@/PV lo; (=Gn+2j-1 = qns2j — P)) = Hl(Nﬁ/p lo; (=gn+2j-1 = qns2j — p)) = 0.
The first vanishing statement follows from the exact sequence:
0= [Ny, 57 (=dn2j-1 = Gne2j = 2) = Ot | = Ny - [qneajo1 + qnaaj ~ C1(=2p)
- [N@/@|Qj [@n+2j-1 + @nezj ~ Cl(=2p) = Opi (-1)®?| — 0.
The second vanishing statement follows from the isomorphism

Ng 5, erl0; (=dn+2j-1 = qnizj = p) = Oz (-,

O

Combining these lemmas, we immediately see that H' of the middle terms in the sequence (7.1)
vanish. We now see that the rightmost map of equation (7.1) is surjective on global sections, as follows.
First, we apply Lemma 7.1 to handle the points of I'’; this reduces our problem to showing the surjectivity
of

HO(NR°/131CPr) & H'(Ns [~ C]) = TeneIr-

Applying Lemmas 7.3 and 7.4, we see that the composition to (Tc|,)™ is surjective. It thus suffices to
show that the image contains the kernel of Tpn.. [r — (Tclp)™, thatis, Tenc |, Ir-

Since removing any point from I'" yields a linearly independent collection of points, any deformation
in PN¢|, of all but one point of I" lifts to a deformation of A. Combining Lemma 7.2 with Lemma 7.3,
we therefore conclude that the image contains each T< A |[r. Similarly, combining Lemma 7.2 with
Lemma 7.4, we conclude that the image contains each T< AB)) Ir. Since the T< A |r and T< AB,) |r span

Tene|, |r, the desired result follows.

7.5. The transformation [p > M]
We next show that M is ‘suitably generic’ in PNc¢|,.
Lemma 7.5. Fix a general BN-curve C and a general point p € C.

L. Ifn>2:Asq1,q2,...,q,-1 vary, M is linearly general in PNc/|),.
2. If n > 3: This remains true if we fix qn+1,qn+2, - - -, qr—1 € C to be general. In other words, as just
the remaining points q1,q2, . . ., qn vary, M is still linearly general in PNc|p.
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Proof. Fix A C PN¢|p, of codimension 2; we want to show that M can be disjoint from A. In the first
case, g, and g, are general points on C. In the second case, since any (r—1-n)+2=r+1l-n<r-2

points in P"2lieina hyperplane, the points g, and g, remain general even as g1, ¢n+2,--.,qr-1 € C
are fixed. In either case, the line between g, and g, is therefore disjoint from A. This completes the
proof because M can be specialized to the line between g, and g,. O

Lemma 7.5(2) is sharp, in the sense that the conclusion is always false if n = 2 (the subspace M is
never transverse to A = g3q4 - - - ¢r—1). Nevertheless, there is a variant that does hold for n = 2. By part
(1), the general such M is disjoint from p = PN¢c—,,|, € PNc|,. We may therefore ask for the weaker
conclusion that the image of M is linearly general in the quotient P(Nc/Nc—p)lp, that is, that M is
transverse to any A containing p. In this case, the analog of Lemma 7.5(2) holds apart from a single
counterexample.

Lemma 7.6. Suppose n = 2, and fix a general BN-curve C and general points p, q3,q4,...,qr-1 € C.
If C is not an elliptic normal curve, then as q1, q2 vary, M is linearly general in P(Nc /Nc=p)|p-

Proof. By assumption, r — 1 = n = 2 mod 2; hence, r is odd. If C is not an elliptic curve, then since
d>r+1,eitherd >r+2or(d,g) = (r+1,0). We consider these two cases separately.

Case1: d > r + 2. Let A C PNc|, be any codimension 2 plane containing p. We will show that M
can be chosen disjoint from A. Since any (r — 1 —n) + 1 = r —n = r — 2 points lie in a hyperplane,
¢, is a general point on C and is therefore not contained in A. Let H ~ P"~3 be a general hyperplane
containing g3, g4, ..., q,_1. Since p ¢ H and p € A, it follows that A is transverse to H. As d > r + 2,
the hyperplane section H N C contains two points {x, y} distinct from g, g3, 44, - .., q,_;. Since the
sectional monodromy group of a general curve always contains the alternating group [20], the points
{x%,9.91,93:94, - - .. q,_1 } are in linear general position. For any k£ > 0, there is a unique k-plane in
P2k*+2 meeting each of k + 2 lines in linear general position. Applying this with k = (r — 7)/2, we see
that there is a unique [(r — 3)/2]-plane A, C H containing g, and x, and meeting each of the lines
Qi' If g, = x, then by this uniqueness, Ay coincides with the projection of T}, R°. Similarly define A,,.
Because M can be linearly general in either A, or Ay, it suffices to show that one of A, or A, contains
a line disjoint from A.

Note that A N @1 is the projection of x from (g, @2, . ,@n,) onto al, and similarly for A, N al.
It follows that A, N @1 #AyN @1, and thus that (A, Ay) contains @1. Similarly, (Ax, A,) contains all
other Q-. By inspection, (A, A,) contains g1, x, and y. Therefore,(A,, A) = H. In particular, (A, Ay)
is a distinct hyperplane from (A, g,). Without loss of generality, A, contains a point z ¢ (A, q,). Then
(z,q,) gives the desired line contained in A and disjoint from A.

Case 2: (d,g) = (r+1,0). Since f: P! ~C - P 2isa general rational curve of degree r — 1, it
suffices to verify that M is linearly general for a particular choice of f. We may therefore take

- - t— t—py_
f(y=|rr+1:¢: LE Pi .. Prot ,
I—q3 t—qa I—qra
where p; € P! are general. For3 <i <r—1,wehave f(g;)=[0:---:0:1:0:---:0], where the

1 occurs in the ith position. (The interested reader may verify that this is not actually a specialization,
that is, the general rational curve of degree r — 1 in P"~2 is of this form after applying automorphisms
of the source and target.)

Let H = H, be a generic hyperplane passing through g3, g4, ..., q,_;, defined by the ratio of the
first two coordinates being equal to s. Note that H meets f(P') at two other points q, = f(g1) and
7> = f(q2). The parameters ¢, and g, are the solutions of the equation ¢ +r~! = (12 + 1)/t = s. The
projection A of T, R° is the unique [(r — 3)/2]-plane A, containing g; and g, and meeting each of the
lines Q-. We will show that, for s € P! generic, A, is transverse to any fixed subspace A of codimension
2 containing p. Hence, a general line M C Ay is disjoint from A.
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To show this, we calculate Ay explicitly. Since Ay is unique, it suffices to exhibit a particular
[(r —3)/2]-plane containing g, and g, and meeting each of the lines Q;. We claim that we may take:

Ag = (a(s), B1(s), B2(s), . .., Br=3)/2(5)),

where

.1 . P3945S —P3 — 44  Ppaq3S — P4 — (g3
a(s)z[s.l. :

a3qa—1  q3qa-1
. Pr29r-1S = Pr-2—4r-1  Pr-19r-25 — Pr-1 — Qr—Z]
. qr-29r-1 — 1 . qr-29r-1 — 1

—1 -1

CP2isl S T Q241 T Py P2iv2 S T 9242 T Poyo

T 1 71
Q2+l S = q2i+1l =Gy 4242 S — q2iv2 — Gy

ﬂi(5)=l0:0:---:0:0 :0:0:---:0:0].

Here, the nonzero entries of 3; () occur in the (2i + 1)st and (2i +2)nd coordinates. Indeed, A, meets Q;
at B;(s), so it suffices to check that A contains f(r) when s = ¢ + ¢t~ This follows from the following
identity, which may be verified by separately considering the first coordinate, the second coordinate, the
(2i + 1)st coordinate, and the (2i + 2)nd coordinate:

w1t = D) (qoipat = 1)
Q2i+192i42 — 1

(1) =t-a/(t+t_1)—z (g2 Bi(r+17h.

This establishes that Ay is given by the above explicit formula, as claimed.

From the above explicit formulas for  and the f3;, it is evident that o is an isomorphism from P!
onto a line L, and the B; are quadratic maps from P! onto lines M; such that L, M|, M, . . ., M—3))2
are linearly independent and span P”~2. In fact, the above formulas for the 3; imply that, up to changing
coordinates on the M;, the 3; are independently general quadratic maps — so in particular distinct (from
themselves and from a). Since the image of 7 does not lie in any union of proper linear subspaces, and
A must meet p (which is a general point on the image of /), all that remains is to prove Lemma 7.7
below. O

Lemma7.7. Let Ly, Lo, ..., L; c P21 pe linearly independent lines, and B; P! - L, be maps which
are pairwise distinct (under every possible identification of L; with L;).

If A € P+ s a fixed codimension 2 subspace that is not transverse to {B1(s), B2(5), . .., Br(s))
fors € P! general, then A is the span of k — 1 of the k given lines L1, Ly, ..., L.

Proof. We argue by induction on k. For the base case, we take k = 1, which is vacuous.

For the inductive step, we suppose k > 2, and we divide into cases based on how A meets
(Li,Lay ... Lg—1). If A=(Ly,Ly,...,Lg_1), then the desired conclusion evidently holds.

Next, consider the case when A meets (Li,L,,...,Li_;) in codimension 1. Fix s € P!
general. Then the intersection A N (Li,Ly,...,Li_1) does not contain, and hence is transverse
to, (B1(s),B2(s),...,Bx-1(s)) inside of (Li,Ls,...,Lr1) =~ P?*73. Also, we have Bi(s) ¢
A+ (L,Ly,...,Lg_1), since (Li,Ly,...,Lg) = P2Zk-1, Combining these, A is transverse to
(B1(5), B2(8), ..., Bx(s)) in violation of our assumption.

Finally, consider the case when A is transverse to (L, Ly, ..., Lr_1). Applying our inductive hy-
pothesis, AN (L, Ly, ..., Lg_1)isthe span of k —2 of the k — 1 given lines L, Ly, ..., Ly_1.If k > 3,
then A contains some L;, and projecting from this L; and applying our inductive hypothesis completes
the proof.

It thus remains only to rule out the case when k = 2 and A is transverse to L1; exchanging the roles of
Ly and L,, we may also suppose A is transverse to Lj. Projection from A then defines an isomorphism
Ly = L,. By assumption, 81 # [, with respect to this identification of L; with L,, that is, A is disjoint
from (B (s), B2(s)) for s € P! generic, in violation of our assumption. O
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8. Inductive arguments

In this section, we suppose that (d, g, r, {,m) is good and give several inductive arguments that reduce
I(d, g,r,t,m) to cases where d is smaller or where d is the same and m is smaller. In the next section,
we will show that these arguments reduce all allowed instances 1(d, g, r, £, m) to the already considered
infinite family of cases with (d,¢,m) = (1,0,0), plus finitely many sporadic base cases in small
projective spaces.

8.1. Outline of inductive arguments

In order to indicate the specializations and projections of the original BN-curve C, we introduce the
following notation. Write C(0, 0; 0) = C for our original general BN-curve of degree d and genus g in
P". More generally, the notation C(a, b; ¢) will denote a curve obtained from C(0, 0; 0) by peeling off
a one-secant lines (as described in equation (1) below), peeling off b two-secant lines (as described in
(2) below), and projecting from ¢ general points on the curve (as described in equation (4) below). In
particular, C(a, b; ¢) is a BN-curve of degree d —a — b — ¢ and genus g — b in P"~¢. The inductive
arguments we will give will make use of the following six key ingredients:

1. (cf. Section 5.1) We peel off a one-secant line, that is, we degenerate C(a, b;c) to C(a+1,b;c) UL,
where L is a one-secant line to C(a + 1, b; ¢), meeting C(a + 1, b; ¢) at a point we will call x. In this
case, we write y for some point in L\{x}. We always do this specialization so that all marked points
determining the modification data specialize onto C(a + 1, b; c)\{x}.

2. (cf. Section 5.2) We peel off a one-secant line, that is, we degenerate C(a, b;c) to C(a,b+1;c) UL,
where L is one-secant to C(a, b + 1; ¢), meeting C(a, b + 1;¢) at points we will denote {z, w}. We
always do this specialization so that all marked points determining the modification data specialize
onto C(a, b + 1;¢)\{z, w}.

3. We specialize the modification data. For the modifications [~5 R;], we use the technology developed
in Section 7. For the remaining modifications, we specialize the marked points determining the
modification data (which start out general).

4. We project from a point p € C(a, b;c). Namely, if we write C(a, b;c + 1) for the projection of
C(a, b;c) from p, then the pointing bundle exact sequence induces (cf. equation (3.3)) an exact
sequence

0 — Nc¢(a,bic)—p(mods to p) — N (a,b;c) [Mods] — Ne(q,pic+1) [residual mods](p) — 0.

If the number n of modifications towards p satisfies |[n — §| < 1, then by Corollary 3.16 interpolation
for N¢(a,p:¢) [mods] follows from interpolation for N¢ (4 p:c+1) [residual mods]. More generally, if n
satisfies [n — 6| < 1 — r—fl then we may iterate this construction (i.e., first specialize as desired and
then project) a total of € times.

5. We erase modifications that are linearly general. Namely, suppose that one of our modifications
[p & M] is linearly general. Then interpolation for N[p = M] follows from interpolation for N
by Lemma 3.11. More generally, if M is not linearly general, but contains some subspace My and is
linearly general in the quotient N|,, /My, then interpolation for N [p % M] follows from interpolation
for N and N[p -5 M) by Lemma 3.11.

6. We specialize any remaining R; to pass through the center of projection. In more detail, suppose
that we projected from a point p, and that prior to this step, R; remains general; write R; for the
projection of R; from p. Specializing R; to pass through p then induces the specialization of R; to a
union R U L, where R] is an r-secant rational normal curve in a hyperplane (the projection from p
of the hyperplane containing R;), and L is a line passing through p and a point ¢ € R. This has the
effect of replacing the modification [~ R;] with the modifications [ R/][p = t]. By Lemma 8.1
below, R; is a general r-secant rational normal curve in a hyperplane, and ¢ € R] is a general point.
The modification [p = ¢] is therefore in a linearly general direction, and can be erased as above. In
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other words, at least when no other modifications are made at p, the combined effect of these steps
is to replace [~ R;] with [5 R!] (which fits well with our inductive hypothesis).

Lemma 8.1. Let p,q1,...,qr € P! be a general set of points, and write §; € P"~2 for the projection
of qi from p. Let R C P"~2 be a general rational normal curve passing through 9192 ---.4,, and
x € R be a general point. Then there exists a rational normal curve R through p,qu, ..., q, whose

tangent direction at p corresponds to x, and whose projection from p is R.

Proof. Such a rational curve, if it exists, is unique. We can therefore simply compare the dimension

of the space of rational curves through p, g1, ..., g,, to the dimension of the space of rational curves
through q,,¢,, . .., g, together with a choice of point on that rational curve. Visibly both are equal to
r—2. O

8.2. Main inductive arguments

We begin with the following proposition, which applies this method without utilizing specialization
(2) (peeling off a one-secant line) and which specializes the R; as in Section 7. Since this is the first
application of the method described above, we include some additional explanations which serve to
clarify this method, and will be omitted in subsequent applications.

Proposition 8.2. Let ¢’ and m’ be integers satisfying 0 < ¢’ < Land 0 < m’ < m, withm’ =0 if r = 3.
Let d’ be an integer satisfying g+r < d’ < d,withd' > g+rifbothg =0andm # 0. For 1 <i < m’, let
n; be an integer satisfying n; = r—1mod2 and?2 < n; <r—1, withn; # 2if (d’,g) = (r+1, 1). Define

(r=1)m' -3 n;
2

E=0-0"+ and m=m-m’.

If
1

r—1

bl

'+ <r-2 and |(5— [€’+2(d—d’)+Zn,~” <1-
and I(d" - 1,g,r — 1,E,m) holds, then so does 1(d, g, r, €, m).
Proof. Our goal is to establish 1(d, g, r, €, m), which asserts interpolation for
Nc,00)[ur & il [ue S vel[S Ry U+ URy].

Our assumption that g +r < d’ < d, with d’ > g + r if both g = 0 and m # 0, implies that we may
peel off d — d’ one-secant lines. (Recall from the discussion at the beginning of the section that this
means we specialize C(0, 0;0) to the union of a BN-curve C(d — d’,0;0) c P" of degree d’ and genus
g, with d — d’ one-secant lines, in such a way that all u; and v;, and all points of intersection with the
R;, specialize onto C(d — d’, 0;0).) This reduces our problem to showing interpolation for

N = NC(d—d’,O;O) [Ml & Vl] s [ug & V[] ['\‘t) RiU---U Rm] [2)C1 = )’1] e [Zxd_d, = yd—d']'
For 1 <i < m’, write n] = (r — 1 — n;)/2, and degenerate R; as in Section 7 to the union R?, of n;
lines L; ; meeting C at p; and ¢, ;, and n; conics Q; ; meeting C at p; and g; ;;+2;-1 and g; p;4+2;. This

induces a specialization of N to

Nc(a-ar00)[ur & vil - [ue S vel [ Ryper U URI[2x1 S yi] -+ [2%a-ar = Ya-a']
[qii+ - +qir S R [qmg + + Qo r—1 ~> Ropl Pt = Mi] - [P = M),

Now, fix a general point p € C, and specialize p1, pa, ..., Pu/s Vis V2, oo s Ve, Y1, Y25 - -5 Ya—a all to p.
Because 2m’ + ¢’ < r —2 < r — 1 by assumption, the limiting directions My, ..., M/, uy,...,uy are
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linearly independent in PN |, and the limit is therefore treelike (cf. Defintion 3.3). Hence, this induces
a further specialization of N to

N° = Nc(a-a00) [ues1 & vest] -+ [ug &S ve][5 Rpra1 U+ U Ry

[ug + - +up +2x1 4+ +2xg_q0 = pl

[qii+ - +q1,-1> RSL-- - [qma + -+ Qo et 5 Ry, 1p 5 M,

where M = Span(Mi, ..., My, u1,...,up) C PNc|,. Furthermore, M is disjoint from PNc_ |,
by combining the assumption 2m’ + ¢’ < r — 2 with Lemma 7.5(1). Finally, M is linearly general in
P(Nc/Nc-p)|p by Lemmas 7.5(2) and 7.6.

It remains to see that N° satisfies interpolation. For this, we project from p. In other words, as
described at the beginning of the section, we use the following pointing bundle exact sequence:

0= Nc(a-a,00)—p U1+ +up +2x1+--+2xg-q + (q1,1+ -+ q1,n,)
+"'+(Qm’,l+"'+51m’,nm/))HNO_’Q(p)_’O’ 8.1)

where

Q = Ne(a-aro: [test & vesal - [ue S vel[5 Ry U~ URy][p 5 M]

+ + + +
[G1,m+1 © qrm+2] - [q1—2 © q1 2] (@ nype1 © G2l - (@ r—2 © Qe 1]

The number of transformations towards p is ¢’ + 2(d — d’) + >, n;. (These transformations occur at
Uls oo Ue, X1 oo s Xded's Q11 - > G1nys - - s Gt 15 - - - 4o’ m,,,» .. €quation (8.1). In particular, this
specialization does not produce a positive transformation at p in the direction of p, because M is disjoint
from PNc_, |, as explained above.) Our assumption that [6 — [£'+2(d —d")+ X, n;]| < 1— ﬁ therefore
implies that interpolation for N° follows from interpolation for Q by Corollary 3.16.

