

Disturbance by soil mixing decreases microbial richness and supports homogenizing community assembly processes

Jaimie R. West^{1,*} and Thea Whitman¹

¹ University of Wisconsin – Madison, Department of Soil Science, 1525 Observatory Drive, Madison, WI 53706, USA

* Corresponding author: University of Wisconsin – Madison, Department of Soil Science, 1525 Observatory Drive, Madison, WI 53706, USA. Tel: 608 957-3681. E-mail: jrwest@wisc.edu

1 **Abstract**

2 The spatial heterogeneity of soil's microhabitats warrants the study of ecological patterns and
3 community assembly processes in the context of physical disturbance that disrupts the inherent
4 spatial isolation of soil microhabitats and microbial communities. By mixing soil at various
5 frequencies in a 16-week lab incubation, we explored the effects of physical disturbance on soil
6 bacterial richness, community composition, and community assembly processes. We
7 hypothesized that well-mixed soil would harbor a less rich microbial community, with
8 community assembly marked by homogenizing dispersal and homogeneous selection. Using 16S
9 rRNA gene sequencing, we inferred community assembly processes, estimated richness and
10 differential abundance, and calculated compositional dissimilarity. Findings supported our
11 hypotheses, with > 20% decrease in soil bacterial richness in well-mixed soil. Soil mixing caused
12 communities to diverge from unmixed controls (Bray-Curtis dissimilarity; 0.75 vs. 0.25), while
13 reducing within-group heterogeneity. Our results imply that the vast diversity observed in soil
14 may be supported by spatial heterogeneity and isolation of microbial communities, and also
15 provide insight into the effects of physical disturbance and coalescence events. By isolating and
16 better understanding the effects of spatial heterogeneity and disconnectivity on soil microbial
17 communities, we can better extrapolate how anthropogenic disturbances may affect broad soil
18 functions.

19 **Introduction**

20 Soil is a staggeringly complex, heterogeneous, and even harsh web of microhabitats that harbors
21 vastly diverse communities of largely uncharacterized microorganisms that drive crucial soil
22 functions such as biogeochemical cycling, organic matter decomposition, and plant productivity
23 (Fierer 2017; Tecon and Or 2017). This diversity is, in part, underpinned by the disconnected
24 nature of soil microhabitats (Treves *et al.* 2003; Carson *et al.* 2010) and spatial soil heterogeneity
25 (Tilman 1994; Fierer and Jackson 2006; Rillig, Muller and Lehmann 2017). Global changes may
26 increase physical soil disturbances, perhaps through differences in land use (*e.g.* tillage), weather
27 patterns (*e.g.* cryoturbation or flooding), or bioturbation (*e.g.* invasive species). Given reduced
28 heterogeneity, changes to resource availability, and new microbial interactions, how does
29 physical soil disturbance affect soil microbial diversity? In order to predict changes to soil
30 biodiversity and soil function, it is essential to determine the mechanisms that drive ecological
31 relationships under global change and disturbance.

32 Ascribing processes and mechanisms of community assembly to observed ecological patterns is
33 a central question within ecology, and a particular challenge within soil communities (Hubbell
34 2001; Hanson *et al.* 2012), where ecological patterns are often weakly ascribed to the ‘black box’
35 of unknown aspects of community ecology (Vellend 2010). An emerging research focus is on
36 determining the relative importance — and thus coexistence — of niche processes (Grinnell
37 1917; Hutchinson 1957; Chase and Leibold 2003, 2014) and neutral processes (Bell 2001;
38 Hubbell 2001), which both accurately predict ecological assembly patterns at various scales
39 (Adler, Hillerislambers and Levine 2007). The mechanisms by which patterns and community
40 membership unfold are generally categorized into four ecological processes, listed here on a
41 spectrum from niche to neutral: selection, dispersal, diversification, and drift (Vellend 2010;

42 Zhou and Ning 2017). Dispersal describes the movement and establishment of organisms in
43 space, and may occur in soil through processes such as physical disturbance, water percolation,
44 or active dispersal in water films or saturated pores (Zhou and Ning 2017). Homogenizing
45 dispersal increases compositional similarity between communities, whereas dispersal limitation
46 increases compositional differences between communities, perhaps allowing for stochastic
47 demographic changes to community composition — termed ‘drift’ (Stegen *et al.* 2013). Selection
48 refers to deterministic or niche-based processes dictated by biotic factors, such as inter-taxa
49 fitness differences, and abiotic factors, such as environmental filters (Hutchinson 1957).
50 Homogeneous selection describes community assembly under similar conditions or filters, thus
51 decreasing phylogenetic differences between communities (Dini-Andreote *et al.* 2015). Variable
52 selection occurs when variable conditions produce different selective pressures, thus increasing
53 phylogenetic differences between communities (Stegen *et al.* 2015). To statistically infer the
54 relative influences of these community assembly processes in soil microbial communities,
55 Stegen *et al.* (2012, 2013, 2015) have developed a null modeling approach that compares
56 observed phylogenetic distance and dissimilarity metrics between communities to null models of
57 stochastically assembled communities, originally demonstrated with river sediment communities
58 (Stegen *et al.* 2012).

59 Despite robustly defined statistical models, characteristics of the soil environment and its
60 inhabitant microorganisms interact in ways that inhibit prediction of their influences on
61 community assembly processes (Evans, Martiny and Allison 2017). The ‘sparsely populated,
62 frequently dehydrated, maze’ of soil offers limited connectivity to its bacterial inhabitants, who
63 typically live in spatially-structured biofilms or microbial hotspots (Kuzyakov and
64 Blagodatskaya 2015; Junkins *et al.* 2022), and may only interact in small communities of
65 perhaps 120 individuals (Raynaud and Nunan 2014). Soil structure, as a source of spatial

66 heterogeneity, can shape microbial communities by furnishing distinct microhabitats (*i.e.*
67 conditions for variable abiotic selection) or by engendering microbial community isolation (*i.e.*
68 inducing dispersal limitation) (Rillig, Muller and Lehmann 2017; Wilpiszeski *et al.* 2019).
69 Physical disturbance to soil structure may reduce spatial heterogeneity, thus potentially altering
70 microbial interactions and community composition (Mansour *et al.* 2018). This may give rise to
71 homogenizing community assembly processes, such as homogenizing selection, through more
72 uniform distribution of resources and abiotic conditions, and homogenizing dispersal through
73 direct movement of organisms.

74 The mixing and restructuring of microbial communities along with their spatially heterogeneous
75 environments has been termed community coalescence (Rillig *et al.* 2015, 2016). The
76 coalescence framework, as a potential driver of community composition, is relevant across many
77 microbial environments, such as in aquatic systems where freshwater and brackish communities
78 meet (Rocca *et al.* 2020), or in soil bioremediation where compost is added to restore
79 contaminated soil (Kästner and Miltner 2016). Soils are vast collections of intermittently
80 connected communities that often move and interact in units, such as in association with a soil
81 particle or aggregate. Coalescence in soil thus occurs during typical soil disturbances, such as
82 bioturbation (Jacquiod *et al.* 2020), agricultural tillage (Guillou *et al.* 2019), or cryoturbation
83 (Gittel *et al.* 2014). Community coalescence events in soil are likely to be spatially fragmented,
84 leaving much of the soil relatively undisturbed. This is one possible mechanism by which soil
85 maintains such high levels of diversity (due to differentially affected sub-communities) and
86 functional resilience (maintained within undisturbed communities) (König *et al.* 2019).

87 Here, we explore the effects of community coalescence in physically disturbed soils. What
88 happens to microbial diversity and community assembly processes when soil is mixed to
89 coalesce isolated communities and heterogeneous microhabitats? We hypothesized that well-

90 mixed soil would harbor a less diverse microbial community, and we predicted that community
91 coalescence would decrease richness and result in increasingly homogeneous soil communities
92 dominated by homogenizing dispersal and homogeneous selection. Our goals were to relate
93 differences in richness, compositional (dis)similarity, and relative contributions of community
94 assembly processes—namely dispersal and selection—to physical soil disturbance. To address
95 these goals, we subjected the soil environment to mixing at various frequencies over a 16-week
96 lab incubation, and assessed the outcomes on soil microbial communities and associated
97 community assembly processes using 16S rRNA gene sequencing and statistical models. By
98 isolating and better understanding how spatial heterogeneity affects community assembly
99 processes in soil, we are also better equipped to extrapolate the effects that anthropogenic
100 processes, such as climate change or land use change, may have on broad soil functions.

101 **Methods**

102 *Soil collection*

103 We sought to obtain an unmanaged soil in order to minimize effects of management or prior
104 amendments, and to obtain a soil with moderate or low clay content in order to minimize
105 extracellular DNA (Morrissey *et al.* 2015) while mitigating soil compaction and stickiness
106 during manipulation. As such, we collected Freeon silt loam soil (a very deep, moderately well
107 drained, coarse-loamy, mixed, superactive, frigid Oxyaeric Glossudalf; Luvisols by WRB
108 classification) on 30 August 2018 near Connor's Lake in Sawyer County, Northern WI, U.S.
109 (45°44'52.8"N, 90°43'51.6"W, 425 m asl) (SI Fig. 1). Vegetation type was northern mesic forest,
110 early-to-mid seral, dominated by *Acer rubrum* L. (approx. 80%), *Acer saccharum* Marsh.
111 (approx. 10%), *Betula alleghaniensis* Britt. (approx. 5%), and *Tilia americana* L. (<5%). Two
112 soil cores (1.8 cm diameter) were collected from each of six locations randomly chosen along a

113 50 m transect. From each of these 12 soil cores, we retained a portion of the A horizon, 15–20
114 cm of depth, in a large Whirl-Pak bag kept on ice prior to refrigeration. A representative
115 subsample of air-dried soil was submitted for standard analyses and was found to be comprised
116 of 50% silt, 36% sand and 14% clay (hydrometer method) (Bouyoucos 1962); 2.7% organic
117 matter (loss on ignition) (Schulte and Hopkins 1996), 2.2% total C, 0.1% total N (C and N by
118 flash combustion), 5.1 pH (1:1 water) (Richards, 1954), 13 mg P kg⁻¹, 22 mg K kg⁻¹ (P and K by
119 Bray-1 method) (Bray and Kurtz, 1945), 172 mg Ca kg⁻¹, 25 mg Mg kg⁻¹ (Ca and Mg by
120 ammonium acetate method) (Thomas 1982) and < 3 mg available N kg⁻¹ (NO₃⁻-N + NH₄⁺-N by
121 KCl extraction) (Doane and Horwath 2003).

