

Tillage homogenizes soil bacterial communities in microaggregate fractions by facilitating dispersal

Jaimie R. West^{1,*}, Joseph G. Lauer², and Thea Whitman¹

¹ University of Wisconsin–Madison, Department of Soil Science, 1525 Observatory Drive, Madison, WI 53706, U.S.

² University of Wisconsin–Madison, Department of Agronomy, 1575 Linden Drive, Madison, WI 53706, U.S.

* Corresponding author: University of Wisconsin–Madison, Department of Soil Science, 1525 Observatory Drive, Madison, WI 53706, U.S. E-mail: jaimiewest123@gmail.com

1 **Abstract**

2 Soil aggregation physically protects soil organic matter and promotes soil carbon persistence
3 through microaggregate formation and organo-mineral associations. Tillage is a ubiquitous
4 disturbance to arable soil that disrupts aggregation, thus affecting microbial resource availability,
5 soil microhabitat conditions, and microbial interactions. We investigated how tillage affects
6 bacterial community composition of soil microaggregate fractions (53–250 μm), specifically the
7 free microaggregate fraction in bulk soil and the occluded microaggregate fraction within
8 macroaggregates, using two long-term tillage vs. no-tillage experiments in southern WI, U.S.,
9 that represent two different silt loam soils (Alfisol and Mollisol). We applied 16S rRNA gene
10 amplicon sequencing to characterize the effects of tillage on microaggregate bacterial
11 communities by relating compositional changes and ecological community assembly patterns to
12 various tillage-driven changes in the soil environment, including aggregate size distribution and
13 carbon content. Tillage homogenized soil bacterial communities, as quantified by increased
14 compositional similarity at both within-plot and between-plot scales, and community assembly
15 was increasingly influenced by homogenizing dispersal with tillage. We did not identify major
16 distinctions between bacterial communities of the free and occluded microaggregate fractions,
17 thus highlighting how soil microaggregates readily shift between these operationally defined
18 fractions in temperate annual cropping systems, where the soil environment is subject to drastic
19 seasonal changes that are exacerbated by tillage. By identifying influential community assembly
20 processes and analyzing communities in microaggregate fractions, we improve our
21 understanding of the microbial response to soil disturbance, and thus the potential mechanisms
22 through which disturbances like tillage affect soil carbon persistence.

23

24 **Keywords:**

25 microaggregates; tillage; aggregate size fractionation; community assembly; soil microbial
26 communities; soil carbon

27

28 **Abbreviations:**

29 soil organic matter (SOM); soil organic carbon (SOC); particulate organic matter (POM)

30 **1. Introduction**

31 Agricultural tillage, employed on over 60% of U.S. farmland (Zulauf and Brown, 2019), disrupts
32 the fine roots and fungal hyphae that stabilize macroaggregates (Tisdall and Oades, 1982; Elliott,
33 1986; Six et al., 1998), thus decreasing mean aggregate size by over 35% and/or proportion of
34 aggregated soil by over 20% (Frey et al., 1999; Six et al., 1999; Al-Kaisi et al., 2014; Zheng et
35 al., 2018). This disturbance reduces aggregate-associated physical protection of soil organic
36 matter (SOM) while potentially increasing microbial mineralization of soil organic carbon (SOC)
37 (Elliott, 1986; Paustian et al., 1997; Six et al., 1998; Schimel and Schaeffer, 2012). Improved
38 understanding of the ecological factors that relate mixing disturbance-related changes in
39 aggregation to microbial community composition and SOC persistence will populate a key
40 knowledge gap in soil microbial ecology (Wilpiszeski et al., 2019). These relationships may be
41 pertinent in the highly protected microenvironments of soil microaggregates (< 250 μm in
42 diameter), which are more stable than macroaggregates (250–2000 μm in diameter) (DeGryze et
43 al., 2006; Davinic et al., 2012; Totsche et al., 2018), and further inhibit microbial activity due to
44 nutrient and oxygen limitation (Sexstone et al., 1985; Ranjard and Richaume, 2001). These same
45 microhabitats that protect SOM from microbial decomposition are also disproportionately high
46 in microbial abundance; an estimated 70% of soil bacteria live within microaggregates (Ranjard
47 et al., 2000), despite the microaggregate fraction comprising perhaps 30–50% of arable soil by
48 mass (Sheehy et al., 2015; Cates et al., 2016). Overall, the mechanisms that balance microbially
49 mediated SOC persistence with carbon-consuming microbial activity in microaggregates (i.e.,

50 “microbial hotspots”, *sensu* Kuzyakov and Blagodatskaya, 2015) are not well-understood (Six et
51 al., 2004; Wilpiszeski et al., 2019).

52 Microaggregates are found both unprotected in the bulk soil, and occluded in macroaggregate
53 structures (Oades, 1984; Totsche et al., 2018). With tillage-related macroaggregate instability,
54 the potential for occluded microaggregate development within protective macroaggregate
55 structures is reduced (Six et al., 2000a). Further, as macroaggregates destabilize, existing
56 occluded microaggregates become more freely connected to the bulk soil environment,
57 increasing resource diffusion (e.g., oxygen and extracellular enzymes) and decomposer pressure
58 (Six et al., 1999; Garland et al., 2018; Piazza et al., 2020). Through these mechanisms, tillage has
59 been associated with decreases in total SOM content (Elliott, 1986), SOM residence time
60 (Paustian et al., 2000), SOC content (Paustian et al., 1997; Al-Kaisi et al., 2014; Zheng et al.,
61 2018), aggregate-occluded particulate organic matter (POM) (Six et al., 1999), microbial
62 biomass (Zuber and Villamil, 2016), and microbial necromass accumulation (Simpson et al.,
63 2004). While these effects are well-documented, they are typically noted only in the top 5 or 10
64 cm of soil (Frey et al., 1999; Six et al., 1999; Simpson et al., 2004; Zheng et al., 2018), and some
65 work suggests that tillage does not decrease total C stocks of the plow layer plus subsoil
66 (Powlson et al., 2014; Ogle et al., 2019). There is also evidence that minimum tillage practices
67 can be equally beneficial as no-tillage regarding SOC and microbial necromass accumulation, by
68 incorporating nutrients and alleviating compaction (Sae-Tun et al., 2022).

69 A recent meta-analysis demonstrated that the occluded microaggregate fraction preferentially
70 accumulates SOC at a higher rate than the free microaggregate and other soil fractions (King et

71 al., 2019). One study found over 90% of the increase in SOC content in no-tillage as compared to
72 conventional tillage systems was attributable to the occluded microaggregate fraction, across
73 soils of various clay mineralogies (Denef et al., 2004), while another study found that the
74 occluded microaggregate fraction contributed 49–112% of the increase in SOC following a shift
75 to no-tillage across the U.S. (Six and Paustian, 2014). Together, this indicates a higher capacity
76 for SOC persistence in the occluded microaggregate fraction as compared to the free
77 microaggregate fraction.

78 In the limited number of studies that have applied high-throughput sequencing to aggregate
79 fractions, distinct and more diverse bacterial communities are supported by the free
80 microaggregate fraction than the macroaggregate fraction (Trivedi et al., 2017; Bach et al., 2018;
81 Upton et al., 2019). One study that specifically assayed communities of the free vs. occluded
82 microaggregate fractions found both to harbor similar community compositions, yet suggested
83 that copiotrophic bacteria live in association with free microaggregates whereas oligotrophic
84 bacteria are characteristic of occluded microaggregates (Biesgen et al., 2020). This assessment is
85 consistent with the idea that free microaggregates have higher resource availability, notably C
86 and oxygen, that may support copiotrophic microorganisms, whereas occluded microaggregates
87 may be more insulated from perturbation, resource fluxes, and decomposers, as evidenced by
88 increased SOC persistence (King et al., 2019). The effects of tillage on soil microenvironments
89 (e.g., aggregate size and porosity), and the resulting redistribution of resources (e.g., oxygen,
90 water, biomass), suggests that tillage also alters soil microbial community composition and
91 function (Bhattacharyya et al., 2021). Tillage-driven decreases in aggregate size may select for

92 more oligotrophic communities due to lower substrate and oxygen availability (Trivedi et al.,
93 2017), though some have found fast growing, copiotrophic competitors to dominate soil
94 communities under tillage or disturbance (Srour et al., 2020; West and Whitman, 2022). These
95 results suggest that tillage-related impacts on macroaggregate formation and turnover (and, thus,
96 occluded microaggregates) extend to microbial community composition (Six et al., 2004), and
97 understanding changes in microbial communities under a given management practice, such as
98 tillage, is essential for improving predictions of SOC persistence and storage.