We next erase the transformation at p. In other words, the only way that O depends on the points
Ul oo s Ues 1ty s Glnys - - -2 g 15 - - - » G om,,, 1S Via the dependence of M on these points. As only
these points vary, M is linearly general. Thus interpolation for Q follows, by Lemma 3.11, from
interpolation for

Ne(a-a o1 [uest S veal - [ue S vel [ Ry U+ U Ry

[ql,n1+l é ql,n1+2] et [ql,r—Z <i) ql,r—l] et [Qm’,nmz+l (i> Qm’,nmr+2] et [Qm’,r—Z é Qm',r—l]~

Finally, we specialize the remaining R;, for m” + 1 < i < m, to pass through p. Namely, we first
specialize R,41 to pass through p, which induces the specialization of R4 to a union R, UL
as described in Subsection 8.1(6). The effect of this specialization on the above bundle is to replace
the modification [~> R,,] with the modifications [~5 R 1lp % 1], where ¢ is a general point on
R;n, nE In other words, the above bundle specializes to

m'+1] [’\+’> Em’+2 U--- UEm] [p 5 t]

[ql,n1+l <i> ql,n1+2] o [ql,r—Z <i) ql,r—l] U [Qm’,nmr+1 (i> qm',nmr+2] o [Qm’,r—Z ;} qm’,r—1]~

Nc(a-ao)luest & ve] - [ue S ve][S R

The modification [p =5 7] is in a linearly general direction and may therefore be erased by Lemma 3.11.
In other words, interpolation for this bundle follows from interpolation for

Nc(a-a o) [uest S veal - [ue S vel[5 R, 15 Rusa U+ - U R,y

+ + + +
[ql,n1+l > ql,n1+2] e [ql,r72 g (]1,r71] e [Qm',nm/+1 « qm,’,nmr+2] et [qm',r—Z < Qm',r—l]~
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Similarly specializing R, 42, then R,;.3, and so on until R,,, we reduce to interpolation for the bundle

.
Nc(a-ar o [ess & vesl - [ue S ve][S R, U~ UR),]

[ql,n1+1 <i> ql,n1+2] e [ql,r—Z <i) ql,r—l] e [qm',nmr+l <i> Qm’,nm/+2] e [qm',r—2 <i> Qm',r—l],
which is just the assertion I(d’ — 1,g,r — I,Z, m). O

The n; appearing in Proposition 8.2 are constrained mod 2. It is thus often difficult to apply Proposition
8.2 in situations where § is an integer with the ‘wrong’ parity. We introduce the following variant, which
has the advantage that its difficult parity is the opposite of the difficult parity for Proposition 8.2.

Proposition 8.3. Let £/, m’, d’, the n;, £ and i be as in Proposition 8.2. If

E)

m' <m, 2m'+€ <r-2, and |6—[1+€’+2(d—d’)+zni”g1_
r—1

and
Id -1,g,r—1,¢6,m), I(d -1,g,r—1,6m—-1), and 1(d -2,gr—2,¢ )

all hold, then so does 1(d, g,r, €, m).

Proof. As in the proof of Proposition 8.2, it suffices to show that N° satisfies interpolation, where

N° := Nc(a—ar,00) [er1 S ve] - [ue S vel [ Ry U- -+ U Ry
[ug + - +up +2x1 4+ +2xq_q0 = pl
g+ +q11 > R [+ + qur1 > Ryl > M.

Write R,y +1NC = {50, 51,52, .. .,5-—1, 5 }. We first specialize R+ toaunion RU L, where L is the line
through sg and s,-, and R is a rational curve of degree r — 2 passing through sy, 52, . . ., s,—1 and meeting
L at a single point. We then specialize s, to p. These specializations induce a specialization of N° to

Nc(a-a.00)[ess & ver] - e S ve][5 R[S Rypsa U+ U Ry,
[so+up+-+up +2x1 + - +2Xq_q — p]
[qu + gl & R(lj] ce [Qm’,l + G -1 ";t} R;)n'] [p 5 M'],

where M’ = (M,PNc_,,). We then project from p, thereby reducing to interpolation for

— — — —
Nc(a-a o) [uest S veal - [ue S vellsi+- + 5,21 5 R[5 Ryaa U+ URp][p > M ]

[ql,n1+l <i> ql,n1+2] e [qu—z é ql,r—l] e [Qm’,nmr+l <i) Qm’,nm/+2] e [QWL',r—Z <i> Qm’,r—l]-

Here, we have written out the modification [s; + - - - + s,_] ~> R] because R also meets C(d — d’,0; 1)
at so. Note that M’ is not linearly general since it contains the fixed direction PN¢ (q—a’,0:1)—s)lp3
however, it is linearly general in the quotient by PN¢ (4—a',0:1)—s, |p- Using Lemma 3.11, we reduce to
interpolation for the pair of bundles

0 = Nc(a-a o) o1 S vesrl - [ue S vellsi+- - +5,21 5 R[S Rypaa U+ - U Ry
[ql,n1+1 & q1,n|+2] [qu—z & q1,r—1] [Qm’,nm/+1 & Qm’,nmr+2] [Qm’,r—Z & Qm’,r—l]
and Q[p = so].
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Specializing R, 42, Rpy+3, - - -, Ry to pass through p, interpolation for these two bundles follows from
interpolation for the two bundles
Q™ = Nc(a-a o) [uest S vesal - [ue S vellsi+-+5,.1 > R[S R, ,U--UR}]
[q1,n1+1 <1) q1,n|+2] e [q1,r—2 <i) q1,r—l] o [Qm’,nm/+1 ‘i> Qm/,n,,,,+2] o [Qm’,r—Z (i> Qm’,r—l]

0" =07 [p > s0].

By Lemma 3.14, interpolation for Q™ follows from interpolation for the two closely related vector
bundles where all (respectively none) of the transformations along R are performed:

+ + + 5
Ne(a-a o luest  vewrl - [ue & ve] [~ RUR), , U~ UR; ]

[q1,n1+1 <i) q1,n1+2] o [qu—z (1> q1,r—1] U [Qm’,nmz+1 ;) Qm/,nm/+2] o [Qm’,r—2 <i) Qm’,r—l]

Nc(a-a o) [uest S veal - [ue S vel[S R, U UR},]

[ql,n1+l é ql,n1+2] et [ql,r—Z <i) ql,r—l] et [Qm’,nmz+l (i> Qm’,nmr+2] et [Qm’,r—Z é Qm',r—l]~
But these are the assertions I(d’ - 1, g,r — 1,2, m)and I(d' - 1,g,r — 1,¢,m — 1), respectively, which
hold by assumption.

It remains to see that Q7 satisfies interpolation. Applying Lemma 3.12 and noting that we have

already established interpolation for O~ above, it suffices to check interpolation for Q~/N¢ (a-ar,0:1)—s0>
which after twisting down by s is isomorphic to

= —
Nc(a-ar02)luess & veer] - [ue S ve] [ RUR,,» U+ UR,]
[ql,n1+l é ql,n1+2] e [ql,r—Z <i) ql,r—l] e [qm’,nm/+1 (i> Qm’,nmr+2] e [('Im’,r—Z (i> qm',r—1]~

Specializing R’ R’

’ . .
tvenr Bz - - » Ry 10 pass through s¢, we reduce to interpolation for

Nea-arop[uea S veal-lug Svel[SRUR), ,U---UR)]
[ql,n1+l é ql,n1+2] e [ql,r—Z <i) ql,r—l] e [qm’,nmz+1 (i> qm’,nmr+2] e [qm’,r—Z é qm’,r—1]~

But this is just the assertion I(d’ — 2, g,r — 2, ¢, m), which holds by assumption. m]

8.3. Large parameters

Both of the main inductive arguments above impose upper bounds on 2m’ + ¢’ (depending on r). It is
thus difficult to apply them when any of the remaining parameters, that is, d, g, or m, is large. (Note that
¢ is already bounded in terms of r by construction.) We therefore next give three inductive arguments
that apply for large values of d, g and m, respectively.

Proposition 8.4. Suppose thatd > g+2r—1.IfI(d—(r—1), g, r, £, m) holds, then so does I(d, g, r, €, m).

Proof. We want to show interpolation for
Neluy & il [ue Svel[S RiU---UR,.
Peeling off r — 1 one-secant lines, it suffices to show interpolation for

Neg-1.00)[ur S vil-[ue S vel[5 Ry U= URpI[2x1 5 yi] - [2x21 5 yro1].
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Specializing x1, x3, . . . , X,—1 to a common point x € C (while leaving y1, y2, ..., y-—1 general) reduces
to interpolation for

Ner-1,00) [u1 S vl [ug S ve][5 Ry U -+ U Ry (2x).
Removing the twist, this bundle satisfies interpolation provided that
Ne-1,00)[ur & vil-- [ue S vel[S Ry U+ URy]
satisfies interpolation, which is the assertion I(d — (r — 1), g, r, €, m) that holds by assumption. O

Proposition 8.5. Suppose that g > r. If I(d—(r—1), g—r,r,£,m+1) holds, then so does I(d, g, r,{, m).

Proof. Since (d, g,r,€,m) is good, (d,g,r) # (2r,r + 1,r), and so this is a special case of Lemma
5.9. O

Proposition 8.6. Suppose thatm > r — 1. IfI(d, g,r,€,m — (r — 1)) holds, then so does I(d, g,r,{,m).

Proof. We want to show interpolation for

Nclup S il [ue S vel[5 RiU---URy).

Fix points g1, g2, - . ., gr+1 lying in a general hyperplane section of C. For m— (r—2) < i < m, specialize
R; to a general rational curve of degree r — 1 meeting C at q1, g2, . . . , ¢,+1. This induces a specialization
of the above bundle to

Neluyr S vil - [ue S vel[5 RV URp(rony (g1 ++ + @ra1).

Removing the twist, this bundle satisfies interpolation provided that

Nelur Svil - [ue Svel[5 Ry U+ U Ry (o]

satisfies interpolation, which is the assertion I(d, g, r, €, m — (r — 1)) that holds by assumption. O

8.4. Small parameters

The remaining cases where our main inductive arguments do not apply are when various parameters are
small (which deprives us of flexibility in choosing £’ and the n;). Some of the arguments we give here
readily generalize to larger values of various parameters, but since we will not need them in that regime,
we opt to simplify the exposition as far as possible. We first consider two cases where £ = 0 and m = 1.

Proposition 8.7. Suppose that £ = 0 and m = 1. Let € be an integer satisfying 0 < e < (d—g—r)/2,
withe < (d—g—-r)/2ifg=0.1If

2
[6 —2e+1)| <1 - ——,
r—1

and I(d —2e - 2,g,r — 2,0, 1) holds, then so does 1(d, g,r,0, 1).

Proof. We want to show that Nc[~> R;] satisfies interpolation. Peeling off 2¢ one-secant lines, we
reduce to interpolation for

Nc@e00) [ RiI[2x1 5 1] -+ [2x2¢ 5 yael.

Write Ry N C = {sg, 51,52,--.,5-—1,5r}. As in the proof of Proposition 8.3, specialize R to a union
R U L, where L is the line through sy and s,, and R is a rational curve of degree r — 2 passing
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through s1, s2,...,s-—1 and meeting L at a single point. Then specialize y{,y2,...,Ye to so, and
Ye+ls Vet2s - - - » Y2e to 5. This reduces our problem to interpolation for

Nc(zf’o;o) [’\t> R] [Sr + 2x1 + -+ 2x€ l> S()] [S() + 2x5+1 + -+ 2x2£ i) Sr].

Projecting from sy and then from s,, we reduce to interpolation for Nc(2¢ 0.2 [«5 E], which is the
assertion I(d — 2e — 2, g,r — 2,0, 1) that holds by assumption. ]

Proposition 8.8. If [(4k — 3,2k — 2,2k — 1,k — 3, 0) holds, then so does I(4k + 1,2k — 1,2k + 1,0, 1),
provided that k > 3.

Proof. Note that 6(4k + 1,2k — 1,2k +1,0,1) = 5. Our goal is to show interpolation for N¢ ['\5 Ry].
Peeling off a one-secant line and a one-secant line, we reduce to interpolation for

Neqio) [2x 5 yl[z & wllz 5 2w][5 Ry].

Degenerate R as in Section 7 to the union R7, of four lines L; meeting C at p and ¢, and k — 2 conics
Q; meeting C at p and g;;,3 and ¢».4. This induces a specialization of the above bundle to

Neqi0)[20 5 Y[z & wllz 5 2wllq1 +q2 + g3+ g4 = pllgs +- -+ qax <> R1[p 5 M],
where M is linearly general as g1, g2, g3, g4 vary. Specializing z to p, we reduce to interpolation for
Nea,io)[2x 5 y1lp 5 wllp 5 2wllw + g1 +q2+q3 +qa = pllgs +- -+ qu <> R{1[p > M.
Projecting from p, we reduce to interpolation for

Neaain[2x 5 yllas & gel -+ [qae-1 S qul[p > wllp 5 M +2w].
Specializing y and g5 to w, we reduce to interpolation for
Neaanlar & gsl - [qan-1 & gl [p + g6 +2x 5 w][p 5> M +2w][w 5 gs).
Projecting from w, we reduce to interpolation for
Neaaaylar & gsl - [qa-1 & qaullp = M +wl[w 5 gel.
Erasing the transformation [w =5 gg], and then [p <> M + w], we reduce to interpolation for
Ncaaoylgr & gsl - [qa-1 € qals

which is the assertion 1(4k — 3,2k — 2,2k — 1, k — 3,0) that holds by assumption. O

We finally consider several arguments that are adapted to the case m = 0.

Proposition 8.9. Supposem =0, and g > 3, andr > 6. Let € be an integer with) < € < (d—g-r)/3.If

3
[6 —(2e+3)| <1 - ——,
r—1

and I(d-3e-6,g-3,r—=3,0+1,0) and I(d—3€—-6,g—3,r—=3,¢,0) hold, then so does I(d, g, r,{,0).

Proof. Our goal is to show interpolation for

Ncluy & vil - [ue & vel.

https://doi.org/10.1017/fmp.2023.22 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2023.22

38 E. Larson and I. Vogt

Peeling off three two-secant lines and 3e one-secant lines, we reduce to interpolation for

NeGesoylur & vil - [ue S vel[2x1 5 yi] - [2x03¢ = y3e]
[z1 & willzi 5 2wi][z2 & wallz2 5 2wa][z3 & w3l[zz 5 2ws].

Specializing yi, y2,..., Ve, Wi t0 22, and Yei1, Yes2, - - - » Y26, W2 t0 23, we reduce to interpolation for

NeGesolur S il [ue S vel[2x2ea = yaen] - [2x36 D yiel
[23 5 w3llz3 5 2ws][z2 > z1]
[2x) + -+ 2xe + 21 + 23 — 22] [2% st + -+ + 2026 + 22 + W3 5 23] [21 D 222][22 D 223].

Projecting from z,, and then z3, we reduce to interpolation for

NcGeso[ur S vil-[ue S vel[20en = yaen] - [2x36 5 yiel
[z3 5 w3llzz 5 2wsl[z1 & 22][z2 > z3].

Specializing y2e+1, Y2642, - - - » Y3e, W3 t0 22, we reduce to interpolation for
+ + + + +
Nc@esolur & vil - [ue & vellza = 21 + 23] [ 200641 + - + 2x3¢ + 21 + 23 = 22][23 = 222].
Projecting from z, (again), we reduce to interpolation for
+ + + +
Ne@esslur & vil---[ue & vellzz = 22][z2 = 21 + 23]
Erasing the transformation [z, - z; + z3], we reduce to interpolation for the pair of bundles
+ + + + + +
Nc@eszylur @ vil -+ [ueg & vellzz & z2] and  Negesslur © vil - [ue © vellzz = z2].

The first is our assumption I (d —3e —6, g —3,r—3,£+1,0). For the second, we erase the transformation
[z3 = z2] to reduce to interpolation for

NcGesslur & il [ue & vel,
which is our assumption I(d —3e — 6,g —3,r —3,¢,0). m]

Proposition 8.10. Suppose m = 0 and g > 1 and that

1
[6-2|<1—-——.
r—1

Ifl(d-2,g—1,r=1,{+1,0) holds, then so does 1(d, g, r,{,0).

Proof. Our goal is to show interpolation for N¢ [u; <> vi]--- [ug < v¢]. Peeling off a one-secant line,
we reduce to interpolation for

Neo.ro) [ & il [ue & vel[z & wlz 5 2w].
Projecting from w, we reduce to interpolation for
+

Nco.anlur & vil - [ue & vellz & wl,

which is our assumption I(d —2,g — 1,r = 1,£+1,0). O
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Proposition 8.11. Suppose m = 0and g > 3 and r > 6 and that

2
6 -4 <1 - ——.
r—1

IfI(d-5,g-3,r=2,+1,0)and I(d —5,g - 3,r —2,¢£,0) hold, then so does I1(d, g,r,¢,0).

Proof. Our goal is to show interpolation for N¢ [u & vi] - [ue & ve]. Peeling off three two-secant
lines, we reduce to interpolation for

Ncos0)[ur & vil - [ue & ve]

[21 & wil[z1 5 2wi][z2 & wal[za 5 2wa]l[z3 & w3][zs 5 2ws].
Specializing w; to w, we reduce to interpolation for
Ncsoylur & vil-[ue S vellzi + 22 S willzi + 22 5 2wi][z3 S wsl[z3 = 2ws].
Projecting from w;, we reduce to interpolation for
Ncosylur S vil - lue & vellzi + 22 & willzz S willzz 5 2ws).

Specializing w3 to w, we reduce to interpolation for

Ncoalur S vil--[ue S vellzi + 22+ 23 © willzs S 2wy ].
Projecting from w; (again), we reduce to interpolation for

Ncoslur & vil - [ue & vellzs S willwi 5 21 + 22 + 23]
Erasing the transformation [w S o+m+ z3], we reduce to interpolation for the pair of bundles
Ncoso[ur S vil--[ue S vellzz S wil and  Neoso [ur & vil - [ue & vellzz =5 wil.

The first is our assumption I(d — 5,¢g — 3,r — 2, + 1,0). For the second, we erase the transformation
[z3 = w1] to reduce to interpolation for

Ncoso[ur & vil-[ue & vel,

which is our assumption I(d - 5,¢ - 3,r = 2,¢,0). m]

9. Interlude: some cases not implied by I(d, g, r,f, m)

As explained in Section 4, our main inductive argument will establish I(d, g, r, £, m) for all good tuples.
We have already seen that:

e [(d,g,r,¢t,m) for all good tuples implies Theorem 1.4 except in a couple of cases.
e Theorem 1.4 implies Theorem 1.2 except in a couple of cases.

Of course, we must also check Theorem 1.4 and Theorem 1.2, respectively, in these couple of cases.
The most difficult of these is Theorem 1.4 for canonical curves of even genus g > 8, which we defer to
Section 13. Here, we quickly take care of all the others.
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9.1. Theorem 1.4 for rational curves

Consulting Proposition 5.10, we may assume d # 1 mod r — 1. By assumption, this implies the
characteristic is distinct from 2. It thus suffices to argue that Theorem 1.4 holds for rational curves in
characteristic distinct from 2, which we do by induction on d as follows:

If 6 < 1: We apply Proposition 8.2 with d’ = d.

If 6 = 1: We apply Proposition 6.1 (the characteristic assumption enters here).

If 1 < & < 2: We apply Proposition 8.2 withd’ = d — 1.

If 2 < 6: Upon rearrangement this implies d > 2r — 1. We may thus apply Proposition 8.4.

9.2. Theorem 1.2 for rational curves

Using Theorem 1.4, we deduce Theorem 1.2 for rational curves when the characteristic is distinct from
2. Here, we show that Theorem 1.2 also holds for rational curves in characteristic 2.

Lemma 9.1. Suppose the evaluation map M{)n (P",d) — (P")" is dominant in characteristic 0. Then
it is dominant in all characteristics.

Proof. Because Mg,n (P", d) is proper over Spec Z, and the evaluation map is dominant in characteristic
0, the evaluation map is therefore surjective over Spec Z. O

If g = 0, then Mo,n(P’,d) is irreducible in any characteristic, and so we conclude the truth of
Theorem 1.2 in characteristic 2 from the truth of Theorem 1.2 in characteristic 0.

Remark 9.2. The reader might hope to apply Lemma 9.1 to higher genus curves. Unfortunately, all we
learn is that some component of Mg,n(Pr, d) dominates (P")" in positive characteristic. This is a fatal
flaw when the genus is positive, because there are other components, not corresponding to BN-curves,
which would tell us nothing about the interpolation problem for positive-genus curves. For example,
consider the component containing those stable maps which contract a smooth curve of genus g to a
point and map a rational tail to P” with degree d.

9.3. Theorem 1.2 for (d,g,r) = (6,2,4)

We want to show such a BN-curve can pass through nine general points. It suffices to show
H'(Nc(-D)) = 0 when D is a general divisor of degree 9 on C. Peeling off a one-secant line and
specializing one of the points of D onto the one-secant line, this reduces to

H'(Nco,1.0)[u 5 v][v 5 ul[v 5 2u](-v - D)) =0,
where D’ is now a general divisor of degree 8 on C(0, 1;0). This follows in turn from
H'(Nc.10)[2v 5 u]l(-v-D")) =0

because this is a subsheaf with punctual quotient. Since v + D’ is a general divisor of degree 9 on
C(0, 1;0), this follows from interpolation for

Nc(o,1:0)[2v = ul.

Projecting from u, we reduce to interpolation for N¢(o,1.1), which is Theorem 1.4 for (d, g,7) = (4, 1, 3).

10. Combinatorics

In this section, we show, by a purely combinatorial argument, that the inductive arguments in Section 8
apply to all good tuples (d, g, r, £, m) except for:
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e The infinite family (d, g, r,0,0) with § = 1 already treated in Section 6;
e A finite number of other cases.