122 *Experimental setup and design*

123 To investigate the effects of mixing and community coalescence on soil microbial community
124 ecological processes and diversity, we incubated small aliquots of soil for 16 weeks, during
125 which sets of these soil aliquots were pooled together, mixed by vortex, and re-divided at various
126 frequencies intended to mimic infrequent (*e.g.* tillage) and frequent (*e.g.* bioturbation) soil
127 disturbances. To establish the experiment, freshly collected, field-moist soil was gently shaken
128 through an ethanol-sterilized sieve to 2 mm and homogenized, removing any visible roots. We
129 then established eight-tube mixing sets totaling 400 mg soil, with each tube (0.5 mL freestanding
130 tube, catalog no. 16466-036, VWR) containing 50 mg soil (\pm 5 mg) (SI Fig. 3). These eight-tube
131 sets were randomly assigned to mixing treatments, which determined how frequently the soil
132 aliquots in the set would be pooled in one tube (2 mL freestanding tube, catalog no. 89004-308,
133 VWR), mixed by vortex, and re-distributed for further incubation over the duration of a 16-week
134 incubation period (Fig. 1). The mixing treatments included: two times mixed (2 \times ; soil was
135 manipulated at the beginning of the incubation and again halfway through the incubation), four
136 times mixed (4 \times ; every fourth week), eight times mixed (8 \times ; every other week), 16 times mixed

137 (16×; weekly), 32 times mixed (32×; twice weekly) (Fig. 1). There were four replicate mixing
138 sets for each treatment. To control for the effect of soil disturbance in absence of pooling with
139 other soil, the vortex controls were stand-alone tubes of soil (50 ± 5 mg) that underwent vortex
140 mixing, but were never pooled with any other soil (Fig. 2; $n = 8$ per mixing treatment). To
141 control for the effects of incubation, there were 32 tubes of soil (50 ± 5 mg), that incubated
142 undisturbed for the duration of the experiment (1×, or control).

143 At respective times of mixing, soil from the eight tubes within a given mixing set was combined
144 in one larger tube. Gravimetric moisture was restored to approximately 25% using autoclaved
145 Milli-Q water, and the pooled soil was agitated using a vortex mixer (catalog no. 02215365,
146 Fisher Scientific) fitted with a horizontal tube holder at speed seven for five seconds. Following
147 vortex mixing, the soil was evenly divided back into the eight incubation tubes (Fig. 2). The 1×
148 and 2× treatments underwent monthly moisture correction, on an individual tube-basis (without
149 pooling or mixing), to mitigate excessive soil drying.

150 The cap of each incubation tube had one 1/32" hole for air exchange, drilled at a 45° angle (for
151 the vortex controls, an intact cap was used during vortex mixing). All tubes and caps were
152 autoclaved prior to use. Tubes were incubated in two identical dark incubation boxes at room
153 temperature and > 95% relative humidity (RH) to reduce soil drying (SI Fig. 3). Temperature and
154 RH were continuously monitored in each incubation box (data not shown). The incubation boxes
155 were frequently opened for treatment manipulation, and thus kept aerated.

156 In order to characterize the microbial community at the time of soil sampling, we also retained
157 32 x 50 mg (± 5 mg) soil samples, which were frozen at -80 °C without incubation

158 ("Initial"). At the conclusion of the experiment, all tubes were frozen at -80 °C prior to DNA
159 extraction. An electrode deionizer (catalog no. 05.8091.100, Haug North America, Mississauga,
160 ON, Canada) and antistatic nitrile gloves were used to minimize static attraction and repulsion.

161 *DNA extraction and 16S rRNA gene sequencing*

162 Total genomic DNA was extracted from all soil within each incubation tube, which ranged from
163 30–55 mg soil per tube at the end of the incubation. Care was taken to transfer all soil residue
164 and DNA through a series of washes with PowerBead Solution in conjunction with vortex
165 agitation. Complete library preparation details can be found in the Supplementary Information.
166 Briefly, the 16S rRNA genes of extracted DNA were amplified in triplicate using PCR. Variable
167 region V4 of the 16S rRNA gene was targeted using forward primer 515f and reverse primer
168 806r (Walters *et al.* 2016). Amplified DNA was normalized and purified, prior to paired-end 250
169 base pair sequencing on an Illumina MiSeq sequencer at the UW-Madison Biotech Center. To
170 obtain high coverage, the same library was sequenced twice under identical conditions, and total
171 reads were pooled for each sample after processing as described next. Sequencing data was
172 processed using a QIIME2 (Bolyen *et al.* 2019) pipeline, with DADA2 (Callahan *et al.* 2016) as
173 the OTU (or amplicon sequence variant)-picking algorithm, and taxonomy assignment using the
174 SILVA 132 reference database (Quast *et al.* 2013; Yilmaz *et al.* 2013). This yielded 16 687 633
175 demultiplexed sequences, which was reduced to 12 961 153 after denoising, with a mean length
176 of 238 base pairs (SD = 5.5). Excluding blanks, a total of 9264 OTUs were identified. Amplicon
177 sequences are available in the National Center for Biotechnology Information (NCBI) Sequence
178 Read Archive (SRA) under accession PRJNA820861. Our primers targeted both bacteria and
179 archaea, but because our communities were dominated by bacteria (> 99.2% of total reads), for

180 simplicity, we will simply refer to bacteria when discussing communities in this manuscript.

181 Over 96% of archaeal reads represented the phylum *Crenarchaeota*.

182 *Community assembly process assignments*

183 To determine if a given mixing treatment increased the influence of any community assembly
184 process as compared to unmixed control condition, we adapted a null-modelling method (Stegen
185 *et al.* 2012, 2013, 2015) (R code at https://github.com/stegen/Stegen_etal_ISME_2013) that
186 estimates the influence of selection or dispersal using the abundance-weighted beta-mean nearest
187 taxon distance (β MNTD; the mean phylogenetic distance between each OTU in one community
188 and its closest relative in another community) (Fine and Kembel 2011), and Bray-Curtis
189 dissimilarity (BC-Dis), respectively (Bray and Curtis 1957). Unlike applications of this model to
190 different field-based communities, we used the 1 \times control soil condition as the baseline scenario,
191 creating null distributions for both β MNTD and BC-Dis based on every pairwise comparison of
192 the 1 \times controls (496 comparisons total). Observed β MNTD and BC-Dis values from mixing
193 treatments (112 within-pooled mixing set comparisons for each mixing treatment) were then
194 compared to the null distributions to determine the relative effects of selection and dispersal. The
195 1 \times control samples, which were incubated undisturbed after the initial soil homogenization and
196 mixing, represented stochastic community assembly in absence of mixing-induced selection or
197 dispersal pressure. Thus, our inferred community assembly processes are always relative to the
198 incubated 1 \times control. Detailed methods for community assembly processes assignment follow.

199 To identify a dominant influence of selection, the null distribution values of β MNTD
200 (β MNTD_{Null}) were arranged in ascending order and the 95% confidence interval (CI) was
201 nonparametrically identified by finding the 0.025 and 0.975 quantiles. We then took the observed

202 β MNTD (β MNTD_{Obs}) values for every possible pair of communities within a mixing set and
203 compared that to β MNTD_{Null}. **Homogeneous selection** was identified in comparisons for which
204 β MNTD_{Obs} was below the 95% CI of β MNTD_{Null}, indicating lower phylogenetic distance
205 between community members than observed in the null. **Variable selection** was identified in
206 comparisons for which β MNTD_{Obs} was above the 95% CI, indicating higher phylogenetic
207 distance. Comparisons that fell within the 95% CI of β MNTD_{Null} values were considered to lack
208 a dominant influence of selection, and were subsequently tested for the influence of dispersal.

209 To identify a dominant influence of dispersal, the null distribution values of BC-Dis (BC-Dis_{Null})
210 were arranged in ascending order and the 95% CI was nonparametrically identified by finding
211 the 0.025 and 0.975 quantiles. We then took the observed BC-Dis (BC-Dis_{Obs}) values for every
212 possible pair of communities within a mixing set for which selection was not identified, and
213 compared these values to the BC-Dis_{Null}. **Homogenizing dispersal** was identified in comparison
214 for which BC-Dis_{Obs} was below the 95% CI of BC-Dis_{Null}, indicating a higher level of similarity
215 between community compositions than was observed in the null condition; and **dispersal**
216 **limitation** was identified in comparisons for which BC-Dis_{Obs} was above the 95% CI, indicating
217 lower similarity. Comparisons that fell within the 95% confidence interval for both metrics were
218 considered **undominated** by any particular community assembly process

219 *Data analysis*

220 Data analysis was performed in R (R-Core-Team 2018), version 4.0.3, using *ggplot2* (Wickham
221 2016) for data visualization. Unless otherwise noted, the experimental unit is a tube, and may be
222 referred to as “sample” or “community”. To describe richness, we used the weighted linear
223 regression model of OTU richness estimates, which weights observations based on variance, to