99 Tillage disperses soil and its inhabitants, and can impact abiotic soil conditions and biotic
100 interactions through changes to soil structure. These effects can be quantified by estimating the
101 influence of ecological community assembly processes (Vellend, 2010), which are as follows:
102 Dispersal describes the generally stochastic movement and establishment of organisms in space,
103 and may occur in soil via physical disturbance or mass flow of pore water (Zhou and Ning,
104 2017). Homogenizing dispersal increases compositional similarity between communities,
105 whereas dispersal limitation increases compositional differences between communities, which
106 may allow for stochastic demographic changes in community composition — termed ‘drift’
107 (Stegen et al., 2013). Selection refers to deterministic or niche-based processes dictated by biotic
108 factors, such as inter-taxa fitness differences, and abiotic factors, such as environmental filters
109 (Hutchinson, 1957). Homogeneous selection decreases phylogenetic differences between
110 communities due to community assembly under similar conditions or filters (Dini-Andreote et
111 al., 2015). Variable selection increases phylogenetic differences between communities due to
112 variable conditions (Stegen et al., 2015). When neither dispersal nor selection are identified,

113 community assembly is considered undominated by any particular process, which may reflect
114 stochastic drift, or potentially multiple community assembly processes interacting to obscure a
115 singular process signal (Ning et al., 2020). To statistically infer the relative influences of these
116 community assembly processes in soil microbial communities, Stegen et al. (2012, 2013, 2015)
117 developed a null modeling approach that compares observed phylogenetic distances and
118 dissimilarity metrics between communities to null models of stochastically assembled
119 communities. A more recent approach separately assessed community assembly processes within
120 phylogenetically related ‘bins’ of OTUs, thus enabling representation of various assembly
121 processes that may influence subsets of community members (Ning et al., 2020). To our
122 knowledge, these approaches have not yet been used to directly compare the effects of tillage on
123 community assembly, let alone at the microaggregate fraction scale.

124 We sought to better understand how bacterial communities are affected by tillage, as modulated
125 through soil aggregation. We collected soil samples in no-tillage and chisel-plowed tillage plots
126 from two long-term studies in southern Wisconsin, U.S., and related soil properties to tillage-
127 driven differences in bacterial community composition, diversity, and community assembly
128 processes of the bulk soil, free microaggregate, and occluded microaggregate fractions, using
129 16S rRNA gene amplicon sequencing. In addition to expecting standard responses to tillage
130 including decreased SOC and aggregation, we hypothesized that the free microaggregate and
131 occluded microaggregate fractions would support distinct bacterial communities, and
132 demonstrate differences due to tillage treatments. Specific hypotheses included: H1) With tillage,
133 community assembly would be driven by the influence of homogenizing dispersal and

134 homogeneous selection, whereas in the no-tillage system, community assembly would be driven
135 by dispersal limitation and variable selection, as determined via null model-based estimates of
136 community assembly processes. H2) The communities of the free and occluded microaggregate
137 fractions would be distinct from each other, and the occluded microaggregate fraction would
138 demonstrate stronger evidence for dispersal limitation, whereas the free microaggregate fraction
139 would demonstrate stronger evidence for homogeneous selection. H3) Tillage would increase
140 sample-to-sample similarity in community composition (i.e., lower beta diversity). Better
141 understanding microbial community composition and assembly in microaggregate environments
142 will improve our understanding of mechanisms of SOC persistence, thus contributing to climate
143 resilience (Paustian et al., 2000), ecosystem services, and crop productivity (Janzen, 2006).

144 **2. Methods**

145 *2.1 Soil collection*

146 Soil was sampled from two separate long-term tillage studies located at 1) the University of
147 Wisconsin (UW) Arlington Agricultural Research Station in Arlington, WI, U.S., (43°17'56"N,
148 89°21'11"W, 314 m a.s.l.) on a Plano silt loam soil (fine-silty, mixed, superactive, mesic Typic
149 Argiudoll), under a corn (*Zea mays* L.) – soybean (*Glycine max* L.) rotation; and, 2) the UW
150 Lancaster Agricultural Research Station in Lancaster, WI, U.S., (42°49'53"N, 90°47'35"W, 313
151 m a.s.l.) on a Fayette silt loam soil (Fine-silty, mixed, superactive, mesic Typic Hapludalfs),
152 under a continuous corn rotation. The tillage study at Arlington, WI was established in 1987 with
153 a no-tillage treatment, in which crops are planted directly into the undisturbed residue of the

154 previous crop, and a tillage treatment, which consists of fall chisel plow (~ 20 cm depth)
155 followed by two spring field cultivator passes prior to planting. Further details regarding
156 management practices and agronomic findings have been reported (Pedersen and Lauer, 2003;
157 Chamberlain et al., 2021). The tillage plots at Lancaster, WI were established in 1993, consisting
158 of no-tillage and tillage treatments, the latter of which consists of fall chisel plow and a spring
159 field cultivator pass prior to corn planting. The Lancaster plots have been used for various
160 research projects over the years (e.g., Gupta et al., 2004; Dolliver and Gupta, 2008), which
161 sometimes included manure application treatments (1993–1997, 2003–2005, 2014) or corn
162 fungicide treatments (2008–2010); best efforts were made to avoid split plot areas that received
163 manure. Soil was sampled once in each location (23 October 2021 at Arlington, WI and 6
164 November 2021 at Lancaster, WI), following corn grain harvest and prior to fall tillage to
165 capture relatively static soil conditions and communities. At Arlington, three plots were sampled
166 for each treatment, collecting five intact cores per plot for a total of 15 cores per treatment. Due
167 to our interest in discerning dispersal processes, our sampling design focused on ensuring
168 relatively high spatial proximity of individual cores within a given plot. Soil cores were 7.9 cm
169 dia, evenly spaced just within the perimeter of a 48 cm dia circle; distance between adjacent
170 cores was approximately 15 cm. As detailed below, the top 5 cm was analyzed to target soil
171 under the greatest intensity of tillage disturbance. Lancaster was sampled in the same fashion,
172 but only two plots per treatment were used for analysis (see section 2.7), for a total of ten cores
173 per treatment. Intact cores were temporarily kept in a cooler, and then held at 4 °C for up to ten
174 days until sample processing. Plots were within 300 m proximity at both sites.