We begin by showing that these inductive arguments apply to all but finitely many tuples for each
projective space, that is, for each value of r. To reduce casework, define:

N R T (e
Proposition 10.1. Let (d, g, r, £, m) be a good tuple. Then one of the arguments of Section 8.3 may be
applied unless
d<g+2r—1, g<r—-1, and m<r-2+e¢, (10.1)
or unless
(d,g,r,{,m — (r = 1)) lies in equation (XEx). (10.2)

Proof. If g > r, then we may apply Lemma 8.5. If m > r — 1 + €, then we may apply Lemma 8.6,
unless (d, g, r,€,m — (r — 1)) lies in equation (XEx).

We may thus assume m < r—2+¢€y < r—1.Forany d’ > g +r, this implies p(d’, g,r) 2 r+1 > m.
Therefore, if d > g + 2r, we may apply Lemma 8.4. O

For any fixed r, conditions (10.1) and (10.2) describe a finite set of tuples (d, g, r, £, m) as promised.
It therefore suffices to prove:

Theorem 10.2. Ifr > 14, one of the arguments in Section 8 may be applied, unless { =m = 0and 6 = 1.

The remainder of this section is devoted to a proof of Theorem 10.2, which is a purely combinatorial
exercise. Since all tuples in equation (XEx) have r < 5, by Proposition 10.1, we may suppose equation
(10.1) is satisfied.

10.1. The cases withm # 0

Our first step will be to show that Proposition 8.2 by itself handles the majority of these cases. This
consists of showing that we may assign integer values to the various parameters appearing in Proposition
8.2 that satisfy the desired inequalities. We shall accomplish this using the following lemma, which
gives a sufficient criterion for a system of inequalities to have an integer solution.

Lemma 10.3. Let a;/b; and c/d; be rational numbers. There is an integer n satisfying
a; . Cj .
n>—foralli and n< —forallj,
b; d;

provided that, for all i and j, we have

ai _¢j (bi=1(d;-1)
i dj b,‘dj )

Proof. The collection of intervals [a;/b;, cj/d;] is closed under intersection, so it suffices to check that
there is an integer n satisfying

IA
N
IA

(10.3)

S
o
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provided that

For this, we note that equation (10.3) is equivalent to

a—1< <c+l
n
b d

Since any interval of length greater than 1 contains an integer, it suffices to have

c+1 a-1

d b

> 1,

or equivalently,

c+1 a-1 1
>1+—.
d b bd

Upon rearrangement this yields equation (10.4) as desired. O
The following simple observations will be used repeatedly in what follows.
Lemma 10.4. If r is even and ¢ is an integer, then 6 = m mod 2.

Proof. This follows directly from examining the formula

_2d+2g-2r+20+(r+1)m
a r—1 ’

0

Lemma 10.5. In Propositions 8.2 and 8.3, suppose thatd’ + g +r ifd # g +r. Then
m<p(d-1,g,r=1) and m<p(d -2,g,r-2).
Proof. We divide into cases as follows.

Casel:d = g+r.Thisimpliesd’ = d = g+r;thus,g = p(d, g, r) = p(d'-1,g,r—1) = p(d'-2, g,r-2).
On the other hand, because m < p(d, g,r), wehavem =m —m’ <m < p(d, g,7).

Case2:d > g+r.Thisimpliesd’ > g+r+1;thus, p(d’-1,g,r—1) > g+rand p(d’-2, g,r-2) > g+r—1.
On the other hand, because m < r—2+¢y, wehavem=m—-m’ <m <r— 1. O

The first main step of our combinatorial analysis is the following.

Proposition 10.6. Let (d, g, r, €, m) be a good tuple satisfying (10.1) with m # 0 and r > 14. Then the
conditions of Proposition 8.2 can be satisfied unless one of the following holds:

1. € =0, and ¢ is an integer with the same parity as r, and 6 < r if r is even.
2.0 <8<t+2andg > 0.

3. (d,g,r,t,m) =3k +1,k,2k,0,2k — 3) for some k.

4. (d,g,r,t,m)=(k+1,0,k,0,1) for some k.

Proof. We will show a slightly stronger statement: The conditions of Proposition 8.2 can be satisfied,
together with the additional conditions that

m £mifg=0, and d #g+rifd+g+r,
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unless either one of the above-mentioned conditions holds or
(d,g,r,t,m)=(4k - 2,0,2k,0,1) or (4k + 1,2k — 1,2k,0,2k —3) for some k.

This is indeed a stronger statement because if (d, g, r, €, m) = (4k—-2,0, 2k, 0, 1), then the conditions
of Proposition 8.2 can be satisfied by taking:

'=0, m=m=1, d'=d=4k-2, n; =3,

and if (d,g,r,f,m) = (4k + 1,2k — 1,2k,0,2k — 3), then the conditions of Proposition 8.2 can be
satisfied by taking:

'=0, m'=1, d=4k-1, n =2k-1.

The advantage of this first additional condition is that m’ # m implies m # 0. In combination with
Lemma 10.5 (which applies because of the second additional condition), these conditions therefore
imply that (d’ — 1, g,r — 1, £, m) is good provided only that

ZSr—]

[\

A further advantage of this second additional condition is that }’ n; can be any integer of the form
(r = 1)m’ — 2n where

\
|
IS

5= ifriseven;
0<n<km’ where «k=«(d gr):= % if risodd and (d,g) = (r + 1, 1);
3 ifrisoddand (d,g) # (r+1,1).

We next write down a system of inequalities such that an integer solution (for £/, m’, d’, and n) to
this system guarantees that the conditions of Proposition 8.2 can be satisfied:

0<m' <m-e (10.5)

om0 <1 -2 (10.6)

g+r+e <d <d (10.7)

0<n<km (10.8)

0<t'<¢t (10.9)
|6—[f’+2(d—d/)+(r—l)m'—2n]|Sl—ril (10.10)
£—€’+nsr;1 (10.11)

Using equation (10.9), the inequality (10.6) follows from 2m’ + ¢ < r — 2. We introduce a new variable
s = d’ + n. Replacing equation (10.6) with 2m’ + £ < r — 2 and rewriting the resulting system in terms
of s and n, we obtain:

0<m' <m-¢g (10.12)

2m’' +€<r-2 (10.13)
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s—d<n<s—g-r—e¢ (10.14)
0<n<km (10.15)
0<t'<¢ (10.16)
o =2 , . =2

6—[2d—2s+(r—1)m]——1§€ <6-[2d-25s+(r—-1)m'] + (10.17)

r— r—=

r—1 ,

n < T+€ - . (10.18)

We use Lemma 10.3 to eliminate the variable n. In other words, equations (10.14), (10.15) and
(10.18) involve n. Applying Lemma 10.3, there is such an integer n provided that:

s—d<s—-g-r—¢ (10.19)

s—d < km' (10.20)

s—d35%1+ﬂ—f (10.21)

O0<s-g-r—e¢ (10.22)

0 < «km’ (10.23)
r—1

0=+l -t (10.24)

Inequalities (10.19) and (10.23) are immediate (they follow from d > g+r+€; and m’ > O respectively).
Rearranging the remaining inequalities, and including the inequalities (10.12), (10.13), (10.16) and
(10.17) that do not involve n, it therefore suffices to show that there is an integer solution to the following
system:

0<m <m-¢g
2m’'+€ <r-=2
0<t' <¢

_2
6—Dd—2ﬁ%r—Dmﬂ—£—TSf’sé—pd—zywr—nmq+ﬁ%
—

s <d+«km’
-1
s—d+t-""~ <¢
g+r+e <y
-1

Using Lemma 10.3 to eliminate the variable ¢’ replaces the inequalities involving £’ with:

0<¢, (10.25)

-2
036—[2d—2s+(r—1)m']+r 1
r—

(10.26)
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—2
S—[2d=2s+(r—m'] - _ =y (10.27)
P
-2 -2 -2)2
5 (2d—25+(r—m'] - =2 <6-[2d—25+(r - '] + =2 - U =2) (10.28)
iy r—1 (r-1)y
s—d+€—r;1§€ (10.29)
r—1 , r—2 r—2
s—d+¢€- 5 S(S—[2d—2s+(r—l)m]+r_1—2r_2 (10.30)
-1
(- <¢ (1031)
2
r—1 , r—2 r—2
(- <6-[2d =25+ (r=Dm'l4+ — - —=. (10.32)

Inequalities (10.25), (10.28) and (10.31) are immediate. Simplifying the remaining ones and including
the inequalities that do not involve £’, we obtain:

(r-1m’' -6 ¢ r-2
< — 10.
s<d+ > +2+2r_2 (10.33)
r—1
s<d+ 5 Y (10.34)
s<d+«m’ (10.35)
(r—=1m’'-6 r-2
> - .
s>d+ 7 T (10.36)
, rr-r-1
s>2d+(r—-1)m -6+ - ——— (10.37)
2r =2
r-=m'-6 ¢ r*-r-1
> s~ 4
s>d+ > +2 y— (10.38)
s> g+r+e (10.39)
0<m <m-¢g (10.40)
2m'+€ <r-2. (10.41)

We now eliminate the variable s. Mostly, we will accomplish this by using Lemma 10.3, except
we will compare equations (10.33) and (10.36) by ad-hoc methods. Namely, for equations (10.33) and
(10.36), we want there to be an integer between

(r—=1)ym"-6 r-=2 (r—=1ym'-6 ¢ r-2
d - d d = .
T -2 M AT T
By direct inspection, such an integer exists if and only if
¢+#0 or (r—1)m’—¢isnotan odd integer. (10.42)

Eliminating s, we therefore have condition (10.42) plus the following system of inequalities:

+(r—1)m’—6 r—2 <d+r—1 2r-3

d 2 S 2r-27 2 4r-4

(10.43)
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-1m’' -6 -2
+(r ym r

_ < 4 .
d > g Sd+um (10.44)
rP—r—1 (r-1ym -6 ¢ r-=2 (2r—3)2
d+(r-Om -6+6-————<d - - 10.45
Hlr=Dm'=o+l- = <d+ 2 T3t 2T ar-2p (10.45)
r2—r—1 r—-1 2r-3
_ ’_ - <« - _ 10.4
d+(r-1)m' —6+¢ ) <d+ PR (10.46)
r2-r-1
d+(r-1)m' -6+ - ———— < d+xm’ (10.47)
2r=2
- Dm’ - 2 p-1 - Dm’ - -2 (4r-5)2r-
g lr=bm =0 C ror-t Uz m=o L =2 GreSQro3) ) g
2 2 4r-4 2 27 2r—2 (4r—4)(2r-2)
r—=Om’ -6 € r*-r-1 r—1 4r-5
d L Y P 10.4
* 2 3T TH o ST TR o3 (10.49)
(r—=1m’' -6 ¢ r2-r-1 ,
- < — < .
d+ > 5= Sd+wm (10.50)

(r-1ym -6 ¢ r-=2

< - 10.51

g+r+e <d+ > +2+2r—2 (10.51)
r—1

g+r+e <d+ (10.52)

g+r+e <d+«m’ (10.53)

0<m' <m-¢g (10.54)

2m’' +{€ <r-2. (10.55)

Inequalities (10.48), (10.52) and (10.53) are immediate. Moreover, equations (10.43), (10.45), (10.46)
and (10.49) all follow from
r2—2r

(r—=Dm'—=6+¢< ,
r—1

and equations (10.47) and (10.50) follow from
r2—r-=2

-1Dm’' =6+ < km' +
(r=1m < km T

The above system of inequalities therefore follows from the following system:

r—2

(r—=Dm' -6 <2xkm’ + 1 (10.56)
.
2
_2
(r—Dm' —s+¢<—— (10.57)
2
—r=2
(r=m' —6+C<im+ —"% (10.58)
2r -2
“Dm' -6 € r-2
g+r+€1$d+(r )2m +§+2rr_2 (10.59)
0<m' <m-¢g (10.60)
om' + <1 -2. (10.61)
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All that remains is therefore to show that there is an integer m’ satisfying equations10.56—10.61 plus
condition (10.42). For this, we divide into three cases as follows.

Case 1: £ = 0 and r is even and ¢ is an even integer. In this case, we will take m’ = 2, which evidently
satisfies equation (10.42). Substituting £ = 0 and m’ = 2 into equations 10.56—10.61, it remains only to

verify:
2 _
2r 1) -5 L EO (10.62)
P
2
)
20r—1)—-6< " _1r (10.63)
3r2—11r+6
2r-1)-—s< L —T*0 (10.64)
2r-2
2r-1)-6 r-2
g+r+e <d+ 4 2) +2rr_2 (10.65)
0<2<m-e (10.66)
4<r-2. (10.67)

Note that 6 > r by our exclusion of the cases § < r in Proposition 10.6(1). This implies equations
(10.62), (10.63) and (10.64). Since d > g +r + €, inequality (10.65) follows from ¢ < 2r — 2. Inequality
(10.66) follows from m > 2 + €y, and equation (10.67) is immediate. All that remains is therefore to

check the following pair of inequalities:

§<2r =2 (10.68)

m>2+e. (10.69)

For equation (10.68), we note that

_2d-g-2r+1)+4g+(r+1)m+2r -2 <4(;’—1)+(r+1)(r—1)+2r—2
a r—1 - r—1

9 <2r-2.

For equation (10.69), we note that m is even by Lemma 10.4; in particular, m > 2. Inequality (10.69)
thus holds unless g = 0 and m = 2. But in this case,

2d+2  202r—1)+2
= < <

6 —_ 9
r—1 r—1

contradicting our assumption that 6 > r.

Case 2: £ = 0 and r is even and 6 is an odd integer. In this case, we will take m’ = 1, which
again evidently satisfies equation (10.42). Substituting £ = 0 and m” = 1 into equations 10.56-10.61, it
remains only to verify:

2 4r+2

(r-1)-6<_ %2 (10.70)
r—1
r2—2r

—1)-6< 10.71

(r-D-6<——m ( )
r2=3r+1

(r-1)-6< — (10.72)
T
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r-1)-6 r-2

<d 10.7

g+r+e <d+ > +2r_2 ( 3)
0<1<m-¢ (10.74)
2<r-2. (10.75)

Inequalities (10.70), (10.71) and (10.72) follow from 6 > 3, inequality (10.73) from the inequality
6 <2(d-g-r—e€)+(r-1),inequality (10.74) from m > 1 + €, and equation (10.75) is immediate.
All that remains is therefore to check the following system of inequalities:

06=3 (10.76)
6<2(d-g-r—e)+(r-1) (10.77)
m>1+e. (10.78)

For equation (10.76), since m > 1, we have 6 > 1. Since ¢ is an odd integer, 6 > 3 as desired. For
equation (10.78), since m > 1, the inequality holds unless g = 0 and m = 1. But in this case,

2d _1§2(2r——11)_1<5’

r—1 r—

o=
and so 6 = 3, and so d = 2r — 2. In other words, writing r = 2k, we have
(d,g,r,t,m)=(4k - 2,0,2k,0,1),

which is one of the cases excluded by assumption.
All that remains is to verify equation (10.77). Note that m is odd by Lemma 10.4; in particular, since
m < r —2+ € by equation (10.1), we have one of:

m<r-5 m=r-3, or m=r-—1,

where the final case can only occur if g = 0. Our argument will be via casework as follows.

Subcase 2.1: d > g +r + 2. By separately considering the cases g = 0 (in which case m < r — 1) and
g > 0 (in which case m < r — 3), we have 4g + (r + 1)m < r? + 2r — 7, with equality only if g = r — 1
and m = r — 3. Therefore,

(rP?+2r=7) —4g—(r+)m+Q2r—-4)(d-g—-r-2)
r—1

6=2(d-g-r-1)+(r+1)-
<2(d-g-r—e)+(r+1),

with equality onlyif g =r —landm =r —3 andd = g +r +2 = 2r 4+ 1. Since ¢ is an odd integer, we
therefore have § < 2(d — g —r — €1) + (r — 1) unless, writing r = 2k, we have

(d,g,r,t,m)=Q2r+1,r—1,r,0,r —3) = (4k + 1,2k — 1,2k,0,2k — 3),

which is again one of the cases excluded by assumption.
Subcase 2.2: d < g+r+1andm <r —5. We have

0

2(d-g-r—-1)+4g+2+(r+1)m < 4r-1)+2+(r+1)(r-5)
= :r
r—1 - r—1 r—

Since ¢ is an odd integer, this implies 6 < r — 1 as desired.
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Subcase 2.3: d = g +r and m =r — 3. We have

_1+_4(g—1).

S =
d r—1

Since ¢ is an integer, and r — 1 is odd, this implies g = 1 mod r — 1, which since 0 < g < r — 1 in turn
implies g =1,andsod =r — 1.
Subcase 2.4: d = g+r+1and m = r — 3. We have

2(2¢ - 1)

o=r—1+
" r—1

Since ¢ is an integer, and r — 1 is odd, this implies 2g = 1 = r mod r — 1, which since 0 < g <r —1in
turn implies g = r/2. Writing r = 2k, we therefore have g = k and d = g+r+1 = 3k + 1, that is, we have

(d.g.r.t.m) = 3k +1,k,2k,0,2k - 3),

which is again one of the cases excluded by assumption.
Subcase2.5:d < g+r+landm =r—1.Sincem < r—2+¢€y, we would have g = 0, and thus d = r+1.
But this would imply § = (#2+1)/(r—1) ¢ Z, in contradiction to our assumption that § is an odd integer.

Case 3: £ # 0 or r is odd or ¢ is not an integer. If £ # 0 or ¢ is not an integer, then equation (10.42)
holds. Otherwise, the current assumption implies r is odd, so J is even (the cases where ¢ is also odd
are excluded), and so equation (10.42) again holds. We conclude that equation (10.42) is automatic.

All that remains is therefore to check that there exists an integer m’ satisfying equations 10.56—10.61.
Rearranging to make the bounds on m’ explicit, this is the system:

1 r—2
P © . ]
m s ———— (5+r_1) (10.79)
1 2_2
m' < : (6 e+l r) (10.80)
r—1 r—1
1 r2—r-2
<—— |-ty ——= )
< (5 (45— ) (10.81)
m <m-¢g (10.82)
¢
m < Z270 (10.83)
2
1 )
m' > ~(6—2(d—g—r—61)—f—r ) (10.84)
r—1 r—1
m’ > 0. (10.85)

We will compare the inequalities (10.79) and (10.81) to equation (10.84) using ad-hoc methods. But
first we handle all of the other comparisons using Lemma 10.3 by verifying the following system of
inequalities:
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1 Z_r=2
OS—‘(5—{’+L)

1
~(6—2(d—g—r—61)—€—r
1 r—

I/\

m— g

r—1-« 2r -2
0<m-e¢g
OSr—Z 4
1 r— 2 _9r (r—2)4
|l6-2(d-g—-r- —{- < 0-1¢ -
r—1 ( (d-g-r-a) r— )_ ( * r—l) (r—1)4

r=2-¢ (r-17%-1
2 2(r—-1)2 °

1
-2
-((5—2(d—g—r—61)—€— 1)<

‘
|
—_

Substituting in the definition of ¢ and rearranging, these inequalities are equivalent to:

2d—-g-r)+4g+20+(r+1)m > -r+2 (10.86)
4d-g-r)+82+(r=3)r=200+2(r+ Dm>—r*+r (10.87)
Ad-g-r)+8g+(r=3)(r=-20+2(r+1)m > —2r+2 (10.88)

m—-1>2¢-1 (10.89)
r=20>-r+4 (10.90)

2(r=1)(d-g—r—e) = -5 +23r> =35r + 18 (10.91)
Q2r-4)(d-g-r-—e)+4(r-1-g)+(r-3)¢ (10.92)

+ (=3 (m-1)+2(1-¢€) = (r— 1)’ —r>+6r
(8r—16)(d—g—r)+16(r — 1 —g) + (r> = 4r + 7)(r — 20) (10.93)

+(4r+4)(r—1-m)+8(1—¢€) = —r>+10r* +5r.

From these expressions, we see that all but equation (10.92) is immediate and that equation (10.92)
holds when €y = 0. But when €y = 1, then g = 0 and €; = 1, and so equation (10.92) becomes

Qr—-4)(d-r-1)+@*=3r)(m-1)+(r-3)>5,
which holds unless d = + 1 and m = 1 and ¢ = 0, or equivalently unless
(d,g,r,t,m)=(k+1,0,k,0,1),
which is again one of the cases excluded by assumption.