224 calculate 95% CIs for treatment means using the *betta()* function in *breakaway* for R
225 (*breakaway::betta*) (Willis and Bunge 2014), interpreting only treatments with non-overlapping
226 95% CIs. Beta diversity was visualized for Bray-Curtis dissimilarities (Bray and Curtis 1957) of
227 relative abundance data using principal coordinates analysis (PCoA) created with
228 *phyloseq::ordiplot* (McMurdie and Holmes 2013). To test for a significant effect of mixing
229 treatment on community composition, we used permutational multivariate analysis of variance
230 (PERMANOVA) to partition Bray-Curtis dissimilarity matrices among sources of variation
231 using *vegan::adonis* (Anderson 2001). A significant result ($p < 0.05$) was subjected to *post-hoc*
232 pairwise comparisons, adjusting p-values using the Benjamini-Hochberg method (Benjamini and
233 Hochberg 1995) to identify significant differences between the 1 \times control and mixing treatments.
234 To test if treatments differed in their dispersion relative to the 1 \times control, we used homogeneity
235 of multivariate dispersions (PERMDISP; *vegan::betadisper*) (Anderson 2006). To quantify the
236 degree to which tubes differed across pooled sets but within the same mixing frequency, we
237 calculated Bray-Curtis dissimilarities (*vegan::vegdist*) (Oksanen *et al.* 2019) for all pairs of tubes
238 from different pooled sets, but the same mixing frequency, using analysis of variance (ANOVA)
239 and a *post-hoc* Dunnett's Test (Dunnett 1955) to test for significant treatment differences relative
240 to the 1 \times control. When assigning community assembly processes as described above, selection
241 was inferred by β MNTD (*picante::comdistnt*) (Kembel *et al.* 2010). Dispersal was inferred as
242 described above by calculating Bray–Curtis dissimilarities (*phyloseq::distance*) on OTU relative
243 abundances.
244 After evaluating our key questions, we assessed differential abundance to identify significant
245 treatment-driven shifts in relative abundances of taxa. For this analysis, we compared each
246 treatment to the 1 \times control (excluding taxa with mean relative abundance < 0.00001) and

247 subjected these datasets to a beta-binomial regression model and “Wald” hypothesis test in
248 *corncob::differentialTest* (Martin, Witten and Willis 2021), which controls for the effect of the
249 mixing treatment on dispersion. We report the μ value, which is the coefficient used to estimate
250 relative abundance in the *corncob* model and is proportional to the fold-change in relative
251 abundance between the treatment and control. To further understand changes in community
252 composition, we sought to test the relationship between mixing treatment and mean predicted
253 rRNA gene copy number, which may correlate with potential growth rate, by calculating the
254 weighted mean predicted 16S rRNA gene copy number for each sample (Nemergut *et al.* 2016)
255 and compared treatments using ANOVA and *post-hoc* testing, as described above. Predicted
256 rRNA gene copy numbers were obtained using the ribosomal RNA operon database (rrnDB)
257 (Stoddard *et al.* 2015). The R code used to perform these analyses and to create the following
258 figures is available at <https://github.com/jaimiewest/Soil-Mixing>.

259 **Results**

260 *Soil mixing decreased bacterial richness*

261 Increased mixing frequency decreased bacterial richness in pooled mixing set samples (Fig. 3),
262 with the most frequently pooled and mixed soil treatments (16 \times and 32 \times) demonstrating lower
263 richness than the 1 \times controls, 2 \times , 4 \times , and 8 \times treatments, as well as the initial soil community.
264 However, the stand-alone unpooled vortex controls maintained a consistent level of richness not
265 statistically different from that of the 1 \times controls, regardless of mixing frequency.

266 *Pooled and mixed soil communities became more similar to each other while diverging from
267 unmixed controls*

268 The treatment-driven clustering pattern apparent in the PCoA ordination illustrates the
269 importance of mixing frequency on soil microbial community composition data (Fig. 4, $p =$
270 0.001 , $R^2 = 0.73$, PERMANOVA). Though mixed soil communities were significantly different
271 from the unmixed $1\times$ controls (Fig. 5a, $p < 0.001$ for all treatments), communities *within* a given
272 pooled mixing set became more similar to each other with mixing (*i.e.* decreased dispersion, Fig.
273 5b, $p < 0.0001$, PERMDISP; and $p < 0.0001$ for all treatments, Tukey's HSD). To this end, we
274 can visually identify sub-clustering of pooled mixing sets within the $16\times$ and $32\times$ treatments
275 (Fig. 4, *e.g.* the two eight point clusters in the upper left corner of the plot). The initial,
276 unincubated samples were included in the PCoA in order to gauge the overall effect of the lab
277 incubation on soil communities, which is much smaller than the effects of mixing.

278 Vortex control communities were also significantly different in composition from the $1\times$
279 controls, though to a lesser magnitude than the pooled and mixed soil treatments (Fig. 4, open
280 points and Fig. 5a in black; $p < 0.001$, $R^2 = 0.33$, PERMANOVA; and $p < 0.01$ for each
281 treatment compared to $1\times$). However, vortex controls did not become more similar to each other
282 within a mixing treatment (compared to $1\times$ controls) (Fig. 5b in black; $p = 0.15$, PERMDISP).

283 Because we found that the pooled mixing set communities became more similar to each other
284 with mixing, yet the unpooled vortex controls did not become more similar to each other given
285 the same mixing treatment, we wanted to determine if there was an overall effect of the mixing
286 treatment on community (dis)similarity amongst communities subjected to the same mixing
287 regime, but not mixed together – *i.e.* comparisons of tubes from the same treatment, excluding
288 tube pairs from the same pooled mixing set (Fig. 5c). Compared to dissimilarity amongst $1\times$ tube
289 communities, we found a significant treatment effect ($p < 0.0001$, ANOVA), with significant

290 decreases in pairwise Bray-Curtis dissimilarities at $2\times$ and $4\times$ ($p < 0.01$, Dunnett's), and a
291 significant increase at $8\times$ ($p < 0.0001$, Dunnett's). Dissimilarity amongst communities at $16\times$ and
292 $32\times$ was not significantly different than dissimilarity amongst $1\times$ tube communities (Fig. 5c).
293 Note that we tested for significant differences in Bray-Curtis dissimilarities using ANOVA
294 because the exclusion of comparisons yielded an incomplete distance matrix, rendering
295 PERMDISP inapplicable.

296 *Community Assembly*

297 Soil mixing altered the relative dominance of ecological community assembly processes (Fig. 6).
298 Pairwise comparisons within the pooled mixing sets (Fig. 6a) demonstrated that homogeneous
299 selection dominated community assembly at the highest mixing frequencies. With less frequent
300 soil mixing, there was a greater proportion of undominated comparisons, with 73% and 31%
301 undominated at $2\times$ and $4\times$, respectively. Homogenizing dispersal was most dominant at $4\times$, with
302 44% of comparisons, yet this growing proportion was overtaken by homogeneous selection as
303 mixing frequency increased.

304 To identify differences in community assembly attributable to whether soil was pooled or not,
305 we tested comparisons between each possible pooled sample and vortex control pair within
306 mixing frequency. A primary effect of soil agitation at a given frequency might result in
307 homogeneous selection between pooled samples and vortex controls, however, we found little
308 evidence for this mechanism. There was a dominance of dispersal limitation at $8\times$, and an
309 increasing dominance of variable selection as mixing frequency increased from $8\times$ to $16\times$ and
310 $32\times$ (Fig. 6b). Comparisons were largely undominated at $2\times$ and $4\times$.

311 *Taxonomic composition shifted with increased soil mixing*

312 In order to better understand community coalescence and to identify key taxa associated with
313 community assembly processes in soil, we explored shifts in community composition related to
314 the soil mixing treatments. The Supplementary Information contains an expanded version of this
315 section. The 1× controls had the highest phylum-level relative abundances of *Proteobacteria*,
316 *Acidobacteria*, *Chloroflexi*, *Verrucomicrobia*, and *Actinobacteria*, which comprised over 80% of
317 mean relative abundance, and also reflected the phylum-level composition of the initial soil
318 communities (SI Fig. 4). After frequent soil mixing, over 80% of mean relative abundance were
319 taxa from the phyla *Actinobacteria* and *Proteobacteria*, with one genus, *Nocardioides*
320 (*Propionibacteriales*), comprising almost 30% of the mean relative abundance at 32×, and with
321 one particular *Nocardioides* OTU emerging as the most abundant OTU in each of the 32×
322 communities. The dominance of several OTUs at high soil mixing frequencies is apparent in the
323 stark differences in cumulative mean relative abundance curves across mixing treatments (SI Fig.
324 5). The four most abundant OTUs at 32× (detailed in the Supplementary Information), and the
325 ten most abundant OTUs at 16× comprised over 50% of cumulative mean relative abundance for
326 respective treatments; this same proportion of relative abundance was comprised of almost 100
327 OTUs in the infrequently or unmixed treatments. Unlike their pooled soil counterparts, the
328 vortex controls generally resembled the 1× controls in their phylum-level mean relative
329 abundances across vortex mixing frequencies (SI Fig. 4).

330 When assessing taxonomic differential abundance relative to 1× controls, we found 392 taxa
331 with positive differential abundance (*i.e.* enriched in mixing treatments). To make our
332 assessment more tractable, we focused on taxa with the biggest responses ($\mu > 1.0$), and only
333 considered enriched taxa with mean relative abundances greater than 0.002 (0.2%) following

334 enrichment (SI Table 1, SI Fig. 6). The most relatively enriched OTU (highest differential
335 abundance estimate) at 32 \times relative to 1 \times was from the family *Nocardioidaceae*
336 (*Actinobacteria*), which had no 100% ID matches in the NCBI nucleotide database. There were
337 four additional OTUs from the genus *Nocardioides* that were considered relatively enriched,
338 including the most abundant OTU found in every 32 \times community, referenced above. In this case,
339 it is possible that these similar OTUs are, in fact, different copies of the rRNA gene that exist
340 within a singular organism's genome, and this is an instance of splitting a single genome into
341 separate OTUs (Schloss 2021). Though some OTUs increased in relative abundance
342 monotonically with increasing soil mixing frequency, other taxa peaked in relative abundance at
343 moderate frequencies of soil mixing (SI Figs. 7 & 8).