175 *2.2 Aggregate size fractionation and sample processing*

176 To assess variability in community composition and community assembly at a relatively small
177 spatial scale, each core was processed separately. The top 5 cm of each field-moist soil core were
178 gently passed through a 2 mm sieve (henceforth referred to as “bulk” soil). Then, 80 g of this
179 field-moist bulk soil was subjected to aggregate size fractionation via wet sieving (Elliott, 1986)
180 to isolate the macroaggregate fraction (250 μm –2000 μm), free microaggregate fraction (53 μm –
181 250 μm), and the silt + clay-sized fraction (< 53 μm) (Fig. 1). Then, 20 g of the moist
182 macroaggregate fraction was separated into occluded fractions via rapid shaking with glass beads
183 in water to break up the macroaggregates, as previously described (Six et al., 2000a, 2002);
184 macroaggregate-occluded fractions included the occluded microaggregate fraction (53 μm –250
185 μm), occluded silt + clay-sized fraction (< 53 μm), and occluded coarse POM + coarse sand-
186 sized fraction (250 μm – 2000 μm). Modifications to the cited wet sieving methods included a
187 slaking for two minutes prior to the first wet sieving step (Arlington samples only) and draining
188 each wet sieved fraction for two minutes prior to subsampling as described below. The largely
189 unaggregated Lancaster soil samples did not undergo slaking, and required wet sieving of an
190 additional 80 g of bulk soil to obtain enough macroaggregate fraction for the occluded fraction
191 separation step. The primary objective of fractionation was to isolate the free and occluded
192 microaggregate fractions, but the relative dry mass of each size fraction was also determined. As
193 such, sand content correction of aggregate fractions was not performed and thus all size fractions
194 also include primary mineral particles of that size. Sieves and utensils were cleaned with ethanol
195 between samples.

196 Gravimetric moisture content was estimated for bulk soil, the wet-sieved macroaggregate
197 fraction, the free microaggregate fraction, and the occluded microaggregate fraction by drying
198 subsamples in a 60 °C oven for 24 hours. Field moist bulk, free microaggregate, and occluded
199 microaggregate soil was subsampled for DNA extraction (see section 2.4), and bulk soil was also
200 subsampled to measure soil respiration (see section 2.3). The remaining wet-sieved soil was
201 washed from each sieve (or washbasin) into aluminum pans to determine the mass of each
202 fraction, dried to 100 °C. Overall recovery (macroaggregate + free microaggregate + [silt + clay]
203 fractions) was 99% for both treatments at both sites, and macroaggregate recovery (occluded
204 microaggregate + [occluded silt + clay] + occluded coarse POM) was 101% for tillage
205 treatments, and 96–97% for no-tillage treatments.

206

207 **Figure 1.** Aggregate size fractionation schematic. Bulk soil (80 g or 160 g) was subjected to wet
208 sieving to separate macroaggregate (250–2000 μm), free microaggregate (53–250 μm), and silt +
209 clay-sized (< 53 μm) fractions. A 20 g (wet) subsample of the macroaggregate fraction was then
210 further separated into occluded microaggregate (53–250 μm), occluded silt + clay-sized (< 50
211 μm), and occluded POM + coarse sand fractions (250–2000 μm). The “DNA” tube indicates that
212 subsamples were retained for 16S rRNA gene amplicon sequencing. The graph icon indicates
213 that subsamples were collected to measure total carbon and total nitrogen. The bubble icon
214 indicates that soil respiration was measured on bulk soil.

215 *2.3 Soil analysis*

216 The bulk soil (sieved to < 2 mm), macroaggregate, free microaggregate, and occluded
217 microaggregate fraction subsamples that were retained for dry mass conversion were ground to a
218 powder using 2.4 mm ball bearings and a FastPrep-24 (MP Biomedical, Santa Ana, CA, U.S.),
219 and used to quantify total soil carbon and nitrogen by flash combustion with a Flash EA 1112
220 CHN Automatic Elemental Analyzer (Thermo Finnigan, Milan, Italy) and soil pH (soil pH
221 method and results can be found in the Supplementary Information). For routine soil analysis, a
222 composite soil sample representing each treatment was comprised of an equal mass of bulk soil
223 from each plot, and samples were submitted to the UW Soil and Forage Analysis Lab (Madison,
224 WI, U.S.) to determine soil texture, organic matter content, pH, and plant-available P, K, Ca, and
225 Mg, as reported in Table S1.

226 Soil respiration (CO_2 evolution) from fresh sieved soil was measured using the MicroResp
227 system (James Hutton Ltd., Aberdeen, Scotland), following general instructions for use and
228 calculation of CO_2 evolution, without added substrate (Campbell et al., 2003), per the MicroResp
229 manual (version 4). At the time of aggregate fractionation, 300 mg of freshly sieved (< 2 mm),
230 field-moist soil from each soil core was placed into each of six wells of a deep-well plate,

231 covered and stored at 4 °C for up to six hours. Each deep-well plate, containing soil from up to
232 ten different cores, was covered in parafilm and firmly tapped on the benchtop 20 times to
233 repack soil and minimize large air pockets. The deep-well plate was then incubated at 25 °C in a
234 dark CO₂-free environment for approximately 16 hours to help deplete CO₂ from the well
235 headspace and soil air. Then, a colorimetric detection plate was read at absorbance wavelength
236 570 nm using a BioTek Synergy 2 spectrophotometer microplate reader. After confirming that all
237 detection plate wells had similar readings (< 5 % coefficient of variance), the detection plate was
238 inverted over the deep-well plate, connected by the 96-well seal, and clamped together. After six
239 hours of incubation at 25 °C, the colorimetric plate was read to determine CO₂ evolution.

240 *2.4 DNA extraction and 16S rRNA gene sequencing*

241 Total genomic DNA was extracted from bulk soil, free microaggregate, and occluded
242 microaggregate soil fractions using the DNeasy PowerLyzer PowerSoil Kit (Catalog No. 12855,
243 Qiagen, Germantown, MD), following manufacturer's instructions. We used 250 mg samples of
244 field-moist bulk soil for DNA extraction, but, due to the wetness of the microaggregate fractions
245 following wet sieving, we used 450 mg samples of these fractions to capture the same dry-mass
246 equivalent of 250 mg of field-moist bulk soil, based on preliminary measurements of gravimetric
247 water content. The microaggregate samples were transferred directly from the drained soil sieves
248 into the DNA extraction tubes, which were immediately frozen at -20 °C, and stored at -80 °C
249 for up to three months prior to DNA extraction. Complete library preparation details can be
250 found in the Supplementary Information. Briefly, the 16S rRNA genes of extracted DNA were
251 amplified in triplicate using PCR. Variable region V4 of the 16S rRNA gene was targeted using

252 forward primer 515f and reverse primer 806r (Walters et al., 2016). Primers also contained
253 barcodes and Illumina sequencing adapters (Kozich et al., 2013). The following reagents
254 comprised each 25 μ L PCR reaction: 1 μ L DNA extract, 12.5 μ L Q5 Hot Start High-Fidelity 2X
255 Master mix (Catalog No. M0494, New England BioLabs, Ipswich, MA), 1.25 μ L 515f forward
256 primer (10 mM), 1.25 μ L 806r reverse primer (10 mM), 1.25 μ L Bovine Serum Albumin (20
257 mg/mL; Catalog No. 97064-342, VWR International, Radnor, PA), and 7.75 μ L PCR-grade
258 water. The plate was centrifuged prior to 30 PCR cycles on an Eppendorf Mastercycler nexus
259 gradient thermal cycler (Hamburg, Germany) using the following parameters: 98 °C for 2 min +
260 30 \times (98 °C for 10 seconds + 58 °C for 15 seconds + 72 °C for 10 seconds) + 72 °C for 2 min
261 and 4 °C hold. Amplified DNA was confirmed via gel electrophoresis, then normalized and
262 purified (as detailed in the Supplementary Information), prior to paired-end 250 base pair
263 sequencing on an Illumina MiSeq sequencer at the UW–Madison Biotech Center. To obtain high
264 coverage, the same library was sequenced twice under identical conditions, and total reads were
265 pooled for each sample after processing as described next. Sequencing data were processed using
266 a QIIME2 (Bolyen et al., 2019) pipeline, with DADA2 (Callahan et al., 2016) as the operational
267 taxonomic unit (OTU, or amplicon sequence variant)-picking algorithm, and taxonomy was
268 assigned using the SILVA 132 reference database (Quast et al., 2013; Yilmaz et al., 2013). This
269 yielded 10,102,355 demultiplexed sequences, which was reduced to 6,307,452 after denoising,
270 with a mean length of 227 base pairs (SD = 2.2). Excluding extraction blanks, a total of 18,180
271 OTUs were identified. Amplicon sequences are available in the National Center for
272 Biotechnology Information (NCBI) Sequence Read Archive (SRA) under accession

273 PRJNA977693. Our primers targeted both bacteria and archaea, but because our reads were
274 dominated by bacteria (94.5% of total reads), we will simply refer to bacteria in this manuscript.
275 Over 99% of archaeal reads represented the phylum *Crenarchaeota*.