All that remains is our promised ad-hoc comparison of equations (10.79) and (10.81) to equation
(10.84). That is, we want to show that there are integers between:

1 2 1 r—2

= (6 2(d-g—-r—¢) - g_r—l) and r—1—2/<.(6+r—1)

1 2 1 r2—r-2
2 — |-+ —==).

T (6 (d-g —1) and (6 e+ 2r—2)

https://doi.org/10.1017/fmp.2023.22 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2023.22

Forum of Mathematics, Pi 51

Remark = If (d,g) = (r+1,1) then § < £+2.Indeed, if (d,g) = (r+1,1),thenm < p(d,g,r) =1,
and so

_A4+20+ (r+1)m < r+5+2¢

<{+2.
r—1 - oor-1

0

Subcase 3.1: 6 < £+ 1+2(d — g —r — €1). In this case, the lower bound is nonpositive. We have
already shown that both upper bounds are nonnegative above, so there is nothing more to check.
Subcase 3.2: 6 > £+3. By Remark * above, k > %. It suffices to show that there are integers between

r—2 1 r—2 1 r—2
e-¢- d — . [6-¢ =—.|6-¢
r—1 (6 r—l) an r_1_2._r54 (6 +r—1) 3 ((S +r—1)
1 r=2 1 P2—r-2 1 r2—r-2
As-¢- d —— . |5-¢ = 26 -0) + ——=].
r—1 ( r—l) R = ( " 2r—2) r+2 (( L )

By Lemma 10.3, this follows from the following inequalities:

! ~(5—f—r_2)s%.(5—f+r‘2)_ Br-D-D((r-1*-1)

r—1 r—1 r—1 3(r-1)>3

1 r=2 1 r2—r=2\ (r+2)(r—-1)-D((r-1%*-1)
r—1'(5"f_ )Sm'(z(é%ﬂ r—1 )_ (-1

But these are immediate for § — £ > 3, using the assumption r > 14.
Subcase 3.3: (+1+2(d—g—r—€;) < § < £+3. These inequalities force d = g+r+¢€ or equivalently

d=g+r or d=g+r+1. (10.94)

The inequality § < € + 3 also implies

It therefore suffices to show

_ 2,
;-(mr 2)>1 and ;-(5—“& > 1,
r—1-2«

or upon rearrangement

§>r—2-2k+—— and §30+ —1-k+—
r—1 2 r—1

Subsubcase 3.3.1: g = 0. By equation (10.94), we have d = r + 1. Since g = 0, we have (d, g) #
(r+1,1). Our goal is thus to show

1 . .
o if r is Odd,

—_— =

5>{1+ﬁ if 7 is odd, +
h +

1 e and 6>¢(+
2+m if r is even;

1 . .
-7 ifriseven.

When ¢ = 0, the first inequality implies the second. In this case, recall that (d,g,r,f,m) = (k +
1,0, k, 0, 1) is excluded by assumption. Therefore,m > 2, which implies the first inequality because

_ 2+ (r+1)m S 2+42(r+1) S04 1

1 .
r—1

r—1 - r—1
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Now, suppose £ > 1. Note that § > £+ 1 > 2, which implies the first inequality unless r is even
and 6 = ¢ + 1. Similarly, 6 > € + 1 implies the second inequality unless r is even and § = ¢ + 1. It thus
remains only to show that it is impossible to have 6 = £ + 1 when r is even. To see this, observe that

2420+ (r+1)m

t+1=6=
r—1

implies
(r=3)(¢+1)=(r+1)m.

But if r were even, then this would imply (r + 1) | (£+ 1), which forces €+ 1 > r + 1, contradicting our
assumption that £ < r/2.

Subsubcase 3.3.2: g > 0. We excluded the cases ¢ < ¢ < €+ 2 in Proposition 10.6(2). Since we have
{+1 < 6§ < £+3, we therefore have £+2 < § < £+3. Moreover, by Remark =, we have (d, g) # (r+1, 1).
As in the previous subsubcase, our goal thus is to show

6>{1+L if r is odd, L if r is odd,

1
r—1 §+
o and 6>¢0+
2+—1 if r is even; 1+

1 1 . .
P —7 ifriseven.

Since 6 > £+2, the second inequality is immediate in all cases. Also, the first inequality is immediate
if r is odd. To see the first inequality when r is even, note that § > £ +2 > 2, so the first inequality holds
unless we have equality everywhere, that is, unless £ = 0 and § = 2. But this possibility is excluded by
assumption (recall that in Case 3 we have ¢ # 0 or r odd or ¢ is not an integer). O

The majority of the remaining cases are handled by Proposition 8.3. More precisely:

Proposition 10.7. Let (d, g,r,{,m) be a good tuple satisfying (10.1) with m # 0 and r > 14. Suppose
in addition that either condition (1) or (2) of Lemma 10.6 is satisfied. Then the conditions of Proposition
8.3 can be satisfied unless one of the following holds:

1. (d,g,r,t,m)=(4k,0,2k + 1,0, 1) for some k.
2. (d,g,r,{,m) = (4k + 1,2k — 1,2k + 1,0, 1) for some k.

Proof. We separately consider the following three cases.

Casel: { <d <l+2and g > 0. Wetake m’ =0, ¢’ = ¢, and d’ = d, which satisfy the conditions of
Proposition 8.3 by Lemma 10.5.

Case 2: £ = 0, and 6 and r are even integers with 6 < r. We take
m'=1, ¢=0, d=d, and n =6-1.
Applying Lemma 10.5, the conditions of Proposition 8.3 are satisfied provided that
m>1 and
2<m=6-1<r-1 withny=6-1#2if(d’,g)=(r+1,1).

Since ¢ is an even integer, 6 — 1 # 2; since 6 < r, we have 6 — 1 < r — 1. All that remains to check is
therefore that m > 2 and that 2 < § — 1, which since J is an even integer is equivalent to 6 > 2.

To see this, we first apply Lemma 10.4 to conclude that m is even. Since m # 0, this implies m > 2
as desired. This in turn implies 6 > 2 because

:2d+2g—2r+2€+(r+1)m S 2(r+1) vy

r—1 T oor-1

o
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Case 3: £ = 0, and § and r are odd integers. As in the proof of Proposition 10.6, we show a slightly
stronger statement: The conditions of Proposition 8.3 can be satisfied, together with the additional
conditions that

m +m-1ifg=0, and d #g+rifd+g+r,
unless either one of the above-mentioned conditions holds or
(d,g,r,¢,m)=CBk+1,k—-1,2k+1,0,1) for some k.

This is indeed a stronger statement because if (d, g,r,f,m) = 3k + 1,k — 1,2k + 1,0, 1), then the
conditions of Proposition 8.3 can be satisfied by taking:

=0, m'=0, and d' =d-1=3k.
Again as in the proof of Proposition 10.6, Lemma 10.5 guarantees that the tuples (d'—1, g, r— 1,¢,m),
d-1,g,r—1,6,m—1),and (d’ - 2,g,r —2,{, m), are all good provided only that

r—3

<
-2

With « as in the proof of Proposition 10.6, our task is thus to show that the following system of
inequalities can be satisfied for integers ¢/, m’, d’, and n:

O<m <sm-1-¢ (10.95)
2m’' +0 <r-3 (10.96)
g+r+e <d =<d (10.97)
0<n<«m (10.98)
0<0'<=0 (10.99)
[6—[1++2(d-d)+(r-1)m'=2n]| <1- ril (10.100)
€—£’+nsr;3. (10.101)
Inequalities (10.99) and (10.100) are satisfied by taking
-1 6-1
£=0 and n=d-d'+——m' -

Substituting these into the remaining inequalities and rearranging, we reduce to the system of inequali-
ties:

0<m <m-1-¢g (10.102)
-3
m <= (10.103)
2
g+r+e <d <d (10.104)
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1, 6-1 -1
L o - ' <d <d+ -2~ (10.105)

d+= 2 2 2

d+ m' - - <d. (10.106)

All bounds on d’ are integers because r and § are both odd integers. Using Lemma 10.3 to eliminate d’
replaces equations 10.104—10.106 with

g+r+e <d (10.107)
-1 0—1
g+rte <d+—m -2~ (10.108)
2 2
-1 0-1
d+ ' - ' <d (10.109)
2 2
r—1 0—-1 r—1 0-1
y_ 9= /< =, 9= )
d+ 5 m 3 km’ < d+ 5 m 3 (10.110)
r—1 o0—-1 r-3
’r_ _ < X
d+ S’ - 2 —<d (10.111)
r—1 0-1 r-3 r—1 0—-1
F - - < " - . 10.112
d+ 5—m 5 5 <d+ S—m 7 (10.112)

Inequalities (10.107) and (10.112) always hold, while equation (10.110) is implied by m” > 0. Rear-
ranging the others, and including equations (10.102) and (10.103), we arrive at the system

m' >0
,_ 0-1-2(d-g—-r—-¢)
m’ >
r—1

' < 01
m< —
Tr—-1-2«
, O0+r—4
m < —

r—1
m <m-1-¢
,<r—3
m .
-2

Applying Lemma 10.3 to eliminate m’, we reduce to the system

5-1
<2 10.11
O_r—l—ZK 101
-4
0< o+r (10.114)
r—1
0O<m-1-g (10.115)
Osr—3 (10.116)
2
r—1 r—1-2«
L) (=Ko
- 1= — 0 —7 — - 2 2
§-1-2d-g-r-e) __6-1 ( )( ) (10.117)

r—1 Srol1-2« (%)(#)
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2
r—1
5-1-2d-g-r-e) _5+r—4 (7‘—Q

r—1 Tor—1 )2
(2
§—1-2d-g-r-
(d-g-r fl)Sm—l—Eo
r—1
5-1-2(d-g-r-e) _r-3
r—1 -2

(10.118)

(10.119)

(10.120)

Since ¢ is an odd integer, we have ¢ > 1, which implies equations (10.113) and (10.114). The inequality
(10.116) is immediate. Inequality (10.118) follows from d > g + r + €1, which holds by construction.
For the remaining inequalities (10.115), (10.117), (10.119) and (10.120), we use the inequality €; < 1

to reduce to the system

m>1+¢

6—1—2(d—g—r—1)< 0—1 _(r—3)(r—3—2/<)

r—1 Tr—=1-2« (r-1)(r-1-2«)
60-1-2(d-g-r-

(d-g-r I)Sm—l—eo

r—1
(5—1—2(d—g—r—1)<r—3

r—1 -2

We divide our analysis as follows.

(10.121)

(10.122)

(10.123)

(10.124)

Inequality (10.121): This inequality asserts that we do not simultaneously have g = 0 (hence, €y = 1)

and m = 1. So assume g = 0 and m = 1. Then

2d+2g-2r+20+(r+1)m 2d-r+1

0

r—1 r—1
Sincer=g+r <d<g+2r—1=2r -1, we would have

1<2r—r+1 S(SSZ(Zr—l)—r+1 <s.
r—1 r—1

Since ¢ is an odd integer, 6 = 3, and so d = 2r — 2. In other words, writing r = 2k + 1, we would have

(d,g,r,€,m) = (4k,0,2k + 1,0, 1). But this case is excluded by assumption.

Inequality (10.122) when (d,g) = (r + 1,1): In this case, k = (r — 5)/2 so upon rearrangement,

equation (10.122) becomes

6>3r—3
25

However,

_2d+2g-2r+20+(r+1)m _ (r+1)m+4

s

0

r—1 r—1

since ¢ is an integer, this implies 2m +4 = (r+1)m+4=0mod r — 1, and som = -2 mod (r — 1)/2,

which implies m > (r — 1)/2 — 2 = (r — 5) /2. Therefore,

_ (r+1)ym+4 S (r+1)~(r—5)/2+4=r—3

0
r—1 - r—1 2

As r > 14, this implies § > (3r — 3)/(r — 5) as desired.

https://doi.org/10.1017/fmp.2023.22 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2023.22

56 E. Larson and I. Vogt

Inequality (10.123) when m < 1 + €): As we have already established m > 1 + €, this implies
m = 1 + €. In this case, equation (10.123) asserts

0<2d-2g-2r—-1.

By definition,
6_2d+2g—2r+(r+1)(1+60)
B r—1
2r—-4)(d-g - 4r -6) — (4 1
Crdng_aras. 2o g =)+ (r=6) - (g + (r+ D)

r—1

Sinced > g+r,wehave (2r—4)(d—g—-r) > 0, with (2r—4)(d—g—r) > 2r—4 > 4 unless equality
holds. Similarly, since g < r—1, wehave4g+(r+1)ey < 4r—4, with4dg+(r+1)ey < 4r—8unless equality
holds. Putting this together, we have § < 2d—2g—-2r+5+2/(r—1),with§ < 2d-2g-2r+5-2/(r—1)
unless equality holds. As ¢ is an odd integer, this implies § < 2d —2g — 2r + 3.

If g =0, then4g + (r+ 1)ey = r + 1. Therefore 6 < 2d —2g —2r+5— (3r = 7)/(r — 1), with
0<2d-2g-2r+5-(5r-11)/(r = 1) < 2d —2g — 2r + 1 unless equality holds. As ¢ is an odd
integer, this implies 6 < 2d —2g — 2r — 1 as desired.

It thus remains only to rule out the cases where g > Oand § = 2d —2g—-2r+3o0r6 =2d-2g-2r+1.
Upon rearrangement, this is equivalent to

(r=2)(d-g-r)-2g=-(r-2)orl.

Since ris odd, considering the above equation mod 2 implies that d—g—r must alsobe odd. If d—g—r > 3,
then since g < r — 1, the left-hand side is at least 3(r — 2) — 2(r — 1) = r — 4, which is impossible.
Therefore,in this case we must have d — g — r = 1. Solving for g we obtain g =r —2 or g = (r — 3)/2.
In other words, writing r = 2k + 1, we would have (d, g,r,¢,m) = (4k + 1,2k — 1,2k + 1,0, 1) or
(d,g,r,t,m)=Bk+1,k—1,2k+1,0,1). But these cases are excluded by assumption.

Inequalities (10.122) when (d, g) # (r + 1, 1), and (10.123) when m > 2 + €y, and (10.124) (in all
cases): Since (d, g) # (r + 1, 1) for equation (10.122), we may substitute k = (r — 3)/2. Substituting in
the definition of ¢ and rearranging equations (10.122), (10.123) and (10.124), we obtain

(6r-=10)(d-g—-r+*=2r=3)(m—-1-€) +(@4r—12)(g+e — 1)
+(rP—6r+9e+2r—14>0
Qr-4(d-g-rN+E*=-3r)m-2—-€e)+4r-1-g)+(r+1)(1-e)+r>—10r+3 >0
(4r-8)(d—g-r)+Qr+2)(r—1-m)—-8(r—1-g)+r> =7r>=3r+9 > 0.

This establishes the desired inequalities (using that m > 2 + ¢ for equation (10.123)). |

Finally, we complete our analysis of the case m # 0 by verifying the desired result in the four
remaining one-parameter infinite families of cases:

Case (3) of Lemma 10.6: This follow from Proposition 8.3 with the following parameters:
t'=0, m"=2, d=d=3k+1, and (ny,np)=(3,2k-3).
Case (4) of Lemma 10.6: This follows from Proposition 8.7 with € = 0.

Case (1) of Lemma 10.7: This follows from Proposition 8.7 with € = 1.
Case (2) of Lemma 10.7: This follows from Proposition 8.8.
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10.2. The cases withm =0and g # 0
As in the case m # 0, we will begin by showing that Proposition 8.2 handles ‘most’ of the cases by itself.

Proposition 10.8. Ler (d, g,r,¢,0) be a good tuple (with m = 0) satisfying equation (10.1), such that
g # 0and r > 14. Then the conditions of Proposition 8.2 can be satisfied unless one of the following
holds:

1.62C+1+2(d—g-r).
2. ¢ =0and ¢ is an odd integer.

Proof. Our goal is to show the existence of integers d’ and ¢’, such that (d’— 1, g,r—1,£~{’,0) is good
(which is equivalent to € — ¢’ = ¢ < (r — 1)/2), and the inequalities of Proposition 8.2 are satisfied:

(-0 < r;1 (10.125)

0<e <t (10.126)

g+r<d <d (10.127)

6= 1€ +2d—d)]| <1 - — (10.128)
O <r-2. (10.129)

Inequality (10.129) follows from equation (10.126) and the hypothesis £ < r/2. Rewriting equations
10.125-10.128, we obtain the system

0<t' <t

2 2
§-2d-d)-""L <t <s5-2d-d)+"—=
r—1 r—1

g+r=<d <d.

Applying Lemma 10.3 to eliminate ¢’, it suffices to show there is an integer solution d’ to the system:

r—1

- 3 <t (10.130)
r—1 r—=2 r-=2
- <6=-2(d-d - 10.131
4 <6-2(d d)+r—l P (10.131)
0<¢ (10.132)
, r—2
OS6—2(d—d)+: (10.133)
, r—2
6—2(d—d)—r_1${’ (10.134)
. r=2 N r=2 (r-2)>2
- -d) - <6- - — - .
6-2(d-4d) r—l_é 2(d d)+r—1 o1 (10.135)
g+r<d <d. (10.136)
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Inequalities (10.130), (10.132) and (10.135) are immediate. Rearranging the remaining inequalities, we

obtain
gea S L ror-! (10.137)
=CT Ty T T4 g :
0 r—2
'>qd-2 - 10.1
d'>d-35-— (10.138)
4> gtr (10.139)
o ¢ r—2
r<qd-24% 10.14
dsd-s+35+5— (10.140)
d <d. (10.141)

We next eliminate d’. Comparing equation (10.138) to equation (10.140), we want there to be an integer
between

0 r—2 o ¢ r-2
=575 ad d-g¥5+ 05

By inspection, such an integer exists unless ¢ is an odd integer and £ = 0, which is excluded by
assumption Proposition 10.8(2). Applying Lemma 10.3 for the remaining pairs of inequalities, we
reduce to verifying

§ ¢ rP-r-1 6 ¢ r-2 (2r-3)4r-5)
d—-=—+-—-———<d-=+- - 10.142
2 2T T —a ST T 2 2@ -9 ( )
§ ¢ rr-r-1
d——+-—-——<d 10.143
272 T4 g < (10.143)
6 r-2
d— = - 10.144
2 2r-2° ( )
o  r-2
<d-—-+- 10.145
S I T (10.145)
g+r<d. (10.146)
Upon rearrangement, equation (10.145) is equivalent to
1
6<l+1+42(d-g-r)— —,
r—1
which holds by our assumption Proposition 10.8(1). The remaining inequalities rearrange to
27 —8r2 +10r =520
(r=3)r-20)+4(d-g-r)+8g+2r—-12>0
20+2(d-g—r)+4g+r-2>0
d-g-r=0,
which hold because (d, g, r, ¢,0) is good and r > 14. O
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Lemma 10.9. Suppose that condition (1) or (2) of Proposition 10.8 is satisfied, but (€,8) # (0, 1) and
r > 14. Then one of the following two conditions holds:

1 2

r—1 r—1

<3, g>4, and 1+ (10.147)

or
(=0, g>4, d>g+r+3, and ¢6=5. (10.148)
Proof. We divide into cases according to whether equation (1) or equation (2) is satisfied.

Case 1: equation (1) holds. In this case, we establish equation (10.147). Because € and g are integers, the
first two inequalities follow from ¢ < 4 and g > 3 respectively. Upon rearrangement, these inequalities
become

(r-1D@0-+1+2(d-g-r)+Q2r-4)(d-g-r+4(r-1-g)+(1r-9) >0
(r=D@6-C+1+2(d-g-nN)+Q2r—-4)(d-g-r)+(r-3)+(r-13) >0,
and therefore hold for » > 14 as desired. Since £ > 0 and d > g + r, we have
62C0+1+42(d-—g-r) =1,

with equality only if £ = 0. But equality is excluded by assumption (as (¢,8) # (0, 1)). Finally, the
inequality 6 < 5 —2/(r — 1) becomes upon rearrangement

(2r—2)(6—(€+1+2(d—g—r)))+(2r—2)(d—g—r)+(4r—4)(r—1—g)+(r2—12r+15)20.

Case 2: equation (2) holds. In this case,
(r-=1D(7-06)=2(g+2r-1-d)+4(r-1-g)+(r—-1) > 0.

Since ¢ is an odd integer, but § # 1 (because £ = 0 so 6 = 1 is excluded by assumption), we therefore
have § =3 or 6 = 5. In particular,

4(g-3)=0r-1)0-3)+2(g+2r-1-d)+(r-13) > 0;

since g is an integer, this implies g > 4.

Subcase 2.1: 6 = 3. Then equation (10.147) is satisfied.