344 There were 2152 total taxa with negative differential abundance (*i.e.* depleted) in the pooled and
345 mixed treatments compared to 1 \times , which greatly exceeded the number of enriched taxa.
346 Similarly to our approach for enriched taxa, we focused on the taxa with the strongest negative
347 responses ($\mu < -1.0$), and only retained depleted taxa that were not extremely rare to begin with
348 (mean relative abundances greater than 0.002 in the 1 \times treatment) (SI Table 2, SI Figs. 9 & 10).

349 In the vortex control communities, we found a similar number of enriched taxa with positive
350 differential abundance, and some overlap with the OTUs found to be enriched in the pooled and
351 mixed soil treatments (SI Fig. 11), but notably fewer depleted taxa (SI Fig. 12), with just four
352 OTUs depleted across treatments, after filtering out the very rare or weakly responding taxa as
353 described above. These four OTUs were also depleted in the mixed soil treatments.

354 *Predicted weighted mean 16S rRNA gene copy number increased with mixing*

355 The weighted mean predicted 16S rRNA gene copy number was statistically different across
356 mixing treatments (ANOVA, $p < 0.001$), and increased with mixing frequency from a mean
357 value of 2.09 for 1 \times to a value of 2.51 for 32 \times (SI Fig. 13a). Each treatment, except 2 \times , was
358 significantly higher than 1 \times ($p < 0.05$ for 4 \times ; $p < 0.001$ for 8 \times , 16 \times , and 32 \times ; Dunnett's).

359 Notably, the proportion of OTUs for which a predicted 16S rRNA gene copy number was
360 available also increased with rate of mixing (SI Fig. 14); about 30% of 1 \times OTUs as compared to
361 64% of 32 \times OTUs had matching genera in the rrnDB. *Nocardioides* sp., which comprised over
362 30% of relative abundance in 32 \times , largely accounted for this difference in OTU copy number
363 availability by treatment (SI Table 3). Further, with a predicted mean copy number of 2.62,
364 *Nocardioides* sp. heavily weighs on this analysis, given the high proportion of OTUs for which
365 we don't have a predicted gene copy number. To test the influence of *Nocardioides* on this
366 analysis, we removed it from the calculation and found that the trends remained significant
367 (ANOVA, $p < 0.001$) (SI Fig. 13b and SI Table 3).

368 **Discussion**

369 The aim of this study was to determine the effects of community coalescence via physical
370 disturbance on community composition and ecological community assembly processes in the
371 patchy, disconnected, heterogeneous soil environment. Consistent with our hypotheses, we found
372 that more frequently pooled and mixed soil harbored less rich bacterial communities, with
373 community assembly marked by homogeneous selection. The findings from this study impact
374 our understanding of how physical disturbance affects soil communities and contribute to our
375 growing understanding of the vast bacterial diversity observed in soil.

376 *Bacterial richness and community coalescence*

377 Using soil subsamples that would generally be considered homogeneous and highly similar in
378 community composition (see ‘Initial’ samples in Fig. 4), we demonstrated the effects of
379 community coalescence by pooling together and mixing soil at various frequencies. The 20%
380 decrease in bacterial richness at 32× (Fig. 3) may be attributable to competitive advantage under
381 changing resource availability, as suggested by taxa enrichment (SI Figs. 6 & 7), or attributable
382 to selection for stress-resistant organisms when abiotic conditions shifted beyond organismal
383 tolerance (Rillig *et al.* 2015; Castledine *et al.* 2020). These results closely mirror those of a meta-
384 analysis (Rocca *et al.* 2019), which found that alpha diversity in soil decreased by a mean of
385 20% across a variety of environmental disturbances encompassing a range of stressors. In our
386 study, some combination of stress and competition could reasonably decrease richness, and,
387 being a closed system, we would not anticipate sources of increased richness (from speciation,
388 for example) over the relatively short incubation interval.

389 The maintenance of richness in vortex controls (Fig. 3), with few depleted taxa (SI Fig. 12),
390 supports the possibility that diversity, and thus dissimilarity (Fig. 5b), amongst these closed
391 communities, may have been maintained by heterogeneous resource availability. For instance, an
392 idiosyncratic fragment of organic matter in one tube could contribute to the rapid growth and
393 selection for a particular community. As a stand-alone tube, this remains an isolated community.
394 Conversely, if this tube belonged to a pooled mixing set, this community would be subsequently
395 dispersed throughout the soil in all tubes of the mixing set, thus decreasing within-set
396 dissimilarity (as seen in Fig. 5b for the pooled mixing sets) and likely contributing to both
397 homogeneous selection and homogenizing dispersal (Fig. 6a). Due to the small individual mass
398 of each sample in this study, we had insufficient soil to analyze post-mixing edaphic

399 characteristics, but future work could attempt to correlate resource availability with community
400 composition.

401 The vortex controls may be analogous to soil aggregates, which can host isolated communities
402 under variable selection due to patchy resource availability (Rillig, Muller and Lehmann 2017;
403 Wilpiszeski *et al.* 2019). While we would expect that some microbes may continue to remain
404 isolated in protected soil pore spaces, or manage to persist due to priority effects during
405 coalescence events (Castledine *et al.* 2020), our results suggest that, under frequent mixing
406 conditions, the swift ascendency of a few taxa generally outweighs other mechanisms that might
407 maintain diversity, with a parallel outcome of decreased richness.

408 *Soil mixing selects for fast growth*

409 Community coalescence is an often-overlooked form of disturbance (Mansour *et al.* 2018; *e.g.*
410 Rocca *et al.* 2019), but the increased interconnectedness, forced chance encounters, and potential
411 for degradation of refuges that all characterize coalescent communities in soil may help to
412 describe the frequently-observed phenomena of emergence and enrichment of previously rare
413 taxa under rapidly changing biotic and abiotic conditions (Allison and Martiny 2008). For
414 example, new coalescent communities were distinct and dissimilar from the 1× controls (Fig. 4
415 & Fig. 5), and initially rare OTUs became abundant after frequent soil mixing (SI Fig. 7).
416 Further, another study found that emergent rare taxa comprised over half of the observed OTUs
417 in mixed brackish water coalescent communities, with many of these rare taxa becoming highly
418 abundant at times (Rocca *et al.* 2020). Rare taxa impart phylogenetic plasticity to the
419 microbiome, which can enable functional resilience during periods of transition (Jousset *et al.*
420 2017; Jia, Dini-Andreote and Salles 2018).

421 As a potential mechanism for enrichment of rare taxa, our results indicate a mixing-driven
422 increase in mean predicted gene copy number (SI Fig. 13), suggesting that this trait imparts a
423 selective advantage to soil organisms under frequent coalescence. These apparently mixing-
424 loving, or at least mixing-tolerant, microbes are likely generalists that can translate available
425 resources into fast growth, as was demonstrated in a lagoon coalescence experiment, where a
426 diverse bacterial community of oligotrophic specialists was overcome by copiotrophic
427 generalists (Beier 2021). Another study comparing wastewater communities in static vs. shaken
428 conditions found that fast-growing organisms were enriched in the unstructured, shaken
429 environments, whereas structured, unshaken environments favored organisms that invest in
430 metabolite-mediated life strategies, presumably by maintaining proximity between expensive
431 enzymes and their producers (Junkins *et al.* 2022). Thus, less structured environments, such as
432 frequently mixed soil, seem to put organisms that rely more on extracellular metabolism at a
433 disadvantage, instead favoring fast growers.

434 The prevalence of several OTUs of the genus *Nocardioides* (SI Figs. 6 & 7), which has a
435 relatively higher predicted 16S rRNA gene copy number than the community predicted mean
436 copy numbers for either the initial (unincubated) soil or the 1× control in this study, supports
437 previous work that found this genus to be relatively enriched in coalescent soils of a
438 bioremediation study (Wu *et al.* 2019), and in the high-disturbance earthworm drilosphere soil
439 compared to the undisturbed bulk soil in a no-tillage wheat experiment (Schlatter *et al.* 2019).
440 *Nocardioides* has also been associated with straw mineralization (Bernard *et al.* 2012),
441 extracellular DNA degradation (Morrissey *et al.* 2015), and rapid atrazine mineralization (Topp
442 *et al.* 2000). These examples suggest that *Nocardioides* may be a generalist that thrives in
443 coalescent communities by translating available resources into fast growth. Other enriched or

444 abundant organisms at high mixing frequencies also carry higher predicted 16S rRNA gene copy
445 numbers (SI Fig. 13b), indicating that fast growth is a generally important trait under frequent
446 mixing.

447 *While shaped by coalescence, soil communities remain distinct*

448 The dominance of homogeneous selection under frequent mixing and the absence of a dominant
449 community assembly process under infrequent mixing (Fig. 6a) suggests that large populations
450 (here, the OTUs that become relatively abundant with frequent mixing) tend to be governed by
451 deterministic forces, and small populations (here, rare taxa that persist in the less-frequently
452 mixed sets) are more subject to stochasticity and drift (Hanson *et al.* 2012). However, the
453 specific community composition in a given tube was not driven by mixing frequency alone – in
454 fact, pairwise comparisons between each pooled sample and vortex control combination (Fig. 6b)
455 demonstrate evidence for variable selection. Critically, this result first highlights that the
456 homogeneous selection identified between tubes from pooled sets is not simply due to selection
457 for communities adapted to the soil being physically agitated – rather, there are outcomes that are
458 specifically the result of pooling previously isolated communities during mixing. This indicates
459 that different drivers of community composition govern the pooled samples vs. the vortex
460 controls, despite the same mixing frequency. This may be due to variations in resource
461 availability and biotic interactions between the vortex controls and the pooled coalescent
462 communities, given the relatively smaller volume of soil in each one-tube vortex control as
463 compared to an eight-tube pooled mixing set. For example, scale of mixed soil may engender
464 differences in proximity of extracellular enzymes and metabolites to their producers (Junkins *et*
465 *al.* 2022) and the potential associated differences in predicted 16S rRNA gene copy number,
466 discussed above.