276 *2.5 Data analysis*

277 Data analysis was performed in R (R-Core-Team, 2018), using *ggplot2* (Wickham, 2016) for
278 data visualization. The R code used to perform these analyses and to create the following figures
279 is available at <https://github.com/jaimiewest/Soil-Disturbance-Tillage>. To test for a significant
280 effect of tillage treatment on proportion of soil in each fraction, C content of each fraction, and
281 respiration, we used ANOVA followed by Tukey's HSD *post-hoc* comparison for significant
282 results ($p < 0.05$). To test for a significant effect of tillage treatment, soil fraction, or interaction
283 of these factors on soil C content, soil N content, and soil C:N ratio, we performed ANOVA as
284 described above. Unless otherwise noted, reported p values refer to ANOVA tests.

285 Community composition was visualized using principal coordinates analysis (PCoA) created
286 with the *ordinate* function in the *phyloseq* package (*phyloseq::ordinate*) (McMurdie and Holmes,
287 2013) using Bray-Curtis dissimilarities (Bray and Curtis, 1957) of Hellinger-transformed relative
288 abundance data (Legendre and Gallagher, 2001). To test for a significant effect of tillage
289 treatment, soil fraction, or interaction of these factors on community composition, we used
290 permutational multivariate analysis of variance (PERMANOVA) to partition Bray-Curtis
291 dissimilarity matrices among sources of variation (*vegan::adonis2*) (Anderson, 2001). A
292 significant result ($p < 0.05$) was subjected to *post-hoc* pairwise factor comparisons, adjusting p -

293 values using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995) to identify
294 significant differences. To compare differences in community composition due to tillage
295 treatment or soil fractions, we tested for homogeneity of multivariate dispersions (PERMDISP;
296 *vegan::betadisper*) (Anderson, 2006), using ANOVA to test the distances to group spatial
297 median. Further, we also evaluated the effect of tillage treatment on dispersion of free and
298 occluded microaggregate fraction communities within each soil core. To describe richness, we
299 used the weighted linear regression model of OTU richness estimates, which weights
300 observations based on variance (*breakaway::betta*) (Willis et al., 2017). We also calculated
301 Faith's phylogenetic diversity (PD) (Faith, 1992; Pérez-Valera et al., 2015) to assess differences
302 in phylogenetic distance (i.e., sample branch length) using *picante::pd* (Kembel et al., 2010).

303 To further understand changes in community composition, we calculated the weighted mean
304 predicted 16S rRNA gene copy number (Nemergut et al., 2016), which has been shown to
305 correlate with potential growth rate (Klappenbach et al., 2000) and disturbance (Whitman et al.,
306 2019; West and Whitman, 2022), and compared tillage treatments and soil fractions using
307 ANOVA and *post-hoc* testing as described above. 16S rRNA gene copy numbers were predicted
308 using the ribosomal RNA operon database (rrnDB) (Stoddard et al., 2015).

309 After evaluating our key questions, we used differential abundance to identify significant
310 treatment-driven shifts in relative abundances of individual taxa as well as phyla. For this
311 analysis, we compared the tillage treatments to each other (excluding taxa with mean relative
312 abundance < 0.00001) and subjected those data to a beta-binomial regression model and “Wald”
313 hypothesis test (*cornucob::differentialTest*) (Martin et al., 2021), which controls for the effect of

314 the treatment on dispersion. We report the μ value, which is the coefficient used to estimate
315 relative abundance in the *corn cob* model, and is proportional to the fold-change in relative
316 abundance between the treatment and control. We also assessed differential abundances of taxa
317 in the microaggregate fractions as compared to the bulk soil communities.

318 *2.6 Community assembly process assignment*

319 In order to determine the influence of community assembly processes characteristic of each
320 treatment and fraction (including bulk soil), we compared sample pairs of interest (i.e., each
321 possible pair of samples from the same site, tillage treatment, and fraction) to stochastically-
322 assembled null models in order to determine the relative influence of selection (based on
323 phylogenetic distances), or dispersal (based on compositional dissimilarities), as detailed below.
324 In order to capture the various community assembly processes of the microbial subcommunities
325 within each soil sample, community assembly processes were assigned separately to
326 phylogenetically-related bins of OTUs (*iCAMP*::*pdist.big* and *iCAMP*::*icamp.big*), as detailed
327 by Ning et al. (2020), and the dominant process was weighted by the relative abundance of the
328 taxa in that bin. This method is based on the full-community (i.e., not binned) compositional
329 assessment developed by Stegen et al. (2012, 2013, 2015); our full-community assessment is
330 reported in the Supplementary Information and in Figure S9.

331 The influence of selection was first tested using the abundance-weighted beta-mean nearest
332 taxon distance (β MNTD; the mean phylogenetic distance between each OTU in one community
333 and its closest relative in another community) (Kembel et al., 2010). Homogeneous selection was

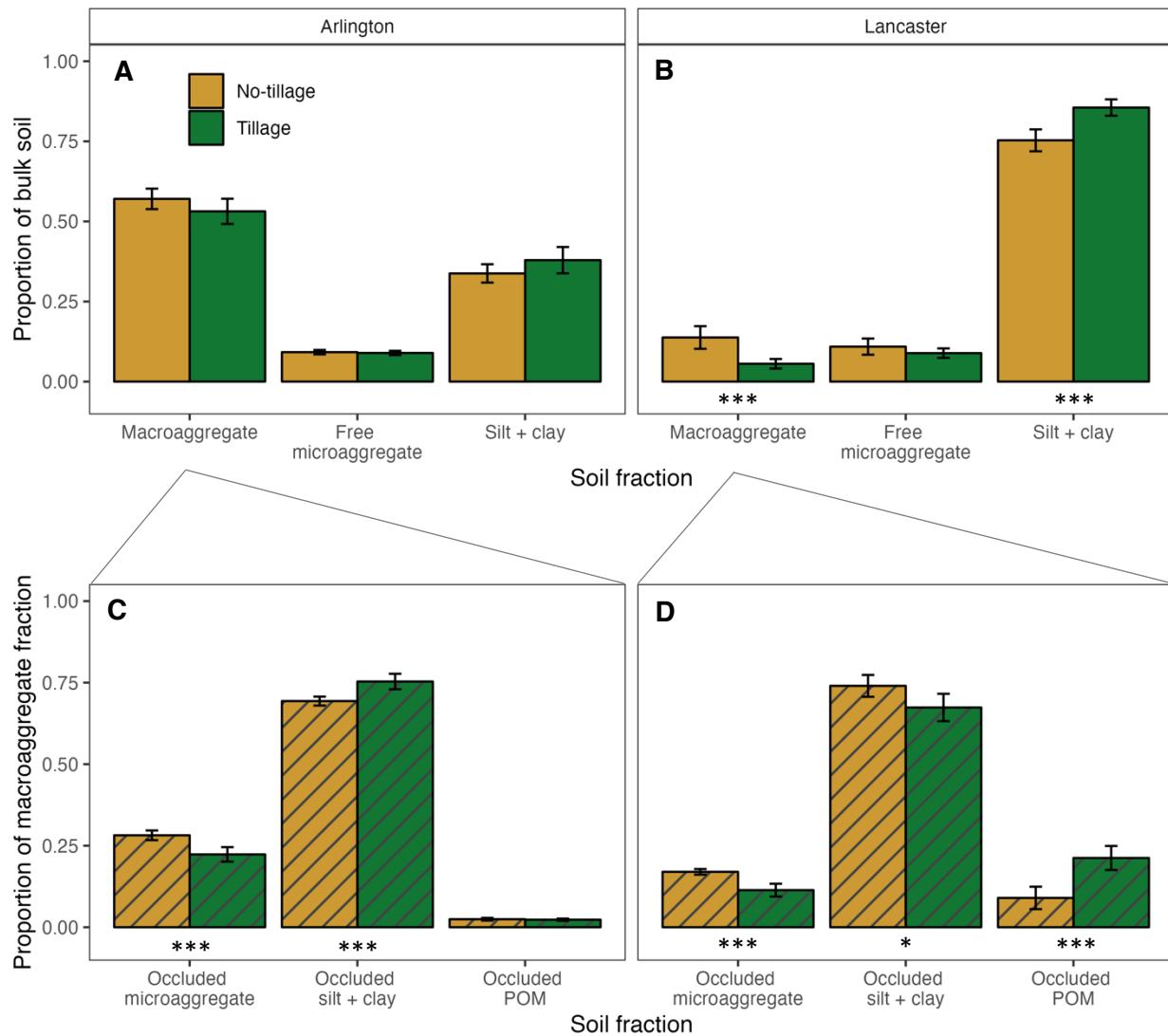
334 identified in comparisons for which β MNTD was more than 2 standard deviations below the
335 mean of the null distribution, indicating lower mean phylogenetic distance between pairwise
336 communities than observed in the null. Variable selection was identified in comparisons for
337 which β MNTD was more than 2 standard deviations above the mean of the null distribution,
338 indicating higher mean phylogenetic distance between pairwise communities than observed in
339 the null. Comparisons that fell within 2 standard deviations of the null mean were considered to
340 lack a dominant influence of selection, and were subsequently tested for the influence of
341 dispersal using the modified Raup-Crick metric based on Bray–Curtis dissimilarities (RC_{Bray})
342 (Chase et al., 2011). Homogenizing dispersal was identified in comparisons for which RC_{Bray}
343 was significantly lower than the mean of the null distribution, indicating a higher level of
344 similarity between community compositions than was observed in the null condition; and
345 dispersal limitation was identified in comparisons for which RC_{Bray} was significantly higher than
346 the null mean, indicating lower similarity. Comparisons that were similar to the null mean for
347 both metrics were considered undominated by any particular community assembly process,
348 which may reflect stochastic assembly or a lack of a singular signal due to multiple community
349 assembly processes within a subcommunity.