Subcase 2.2: 6 = 5. Inthiscase,2(d —g-r—-3)=(r -1 -5 +4(r-1-g)+(r—-7) >0, so0
equation (10.148) is satisfied. O

Recall that the case 6 = 1 and £ = m = 0 is excluded in Theorem 10.2. Therefore, to complete our
analysis of the case m = 0 and g # 0, we just have to handle the following two cases:

If equation (10.147) holds Then we apply one of the following propositions according to the value

of &:

o If 1+ ﬁ <6<3- ﬁ: Proposition 8.10.

o If2+ r3T1 <0<4- r% Proposition 8.9 with € = 0.
e If3+- 2 <§5<5- %: Proposition 8.11.

Note that the union of these intervals covers the entire interval for ¢ given by the final inequality
of equation (10.147). Moreover, the conditions ¢ < 3 and g > 4 imply that all tuples appearing in
these lemmas are good (they have positive genus and at most £ + 1 < 5 lines in a projective space of
dimension at least r —3 > 11).

If equation (10.148) holds Then we apply Proposition 8.9 with € = 1.
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10.3. The cases withm =g =0

Since m = 0, Lemma 8.4 can be applied unless d < 2r — 2. In the remaining cases, we will show that
Proposition 8.2 always applies.

Proposition 10.10. Let (d,0,r,¢,0) be a good tuple (withm = g = 0) satisfying d < 2r —2 and r > 14.
Then the conditions of Proposition 8.2 can be satisfied.

Proof. As in the proof of Lemma 10.8, our goal is to show the existence of certain integers d’ and ¢’
which in particular must satisfy:

1
(- <vr (10.149)
2
0<t'<¢t (10.150)
) 2
6—2(d—d')—:jst”sé—Z(d—d’)+:T1 (10.151)
r<d <d, (10.152)

plus possibly some additional conditions to guarantee that (d” — 1,0,r — 1, £ — ¢’,0) is good. For this,
we divide into cases as follows:

Case 1: d = r. In this case, we take d’ = r. With this choice (1 — (d’ = 1))%((r — 1) = 1) = 0, and
so equations (10.149)—(10.152) are sufficient for (d’ — 1,g,r — 1,£ — ¢’,0) to be good. Substituting
d=d =rand§=2(/(r—1),our goal is thus to show that there is an integer ¢’ satisfying

€ - <
0<t' <t
20—r+2 , 20+r-2
—_— << —
r—1 r—1
Applying Lemma 10.3, it suffices to verify
0<¢ (10.153)
2 -2
0<2rr=2 (10.154)
r—1
20—r+2
iy (10.155)
r—1
20-r+2 20+r-2 (r-2)°
< - 10.156
r—=1 = r=1 (r-1)2 ( )
-1
t’—rz < (10.157)
r—1 20+r-2 r-=2
- < - . 10.1
¢ 2 7 r-1 2r =2 (10.158)

Inequalities (10.153)—(10.155) follow from £ > 0, and equations (10.156) and (10.157) are automatic,
and equation (10.158) follows from ¢ < r/2.

Case2:d >r+1.Sincer+1 <d <2r-2,wehave (1-d)%(r-1)=(1-d)+2(r-1)=2r—-1-4d.
Therefore, as (d, g, r,£,0) is good by assumption, ¢ satisfies

2r—1-d

<{<
) st=s

: (10.159)

[N E]
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Similarly, because d’—1 < 2r—3, wehave (1-(d’—=1))%((r—-1)-1) < 2-d")+2(r-2) =2r-2-4d’.
Therefore,(d’—1, g, r—1,£—¢’,0) is good provided equations (10.149)—(10.152) are satisfied, and also
2(€— ") = 2r —2 — d’. In other words, we want to show that there are integers ¢’ and d’ satisfying the
following system (here we have substituted in § = (2d — 2r +20) /(r — 1)):

r—1

(-=<v (10.160)
0<t' <t (10.161)
2d - 2r +2¢ 2 2d - 2r +2¢ 2
e S Y YO DR 1 S P 0 e S Y, Y U 1 G (10.162)
r—1 r—1 r—1 r—1
r<d <d (10.163)
st—giléli. (10.164)

Subcase 2.1: d = r + 1. In this case, equation (10.159) becomes r/2 — 1 < ¢ < r/2. In other words,
(d, r,?) is of one of the following forms:

(d,r,€) = 2k+ 1,2k, k—-1), (d,r,t)=Qk+1,2k, k), or (d,r,f)=Q2k+2,2k+1,k).
These cases may satisfy equations 10.160—10.164 by taking
(d',t") =(2k,0), (d',t')=Q2k+1,1), respectively (d’,¢") = (2k+1,0).

Subcase 2.2: d > r+2.Inthis case, we take £’ = 2—2(d —d’), in which case equations 10.160-10.164
become

d,24d+2i—r—3

d—lsd’sd—1+§
3r<2d+2 <5r-4

r<d <d

. 4d+20-2r-2
d' s —————.

The inequality d’ > r follows from d” > d — 1 since d = r + 2. Deleting the inequality d’ > r and
eliminating d’ via Lemma 10.3, we reduce to the system

4d+20-r -3 t 3
—  <d-1+---—- 10.1
7 <d +2 g (10.165)
4d+22—r—3£t1 (10.166)
4d+26-r-3 4d+26-2r-2 1
< - = .
Z < 3 > (10.167)
t
d—lsd—1+§ (10.168)
d-1<d (10.169)
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4d +20-2r -2
< - - = =

d-1< 3 (10.170)
3r <2d+20 (10.171)
2d +2€ < 5r — 4. (10.172)

Inequalities (10.165), (10.168) and (10.169) are immediate. Rearranging the others, we obtain

(r=200+3=0
2¢-2r+1+d)+3(d-r-2)2>0
20-2r+14+d >0
2¢-2r+1+d)+(d-r-2)+12>0
(r=200+2Q2r-2-d)+8=0,

which all follow from equation (10.159), our assumption r + 2 < d < 2r — 2, and the hypotheses in
(10.1). ]

11. Most of the sporadic cases

The finite set of sporadic cases identified in the previous section is unfortunately rather large. Our next
task is to introduce an additional argument that, in combination with the arguments of Section 8, applies
to handle most of the sporadic cases, that is, all but a list that is short enough to write down explicitly.

This argument will, essentially, be a variant on Proposition 8.2, but where we allow transformations to
come together at p in a less restricted way. In particular, we will weaken the hypothesis 2m’+¢ < r—2’
in the statement of Proposition 8.2 by allowing more modifications to limit to the point p than the rank
of the normal bundle. In this regime, the limiting bundle can depend on how the points are specialized
into p. We will be able to give a description of some possible limits by limiting the marked points into
p one at a time inductively. At each step, we will be able to identify what the limiting modifications are
at p. Suppose that, after limiting some collection of marked points into p, we have a transformation at p
of the form

(np)[p 5 Mllp 5 A2] where Aj 2 Ao, ()

where Aj and A are linear spaces in PN¢|,. Let S and W be sets of parameters varying in irreducible
bases with S € W. (For us, W will be the collection of all corresponding marked points, and S will be
those marked points at which the projected normal bundle is not modified.) Assume that A; is linearly
general as the parameters S vary, and assume that A is either:

e Linearly general as the parameters W vary (‘weakly general’);
e Weakly general and its image in P(Nc/Nc—p)lp is linearly general as only the parameters S vary
(‘strongly general’).

We will summarize this situation by three pieces of data: the linear dimensions #{ = rk A} = dim A;+1
and 1, =tk A = dim A, + 1, and whether we are in the weak or strong case. Note that we always have
tr < t; <r—2.(We do not need to keep track of the integer n since this is can be deduced from the
Euler characteristic of the limit bundle, which is the same as the original bundle.)

Modifications of type (7) occur naturally when considering the degenerations that make up the key
inductive argument outlined in Section 8.1. We review them here (and add one additional argument that
we will use in this section) in order to motivate the shape of equation (7).
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1. If we peel off a one-secant line Xy and limit the point x to p, we obtain [p <> y][p = y] at p. This
is of the form (f) with A = Ay = y; hence, we have ¢ = t, = 1. Since y is a general point, and no
modifications occur at y in the quotient by projection from p, both A; and A, are strongly linearly
general.

2. If we peel off a one-secant line zw and limit the point z to p, we obtain [p <5 2w][p = w] at p. This
is of the form (7) with A} = T,,C and A; = w; hence, we have (71, ;) = (2, 1). Since w is a general
point on the curve, at which no modifications occur in the quotient by projection from p, both A
and A; are strongly linearly general.

3. If we specialize R as in Section 7 to contain 7 lines through p, then at p we obtain the modification
[p & A], where rk A = 2. This is of the form (1) with (¢, #,) = (2,0). By Lemmas 7.5 and 7.6, the
subspace A is strongly linearly general if

S 3 if C is an elliptic normal curve
~ |2 otherwise.
(3") If we specialize one of the v; to p, we obtain modification [p > u;] at p. This is of the form
() with (¢1,£) = (1,0) and is strongly linearly general since u; is a general point, at which no
modifications occur in the quotient by projection from p.

7. We allow ourselves one new degeneration in our more general inductive step, which is similar to
equation (6) from Section 8.1 but crucially different in that we specialize R to pass through p before
we project. We first specialize R to the union of a line L through 2 points s, s, on C and a rational
curve R’ of degree r —2 through r — 1 points on C and meeting L at one point. Then we specialize s¢ to
p. This results in the modification [p =5 s,] at p, which is of type (¢1, ;) = (1, 0). This modification
is linearly general as all the points of contact between C and R’ move. However, s, is constrained to
be one of the points at which the r-secant rational curve R’ meets E, and modifications occur at the
remainder of these points, so it is only weakly linearly general.

Our first goal is to understand what happens when we limit into p another point p’, at which we
have another transformation (n’p’)[p’ = Alllp’ 5 AJ] of the same form (1) (depending on sets of
parameters S’ C W’ disjoint from W). In the following five cases, which we consider separately, we
will see that in the limit we obtain another transformation of the form (i) (depending on parameters
SuUS'cWuw’).

Most of the subspaces whose generality we must assess are of the form A+ A’ (the span of A and A”).
If A and A’ are both linearly general as independent parameters X and X’ vary, then their span is linearly
general, as we now show. Let M be a fixed subspace; there is a choice of the parameters X for which the
corresponding subspace A meets M transversely. Then there is a choice of the parameters X’ for which
the corresponding subspace A’ meets M + A transversely. For this choice of X U X’, the subspace M
meets A+ A’ transversely. The only case where the resulting modification is not of this form is (c) below.

(a) Ift; + ti < r — 1: In this case, the limiting transformation is
((n+n")p)[p 5 A1+ A{][p 5 A+ AJ].

This transformation is of the desired form. The subspace A + A] is strongly general if A; and A
are both strongly general and weakly general otherwise.
(b) If 1 + 1) <ty +1] =r — 1: In this case, the limiting transformation is

((n+n" +1)p)[p > A+ Ajl[p > 0].

This transformation is of the desired form, and the subspace A + A is always strongly general.
(c) If £, =0and t] + 1 < r —1 < t] +1;: In this case, the limiting transformation is

((n+n"+1)p)[p = A+ (A N AD][p 5 0].
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We now show that A + (A N A7) is strongly linearly general if both A; and A are strongly general
and weakly linearly general otherwise. Indeed, let M be any fixed subspace; we want to show that M
is transverse to A + (A; N A}). Both A; and A; are linearly general; since the parameters W vary
in an irreducible base, there is a single choice of the parameters W for which M is simultaneously
transverse to both A; and A,. Since A; is transverse to M for our choice of parameters W, and
Ay € Ay, we can restrict to Ay and consider transversality as subspaces of A;. The subspace M N A
is transverse to A, for our choice of parameters W. The subspace Ai N A is transverse to Aj since
A1 is linearly general, varying with independent parameters. Therefore,the transversality of M N A4
and A + (A] N Ay) is equivalent to the transversality of A; N A] and A + (M N Ay), which again
follows by the linear generality of Aj.
d If ti +1) <t + té =r — 1: In this case, the limiting transformation is

(n+n’+)p)[p > A+ A{]lp 5 0].

This transformation is of the desired form, with A, + A/ strongly general if A] is strongly general,
and weakly general otherwise.
(e) If 1y +1; = 1] + 12 = r — 1: In this case, the limiting transformation is

((n+n"+2)p)[p =5 0][p > 0].

This transformation is of the desired form, with @ always strongly general.

Definition 11.1. For integers 0 < i,j < r — 1, let {s;;} and {w;;} be collections of nonnegative
integers, and consider s;; (respectively w;;) marked points decorated with modifications of type ()
with (t1,12) = (i, j) and A; strongly (respectively weakly) general. Consider all ways of limiting these
marked points into p, one at a time in some order, such that at every step of the process, we are in one
of the five cases discussed above. If there is such an order for which the final resulting transformation
at p satisfies 1, = 0 and A is strongly general, then we say that {s;;} and {w;;} is erasable.

We are now ready to state our more flexible variant on Proposition 8.2. The high-level overview is
that, in some order, we do the following specializations:

e Peel off g — g’ two-secant lines. Specialize all of them into p as in equation (1).

e Peel off €, + €ut = d — g — d’ + g’ one-secant lines. Specialize €, of these into p as in the proof of
Proposition 8.2 and the remaining &,,; of them into p as in equation (2).

e Specialize m’ of the rational curves R; as in Section 7 to lines and conics through p;. Specialize all
of the p; to p as in equation (3).

e Specialize ¢’ of the points v; to p as in (3/).

e Specialize m"” of the rational curves R; to the union L; U R/ as in equation (7). Specialize one of the
points where L; meets C into p.

e Specialize the remaining m — m’ — m’’ rational curves R; to pass through p as in Section 8.1(6).

After projecting from p, we will reduce to a case of our inductive hypothesis plus a single linearly
general modification at p precisely when the modifications at p above are erasable.

Proposition 11.2. Let ¢, m’, and m”’ be nonnegative integers satisfying £’ < € and m’ + m” < m, with
m’ =0ifr =3. Let d’ and g’ be integers satisfying 0 < g’ < gand g’ +r <d' < d-g+g’, with
d > g'+rifbothg’ = 0andm # 0. Let €, and €,,; be nonnegative integers with €, +€,; = d—g—d’+g’.
For 1 <i < m/, let n; be an integer satisfying n;i = r — 1 mod2 and2 < n; <r -1, withn; # 2 if
(d’,g") = (r+1,1). Define

(r=1m'=¥n;

t=t-"
* 2

and Mpgx=m—m’ and MWpip =m—m’ —m”.
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Suppose that the following collection is erasable:

+m-m' —m”

S10 =
S11 = €out
s20 =m’ (11.1)
sa1=g¢-¢
W10=m”.
If

26 +3(g—g)+m+m’ +’ 1

6= |2emtg—g +m"+0 + | (g-g)+mtm +Zn,~ <1- ,

r—1 r—1

and I(d" - 1,¢",r — 1,2, m) holds for all m with My, < M < Mgy, then so does 1(d, g,r, €, m).

Proof. Our goal is to show interpolation for
Ne.oo [ur S vil---[ug S ve][5 Ry U---URy.

Peeling off €, + €yt = d — g —d’ + g’ one-secant lines and g — g’ two-secant lines reduces to interpolation
for

+
Ne(d-g-dragg-gro) U1 & vil -+ [ug S ve][S Ry U--- U Ry
[le i) yl] e [2x5in+fout i> yfin+foul]
[z1 & wi][zi 5 2w [zg-g & We-g']lzg-¢ 5 2we_g'].

For 1 <i < m/, write n; = (r — 1 — n;)/2, and degenerate R; as in Section 7 to the union R;, of

n; lines L; ; meeting C at p; and ¢, ;, and nl' conics _Q,v,j meeting C at p; and gq; ,,;42j-1 and g; p,42;.

Form’+1 <i<m,write R, NC = {sf), s‘l,s‘z, el s’r_l,si}. Form’+1 <i <m’+m", specialize R;

to a union R; U L;, where L; is the line through sf) and si, and R; is a rational curve of degree r — 2
passing through s7,s%,...,s!_, and meeting L; at a single point. This induces a specialization of the
above bundle to

Ne(d-g-drvgg-gr0) 1 € vil - lue & vel [ Ry U U R, 115 Rt U+ U Ry
(g1 ++q1r1 5 R [qua + -+ qur1 > Ry

[sg ! & sy g™ S s  [pr 5 My -+ [pwr = My

[2x 5 Vil [2% gt e 5 Y €int+€out ]

[z1 & willzr = 2wil -+ [zg-g € Wo—g][2g-g = 2Wgg'].

Fix a general point p € C, and specialize pi,pa,....Pm,HVI,V2s s Ve, Y1, Y25 - o5 Yens Xen+lo

m'+1 m'+2 m : .
Xept2s -+ - > Xepteous T1s 225 - -5 Zg=g/s Sy 550 v =550 all to p in some order. Our assumption that

equation (11.1) is erasable implies that we may choose the order so that the limiting bundle is

+ — —
NC(d-g-dr+g'g-g:0) [ere1 © vl - [ue S vel[S Ry, U UR ]
[0  H  R  [S s Ry]
[qii+-+qir1 5 R [qmg + -+ Gurr—1 ~> Roy]

[2x) + -+ 2x¢, + W1 +-~+wg,g/+s;”°rl ok s Ly v up S pl(np) [p S Al

for some integer n and subspace A C PN¢ (4-g-a'+g’,a-g":0) | p» disjoint from PNc (g—g—ar+g'.g-g":0)—plp

and whose image Ain P(Nc(d-g-dar+g'.g-g':0) I NC(d-g—d'+g’,g—g':0)—p) | p 18 linearly general. Computing
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the Euler characteristic, we obtain
(r—=Dn+rkA=2ey+3(g—g)+m+m’ + ',
and so

26t +3(g—g)+m+m’ + ¢’
n=
r—1

Projecting from p, we reduce to interpolation for

NC(d—g—d’+g’,g—g’;1) [t & vest] o [ue & vel ['\t) Em’+m”+l U---u Em]

m'+1 m'+1 _+ = m’+m” m'+m” + p—
[sl .|....+Sr_1 f\f)qu—l]'--[Sl +"‘+Sr_l '\’>R/ /r]

(G141 € 1]+ (@102 & q1r-1]

cee [Qm’,nm/+l & qm’,nm/+2] o gm 2 & qnrr—11(np)[p 5 K]

Erasing the transformation at p, we reduce to interpolation for

Nc(d-g-darsgg-gih) et S veal - [ue S ve] [5 Rypemrst U+ -+ U Ry

m'+1 m'+l F p— m’+m” m'+m” * p—
[Sl +'“+Sr—1 ~ Rm’+l]“.[sl +“'+sr—l ~ Rm/+m”]

[ql,n1+l <i) ql,n1+2] e [ql,r—Z <i> ql,r—l] e [qm’,nmz+l <i> qm’,nm/+2] e [qm’,r—Z <i) qm’,r—l]-

By Lemma 3.14, this follows in turn from interpolation for the bundles

+ + + ) + B o= o=
NC(d—g—d’+g’,g—g’;1) [u€’+] < fo’+1] T [u(’ Ad vf] ['\’) Ruvsmrer U-- - U Rm] ['\’) Ri] U Ri2 Uu---u R,'j]
+ + + +
[ql,n1+l A ql,n1+2] e [ql,r—Z A ql,r—l] e [qm’,nmr+l A Qm',nmr+2] e [qm’,r—Z A qm',r—l],
withm’ +1 < iy <ip <--- <ij <m’+m". Finally, specializing R, 4m”+1, Rp+mr42, - - ., Ry t0 pass

through p (as in the proof of Proposition 8.2), we reduce to interpolation for

NC(d-g-d+g g-g1) [test © vea] - [ue S vel[S R, ni U URL[S R_{]U PRVEARERY) R{j]

[q1,n1+1 é q1,n1+2] U [q1,r—2 <i) q1,r—l] o [Qm/,nmrﬂ (i> Qm’,nm/+2] o [Qm/,r—Z (i> Qm/,r—l]-

But these are precisely our assumptions 7(d’ — 1,g",r — 1,2, m) for Mmin < M < Mmax. O

We then write a computer program in python [14] (see Appendix 1) which iterates over all of
the finitely many sporadic cases identified in the previous section, that is, those tuples (d, g,r, ¢, m)
satisfying » < 13 and equation (10.1) or (10.2), but excluding those tuples with (8, ¢,m) = (1,0,0).
In each case, all possible parameters for every inductive argument in Section 8, as well as all possible
parameters for Proposition 11.2, are tried. In all but the following 30cases, one of these arguments

applies:
(4,0,3,0,1) (4,0,3,0,2) (40,3, 1,1) (50,3,0,1) (51,3,0,1) (51,3, 1,1)
(5,2,3,0,1)  (5,2,3,0,2) (52,3, 1,1) (6,2,3,0,1) (50,4,0,1) (50,4,2,0)
6,2,4,0,2) (7,3,4,0,1) (7,3,4,1,1) (7,1,5,0,1) (7,2,5,0,1) (7,2,5,2,2)
9,2,5,0,0) (8,3,52,00 (9,4,50,00 (9,4,51,0) (7,0,6,0,1) (7,1,6,2,1)
(7,1,6,3,1)  (8,2,6,2,0) (11,5,6,0,0) (8,1,7,0,1) (8,1,7,1,1) (11,4,7,1,0)

Our remaining task is therefore to verify I(d, g, r, ¢, m) in these 30 base cases (as well as to prove
Theorem 1.4 for canonical curves of even genus).
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12. The remaining sporadic cases
12.1. The cases (d,g,r,t,m) = (7,1,6,2,1),(7,1,6,3,1), and (8,2,6,2,0)

In these three cases, our previous arguments apply provided that 1(6,1,5,3,0) holds. (Note that
(6,1,5,3,0) is, however, not good, which is why we were not able to deal with these cases in the
previous section and need to separately consider them here.) Indeed:

If (d,g,r,t,m) = (7,1,6,2,1) We apply Proposition 8.2 with parameters
=0, m'=1, d'=7, and n;=3.
If (d,g,r,t,m) = (7,1,6,3,1) We apply Proposition 8.2 with parameters
=1, m' =1, d =7, and n; =3.
If (d,g,r,t,m) = (8,2,6,2,0) We apply Proposition 8.10.
It thus remains to check 7(6, 1, 5, 3, 0). For this, we simply apply Proposition 8.2 with parameters
¢ =3, m' =0, and d =6,

thereby reducing 1(6, 1,5, 3,0) to 1(5, 1,4, 0,0), which suffices because (5, 1, 4,0, 0) is good.