467 While distinct in composition from unmixed controls (Fig. 5a), the exact changes in community
468 composition due to mixing varied from one pooled set to the next, as illustrated by the high level
469 of dissimilarity across pooled samples from different mixing sets of the same mixing treatment
470 (Fig. 5c). With moderate mixing, more stochastic community assembly processes observed at 2×
471 and 4× (Fig. 6a) produced a mixing set-agnostic response by which we see increasingly similar
472 community composition regardless of whether comparisons are made within mixing sets (Fig.
473 5b) or across mixing sets (Fig. 5c). However, as mixing frequency increased, dissimilarity
474 decreased within mixing sets (Fig. 5b), yet dissimilarity across mixing sets remained high (Fig.
475 5c). Together, this emphasizes that, while community coalescence likely selects for mixing-
476 adapted taxa (*e.g. Nocardoides*, amongst other strong responders, SI Fig. 7), the specific
477 outcomes of community composition will differ, likely depending upon small differences within
478 starting communities, or resource variability at microsites (Wilpiszeski *et al.* 2019) that are
479 accentuated by repeated coalescence.

480 Another notable observation lies in the comparison at 2× between Fig. 6a (pairwise comparisons
481 within mixing sets) and Fig. 6b (pairwise comparisons of each pooled sample + vortex control
482 combination): these comparisons only differed in their treatment and handling (pooled vs.
483 unpooled mixing) at a singular mixing event, halfway through the incubation. However, we see a
484 sizeable difference in the outcome, with almost 30% of pairwise observations within the 2×
485 pooled mixing sets demonstrating homogeneous selection or homogenizing dispersal (Fig. 6a),
486 whereas comparison vs. the 2× vortex controls were largely undominated (Fig. 6b). This
487 highlights how one soil mixing event may produce a change in the dominant community
488 assembly process, suggesting that even subtle or infrequent soil coalescence events, such as

489 annual tillage, could substantially shift community composition and its driving processes on a
490 small scale.

491 *Disturbance disrupts mechanisms that maintain soil bacterial diversity*

492 Generally speaking, soil is largely undisturbed. That said – at relatively small scales, soil fauna
493 burrow and consume soil. Root growth displaces soil, ultimately creating pore space as roots
494 senesce. Soil microbes themselves contribute to aggregate formation, organo-mineral
495 associations, and other miniature soil “disturbances”. Natural and anthropogenic disturbances,
496 such as cryoturbation and tillage, can be significant across a landscape. These disturbance events
497 are largely fragmented, point disturbances, and occur perhaps only occasionally in any given
498 location. In this experiment, we demonstrated that even infrequent soil coalescence can have an
499 impact on community composition and community assembly processes, while frequent
500 community coalescence events resulted in significant losses of bacterial richness and the
501 introduction of deterministic selective processes. We expect the selective processes at work are
502 likely biotic, as we see sharp increases in the relative abundances of likely copiotrophic bacteria
503 such as *Nocardioides*, in the absence of typical environmental selection filters (e.g. pH,
504 temperature, moisture). At a field scale, however, these results imply that high levels of diversity
505 would likely be maintained despite mixing events. For example, a heavy rainfall that facilitates
506 pore connectivity or a tillage event that mixes soil over a short distance may select for fast-
507 responding taxa while decreasing richness on a small scale, but high diversity will likely persist
508 across the landscape, as exemplified by the different mixing sets in our study, and the stand-
509 alone vortex controls. As such, our findings generally support the hypothesis that both soil
510 heterogeneity and spatial disconnectivity underpin the high diversity of the inhabitant microbial
511 communities in soil (Fierer and Jackson 2006; Portell *et al.* 2018).

512 *Methodological considerations*

513 There are several important methodological considerations to this experimental study, which we
514 detail in the Supplementary Information. Briefly, these include consideration of sequencing
515 depth, DNA from dead or dormant taxa, and the specific role of dormancy in this study.

516 *Future directions*

517 One future direction might be to assess microbial community function in soil undergoing natural
518 coalescence events to elucidate the complicated relationships between microbial community
519 diversity and function (Raynaud and Nunan 2014; Young and Bengough 2018). We could
520 predict that frequent mixing decreases potential functional breadth due to decreased richness and
521 the dominance of several opportunistic OTUs. However, due to high functional redundancy in
522 soil microbial communities (Louca *et al.* 2018), whether there would be meaningful impacts
523 from such a reduction may be questionable. Further, rare taxa, which we found to be
524 characteristic of frequent community coalescence (see also Allison and Martiny 2008) can impart
525 functional resilience to the microbiome (Jousset *et al.* 2017; Jia, Dini-Andreote and Salles 2018),
526 and therefore we might also predict that soil function is maintained despite decreased richness.
527 Another direction could be to test large-scale diversity and functional resilience of spatially
528 fragmented or isolated coalescence events, as our results indicate that diminished diversity may
529 only play out on smaller scales. Finally, another extension of this work could be to study the
530 effects of soil mixing on fungi, which play an important role in soil structure and function
531 (Crawford *et al.* 2012); there are likely particular implications of disturbance by mixing for
532 filamentous fungi that connect habitats (Cairney 2005).

533 **Conclusions**

534 Community coalescence in what may be considered a homogeneous soil demonstrates that the
535 bacterial community can change considerably with mixing to support potentially fast-growing
536 bacteria, as richness otherwise declines. Homogeneous selection and homogenizing dispersal
537 were the predominant community assembly processes in frequently pooled and mixed soil,
538 whereas less disturbed soil was undominated by any particular community assembly processes.
539 Despite strong mixing effects, initial differences in community composition and resource
540 distribution appear to be important for final, mixed community compositions, as demonstrated by
541 differences between physically disturbed (vortex controls) vs. pooled and disturbed samples. Our
542 results generally suggest that soil heterogeneity, preserved in relatively unmixed soil, underpins
543 the vast microbial diversity characteristic of soil environments.

544 **Supplementary Information**

545 Supplementary Information is available online.

546 **Acknowledgements**

547 The authors would like to acknowledge Jamie Wootton and Dik Patterson for helping to make this
548 work possible, and the input of two anonymous reviewers that improved this manuscript. The
549 authors also thank the UW Biotechnology Center DNA Sequencing Facility and Nick Keuler
550 (UW-Madison College of Agriculture & Life Sciences (CALS) Statistical Consulting). This
551 work was financially supported by the O.N. Allen Professorship (UW-Madison CALS), the
552 Louis and Elsa Thomsen Wisconsin Distinguished Graduate Fellowship (UW-Madison CALS),
553 and a NSF EAGER grant (award #2024230).

554 ***Conflict of Interest.*** None declared.

555 **References**

556

557 Adler PB, Hillerislambers J, Levine JM. A niche for neutrality. *Ecology Letters* 2007;10:95–104.

558 Allison SD, Martiny JBH. Resistance, resilience, and redundancy in microbial communities.

559 *Proceedings of the National Academy of Sciences of the United States of America*
560 2008;105:11512–9.

561 Anderson MJ. A new method for non-parametric multivariate analysis of variance. *Austral
562 Ecology* 2001;26:32–46.

563 Anderson MJ. Distance-Based Tests for Homogeneity of Multivariate Dispersions. *Biometrics*
564 2006;62:245–53.

565 Beier S. Dominance of eutrophic generalist species after microbial community coalescence
566 events. *Ecological Society of America Annual Meeting*. 2021.

567 Bell G. Neutral Macroecology. *Science* 2001;293:2413–8.

568 Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful
569 Approach to Multiple Testing. *J Royal Statistical Soc Ser B Methodol* 1995;57:289–300.

570 Bernard L, Chapuis-Lardy L, Razafimbelo T *et al.* Endogeic earthworms shape bacterial
571 functional communities and affect organic matter mineralization in a tropical soil. *Isme J*
572 2012;6:213–22.

573 Bolyen E, Rideout JR, Dillon MR *et al.* Reproducible, interactive, scalable and extensible
574 microbiome data science using QIIME 2. *Nature biotechnology* 2019;37:852–7.

575 Bouyoucos GJ. Hydrometer Method Improved for Making Particle Size Analyses of Soils 1.
576 *Agron J* 1962;54:464–5.

577 Bray JR, Curtis JT. An Ordination of the Upland Forest Communities of Southern Wisconsin.
578 *Ecological Monographs* 1957;27:325–49.

579 Bray RH, Kurtz LT. Determination of Total, Organic, and Available Forms of Phosphorus in
580 Soils. *Soil Sci* 1945;59:39–46.

581 Cairney JWG. Basidiomycete mycelia in forest soils: dimensions, dynamics and roles in nutrient
582 distribution. *Mycol Res* 2005;109:7–20.

583 Callahan BJ, McMurdie PJ, Rosen MJ *et al.* DADA2: High-resolution sample inference from
584 Illumina amplicon data. *Nature Methods* 2016;13:581–3.

585 Carson JK, Gonzalez-Quiñones V, Murphy DV *et al.* Low pore connectivity increases bacterial
586 diversity in soil. *Applied and environmental microbiology* 2010;76:3936–42.

587 Castledine M, Sierociński P, Padfield D *et al.* Community coalescence: an eco-evolutionary
588 perspective. *Philosophical Transactions of the Royal Society B: Biological Sciences*
589 2020;375:20190252–10.

590 Chase JM, Leibold MA. *Ecological Niches: Linking Classical and Contemporary Approaches*.
591 University of Chicago Press, 2003.

592 Chase JM, Leibold MA. Revising the niche concept: definitions and mechanistic models.
593 University of Chicago Press, 2014, 19–50.

594 Crawford JW, Deacon L, Grinev D *et al.* Microbial diversity affects self-organization of the soil–
595 microbe system with consequences for function. *J Roy Soc Interface* 2012;9:1302–10.