350 We selected bins and ran the analysis using the default parameters as detailed in Ning et al.
351 (2020) and the associated R documentation (i.e., minimum of 24 OTUs per bin, confirmed by
352 phylogenetic signal testing using *iCAMP*::*dniche* and *iCAMP*::*ps.bin*; phylogenetic null model
353 randomization within bins; taxonomic null model randomization across all bins), with the
354 exception of the phylogenetic distance metric, for which we used β MNTD so that results would

355 be more comparable to the full-community scale assessment based on the method by Stegen et
356 al. (2012, 2013, 2015). To test for a significant effect of tillage treatment on the influence of
357 community assembly processes that had > 5% influence, we performed ANOVA as described
358 above. Community relative abundance data was Hellinger-transformed for all community
359 assembly assessments (Legendre and Gallagher, 2001).

360 *2.7 Exclusion of plots from analysis*

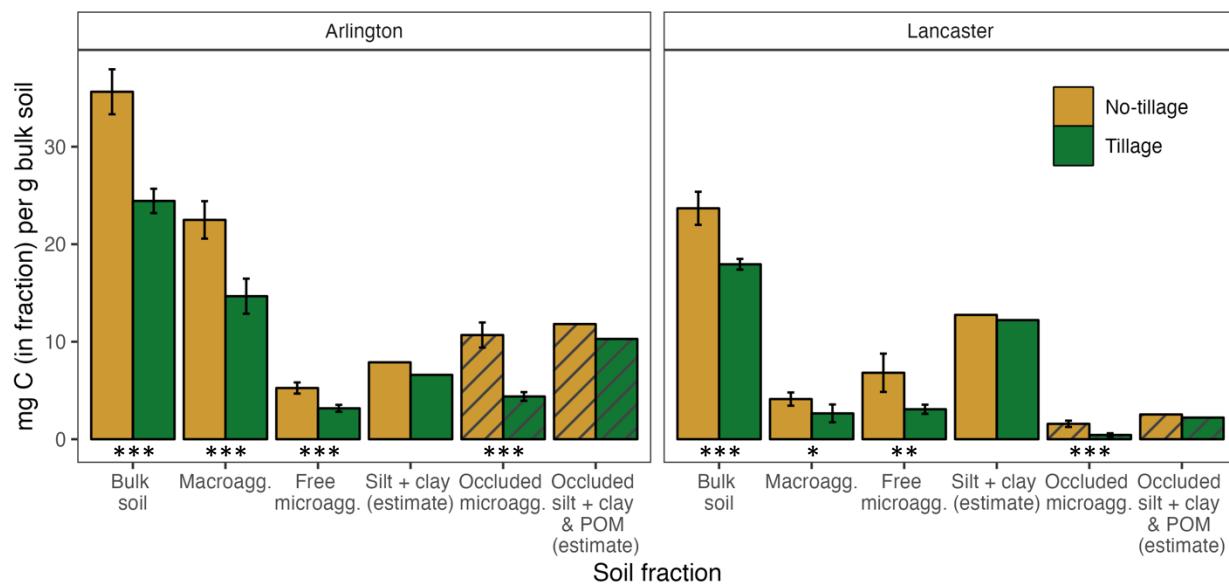
361 At the Lancaster site, one no-tillage plot and one tillage plot were excluded from analysis.
362 Though this field has been under long-term tillage treatments since the early 1990's, there are
363 strong indicators in the dataset that the two plots in question were subjected to treatments or
364 conditions that differentiate them from the other plots, likely due to the split-plot use of manure
365 and/or corn fungicide treatments, or the disruptive installation of large pan lysimeters. Though
366 we made every attempt to avoid areas where manure was applied or lysimeters were installed, it
367 was challenging to confirm the precise boundaries of historic split-plots, and the history of
368 fungicide application (unpublished) was unbeknownst to us prior to sampling. The microbial
369 community compositions of the excluded plots are clearly differentiated in the PCoA (Fig. S1).


370 **3. Results**

371 *3.1 Tillage generally decreased aggregation; responses differed by site*

372 At Arlington, over 60% of bulk soil (dry mass basis) was in water-stable aggregate fractions
373 (macroaggregate plus microaggregate fractions), with over 50% of soil in the macroaggregate

374 fraction (Fig. 2A). There were no significant differences in proportion of soil in macroaggregate,
375 free microaggregate, or silt + clay fractions due to tillage treatment, but within the
376 macroaggregate fraction (Fig. 2C) there was a significant decrease in proportion of soil in the
377 occluded microaggregate fraction ($p < 0.001$; Fig. 2C) from 28% in no-tillage to 22% with
378 tillage, with a complementary increase in the occluded silt + clay fraction ($p < 0.001$).


379 At Lancaster, soil was largely unaggregated, with 25% and 14% of bulk soil in water-stable
380 aggregate fractions in the no-tillage and tillage treatments, respectively (Fig. 2B). In particular,
381 the tillage treatment had a significantly lower proportion of soil in the macroaggregate fraction,
382 with 6% as compared to 14% in the no-tillage treatment ($p < 0.001$). This was complemented by
383 a significantly higher proportion in the silt + clay fraction ($p < 0.001$). Within the
384 macroaggregate fraction at Lancaster (Fig. 2D), the proportions of the occluded microaggregate
385 fraction and occluded silt + clay fractions were both significantly lower with tillage as compared
386 to no-tillage ($p < 0.001$ and $p < 0.05$, respectively), with 17% of macroaggregate soil in the
387 occluded microaggregate fraction in no-tillage, down to 11% with tillage. There was also a
388 significant increase in occluded POM ($p < 0.001$), from 9% in the no-tillage treatment to 21%
389 with tillage.