12.2. The cases (d,g,r,t,m) = (4,0,3,1,1), (5,1,3,1,1), and (5,2,3,1,1)

In each of these cases, we want to show interpolation for

Nelu & v][~5 R].
Write RNC ={q1, g2, q3,q4}. Specializing u to g and v to ¢, induces a specialization of this bundle to

Nelgs +qa 5 Rl(q1 + ).

Removing the twists at ¢; and g, we reduce to interpolation for

Nclgs +qa 5 R].
Specializing R to the union of the lines g1g> U g3¢q4 induces a specialization of this bundle to

Nclgs & qal.

Interpolation for this bundle is the assertion 1(d, g, 3, 1,0), and (d, g, 3, 1,0) is good in each of these

cases.

12.3. The cases (d,g,r,t,m) = (5,1,3,0,1) and (6,2,3,0,1)

In both of these cases, we we want to show interpolation for N¢ [«5 R]. Peeling off a one-secant line,
we reduce to interpolation for

Nc.00) [ R][z & wllz 5 2w] = Nc(1.00) [ Rl [z & w](2).
Removing the twist at z, we reduce to interpolation for

Nc.00) [~ R][z & w].
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Interpolation for this bundle is the assertion I(d — 1,g —1,3,1,1),and (d —1,g — 1,3, 1, 1) is good in
both of these cases.

12.4. The cases (d,g,r,t,m) = (4,0,3,0,2) and (5,2,3,0,2)

Let x1, y1,x2,y2 € C be four general points. Projection from x;y; defines a general map n;: C — P!
of degree d — 2, which is in particular separable. Since x, and y; are general, X;y, does not meet the
tangent line to C at either x;, y;, or any of the ramification points of xy. Thus, (71, 73): C — P! x P!
is birational onto its image, an isomorphism near x; and y; (and by symmetry near x; and y»), and its
image is nodal.

The number of nodes is the difference between the arithmetic and geometric genus, which is (d —
3)2 — g # 0. Therefore, there is a pair of points z, w € C, distinct from each other and x1, x5, y1, y2, with
7;(z) = m;(w) for both i. Geometrically, x;, y;, z, w are four distinct coplanar points. Since x; and y; are
general, x;y; is not a trisecant to C, so in particular, (x;, y;, z) and (x;, y;, w) are not collinear. Because
x; and y; can be exchanged via monodromy, this implies no three of x;, y;, z, w are collinear.

Our goal is to show interpolation for N¢ [':'» R U Ry]. Specializing R; to meet C at x;, y;, z, w, this
bundle specializes to

Nelxi+y1 5 Ril[x2 +y2 5 Rl (z+w).
Removing the twists at z and w, we reduce to interpolation for
Nelxi+y1 -5 Ril[x2+y2 5 Ryl
Specializing R; to the union of lines X;y; U zw, this bundle specializes to
Nelxi & yil[x2 5 yal.

Interpolation for this bundle is the assertion I(d, g, 3, 2, 0). Although the (d, g, 3, 2, 0) are not good, our
previous arguments still apply in these cases:

If (d, g) = (4,0) We apply Proposition 8.2 with parameters:
=1, m'=0, and d =3.
If (d, g) = (5,2) We apply Proposition 11.2 with parameters:
'=1, m=m"=€,=€uw=0, d =3, and g =0.

(The required erasability of (sjq, 11, 520, 521, w10) = (1,0,0,2,0) can be checked by specializing
the points in any order.)

12.5. The cases (d,g,r,t,m) = (4,0,3,0,1) and (5,0,3,0,1)

In both of these cases, we want to show interpolation for N¢[~5 R]. Write C N R = {q1, 42, g3, q4}.
Peel off a one-secant line, that is, degenerate C to C(1,0;0) U L — but in such a way that ¢4 specializes
onto L, while g1, g2, and g3 specialize onto C(1,0;0). The restriction of the modified normal bundle
to L is perfectly balanced of slope 2, so by Lemma 3.7, this reduces interpolation for N[5 R] to
interpolation for

Ne,00)[91+ g2+ 93 ~5 Rl[z 5 qa].
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Erasing the transformation [z = ¢4], we reduce to interpolation for
Nc(1,00)[91 + 92+ g3 ~5 R].
Specializing R to the union of lines g1g> U g3¢g4 induces a specialization of this bundle to
Neaoolar & g21lgs = qal.
Erasing the transformation at g3, we reduce to interpolation for
Ncqoolar & a2l

which is the assertion /(d — 1,0, 3, 1,0). Both (3,0, 3, 1,0) and (4,0, 3, 1,0) are good.

12.6. The case (d,g,r,t,m) = (5,2,3,0,1)

In this case, we want to show interpolation for N¢ ['\5 R]. Write CNR ={q1, 92,93, q4}. Peel off aone-
secant line, that is, degenerate C to C(0, 1;0) U L — but in such a way that g3 and g4 specialize onto L,
while ¢ and g, specialize onto C (0, 1;0). The restriction of the modified normal bundle to L is perfectly
balanced of slope 3, so by Lemma 3.7, this reduces interpolation for N[> R] to interpolation for

Nco.1:0)[q1 + g2~ R][z & w].

Let Q be the unique quadric containing C(0, 1;0) and the line zw. Then interpolation for this bundle
follows from the balanced exact sequence

0 — Nc,1:0)/0(z+w) = Nco,1:0)[q1 + g2 > R][z & w] = Nolco,1:0)(q1 +g2) — 0.

12.7. The case (d,g,r,t,m) = (5,0,4,2,0)

In this case, we want to show interpolation for
Neluy & villuz & val.
Peel off a one-secant line, that is, degenerate C to C(1,0;0) U L — but in such a way that v and v,
specialize onto L, while u; and u; specialize onto C(1, 0;0). By Lemma 3.7, this reduces to interpolation
for
+ + +
Nc(1,00) [ur = vi][uz = v2][z = v2].
Specializing v; to z, we reduce to interpolation for
Neaoo [ = z][uz 5 2]z = val.
Projecting from z, we reduce to interpolation for
Neon [uz 5 val[z 5 val.
Specializing v, onto the line zu;, we reduce to interpolation for
+
Nc(1,0) [z © ua].

This is the assertion (3,0, 3, 1,0), and (3,0, 3, 1, 0) is good.
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12.8. The cases (d,g,r,t,m) = (6,2,4,0,2) and (7,3,4,0,1)

In these cases, we want to show interpolation for N¢ [«5 Ry U---URy]. Write R; N C =
{4i1, 42, qi3, qia, qi5}- Note that m < g in both cases, so we may peel off m two-secant lines, that is, de-
generate Cto C(0,m;0)UL;U---UL,, —but in such a way that ¢;5 specializes onto L;, while the remain-
ing g;; specialize onto C(0, m;0). By Lemma 3.7, this reduces interpolation for Nc¢ [5 R U---UR,]
to interpolation for

Ne©mo) g1 +qi2+qi3 +q1a > Ril - [qm1 + Gm2 + Gm3 + Gma ~> Rul[z1 & wil - [2m & wp.

Specialize R; to the union of lines ¢;1g;2, ¢;3g:4 and the unique line through g;5 meeting both of these
two lines. This induces a specialization of the above bundle to

Nco,mo g1 < qi2llg13 & qial - [gm1 € gm2llgm3 & gmallzr & wil - [2m & winl.
In other words, all that remains is to check the assertion I(d —m, g — m,4,3m,0).

If (d,g,m) = (6,2,2) In this case, writing C for a curve of degree d —m = 4 and genus g —m = 0, we
want to establish interpolation for

Nclur & vi] -+ [us € vel.

Specializing ‘to a tetrahedron’, that is, specializing u, u» to u3, and uy4, ve to vy, and v4, us to v, and
Vs, Ug to v3, this bundle specializes to

Nc(u3 +vi+vy+ V3).
Removing the twists at u3, v1, v2, and v3, we reduce to interpolation for N¢, which is the assertion
1(4,0,4,0,0). Note that (4,0,4,0,0) is good.

If (d,g,m) = (7,3,1) In this case, writing C for a curve of degree d — m = 6 and genus g —m = 2, we
want to establish interpolation for

Nelur & vil[uz & val[uz & vs].
Note that § = 4%. Peeling off two one-secant lines, we reduce to interpolation for
Nc2:0)[u1 & villua & vallus & vsllzr & willzr 5 2wil[z2 & wal[z2 5 2ws].
Limiting w; to w», this bundle specializes to
Nc,20) [u1 & villuz & vallus & vallzi + 22 & wal[z1 + 22 = 2wa].

Projecting from w,, we reduce to interpolation for

Ncoany[ur & villua & vallus & valzi + 22 5 wal.
Limiting v3 to wy, and v; to v{, we reduce to interpolation for

Ne.n [un +uz 5 vi][z1+ 22 +u3 5 wal[wa 5 us].
Projecting from w; again, we reduce to interpolation for

Nco,22) (u1 +uz +wy),

which is a nonspecial line bundle and therefore satisfies interpolation.
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12.9. The cases (d,g,r,t,m) = (5,0,4,0,1), and (7,3,4,1,1)

We want to show interpolation for a vector bundle of rank 3, and degree 28 and 46, respectively. By
Lemma 3.9, it suffices to check interpolation for corresponding vector bundles of rank 27 and 45 where
one positive transformation is omitted.

For (d, g,r,,m) = (5,0,4,0, 1), the bundle of degree 28 for which we want to show interpolation
is Nc[~5 R]. Write C N R = {q1, g2, ¢3. q4. q5}. It suffices to establish interpolation for the degree 27
vector bundle N¢[q1 + g2 + g3 + q4 ~> R]. Specialize R to the union of the lines §1q2, g3g4 and the
unique line through g5 meeting both of these two lines. This induces a specialization of this bundle to
Nclq: & q211q3 & q4], which is the assertion (5,0, 4, 2,0). Observe that (5, 0,4, 2,0) was already
considered above in Section 12.7.

For (d,g,r,¢,m) = (7,3,4,1, 1), our bundle of degree 46 is Nc[u <5 v][~> R], and we can reduce
to interpolation for the degree 45 vector bundle N¢ [ = v][~5 R]. Erasing the transformation at u, this
reduces to interpolation for N¢ [«5 R], which is the assertion (7, 3,4, 0, 1). Observe that (7,3,4,0, 1)
was already considered above in Section 12.8.

12.10. The case (d,g,r,t,m) = (7,1,5,0,1)

In this case we want to show interpolation for N¢ [~ R]. Write RNC = {q1, 92, 93, q4. g5, s }. Peel oft
a one-secant line, that is, degenerate C to C (0, 1;0) U L — but in such a way that g, and g4 specialize
onto L and the remaining points specialize onto C(0, 1;0). By Lemma 3.7, this reduces interpolation
for N[5 R] to interpolation for

Neo,1:0)[91 + g3 + g5+ g6 5> R][u & v].

Specializing R to the union of the three lines 71¢2, §3¢4, 459s. and the unique fourth line in P> meeting
these three lines, we reduce to interpolation for

Ne.a:0)[a1 = q211g5 = qallgs & gel[u & v].
Limiting g, to u and g4 to v, we reduce to proving interpolation for
Nco.10)[g1 +v S ullgs +u 5 v][gs & gel.
Projecting from u and then v, we reduce to interpolation for
Neco.in [g5 € gl

This is the assertion (4,0, 3, 1,0), and (4,0, 3, 1, 0) is good.

12.11. The case (d,g,r,t,m) = (7,2,5,0,1)

We want to show that N[> R] satisfies interpolation. Peeling off a one-secant line, we reduce to
interpolation for

Nc0.10) [ R][z & w][z 5 2w].

We now specialize R as in Section 7 to the union of two lines g;p and g;p, and a three-secant conic
through g3, g4, p. Then limit w to p. This induces a specialization of our bundle to

Nc0,1:0)[93 + g4 ~> R°1[z+q1 + g2 > pllz 5 2pllp 5 2+ q1 +q2].
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Projecting from p we reduce to interpolation for
Neco.) g3 & qallz = pl.
Limiting g4 to p, we reduce to interpolation for
Neo.nlgs +z = pllp = g3l

Projecting from p, we reduce to interpolation for Nc(o,1,2)[p % ¢3]. Erasing the transformation
[p = q3], this reduces to 1(4, 1, 3,0,0), and (4,1, 3,0, 0) is good.

12.12. The case (d,g,r,t,m) = (7,2,5,2,2)

This case asserts interpolation for
Ne[5 R+ Ro][ur & vi][ua & val.
We first specialize each R; as in Section 7 to the union of two lines g;1p;, g;2p; and a three-secant
conic through {p;, g;3, qi4}. We then specialize p; and p, together to a common point p. This induces
a specialization of our bundle to
Ne(p)lgii + g2+ qa1 + g2 > pllgis + qia ~> R{1[g23 + gaa ~> RS [u1 & vi][uz & vol.
Limiting u; to p and removing the overall twist at p reduces us to interpolation for
Ne[vi+qu+qi+qa +q2 = pllgi3+qua = Q11[g23 + qaa = Q2l[p 5 vil[uz & v2].
Projecting from p, we reduce to interpolation for
Nc.0)[q13 & qiallg2s & qaallp =5 villuz & v2].
Erasing the transformation [p 5 v{] and peeling off two one-secant lines, we reduce to
N2 (913 & qiallgs & qoallus S vallzi & willzi 5 2wil[z2 & wallza 5 2wa].
Limiting w; and w, to p, we reduce to interpolation for
Nco2n a3 & qiallge & qalluz & vallz1 + 22 & pllz1 +22 5 2p].
Projecting from p, we reduce to interpolation for
Nco22)[q13 & qiallg23 & qoallus & vallz1 +22 5 pl.
Limiting g4 to g4, and v, to p, and removing the resulting twist at g4, we reduce to
Nc.22)[q13 + 23 > qual[uz + 21 + 22 5 pl[p S uz).

Projecting from p, we reduce to interpolation for N¢(o,2.3), which is a nonspecial line bundle.
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12.13. The case (d,g,r,t,m) = (9,2,5,0,0)
Peeling off two one-secant lines reduces to interpolation for

Nc20)[z1 & willzi 5 2wi][z2 & wal[z2 5 2ws].
Limit the points z; and w, to a common point p. This induces the specialization of our bundle to
Nc©20)[p & wi+22][p 5 2wil[z2 & 2p].
Projection from p reduces to interpolation for
Ncoanlp = willza 5 pl.

Erasing the transformation [p -5 w;] and then projecting from p, we reduce to interpolation for

Nc(0,2;2)- This is 1(5,0,3,0,0), and (5,0, 3,0, 0) is good.

12.14. The cases (d,g,r,t,m) = (9,4,5,0,0) and (9,4,5,1,0)

We want that both N¢ and N¢ [u €5 v] satisfy interpolation. Peeling off four one-secant lines, we reduce
to interpolation for

Nc(oa0)[z1 & willzi 5 2wil[z2 & wal[z2 5 2wal[z3 & w3l[zz = 2wsl[zs & wallzs = 2wa]
and

Nc(oa0)[z1 & willzi 5 2wi][z2 & wallz2 5 2wal[z3 © w3z = 2ws]

[24 & wal[zs 5 2wa][u & v].
Specializing w, to wq, and w4 to w3, we reduce to interpolation for

Nc(oa0)[z1 +22 & willzi +22 5 2wi][z3 + 24 & w3][z3 + 24 > 2w3] and
Ncoa0)lz1 +22 & willzi +22 5 2wil[z3 + 24 & wal[z3 + 24 5 2ws][u & v].

Projecting from w; and then w3, we reduce to interpolation for

Newanlzi+z22 D willzz+24 D ws]l and  Negoao [21+22 5 willzs + 24 = wa][u & v].
Specializing v to w1, we reduce to interpolation for
Ncoaplzi +z2 D willzz+z4 > w3l and  Negoan [z +22+u 5 willzz +24 5 wil[wy S ul.

Projecting from w1, we reduce to interpolation for N¢ o 4,3), Which is a nonspecial line bundle.

12.15. The cases (d,g,r,t,m) = (8,3,5,2,0) and (11,5, 6,0,0)
We first reduce interpolation for both of these bundles to the same statement.

For(d, g,r,t,m) = (11,5,6,0,0) Note that § = 4. Our goal is to establish interpolation for N¢. We
first peel off one two-secant lines, which reduces our problem to interpolation for

Nc.oo[z1 & willzi 5 2wil[z2 & wal[z2 5 2wa].
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Limiting w, to wy induces a specialization of this bundle to
Nc.oolz1 & willzi 5 2wil[z2 & willz2 5 2wi].

Projecting from w;, we reduce to interpolation for

Ne@on [z +22 & wil.

For (d,g,r,t,m) = (8,3,5,2,0), our goal is to establish interpolation for

Necluy & villuz & val.

Limiting v, to v, we reduce to interpolation for
Neluy +upy &S vi].

To finish the argument, let C be a general BN-curve of degree 8 and genus 3 in P3, and p, g1, g2 € C

be general points. Above, we have shown that both of the desired assertions reduce to interpolation for
the modified normal bundle

Nclqi+q2 < pl.
We next peel off two one-secant lines, that is, degenerate C to C U L{ U Ly, where L and L, are one-
secant lines to C — but in such a way that ¢g; limits onto L;, and p limits onto C. Applying Lemma 5.5,
we reduce to interpolation for
Ne.20)[z1 & willzi 5 2wi +pl[z2 & wal[z2 5 2wa +pl[p 5 q1 + 2]
Over the function field of the moduli space of unordered pairs of triples {(z1, w1, q1), (z2, w2,42)},
the transformation [p = g; + g»] is linearly general as just ¢; and g» vary. Indeed, geometrically,
it is transverse to any subspace of the normal space at p except for the two subspaces Nc—p, |, and
Nc—1,|p — but neither of these subspaces is rational over this function field. Therefore, we may erase
the transformation at p, thereby reducing to interpolation for
Ne.20)[z1 & willzi 5 2wy + pllz2 & wal[za 5 2wy + p].
Note that § = 3% for this bundle. Peeling off a one-secant line, we reduce to interpolation for
+ + + + + +
Nco,3.0)[z1 © willzi = 2wi + pllz2 & wallz2 = 2wa + pl[z3 & w3][z3 = 2ws].

Specializing w3 to p, and w, to wy, we reduce to interpolation for

Ncos0)lz1 +22 & willzi +22 5 2wil[z1 + 22 + 23 © pllzz > 2plp = z].
Projecting from w; and then p, we reduce to interpolation for

Ncojsolzi +22 5 willzz & pl.