596 Dini-Andreote F, Stegen JC, Elsas JD van *et al.* Disentangling mechanisms that mediate the
597 balance between stochastic and deterministic processes in microbial succession. *Proceedings
598 of the National Academy of Sciences of the United States of America* 2015;112:E1326-32.

599 Doane TA, Horwath WR. Spectrophotometric Determination of Nitrate with a Single Reagent.
600 *Analytical Letters* 2003;36:2713–22.

601 Dunnett CW. A Multiple Comparison Procedure for Comparing Several Treatments with a
602 Control. *J Am Stat Assoc* 1955;50:1096–121.

603 Esteban DJ, Hysa B, Bartow-McKenney C. Temporal and Spatial Distribution of the Microbial
604 Community of Winogradsky Columns. *Plos One* 2015;10:e0134588.

605 Evans S, Martiny JBH, Allison SD. Effects of dispersal and selection on stochastic assembly in
606 microbial communities. *The ISME Journal* 2017;11:176–85.

607 Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome.
608 *Nature Publishing Group* 2017:1–12.

609 Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities.
610 *Proceedings of the National Academy of Sciences* 2006;103:626–31.

611 Fine PVA, Kembel SW. Phylogenetic community structure and phylogenetic turnover across
612 space and edaphic gradients in western Amazonian tree communities. *Ecography*
613 2011;34:552–65.

614 Gittel A, Bárta J, Kohoutová I *et al.* Distinct microbial communities associated with buried soils
615 in the Siberian tundra. *Isme J* 2014;8:841–53.

616 Grinnell J. The Niche-Relationships of the California Thrasher. *Auk* 1917;34:427–33.

617 Guillou CL, Prévost-Bouré NC, Karimi B *et al.* Tillage intensity and pasture in rotation
618 effectively shape soil microbial communities at a landscape scale. *Microbiologyopen*
619 2019;8:e00676.

620 Hanson CA, Fuhrman JA, Horner-Devine MC *et al.* Beyond biogeographic patterns: processes
621 shaping the microbial landscape. *Nature Reviews Microbiology* 2012;10:497–506.

622 Hubbell SP. *The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32)*. Princeton
623 University Press, 2001.

624 Hutchinson GE. Concluding remarks. Cold Spring Harbor Symposia. *Quantitative Biology*
625 1957;22:415–27.

626 Jacquiod S, Puga-Freitas R, Spor A *et al.* A core microbiota of the plant-earthworm interaction
627 conserved across soils. *Soil Biology Biochem* 2020;144:107754.

628 Jia X, Dini-Andreote F, Salles JF. Community Assembly Processes of the Microbial Rare
629 Biosphere. *Trends in microbiology* 2018;26:738–47.

630 Jousset A, Bienhold C, Chatzinotas A *et al.* Where less may be more: how the rare biosphere
631 pulls ecosystems strings. *The ISME Journal* 2017;11:853–62.

632 Junkins EN, McWhirter JB, McCall L-I *et al.* Environmental structure impacts microbial
633 composition and secondary metabolism. *Isme Commun* 2022;2:15.

634 Kästner M, Miltner A. Application of compost for effective bioremediation of organic
635 contaminants and pollutants in soil. *Appl Microbiol Biot* 2016;100:3433–49.

636 Kembel SW, Cowan PD, Helmus MR *et al.* Picante: R tools for integrating phylogenies and
637 ecology. *Bioinformatics* 2010;26:1463–4.

638 König S, Köhnke MC, Firle A-L *et al.* Disturbance Size Can Be Compensated for by Spatial
639 Fragmentation in Soil Microbial Ecosystems. *Frontiers Ecol Evol* 2019;7:290.

640 Kuzyakov Y, Blagodatskaya E. Microbial hotspots and hot moments in soil: Concept & review.
641 *Soil Biology and Biochemistry* 2015;83:184–99.

642 Louca S, Polz MF, Mazel F *et al.* Function and functional redundancy in microbial systems.
643 *Nature Ecology & Evolution* 2018;2:936–43.

644 Mansour I, Heppell CM, Ryo M *et al.* Application of the microbial community coalescence
645 concept to riverine networks. *Biol Rev* 2018;93:1832–45.

646 Martin BD, Witten D, Willis AD. *Corncob: Count Regression for Correlated Observations with*
647 *the Beta-Binomial.*, 2021.

648 McMurdie PJ, Holmes S. *phyloseq: An R Package for Reproducible Interactive Analysis and*
649 *Graphics of Microbiome Census Data.* Watson M (ed.). *PLOS ONE* 2013;8:e61217.

650 Morrissey EM, McHugh TA, Preteska L *et al.* Dynamics of extracellular DNA decomposition
651 and bacterial community composition in soil. *Soil Biology Biochem* 2015;86:42–9.

652 Nemerugut DR, Knelman JE, Ferrenberg S *et al.* Decreases in average bacterial community rRNA
653 operon copy number during succession. *Isme J* 2016;10:1147–56.

654 Oksanen J, Blanchet FG, Friendly M *et al.* *Vegan: Community Ecology Package.*, 2019.

655 Portell X, Pot V, Garnier P *et al.* Microscale Heterogeneity of the Spatial Distribution of Organic
656 Matter Can Promote Bacterial Biodiversity in Soils: Insights From Computer Simulations.
657 *Frontiers in Microbiology* 2018;9:1583.

658 Quast C, Pruesse E, Yilmaz P *et al.* The SILVA ribosomal RNA gene database project: improved
659 data processing and web-based tools. *Nucleic Acids Research* 2013;41:D590–6.

660 Raynaud X, Nunan N. Spatial Ecology of Bacteria at the Microscale in Soil. Pappalardo F (ed.).
661 *PLOS ONE* 2014;9:e87217.

662 R-Core-Team. *R: A Language and Environment for Statistical Computing.*, 2018.

663 Richards LA. Diagnosis and Improvement of Saline and Alkali Soils. *Soil Sci* 1954;78:154.

664 Rillig MC, Antonovics J, Caruso T *et al.* Interchange of entire communities: microbial
665 community coalescence. *Trends in Ecology & Evolution* 2015;30:470–6.

666 Rillig MC, Lehmann A, Aguilar-Trigueros CA *et al.* Soil microbes and community coalescence.
667 *Pedobiologia* 2016;59:37–40.

668 Rillig MC, Muller LA, Lehmann A. Soil aggregates as massively concurrent evolutionary
669 incubators. *The ISME Journal* 2017;11:1943–8.

670 Rocca JD, Simonin M, Bernhardt ES *et al.* Rare microbial taxa emerge when communities
671 collide: freshwater and marine microbiome responses to experimental mixing. *Ecology*
672 2020;101:32–14.

673 Rocca JD, Simonin M, Blaszcak JR *et al.* The Microbiome Stress Project: Toward a Global
674 Meta-Analysis of Environmental Stressors and Their Effects on Microbial Communities.
675 *Front Microbiol* 2019;9:3272.

676 Schlatter DC, Reardon CL, Johnson-Maynard J *et al.* Mining the Drilosphere: Bacterial
677 Communities and Denitrifier Abundance in a No-Till Wheat Cropping System. *Front*
678 *Microbiol* 2019;10:1339.

679 Schloss PD. Amplicon Sequence Variants Artificially Split Bacterial Genomes into Separate
680 Clusters. *Msphere* 2021;6:e00191-21.

681 Schulte EE, Hopkins BG. Estimation of Soil Organic Matter by Weight Loss-on-Ignition. In:
682 Magdoff FR, Tabatabai MA, Hanlon EA (eds.). *Soil Organic Matter: Analysis and*
683 *Interpretation*. Madison, WI: Soil Science Society of America, 1996, 21–31.

684 Stegen JC, Lin X, Fredrickson JK *et al.* Quantifying community assembly processes and
685 identifying features that impose them. *The ISME journal* 2013;7:2069–79.

686 Stegen JC, Lin X, Fredrickson JK *et al.* Estimating and mapping ecological processes
687 influencing microbial community assembly. *Frontiers in Microbiology* 2015;6, DOI:
688 10.3389/fmicb.2015.00370.

689 Stegen JC, Lin X, Konopka AE *et al.* Stochastic and deterministic assembly processes in
690 subsurface microbial communities. *The ISME Journal* 2012;6:1653–64.

691 Stoddard SF, Smith BJ, Hein R *et al.* rrnDB: improved tools for interpreting rRNA gene
692 abundance in bacteria and archaea and a new foundation for future development. *Nucleic*
693 *Acids Res* 2015;43:D593–8.

694 Tecon R, Or D. Biophysical processes supporting the diversity of microbial life in soil. *FEMS*
695 *Microbiology Reviews* 2017;41:599–623.

696 Thomas GW. Exchangeable Cations. *Methods of Soil Analysis, Part 2 Chemical and*
697 *Microbiological Properties*. 1982, 159–65.

698 Tilman D. Competition and Biodiversity in Spatially Structured Habitats. *Ecology* 1994;75:2–16.

699 Topp E, Mulbry WM, Zhu H *et al.* Characterization of S-Triazine Herbicide Metabolism by a
700 *Nocardioides* sp. Isolated from Agricultural Soils. *Appl Environ Microb* 2000;66:3134–41.

701 Treves DS, Xia B, Zhou J *et al.* A Two-Species Test of the Hypothesis That Spatial Isolation
702 Influences Microbial Diversity in Soil. *Microbial Ecology* 2003;45:20–8.

703 Vellend M. Conceptual Synthesis in Community Ecology. *The Quarterly Review of Biology*
704 2010;85:183–206.

705 Walters W, Hyde ER, Berg-Lyons D *et al.* Improved Bacterial 16S rRNA Gene (V4 and V4-5)
706 and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial Community
707 Surveys. Bik H (ed.). *mSystems* 2016;1:e00009-15.