394 **Figure 2.** Distribution of bulk soil in various fractions at Arlington, WI (A) and Lancaster, WI (B), on a dry soil basis. Lower panels show distribution of macroaggregate soil in the occluded 395 fractions (C and D). Macroaggregate = macroaggregate fraction, 250–2000 μm ; Free 396 microaggregate = microaggregate fraction from bulk soil, 53–250 μm ; Silt + clay = silt and clay- 397 sized fraction from bulk soil, < 53 μm ; Occluded microaggregate = microaggregate fraction 398 occluded in macroaggregate fraction, 53–250 μm ; Occluded silt + clay = silt and clay-sized 399 fraction occluded in macroaggregate fraction, < 53 μm ; Occluded POM = particulate organic 400 matter and sand occluded in macroaggregate fraction, 250–2000 μm . Error bars represent ± 1.96 401 SE (95% CI). Asterisks indicate significant tillage treatment differences within soil fraction: 402 *** = $p < 0.001$, ** = $p < 0.01$, * = $p < 0.05$. Striped bars denote occluded fractions. 403

404 3.2 Tillage reduced total soil carbon

405 Tillage decreased total carbon content in all measured fractions at both sites, reported here on a
406 per unit of bulk soil basis (Fig. 3; $p < 0.001$ for each fraction at Arlington, $p < 0.05$ for each
407 fraction at Lancaster). At Arlington, C concentrations of both free and occluded microaggregate
408 fractions were greater than those of the bulk soil and macroaggregate fractions ($p < 0.05$,
409 Tukey's HSD) in both treatments, and C concentration of the occluded microaggregate fraction
410 was greater than the free microaggregate fraction in no-tillage only ($p < 0.01$, Tukey's HSD)
411 (Table S2). At Lancaster, the C concentrations of both free and occluded microaggregate
412 fractions were greater than C concentrations in the macroaggregate fraction and the bulk soil in
413 the no-tillage treatment only ($p < 0.001$, each comparison, Tukey's HSD), and C concentration of
414 the free microaggregate fraction was greater in no-tillage as compared to tillage ($p < 0.001$,
415 Tukey's HSD). See the Supplementary Information for more detailed soil C and soil N results.

416

417 **Figure 3.** Carbon content of each soil fraction, on a per unit bulk soil basis. Bulk soil = whole
418 soil; Macroagg. = macroaggregate fraction, 250–2000 μm ; Free microagg. = microaggregate
419 fraction from bulk soil, 53–250 μm ; Silt + clay (estimate) = Carbon content in the < 53 μm
420 fraction, estimated as Bulk soil – (Macroagg. + Free microagg.); Occluded microagg. =
421 microaggregate fraction occluded in macroaggregate fraction, 53–250 μm ; Occluded silt + clay
422 & POM (estimate) = Carbon content in the < 53 μm fraction occluded in the macroaggregate
423 fraction, estimated as Macroagg. – Occluded microagg. Error bars represent ± 1.96 SE (95% CI).
424 Asterisks indicate significant treatment differences within soil fraction: *** = $p < 0.001$,
425 ** = $p < 0.01$, * = $p < 0.05$. The estimated silt + clay carbon contents do not have associated
426 error bars or statistics. Striped bars denote occluded fractions.
427

428 The soil C:N ratio demonstrated significant effects of tillage treatment ($p < 0.001$) and soil
429 fraction ($p < 0.001$) at both sites (Table S2 and Fig. S4). At Arlington, C:N ratio was greater in
430 no-tillage compared to tillage ($p < 0.001$, Tukey's HSD), and greater in free and occluded
431 microaggregate fractions compared to the macroaggregate fraction or bulk soil ($p < 0.001$,
432 Tukey's HSD). At Lancaster, there was a significant interaction effect of tillage and soil fraction
433 ($p < 0.001$), with a significantly higher C:N ratio in the macroaggregate fraction with tillage.

434 Tillage decreased respiration (CO_2 evolution from sieved, field-moist bulk soil) by 50% at
435 Arlington ($p < 0.01$; Fig. S5) on a *per unit soil* basis, was though this difference was not
436 significant on a *per unit soil C* basis ($p = 0.106$). Tillage did not have a significant effect on
437 respiration at Lancaster. No-tillage plot samples averaged 23% gravimetric soil moisture at both
438 sites, whereas tillage plots averaged 19–20% soil moisture; no adjustments to soil moisture were
439 made prior to respiration measurements.

440 3.3 Tillage affected bacterial community composition

441 Bacterial community composition was significantly affected by tillage treatment at both sites
442 (Fig. 4; $R^2 = 0.30$ and $p < 0.001$ at Arlington, $R^2 = 0.22$ and $p < 0.001$ at Lancaster;
443 PERMANOVA). The homogeneity of variance test (BETADISPER) was also significant for
444 tillage treatment at Arlington and Lancaster ($p < 0.001$, $p < 0.05$, respectively), which indicates
445 that there are treatment differences in sample dispersion, and that the assumptions of the
446 PERMANOVA were not met.

447 Tillage decreased dispersion of sample community composition by 14% and 6% relative to the
448 no-tillage treatment at Arlington and Lancaster, respectively, as quantified by between-plot mean
449 distance to spatial median (Fig. 5A and D; $p < 0.001$ for Arlington and $p < 0.01$ for Lancaster).
450 This trend, which indicates higher dissimilarity of samples within the no-tillage treatment, was
451 also apparent at the plot scale, where tillage decreased sample dispersion within plots by 13%
452 and 5% relative to no-tillage at Arlington and Lancaster, respectively (Fig. 5B and E; $p < 0.001$
453 for Arlington and $p < 0.05$ for Lancaster). The dispersion of the free microaggregate and
454 occluded microaggregate communities within each soil core did not significantly differ between
455 tillage treatments, though there was a trend towards decreased dispersion with tillage at
456 Lancaster ($p < 0.1$; Fig. 5C and F). These decreases in beta diversity with tillage were not
457 apparently driven by decreases in alpha diversity since there were no significant differences in
458 richness estimates (Fig. S7) or Faith's PD (Fig. S8) attributable to tillage at either site.

459 3.4 Community composition of free and occluded microaggregate fractions only differed slightly

460 There was a significant effect of soil fraction on bacterial community composition at both sites

461 ($R^2 = 0.03$ and $p < 0.05$ for Arlington and $R^2 = 0.09$ and $p < 0.001$ for Lancaster,

462 PERMANOVA; Fig. 4). Pairwise testing demonstrated significant differences at Lancaster only

463 between bulk soil and the free microaggregate fraction, and between bulk soil and the occluded

464 microaggregate fraction ($p < 0.01$), whereas pairwise testing amongst soil fractions was not

465 significant at Arlington. Dispersion of sample community composition was homogeneous (i.e.,