Finally, projecting from w; again, we reduce to interpolation for N¢(o,3.3), which is a nonspecial line
bundle.
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12.16. The case (d,g,r,t,m) = (7,0,6,0,1)

Arguing as in the proof of Proposition 8.3, it suffices to show that O~ and Q* satisfy interpolation, where
Q™ =Ncoonlsi+---+s55R], and Q'=Q [p 5 sol.

As in the proof of Proposition 8.3, interpolation for Q* follows from interpolation for Q~ given the
assertion /(5,0,4,0, 1). Since (5,0, 4,0, 1) is good, it suffices to prove interpolation for Q. By Lemma
3.8, this follows in turn from interpolation for

07 (50) = Q [s0 > R][s0 > Al

where A € Q7[,, is codimension 1. By Lemma 3.9, since p(Q~ [so 5 R]) € Z, interpolation for
0~ (sg) follows from interpolation for
Q[0 ~> R] = Neo.o. [~ R.

This is the assertion 7(6,0,5,0, 1), and (6,0, 5,0, 1) is good.

12.17. The cases (d,g,r,t,m) = (8,1,7,0,1) and (8,1,7,1,1)

In both of these cases, our goal is to show interpolation for
Nelur & vil---[ue & ve][5 Ry

We specialize R; to the union of the lines ¢1¢92, g394, 4596, 4793, together with a plane conic meeting
each of these four lines. This induces a specialization of this bundle to

Nelur S vil - [ue S vellgr © q21lgs < qallgs < qellg7 & gs).

Note that the points g1, g2, g3, 94, g5, 46, q7, s are not general, as they are constrained to lie in a
hyperplane.

Let p1, p2, p3, p4 € C be points with O¢ (1) = 2p1 +2ps +2p3+2p4 (such points exist by Riemann—
Roch because C is an elliptic curve). By construction, H(O¢ (1)(=2p1 —2p2 —2p3 —2p4)) = 1;as C
is embedded by a complete linear series, we conclude that the tangent lines to C at p, p2, p3, p4 span
a hyperplane H. Specializing the hyperplane containing g1, g2, 3, 94, 45, 46, 47, g3 to H, in such a way
that ¢ and gg specialize to p1, and g, and g3 specialize to p», and g4 and gs specialize to p3, and gg
and g7 specialize to p4, we obtain a further specialization of the above bundle to

+

Nelup & vil--[ue & vel[pi +p3 & pa+pal. (12.1)
Note that, since H(O¢ (1)(=p1 — p2 — p3 — pa)) = 4, the points p1, pa, p3, p4 are linearly independent.

We claim interpolation for (12.1) reduces to interpolation for N¢ (0,0.4). To see this, we divide into cases
as follows.

If £ = 0 Note that 6 = 2. Our goal is to show interpolation for

Nclpi+p3 & p2+pal.

Projecting from each of p1, p2, p3, p4 in turn, we reduce to interpolation for Nc(0,0.4)-
If £ = 1 Note that 6 = 2%. Our goal is to show interpolation for

Nclur & vil[p1 +p3 & pa+ pal.
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Specializing u; to p; and v; to p3, we reduce to interpolation for

Nclpi & p3llpi +p3 & p2+pal.
Projecting from p1, p2, p3, and p4, we reduce to interpolation for Nc (0,0.4)-

It remains to check interpolation for N¢ (o,0.4), which is the assertion /(4, 1, 3,0, 0), and (4, 1, 3,0, 0)
is good.

12.18. The case (d,g,r,t,m) = (11,4,7,1,0)

Our goal is to show interpolation for N¢[u <> v]. Note that § = 3. Peeling off a one-secant line, we
reduce to interpolation for

Neao) [z & wllz 5 2w][u & v].
Specializing v to w, we reduce to interpolation for
Nco.1o)lz+u & wl[z 5 2w].
Projecting from w, we reduce to interpolation for
Nco.nlz 5 wllw 5 z+ul.
Erasing the transformation [w = z + u], we reduce to interpolation for the two bundles
Newnlz & wl and  Neginlz = wl.

The first of these statements is the assertion (9, 3, 6, 1, 0). For the second, erasing the transformation at z
reduces it to interpolation for N¢ (o, 1;1), Which is the assertion 1(9, 3, 6, 0, 0). Note that both (9, 3, 6,0, 0)
and (9, 3,6, 1, 0) are good.

13. Canonical curves of even genus

In this section, we prove interpolation for the normal bundle of a general canonical curve of even genus
g > 8, which is the last remaining case (cf. Proposition 5.10 and Section 9). These cases are difficult,
in part, because interpolation does not hold for canonical curves of genus 4 and 6, that is, when r = 3
orr=>5.

We will do this via degeneration to E U R, as in Section 5.3. That is, E is an elliptic normal curve in
P", and R is a general (r + 1)-secant rational curve of degree r — 1, where r = g — 1 is odd.

13.1. Reduction to a bundle on E

Recall that, due to the exceptional case of elliptic normal curves in odd-dimensional projective spaces
in Lemma 5.8, we cannot reduce interpolation for Ngyg to interpolation for Ngyr|g. Instead, we will
reduce interpolation for Ngyg to interpolation for a certain modification of Ngyg|g. Our first step
will be to show that Ngyg|r is not perfectly balanced, and give a geometric description of its Harder—
Narasimhan (HN) filtration.

Lemma 13.1. Let g1, . . ., gan+2 be a general collection of points on PL. Ler D1, - - - P2ons2 be a general
collection of points on a general elliptic curve E. Then there exist exactly two maps of degree n+ 1 from
E to P' that send p; to q;.
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Proof. If f: E — P! is a general map of degree n + 1, then f*Tpi(—p1 — - - — pans2) has vanishing
cohomology. Therefore, deformations of f are in bijection with deformations of the f(p;). The number
of maps of degree n + 1 from E to P! that send p; to ¢, is therefore finite and nonzero.

To calculate this number, we degenerate the target P! to a binary curve, with g1, o, ..., gns+1 ON
the left P!, and ¢,+2, ¢ns3s - - - » g2n+2 on the right P'. This degeneration is illustrated in the following
diagram:

qn+3

q2

q1 q2on+2

Such a map E — P! then degenerates to an admissible cover from a marked curve whose sta-
ble model is (E, pi, p2,- .., P2m+2). One can construct two such admissible covers (both with no in-
finitesimal deformations sending p; to ¢;): In one such cover, E maps to the left component, with
P15 P25 - - - Pn+l MApping to g1, qa, - - . » Gn+1, and pyio, Pra3s - - ., Pon2 Mapping to the node; each of
the points pp+2, Pn+3s - - - » P2n+2 is then attached to a rational tail mapping isomorphically onto the right
component. Similarly, in the other such cover, E maps to the right component, with p,,12, Pn+3, - - -, Pan+2
mapping to ¢n+2, gn+3, - - - » q2n+2, and pi, pa2, ..., pp+1 mapping to the node and attached to a ratio-
nal tail mapping isomorphically onto the left component. These covers are pictured in the following
diagrams:

P2n+2 Pl

... Pn+l Pn+2 Pn+l Pn+2 Pn+3

P1 P2on+2
. 9n+l qn+2 m
qdn+3 . qn+3
1 1 Gone3 a1 12 qon+2

In fact, these are the only two such admissible covers. Indeed, the curve E must map to one of the
two components of the above degeneration of the target P', say without loss of generality to the left
component. Then p,,42, . . ., pon+2 Must map to the node, which we normalize to [1 : 0]. Hence, the map
E — Plis given by [s : 1] for a section s € H*(O(ppsa+- -+ pans2)). Since p1, ..., pns1 are general,
the evaluation map HY(O(pps2 + -+ + pans2)) — @Z’]l O(pus2 + -+ + Pans2)|p; is an isomorphism.
Hence, s is uniquely determined. We conclude that, when ¢q1, g2, ..., g2 € P! are general, there are
exactly two such maps. O

Write f;: E — P! (fori € {1,2}) for these two maps, and f = (fi, f2): E — P! xP' for the resulting
map.

Lemma 13.2. In the setup of Lemma 13.1, the map f is a general map from E to P' x P! of bidegree
(n+1,n+1). In particular:

° ? is birational onto its image, and its image is nodal.
o f Oziei(1,-1) € Pic®(E) is general (and thus nontrivial).

Proof. Fix a general elliptic curve E. Let f: E — P! x P! be a general map. Write A ¢ P! x P! for
the diagonal. Then the {p1, p2, ..., pans2} = f~1(A) C E, and their images {q1, g2, . .., qons2} C P!
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under the composition of either projection with f; satisfy all the hypotheses of Lemma 13.1 except for
possibly genericity.

To complete the proof, it remains to check that there is no obstruction to deforming f so that these
points become general. In other words, we must check H' (f*Tp1,p1 (—A)) = 0. But this is true because
fis general and f*Tpi,pi (—A) = f*Opiypi (1,-1) & f*Opiypi (-1, 1). O

Lemma 13.3. In the setup of Lemma 13.1, we have

f Opigei(1,1) = Op(p1 + p2+ -+ + pans2)-
Proof. The isomorphism class of the line bundle 7*OP1Xp1 (1, 1) is independent of the moduli of the
points q1, . . ., g2n+2 because they vary in a rational base. Hence, we may calculate it in the degeneration

of Lemma 3.1, where the result clearly holds. O

Lemma 13.4. In the setup of Lemma 13.1, the pushforward of O (p1 + pa + - -+ + pons2) along either
map is perfectly balanced, that is,

(f):Or(p1+ pa+- -+ pagsz) = Op (1)20H),

Proof. Since f; is of degree n+ 1, the pushforward ( f;).Og(p1+ p2+-- -+ pans2) is arank n+ 1 vector
bundle on P!, that is, we can write

n+l
(f-Ok(p1+ pa+++++ pans2) = ) Oai (a)).
j=1
The integers a; satisfy

n+l

Dlay=x|[EPOei(a)) |- (n+1) = x(Op(p1+pa+-- +poa)) = (n+1)
j=1
=2n+2-(n+1)=n+1,
so to see that a; = 1 for all j, it suffices to see that a; < 2 for all j, that is, that
n+1

0=H(EP Opi(a;-2) | = HY(Op(p1+pr++-+ pane2) @ f; Opi (-2)),
j=1

or equivalently that
Op(p1+p2+-+pas2) # [ Ooi (2,0) = F Opien (1,1) © F Opien (1, 1),
which follows from Lemmas 13.2 and 13.3. O
Write r = 2n + 1. Applying Lemma 13.1, there are exactly two maps f;: E — P! ~ R, of degree
n+1,sending T'|g to T'|g, where I' = E N R. Write f = (f1, f2): E — P! xP'. Let S denote the blowup

of P! x P! at the nodes of the image of E under f, so that the f; give rise to an embedding f: E <> S.
Writing F1, ..., F,2_; for the exceptional divisors, define

L = Os(n,n) (—ZFi) - Kg(1,1)(E).
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By adjunction on S and Lemma 13.3, we have L|z ~ Os(1,1)|g = Og(1). Let 71;: S — P! and
73: S — P! denote the two projections. By intersection theory, for x € P!, the restriction of the
line bundle L(—FE) to the corresponding fiber ﬂl.‘l(x) is the (unique) line bundle of total degree —1
that is isomorphic to Opi (—1) on any exceptional divisors lying over x. In particular, it has vanishing
cohomology, so by the theorem on cohomology and base-change, (7;).L(-E) = R!(n;).L(-E) = 0.
Combining this with Lemma 13.4, we therefore have a natural identification

(mi)eL = (f;):Op (1) = O (1)"*!. (13.1)

The map S — P?"*! via |L| thus factors through a (uniquely defined) embedding of P[(7;).L] ~
P! x P", via the complete linear system of the relative O(1) on P[(n;).L], which corresponds to
|Opispn (1,1)] on P! x P". In particular, since S — P[(r;).L] is an embedding, so is § — P?"*! Write
¥; ¢ P?"*! for the scroll obtained as the image of the map P! x P* — P¥*+1,

Putting all of this together, we can summarize this situation with the following diagram of
inclusions:

E—)S/zl\Pr
N

Lemma 13.5. The intersection X1 N X, coincides with S.

Proof. Let x1,x, € P! be any two points, and write A; for the fiber of X; over x;. Note that A; is the
span of the divisor f;!(x;).

First, suppose that (x1, x2) is not a node of f(E).If (x;,x2) does not lie on f(E), then the span of A,
and A; is the span of the divisor f° Yxp) + fz’1 (x2). Since this divisor is linearly equivalent to Og (1),
the span is a hyperplane. Otherwise, if (x1,x2) = f(y) lies on f(E), then the span of A; and A, is the
span of the divisor f]_1 (x1)+ fz_l (x2) — y. Since any 2n + 1 points on E are linearly general, this span is
again a hyperplane. Either way, since A; and A, span a hyperplane, they must meet at the single point
that is the image of (x,x;) on S.

Next, suppose that (x1,x;) is a node of f(E), say (x1,x2) = f(y1) = f(y2). Then the span of A; and
A; is the span of the divisor fl_1 (x)+f5 !(x2) = y1 = y2. Since any 2n points on E are linearly general,
this span is codimension 2, and so A| and A, meet along the line that is the image of the exceptional
divisor over (x1,x7).

Combining these two cases, we see that £; N X, coincides with S set-theoretically. To upgrade this
to a scheme-theoretic equality, we must show that £; and X, are quasi-transverse along S, meaning that
the tangent spaces to 2 and X, at points of S span a hyperplane. (They cannot span all of P", because
X1 N X, is pure of dimension 2.) Away from the exceptional divisors, this is straightforward: The tangent
space to X; contains A;, so it suffices to note that A; and A, span a hyperplane.

It remains to consider an exceptional divisor M = Aj N A,. Write A for the span of A; and Aj. As
in the previous case, the span of the tangent spaces to the %; contains A; however, in this case A is
codimension 2. It thus remains to show that the natural map Ny /s, ® Nag/s, — Najpr |m is everywhere
nonzero along M. Recall that we write y; for the points on E lying over the node, that is, satisfying
F(1) = f(y2) = (x1,x2) so that M is the line spanned by y; and y,. Let yf be nontrivial first-order
deformations of the y; satisfying f; (y‘{) = f j(y‘é). Such deformations are pictured in the following
diagram:
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x2

P! x P!

The lines joining y{ and yé give first-order deformations of M in X, that is, sections o; of Nas/x;.
It suffices to see that the images of the o; in N pr |y do not simultaneously vanish anywhere along M.

The span of A and the tangent line to E at y; is the span of the divisor fl’l (x1)+ fz’1 (x2) — y2. Since
any 2n + 1 points on E are linearly general, this span is a hyperplane. Similarly, the span of A and the
tangent line to E at y; is a hyperplane. Moreover, the span of A and the tangent lines to E at both y and
y7 is the span of the divisor fl‘l(xl) +fy !(x»), which is linearly equivalent to O (1), and therefore
again spans a hyperplane. Since this hyperplane contains the first two of these hyperplanes, all three of
these hyperplanes must be equal. Write A’ for this hyperplane.

By construction, the images of both ¢; are nonzero sections in the subspace Na/as[p = Op(1).
Because f(E) is nodal, the deformations (yi,y%), (y%,y%) form a basis of Ty, E @ Ty, E. The images
of these two sections thus form a basis of H*(N, AN Im) = H%(Oy;(1)) and so do not simultaneously
vanish anywhere along M as desired. O

The upshot of this is that we have a natural filtration of Ngygr, whose successive quotients are vector
bundles of ranks 1, 2n — 2 and 1, respectively:

0 € Neurys € Neur/s, + Neurys, C NEUR.- (13.2)

Lemma 13.6. We have c¢1(Ngurys;|rR) =n(2n+3) + 1.

Proof. The Picard group of X; is spanned by the class y of one n-plane and the restriction of the
hyperplane class 4 from P?**!. One computes that Ks; = (n— 1)y — (n+ 1)h for such a scroll. By
adjunction we have

c1(Nryg;) = c1(KR) — c1(Ks|r)
=-2-((n-1)y—-(n+1)h)-R
= 2~ (n=D)(y-R)+(n+1)(h-R)
=2-(n-1)-1+(n+1)-2n

=% +n-1.
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Therefore,

c1(Ngurys;IR) = c1(Nrys) +#0 = (2n* +n = 1)+ 2n+2) =n(2n +3) + 1.

Proposition 13.7. The vector bundle Ngugr|gr = Ng[~5> E] is isomorphic to
Opi 2n+4) & Op1 (21 +3)222 @ Op (20 +2).

Moreover, its HN-filtration is precisely the restriction of the filtration (13.2) to R.

Proof. By Lemma 5.8, we have either Ng [5 E] =~ Opi (2n +4) & Oz1 (20 +3)2"2 @ 051 (2n + 2)
or Nr[~5 E] =~ Oz (2n + 3)®*". Lemma 13.6 rules out the second case since Op1 (21 + 3)®2" admits
no subbundle of rank z and first Chern class n(2n + 3) + 1.

Moreover, any subbundle of Opi (21+4) ® Opi (21n+3) 2?2 @ Oy (2n+2) of rank n and first Chern
class n(2n + 3) + 1 contains Opi1 (21 +4) and is contained in Opi (2n +4) ® Oz (2n + 3)®2"2) _Since
the graded pieces of equation (13.2) are the intersection and span of the Ngyr/x;, they must therefore
coincide with the HN-filtration. O

This provides the promised determination of N[~ E], and the promised geometric construction
of its HN-filtration. This geometric description of the HN-filtration of Ngygr|r allows us to reduce
interpolation for Ngyg to interpolation for a modification of Ngur|g =~ Ng ['\3 R] as follows.

Lemma 13.8. Let p and g be two distinct points of E N R. Then Ngyr satisfies interpolation provided
that

Ne[5 R)[p 5 Ngjsllg = Negs, + Nejs, | (13.3)

satisfies interpolation.

Proof. We imitate the basic idea of the proof of [2, Lemma 8.8]. Write I" := E N R, which has size r + 1.
Write x, y, z for three general points on R. Twisting down, we have

Neor(=x =y = 2)|[r = Opi (r =2) @ Opi (r = D® 3 @ Ogi (r).
Therefore,the evaluation map
evrr: H (Ngurlr) — NEurlr

is injective when restricted to the subspace H*(Ngugr|r (=x — y — z)). Our aim is to suitably specialize
the points x, y, z so as to be able to identify the subspace of sections of Nrpur|g

Vx,y,z = {0- € HO(E» Neurle) : olr € Im (CVR,F |H()(NEuR|R(—X—y—Z)))}

that glues to the image of H*(Ngur|r(—x — y — z)) under evg r. By Lemma 3.6, it suffices to show
that this subspace of sections has the correct dimension and satisfies interpolation to conclude that
NEgur(—x — y — z) satisfies interpolation, which implies that Ngyg satisfies interpolation.

Since #I" = r + 1, the evaluation map evg r restricted to the sections of the largest factor Opi (r) is
already an isomorphism. The evaluation on the other factors is not an isomorphism: On the Op:i (r — 1)
factors, the image is a codimension 1 subspace of Opi (¥ — 1)|r, and on the Op: (r — 2) factor, the image
is a codimension 2 subspace of Opi(r — 2)|r. We will appropriately specialize so as to force these
subspaces to be ‘coordinate’ planes.
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First, limit x to p. The gluing data across the nodes (in particular at p) is fixed, and therefore the limiting
codimension 1 subspace of Op: (r —1)|r contains the subspace Op1 (r —1) |1\, ®0|, of sections vanishing
at p. Since this subspace has the correct dimension, it must be the flat limit. Then limit y to g. In the limit,
the codimension 2 subspace of Opi (r — 2)|r must contain the subspace Opi (r — 2)|r\p.4} © 0], ® 0l
of sections vanishing at p and g. Since this has the correct dimension, it must be the flat limit. Since the
HN-filtration on Ngyugr|r is the restriction of equation (13.2) to R, this flat limit is

H° (E,Ng[~5 R][p = Ng;sllg = Ngjs, + Nejs,1) -

Since this subspace is the space of sections of a vector bundle, it suffices to show that this bundle satisfies
interpolation. To complete the proof, we note that u(Ng [5 R][p — Ngjsllg = Nejs, +Ngjs,]) = 1,
and so it suffices by Lemma 3.8 to prove interpolation after twisting up by p. O

13.2. The caser >9

By Lemma 13.8, it suffices to show equation (13.3) satisfies interpolation. On an elliptic curve, we can
characterize which bundles satisfy interpolation in terms of the Atiyah classification.

Lemma 13.9. Let & be a vector bundle on an elliptic curve E. Then & satisfies interpolation if and only
if there is a nonnegative integer a for which every Jordan—Holder (JH) factor F of & satisfies

asu(F)<a+l and F # Of. (13.4)

Proof. By the Atiyah classification, every JH-factor of & is both a subbundle and quotient of &.