708 Wickham H. *Ggplot2: Elegant Graphics for Data Analysis.*, 2016.

709 Willis AD, Bunge J. *Package Breakaway.*, 2014.

710 Wilpiszeski RL, Aufrecht JA, Retterer ST *et al.* Soil Aggregate Microbial Communities:
711 Towards Understanding Microbiome Interactions at Biologically Relevant Scales. Müller V
712 (ed.). *Applied and environmental microbiology* 2019;85:689.

713 Wu X, Li J, Ji M *et al.* Non-synchronous Structural and Functional Dynamics During the
714 Coalescence of Two Distinct Soil Bacterial Communities. *Front Microbiol* 2019;10:1125.

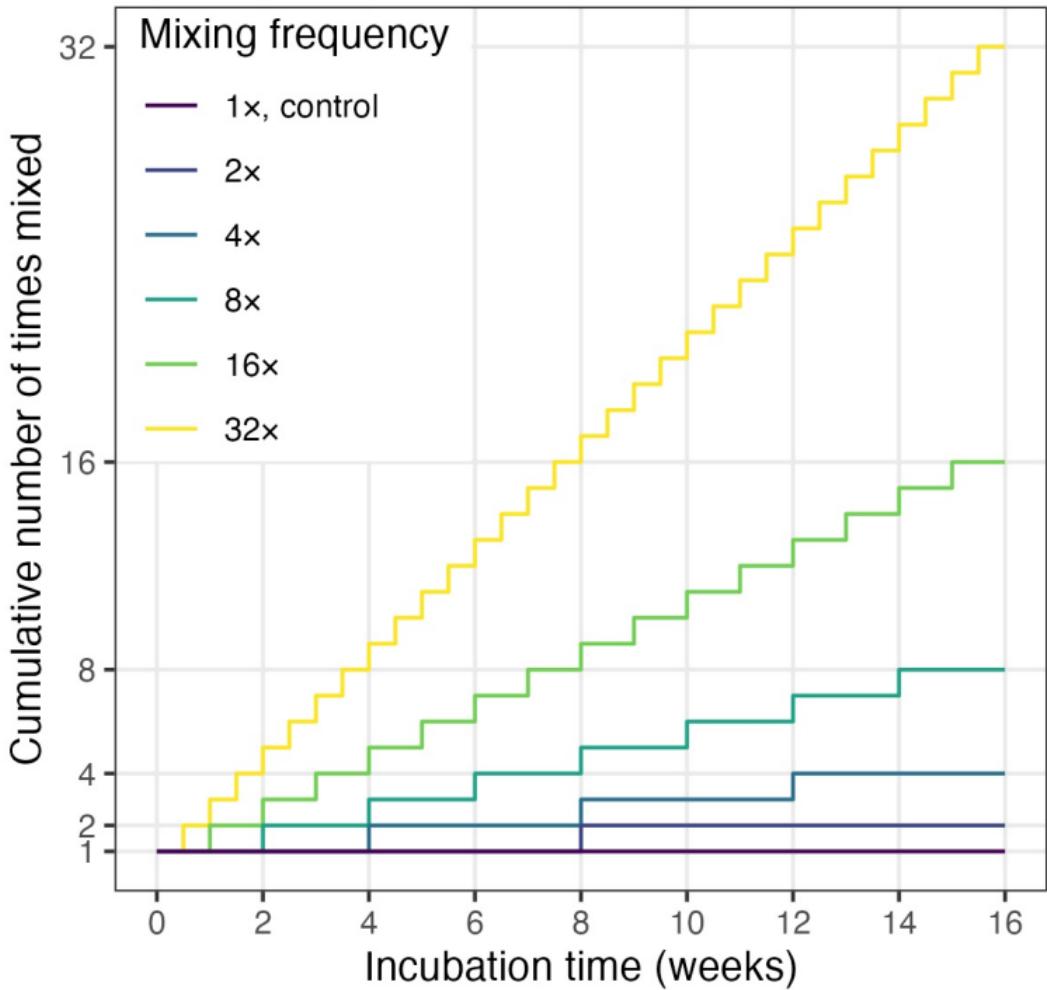
715 Yilmaz P, Parfrey LW, Yarza P *et al.* The SILVA and “All-species Living Tree Project (LTP)”
716 taxonomic frameworks. *Nucleic Acids Research* 2013;42:D643–8.

717 Young IM, Bengough AG. The search for the meaning of life in soil: an opinion. *European
718 Journal of Soil Science* 2018;69:31–8.

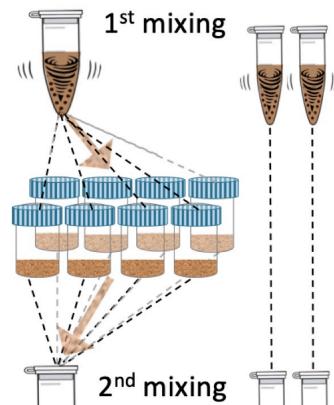
719 Zhou J, Ning D. Stochastic Community Assembly: Does It Matter in Microbial Ecology?
720 *Microbiology and molecular biology reviews : MMBR* 2017;81:1–32.

721

1 **Figure 1.** Visual representation of mixing treatments over the course of the 16-week soil
2 incubation. The mixing treatment represents the number of times each mixing set was pooled
3 together, mixed by vortex, and re-divided. The 1× controls (n = 32) were incubated undisturbed.

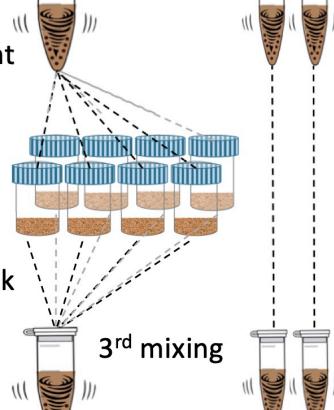

4 **Figure 2.** Experimental setup depicting one pooled mixing set in the 4× mixing treatment. Note:
5 the incubation interval varied in length depending on the mixing frequency. At the conclusion of
6 the 16-week incubation, DNA was extracted from all soil in each incubation tube for 16S rRNA
7 gene amplicon sequencing. See SI Fig. 2 for an expanded version of this figure, detailing all
8 treatments.

9 **Figure 3.** Community-level OTU richness, by pooled mixing treatment (closed points), or
10 frequency of vortex mixing (open points). “Initial” represents richness of freshly collected soil
11 that did not undergo incubation. Error bars represent 95% confidence intervals ($\pm 1.96 * SE$).

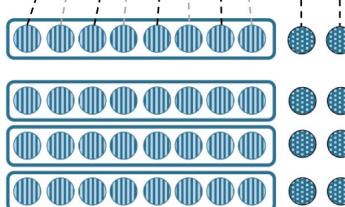

12 **Figure 4.** Principal coordinates analysis of Bray-Curtis dissimilarities of community relative
13 abundances, colored by mixing treatment. Each point represents one tube community. Vortex
14 controls (open points) were mixed but never pooled with other soil. Initial communities (grey
15 points) represent the community present in freshly collected, unincubated soil.

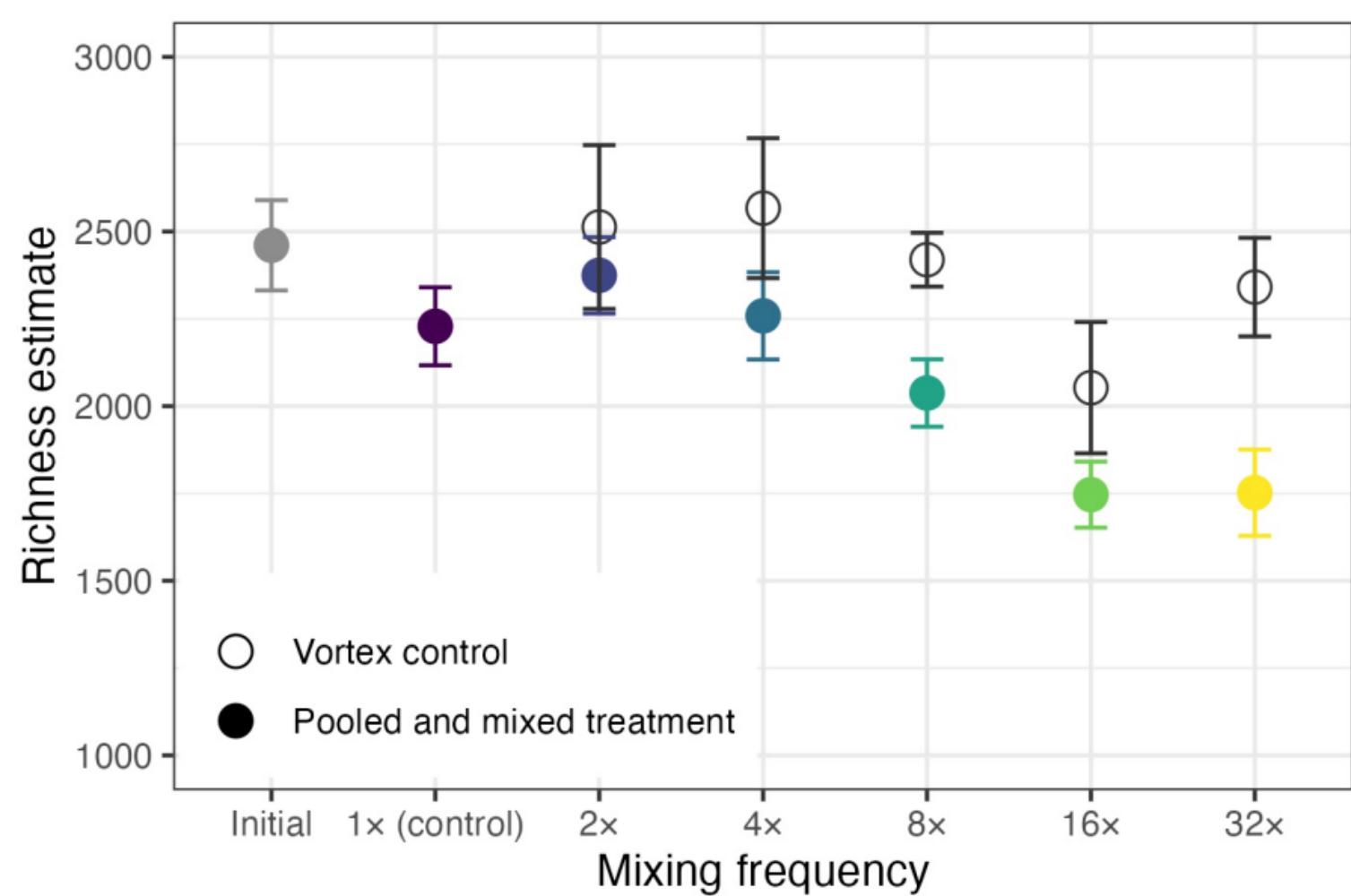
16 **Figure 5.** Bray-Curtis dissimilarities of bacterial community composition. **(a)** Boxplots
17 summarize dissimilarity compared to 1× controls, quantified for each possible pairwise
18 comparison between a treatment tube and a 1× control. The 1× boxplot represents pairwise
19 comparisons amongst all 32 1× controls. **(b)** Boxplots represent the dissimilarity amongst tubes
20 within each pooled mixing set, or amongst the vortex controls for a given mixing frequency.
21 Note that there are four pooled mixing sets per treatment, and comparisons are made only within
22 mixing set. **(c)** Boxplots represent the dissimilarity amongst all tubes within the same mixing
23 treatment, excluding pairs of tubes from the same pooled mixing set (*i.e.* excluding the
24 comparisons summarized in panel b). Asterisks represent statistically significant treatment
25 differences from 1× based on (a) PERMANOVA, (b) PERMDISP, and (c) ANOVA: *** = $p <$
26 0.001, ** = $p < 0.01$, * = $p < 0.05$. Statistical significance for vortex control treatments are
27 reported in the text.