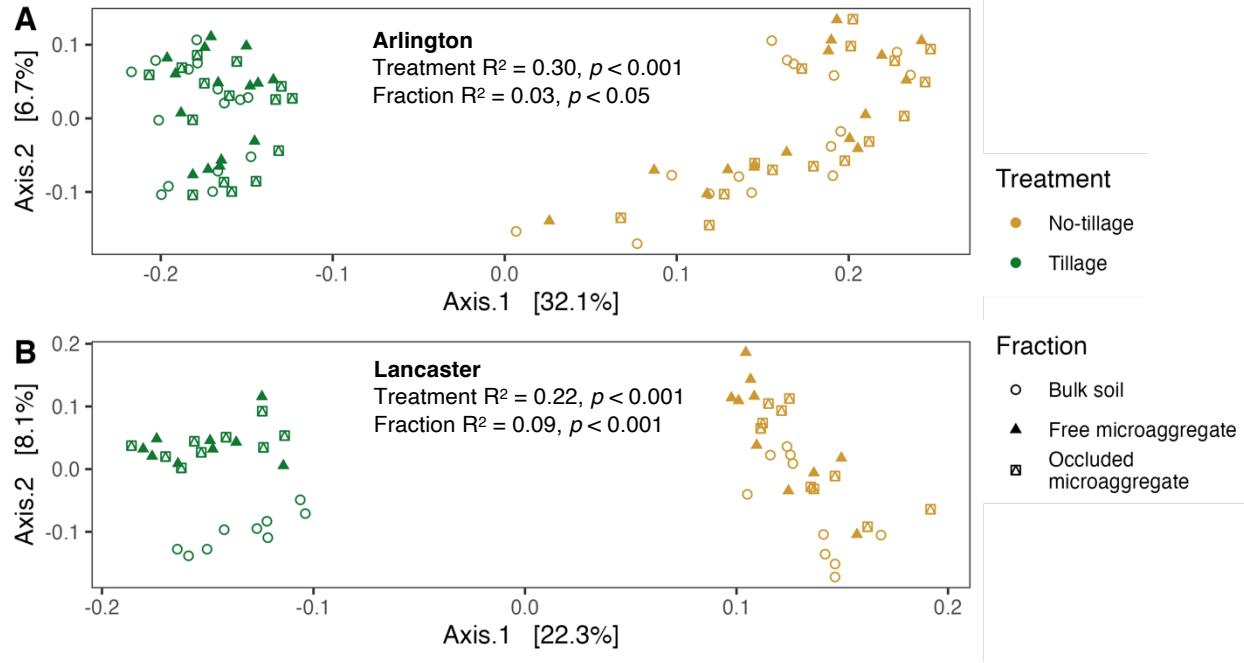
466 beta diversity was similar) across soil fractions at both treatment and plot scales at both sites.

467 There was no interaction effect of tillage treatment \times soil fraction on community composition at

468 either site.

469 Richness estimates demonstrated a significant effect of soil fraction ($p < 0.05$, Fig. S7) at

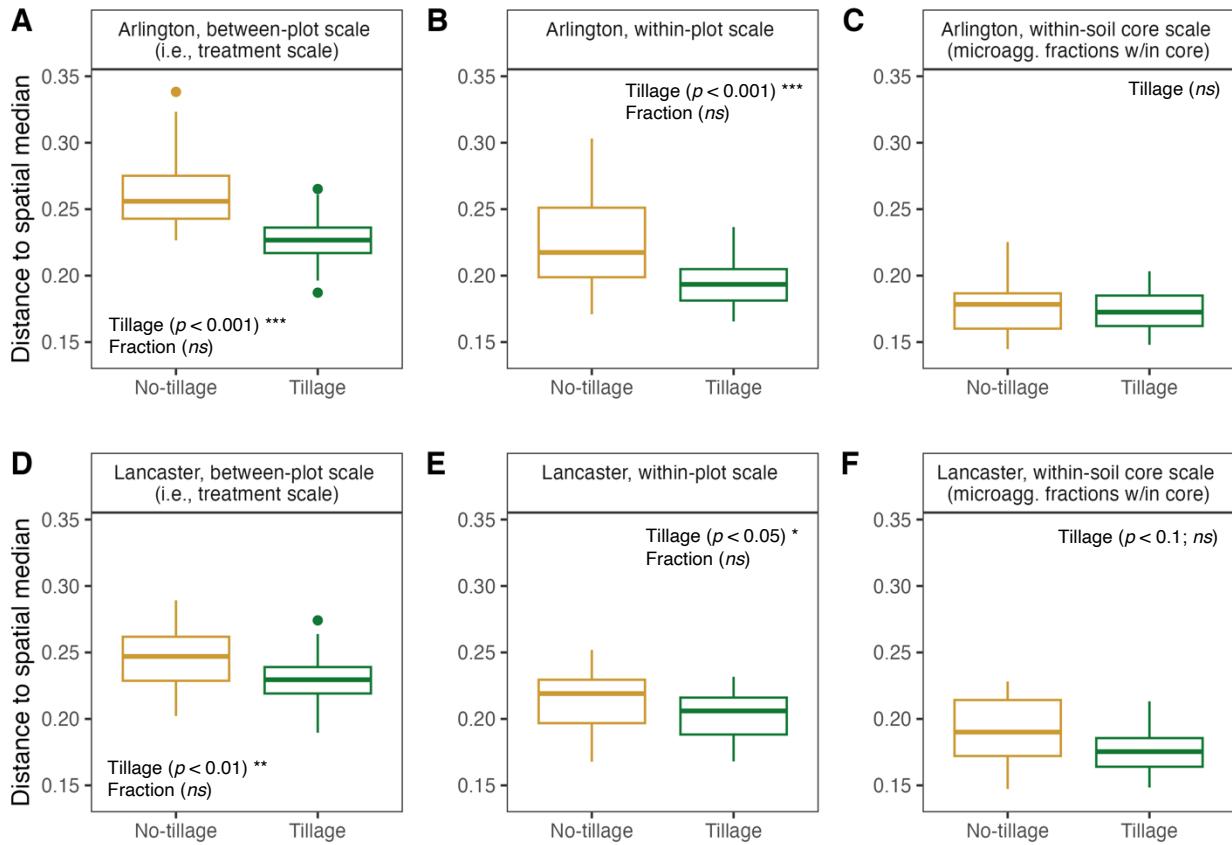
470 Lancaster only; the richness estimate for the occluded microaggregate fraction was 8% lower


471 than that of the bulk soil ($p < 0.05$, Tukey's HSD). Faith's PD was also affected by fraction

472 ($p < 0.05$, Arlington, and $p < 0.001$, Lancaster; Fig. S8) by which the occluded microaggregate

473 fraction was significantly lower than bulk soil at both sites ($p < 0.05$ and $p < 0.001$, respectively,

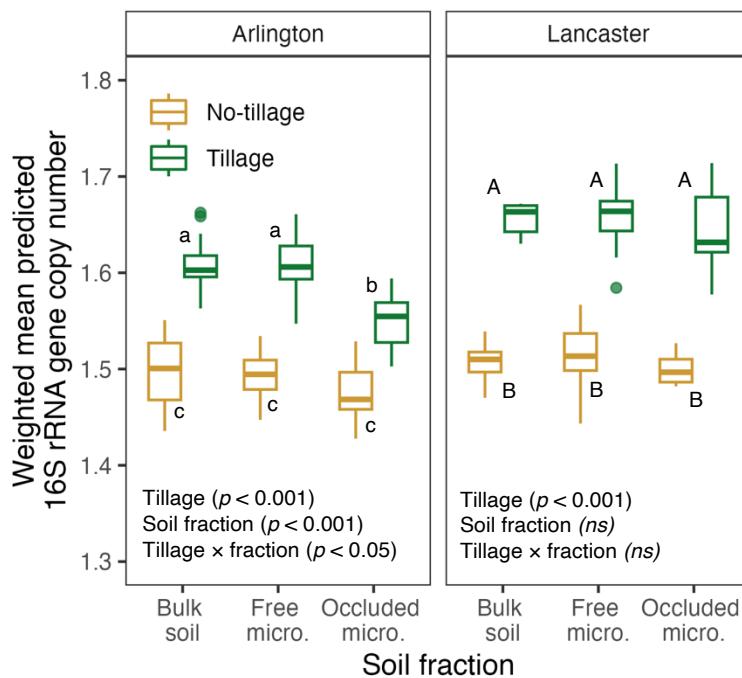
474 Tukey's HSD), and the free microaggregate fraction was also lower than bulk soil at Lancaster


475 ($p < 0.01$, Tukey's HSD).