First, suppose & satisfies interpolation. Then & is nonspecial, so every JH-factor & is nonspecial or
equivalently satisfies u(#) > 0 and # # Og. If no such nonnegative integer a exists, then there would
be a positive integer b and JH-factors % and % with u(#) < b < u(%,). This is a contradiction,
since for general points p1, p2, ..., pp € E, we would have

H'(&(-p1—-—pp)) #0 and H'(&(-p1—---—pp)) 0.

In the other direction, suppose there is a nonnegative integer a for which every JH-factor & satisfies
equation (13.4). Then for general points py, p2,...,pa+1 € E,

H(&(-p1—++—pas)) =0 and H'(&(-p1—---—pa)) =0.
Therefore,& satisfies interpolation. m]

Lemma 13.10. Let & be a vector bundle on an elliptic curve E, and let a and b be integers. For two
points p,q € E, consider subspaces A C &|, of rank 1 and A C &|; of corank 1. If every JH-factor
F of & satisfies a < u(F) < b, then every JH-factor F' of & = E[p 5> Allqg — A] satisfies
a<u(F')<bh.

Proof. Up to replacing &’ with its dual, it suffices to show that every JH-factor ' of &’ satisfies
u(F') < b. Since every JH-factor is a subbundle, and &’ is a subsheaf of &[p = A], it suffices to
show that every subsheaf &’ of &[p -5 A] satisfies u(F’) < b.

If #’ is a subsheaf of &, we are done by assumption. Otherwise, write x for the degree of "’ and y
for the rank of F’ so that u(F’) = x/y. Write & = ' N & for the corresponding subsheaf of &. Then
(x=1)/y = u(¥) < b. Since b is an integer, u(F’) = x/y < b as desired. O

Combining Lemmas 13.9 and 13.10, it suffices to prove:

Proposition 13.11. If r > 9 is odd, every JH-factor F of Ng [~ R] satisfies r +4 < u(F) < r +5.
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Our proof of Proposition 13.11 will be by induction on r.

When r = 7, we have u(Ng [~> R]) = 12 = r+5. Since 1(8, 1,7, 0, 1) holds, we deduce from Lemma
13.9 that every JH-factor % of N[5 R] has slope exactly r+5 in this case. Although Proposition 13.11
does not hold in this case, it is close enough that we will be able to leverage it to establish the case r = 9.

In general, our strategy will be to use our inductive hypothesis to show that Proposition 13.11 is close
enough to holding that naturality of the HN-filtration forces it to hold exactly.

Definition 13.12. Let E be a genus 1 curve. We say that a map
B
Pic® E — Pic” E

is natural if for any automorphism 6: E — E, the following diagram commutes:

Pic" E — 3 Pic’ E

l . lg*

Pic" E — 3 Picb E

Proposition 13.13. If Pic® E — Pic? E is natural, then a divides b.

Proof. Translation by an a-torsion point acts as the identity on Pic? E, and so it must also act as the
identity on Pic® E. O

Proof of Proposition 13.11. Tt suffices to prove that Nz [~> R] has no subbundles of slope r +5 or more
and no quotient bundles of slope » +4 or less. We will prove this by induction on r, using the case r = 7
discussed above as our base case. Our argument will consist of two steps:

1. We specialize so that the statement of the proposition becomes false but still close enough to true
that we can gather information about the possible limits of subbundles of large slope (respectively
quotient bundles of small slope).

2. Leveraging this information, we apply Proposition 13.13 to the general fiber.

Our specialization will be of R to the union R° = pg U R™, of a one-secant line pqg and an (r — 1)-
secant rational curve R~ of degree r — 2 meeting pq at a single point. Projection from pq induces an
exact sequence

0— [S:=0e(1)2p+q) ® Op(1)(2q + p)| = Ne[5 R°]
e [Q = NE(O,O;Z) (p + q) [’{t) F]] — 0. (135)

The bundle S is perfectly balanced of slope r + 4. The bundle Q is a twist of another instance of our
problem in P"~2_If r > 11, then by induction, every JH-factor of Q has slope strictly between r + 4 and
r +5;if r =9, then every JH-factor of Q has slope exactly r + 5.

We begin by showing Nz [~5> R] has no quotient bundles of slope r + 4 or less. Since Q has no
quotient bundles of slope r +4 or less, any such quotient must specialize to a quotient of S, and therefore
must have slope exactly 7 +4 and rank at most 2. Let G be the maximal such quotient of Ng [~> R] (i.e.,
on the general fiber). Our above specialization of R shows that u(G) =r+4 andn =1k G <1k S =2.
The determinant det G depends on the following data:

A line bundle Og(1).

A basis for HO(Og(1)).

A hyperplane H ¢ PH(Ox(1))".

A rational curve R € H of degree r — 1 passing through the r + 1 points of E N H.
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Except for the choice of line bundle Of (1), all of these data vary in a rational family. Since any map
from a rational variety to an abelian variety is constant, det G depends only on the choice of line bundle
OEg(1). Extracting the determinant of G therefore gives a natural map

Pic’*' E — Pic"*Y E.

Hence, by Proposition 13.13, we have (r + 1) | n(r + 4), and therefore (r + 1) | 3n. Since we have
3n <6 <10 <r+ 1, we must have 3n = 0, that is, n = 0 as desired.

We next show that Nz [<5 R] has no subbundles of slope +5 or more. If > 9, then the specialization
Ng[~5 R°] has no such subbundle because S and Q do not. It therefore remains only to consider the case
r =9, in which every JH-factor of S has slope 13 and every JH-factor of Q has slope 14. Let G be the
maximal such subbundle of Nz [~5 R] (i.e., on the general fiber). Our above specialization of R shows
that u(G) = 14 and n := rk G < 1k Q = 6. Extracting the determinant of G therefore gives a natural map

Pic'’E — Pic!*" E.

Hence, by Proposition 13.13, we have that 10 | 14n,s05 | n.If n = 0, we are done, so suppose thatn = 5.

To obtain a contradiction, we analyze what happens in our specialization, in which G specializes to
a subbundle G° of Q with slope 14 and rank 5. We consider the determinant det[G°(—p — ¢q)]. A priori
this depends only on Og (1), p, and ¢ (the remaining data vary in a rational family). In fact, we claim it
depends only on

Ok0,02) (1) =O0r(l) =p -q.

Indeed, det[G°(—p — q)] is a product of JH-factors of Ng (9,02 [<5 R-], which is a discrete set of
possibilities once we fix Of (0,0.2) (1) and some additional data varying in a rational family. As we fix
OFE (0,02) (1) and these additional data, we may allow {p, g} to vary arbitrarily in £ X E by Lemma 8.1.
In this way, we obtain a map from E X E to this discrete set, which must therefore be constant because
E X E is connected. Therefore,det[G°(—p — g)] depends only on Og (0,0,2) (1) plus these additional data
varying in a rational family and thus only on O o,0.2)(1). The determinant of G°(—p — q) therefore
gives a natural map

Pic® E — Pic®’ E.

This is a contradiction by Proposition 13.13 since 8 1 60. O

13.3. Thecaser =7

To handle this case, we will first have to study the restriction of equation (13.2) to E, which we do for
arbitrary odd 7. This is a filtration of Nz [~5 R] whose successive quotients are:

N

Ngs(1), Ns/sle ® Nsjs,lp, and ———.
E/ /%1 /%2 Nejs, + Nejs,

We write H; := f;Op:i (1) for the corresponding hyperplane class.
Proposition 13.14. We have Ng;s ~ Og (3 —n) (and so Ng;s(1) =~ Og(4 —n)).

Proof. We consider the sequence (not exact) of maps

[Ness = Nyl = Ny = f Nygy pip -
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By inspection, both of these maps drop rank exactly at the points of E lying over the nodes of 7
Therefore,their Chern classes lie in a linear progression, that is,

c1(Ngys) =2-c1(Ny) - o (f N7 (&) pixpt)

= -2¢1(F Kpiye1) = 1 (F Opipr (n+ 1,1+ 1))
= —2(—2H1 - 2H2) - (n + 1)(H1 +H2)
= (3 -n)(H + Hy).

Proposition 13.15. We have c; (Ns/zl e ® Ng/s, lg) = Op(3n -3). o

Proof. As in the proof of Proposition 13.7, define the classes y; and 4 in Pic X; to be the class of one
n-plane, and the restriction of the hyperplane class from P?"*!, respectively. By adjunction,

c1(Ngss;) = —c1(Kg,|g) = = ((n=1)y; = (n+ 1)h) - E.

Therefore,

c1(Nsys, e ® Nsys,|E) = c1(NEys,) + c1(Ngys,) — 2¢1(NEg/s)
=-(n-1D(y1+72) - E+2(n+1)(h-E)-2(3-n)(H +H>)
= —(n — 1)(H1 +H2) +2(n + 1)(H1 +H2) — 2(3 — n)(H1 +H2)
= (3”—3)([‘11 +H2).

Proposition 13.16. We have NE/EN—E ~ Oe(2).

1+NE/22

Proof. Since Kpinsi = Opansi (—(2n+2)), we have ¢1(Ng) = O (2n + 2). Combined with the previous
two propositions, this implies the statement of the proposition ((2n+2) - (3-n) - (3n-3)=2). O

We now take r = 7 (equivalently n = 3) and let p and ¢ be points of £ N R. By Lemma 13.8, it
suffices to show interpolation for

Ne[5 Rl[p 5 Nejsllg = Nejs, + Nejs, |-
This bundle has slope 12, so it suffices to show that for a general effective divisor D of degree 12,
HY(Ng[S R[p = Ngjsllg = Nejx, + Nejs,1(=D)) = 0. (13.6)

Furthermore, 1(8, 1,7,0, 1) holds, so h%(Ng [ R](=D)) = h'(Ng[~5 R](-D)) = 0, which implies
that '*(Ng[5 R][p 5 Ng/s](=D)) = 1. Call the unique section o-. If there is any point g € ENR\{p}
for which |, ¢ (Ng/s, + NE/3,)|q, then we have proved the desired vanishing (13.6). We may therefore
assume that at all points of ENR\{p}, the value of ¢ lies in the subbundle Ng s, + Ng/s,. By Proposition
13.16, we have the exact sequence

0 — (Ng/z, + Nejs,) [5 R](=D) - Ne[~5 R](-D) — Og(2)(-D) — 0. (13.7)
Since deg (O (2)(-=D)(—E N R + p)) = =3, we must have that o comes from a section of

(Nejs, + Ngjs,) [5 Rl[p 5 Ngjsl(-D).

It therefore suffices to show that for some p € E N R, this bundle has no global sections
(or, equivalently since the degree is —3 such that 2! = 3). Using equation (13.7), we have
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h' ((Ngss, + Ngjs,) [5 R](=D)) = 4, so such a point p € E N R exists unless making positive
modifications towards all points of E N R does not decrease the A':

h' ((Ngss, + Ngjs,) [ RI(=D)[E N R 5 Ng/s]) = 4.
Equivalently, we are done unless

R ((Ngjs, + Nejs,) [ RI(=D)[E N R 5 Ng/s]) = 8. (13.8)
Taking the sum of the two normal bundle exact sequences for § < X; and § — X, along E yields

0 — Ng/s(2(ENR)) = (Ngss, + Ness,) [ RI[ENR 5 Ngys] — Nsys, e © Nsys,|E — 0.
(13.9)

Twisting down by D, the line subbundle Ng,;s(2(E N R))(—D) has degree 4, and hence four global
sections and vanishing H'. The quotient twisted down by D (which has degree 0) must therefore also
have four global section in order for equation (13.8) to hold. Furthermore, the two scrolls X; and X,
are exchanged by monodromy because the two maps f;: E — P! in Lemma 13.1 have degree n + 1,
which is not a multiple of 2x + 2, and hence by Proposition 13.13 they cannot be individually naturally
defined. Thus, the two rank 2 bundles Ng/s, |z (—D) necessarily both have 2 sections. If N5, | were
indecomposable, then by the Atiyah classification, it would necessarily be an extension of a degree 12 line
bundle M by itself. As long as Og (D) # M, we would have hO(NS/z,. |£(=D)) = 0. Therefore,Ng/s, |E
is a direct sum of line bundles. Since hO(NS/Ei le(=D)) =2:

Ns/sile = Li1 ® L where deg(L;1) = 14 and deg(L;) = 10.
Then det[L;; & L] gives a natural map
Pic® E — Pic® E,

which is a contradiction by Proposition 13.13, since 8 1 28.

A. Code for Section 11
#!/usr/bin/python

XX = set([(5,2,3,0,0), (4,1,3,1,0), (4,1,3,0,1), (4,1,3,1,1),
(6,2,4,0,0), (5,1,4,1,0), (5,1,4,1,1), (5,1,4,2,1), (6,2,4,1,1),
(7,2,5,0,0), (6,1,5,0,1), (6,1,5,1,1)1)

def good(d, g, r, 1, m):

if not (d >= g+r and 0 <= 2*1 <= r and 0 <= m <= (r+l1)*d - r*g - r*(r+l1)):
return False

ifm==9g==0and 2 *1 < (1 -d) % (r - 1):
return False

if (d,g,r,1,m) in XX:
return False

return True

def n_lower_bound(d, g, r):
ifr %2 ==20:
return 3
elif (d, g) == (r + 1, 1):
return 4
else:
return 2

def erasable(r, sl10, sl11, s20, s21, wl®, tl1=0, t2=0, strong=True):
if s10 == sll1l == s20 == s21 == wl® ==
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return (strong and t2 == 0)

if s10 > 0:
if t1 + 1 <r - 1:
if erasable(r, s10 - 1, sl1l1, s20, s21, wl®, tl + 1, t2, strong):
return True
elif t2 < tl + 1 ==r - 1:
if erasable(r, s10 - 1, sl11, s20, s21, wl®, t2, 0, True):
return True

if s11 > 0:
if t1 + 1 <r - 1:
if erasable(r, sl10, sl11 - 1, s20, s21, wl®, tl + 1, t2 + 1, strong):
return True
elif t2 + 1 < tl + 1 ==1r - 1:
if erasable(r, s10, sl11 - 1, s20, s21, wl®, t2 + 1, 0, True):
return True

if s20 > 0:
if t1 + 2 <1r - 1:
if erasable(r, sl10, sl11, s20 - 1, s21, wl®, tl + 2, t2, strong):
return True
elif t2 < tl + 2 ==r - 1:
if erasable(r, s10, sl1, s20 - 1, s21, wl®, t2, 0O, True):
return True
elif t2 + 2 <= r - 1 <= tl1 + 2:
if erasable(r, sl10, sl11, s20 - 1, s21, wl®, t2 + tl + 2-(r-1), 0, strong):
return True

if s21 > 0:
if t1 + 2 <r - 1:
if erasable(r, sl10, sl11, s20, s21 - 1, wl®, tl + 2, t2 + 1, strong):
return True
elif t2 + 1 < tl + 2 ==r - 1:
if erasable(r, s10, sl1, s20, s21 - 1, wl®, t2 + 1, 0, True):
return True
elif t2 + 2 < tl + 1 ==1r - 1:
if erasable(r, sl10, sl11, s20, s21 - 1, wl®, t2 + 2, 0, True):
return True
elif t1 + 1 == t2 + 2 == - 1:
if erasable(r, sl10, sl11, s20, s21 - 1, wl®, O, O, True):
return True

if wi® > 0:
if t1 + 1 <r - 1:
if erasable(r, s10, sl1, s20, s21, wl® - 1, t1 + 1, t2, False):
return True

return False

def can_induct(d, g,
# Proposition 8.4
ifd>g+ 2 *r

return True

r, 1, m):

- 1 and good(d - (r - 1), g, r, 1, m):

# Proposition 8.6
ifm > r - 1 and good(d, g, r, 1, m - (r - 1)):
return True

deltanum = 2 * d + 2 * g -2 *r +2* 1+ (r+1) *m

for lp in range(l + 1):
for mp in range(m + 1):
if (2 *mp + 1p >r - 2) or (mp > 0® and r == 3):
continue
mbar = m - mp
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for dp in range(g + r, d + 1):
if g==0 and m != 0 and dp == g + r:
continue

in®@ = 1p + 2 * (d - dp)

for sum_n in range(n_lower_bound(dp, g, r) * mp, (r - 1) * mp + 1, 2):
lbar =1 - 1p + ((r - 1) * mp - sum_n) // 2

# Proposition 8.2
if (r-1)*(in® + sum_n - 1) + 1 <= deltanum <= (r-1)*(in® + sum_n + 1) - 1:
if good(dp - 1, g, r - 1, lbar, mbar):
return True

# Proposition 8.3
if mp <mand 2 * mp + 1p < r - 2:
if (r-1)*(in® + sum_n) + 1 <= deltanum <= (r-1)*(in® + sum_n + 2) - 1:
if good(dp - 1, g, r - 1, lbar, mbar):
if good(dp - 1, g, r - 1, lbar, mbar - 1):
if good(dp - 2, g, r - 2, lbar, mbar):
return True

# Proposition 8.7
if 1 == 0 and m == 1:
for epsilon in range(@®, (d - g - r) // 2 + 1):
if g > ® or 2 * epsilon <d - g - r:
if 2 * epsilon * (r - 1) + 2 <= deltanum <= (2 * epsilon + 2) * (r - 1) - 2:
if good(d - 2 * epsilon - 2, g, r - 2, 0, 1):
return True

# Proposition 8.8
k=r//2
if k >3 and (d, g, r, 1, m) == (4 *k +1, 2 *k -1, 2 *k + 1, 0, 1):
if good(4 * k - 3, 2 *k -2, 2 *k -1, k - 3, 0):
return True

# Proposition 8.9
ifm == 0 and g >= 3 and r >= 6:
for epsilon in range((d - g - r) // 3 + 1):
if ((2*epsilon+2)*(r-1) + 3 <= deltanum <= (2*epsilon+4)*(r-1) - 3):
if good(d - 3 * epsilon - 6, g - 3, r - 3, 1 + 1, 0):
if good(d - 3 * epsilon - 6, g - 3, r - 3, 1, 0):
return True

# Proposition 8.10
ifm==0 and g >> 1 and (r - 1) + 1 <= deltanum <= 3 * (r - 1) - 1:
if good(d - 2, g -1, r -1, 1 + 1, 0):
return True

# Proposition 8.11
ifm==0 and g >> 3 and r >= 6 and 3*(r-1) + 2 <= deltanum <= 5*(r-1) - 2:
if good(d - 5, g - 3, r - 2, 1 + 1, 0) and good(d - 5, g - 3, r - 2, 1, 0):
return True

## Proposition 11.2... ##
for lp in range(l + 1):
for mp in range(m + 1):

if r == 3 and mp > 0:
continue

for mpp in range(m - mp + 1):
mbar_max = m - mp
mbar_min = m - mp - mpp

for gp in range(g + 1):
for dp in range(gp + r, d - g + gp + 1):
if gp == 0 and m != O and dp == gp + r:
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continue

for epsin in range(d - g - dp + gp + 1):
epsout = d - g - dp + gp - epsin
out = 2 * epsout + 3 (g - gp) + m + mp + 1p
in® = 2 * epsin + g - gp + mpp + 1lp + out // (r - 1)

%

for sum_n in range(n_lower_bound(dp, g, r) * mp, (r - 1) * mp + 1, 2):
lbar =1 - 1p + ((r - 1) * mp - sum_n) // 2

if (r - 1) * (in® + sum_n - 1) + 1 <= deltanum:
if deltanum <= (r - 1) * (in® + sum_n + 1) - 1:
if erasable(r, 1lp + m - mp - mpp, epsout, mp, g - gp, mpp):
ok = True
for mbar in range(mbar_min, mbar_max + 1):
if not good(dp - 1, gp, r - 1, lbar, mbar):
ok = False
break
if ok:
return True

return False

base_cases = []
for r in range(3, 14):
for g in range(r):
for d in range(g + r, g + 2 * r):
for 1 in range(r//2 + 1):
for m in range(r):
if (1, m) == (0, 0 and 2 *d + 2 * g == 3 * r - 1: #cf. Section 6
continue
if good(d, g, r, 1, m):
if not can_induct(d, g, r, 1, m):
base_cases.append((d, g, r, 1, m))

for (d, g, r, 1, m) in XX:
if good(d, g, r, 1, m + r - 1):
if not can_induct(d, g, r, 1, m + r - 1):
if (d, g, r, 1, m + r - 1) not in base_cases:
base_cases.append((d, g, r, 1, m + r - 1))

print(’.&.’.join([str(i) for i in base_cases]))
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