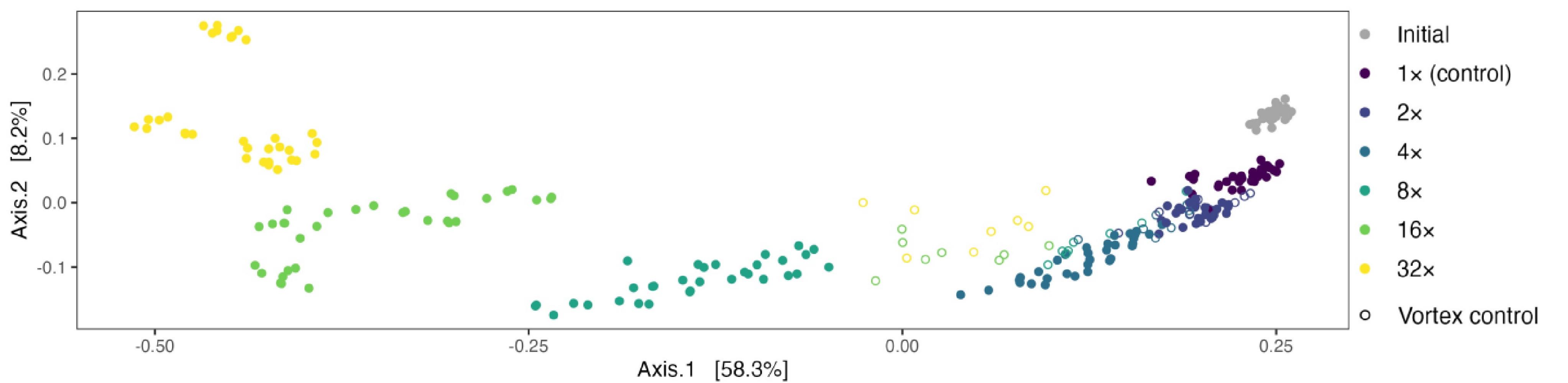
28 **Figure 6.** The dominant community assembly processes as driven by mixing frequency **(a)**
29 amongst communities within pooled mixing sets (one mixing set is illustrated in the inset), or **(b)**
30 between each possible pooled sample + vortex control combination (of the same mixing
31 frequency) (one mixing set + one vortex control is illustrated in the inset). The community
32 assembly processes are assigned using a null modeling approach, detailed in the text. The
33 influence of selection is determined using the β -mean nearest taxon distance, and the influence
34 of dispersal is determined using Bray-Curtis dissimilarity. The null models to which each metric
35 is compared were created using the 1× controls; thus community assembly is inferred only
36 relative to the 1× control condition.

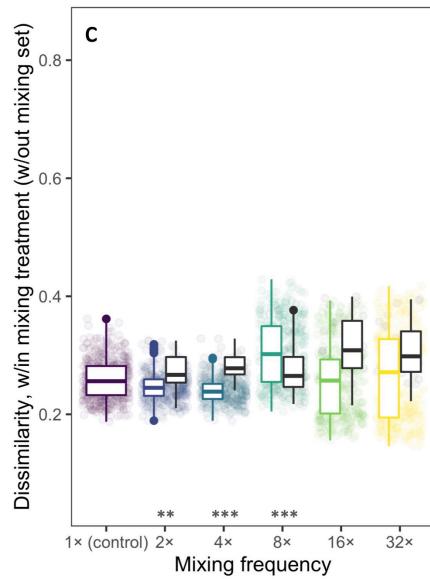
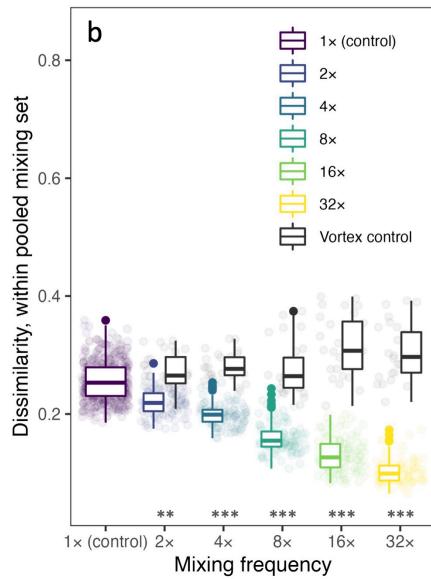
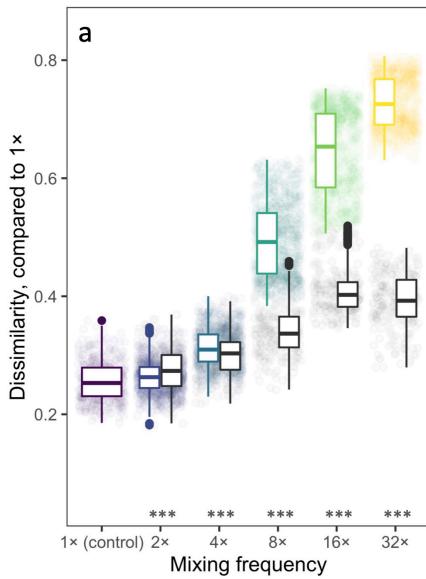


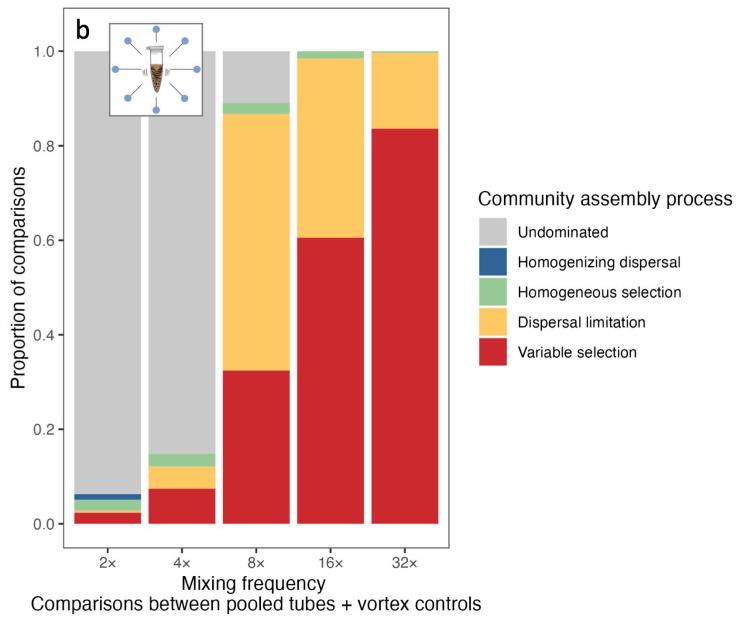
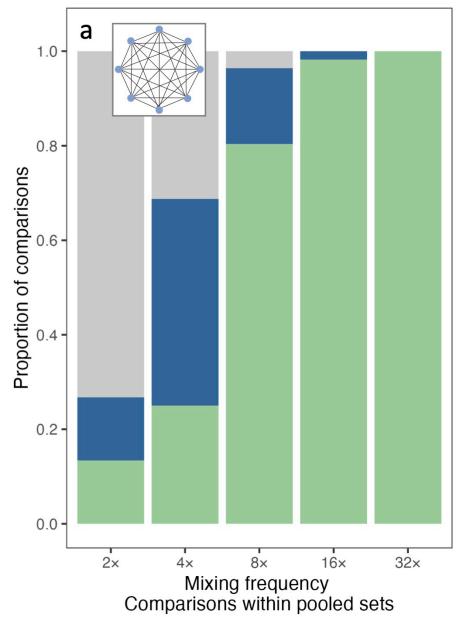
For each pooled mixing set, 400 mg soil was mixed by vortex and divided into 8 incubation tubes.




Vortex controls: 50 mg soil was mixed by vortex at each mixing timepoint, but never pooled with any other soil.


At each subsequent mixing timepoint, soil in the 8 tube-mixing set was pooled together, mixed by vortex, and re-divided back into the same 8 tubes for further incubation.



After 16 weeks, all soil in each tube was subjected to DNA extraction, yielding 8 samples per mixing set.