476

477 **Figure 4.** Principal coordinates analysis of Bray-Curtis dissimilarities of Hellinger-transformed
478 community relative abundances, by tillage treatment for Arlington, WI (A), and Lancaster, WI
479 (B). Each point represents the community of one sample-fraction. Soil fractions are as follows:
480 Bulk soil = whole soil; Free microaggregate = microaggregate fraction from bulk soil, 53–250
481 μm ; Occluded microaggregate = microaggregate fraction occluded in macroaggregate fraction,
482 53–250 μm . Displayed statistics are from PERMANOVA.

483


484

485 **Figure 5.** Dispersion of sample community composition as Bray-Curtis dissimilarities,
486 represented here as distance to spatial median (which can be conceptualized as distance to the
487 center [median] of a cloud of points in an ordination plot) at the between-plot scale (i.e.,
488 treatment scale; **A** and **D**); within-plot scale (**B** and **E**); and soil core scale (free vs. occluded
489 microaggregate fraction samples within each soil core; **C** and **F**) at Arlington, WI (**A**, **B**, and **C**)
490 and Lancaster, WI (**D**, **E**, and **F**). Data presented in **A**, **B**, **D**, and **E** represent bulk soil and both
491 microaggregate fractions together.

492 3.5 Weighted mean predicted 16S rRNA gene copy number increased with tillage

493 At Arlington, there was small but statistically significant 7% increase in the weighted mean
494 predicted 16S rRNA gene copy number with tillage ($p < 0.001$; Fig. 6). Fraction was also
495 significant ($p < 0.001$), and there was a significant interaction effect of tillage and fraction

496 ($p < 0.05$). The weighted mean predicted 16S gene copy number was lower in the occluded
 497 microaggregate fraction relative to the bulk soil or free microaggregate fraction in the tillage
 498 treatment, whereas weighted mean predicted 16S gene copy number was similar across fractions
 499 of the no-tillage treatment. At Lancaster, there was a significant 10% increase in the weighted
 500 mean predicted 16S gene copy number with tillage ($p < 0.001$), and no significant effect of
 501 fraction or interaction effect.

502

503 **Figure 6.** Weighted mean predicted 16S rRNA gene copy number. These data represent taxa for
 504 which a gene copy number was available in the rrnDB (Stoddard et al., 2015). Bulk soil = whole
 505 soil; Free micro. = microaggregate fraction from bulk soil, 53–250 μm ; Occluded micro. =
 506 microaggregate fraction occluded in macroaggregate fraction, 53–250 μm . Boxplots with the
 507 same letter (within site) are not statistically different.

508 3.6 *Influence of homogenizing dispersal increases with tillage*

509 The OTU binning-based approach for assessing influential community assembly processes

510 (*sensu* Ning et al., 2020) indicated that homogeneous selection had a ~14% relative influence

511 across treatments and fractions, for both within-plot and between-plot comparisons at Arlington

512 (Fig. 7A and B), and the between-plot comparisons demonstrated a significant decrease in

513 homogeneous selection under tillage relative to no-tillage ($p < 0.05$). The influence of

514 homogenizing dispersal significantly increased under tillage ($p < 0.001$), from 25% to 46% in

515 bulk soil for within-plot comparisons; and from 12% to 28% for between-plot comparisons.

516 There was also a large proportion of undominated comparisons— 30–60% at the within-plot

517 scale and 50–70% at the between-plot scale.

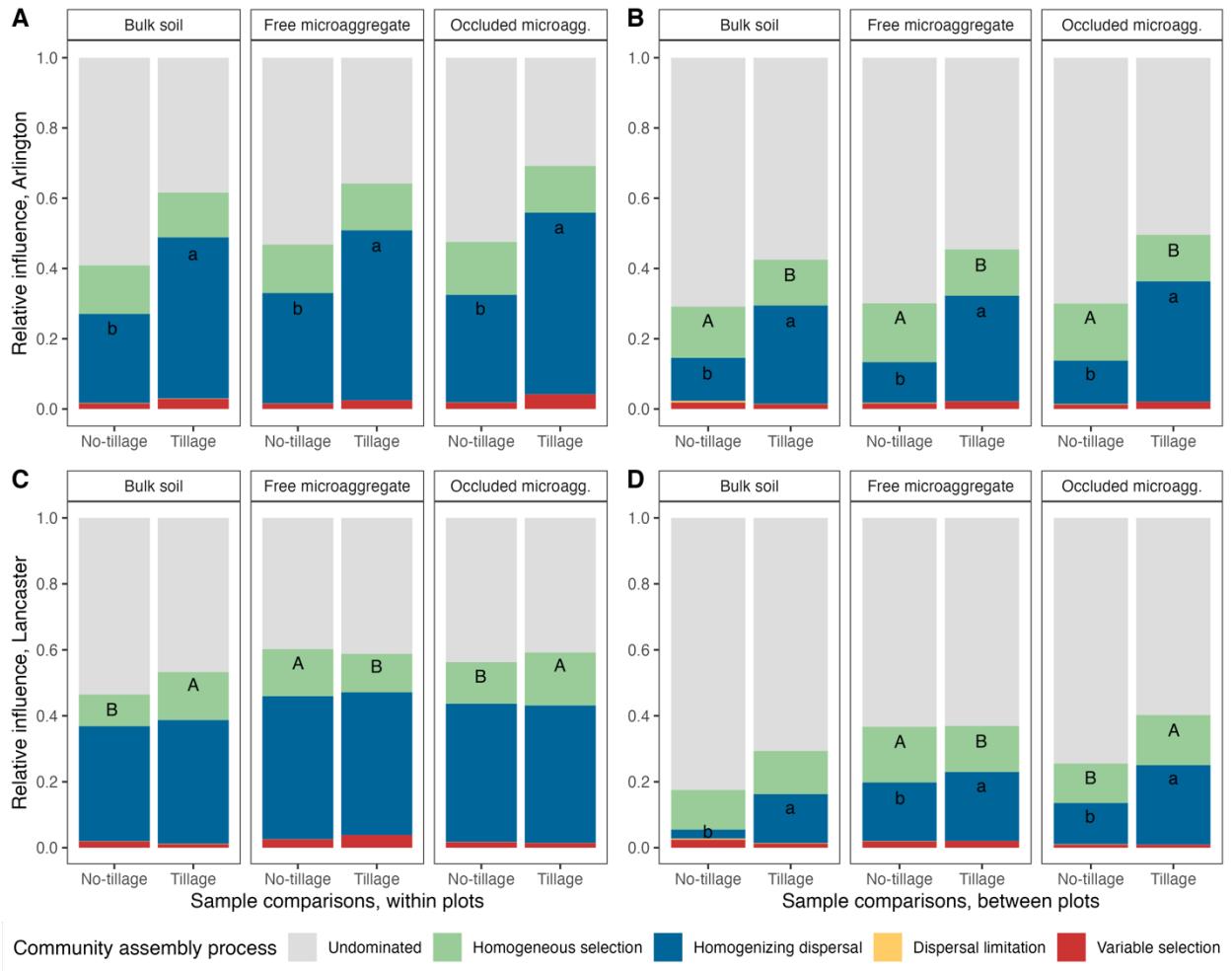
518 At Lancaster (Fig. 7C and D), the within-plot comparisons demonstrated trends similar to those

519 at Arlington regarding influences of homogeneous selection (~15%), homogenizing dispersal

520 (~40%), and undominated (~45%). Unlike Arlington, there was no significant effect of tillage on

521 the influence of homogenizing dispersal at the within-plot scale, whereas homogeneous selection

522 significantly increased from 10% to 15% of relative influence in the bulk soil ($p < 0.05$). In the


523 between-plot comparisons, the influence of homogenizing dispersal significantly increased under

524 tillage in the bulk soil and the occluded microaggregate fraction ($p < 0.001$), whereas

525 homogeneous selection experienced a small decrease with tillage in the free microaggregate

526 fraction, and a small increase with tillage in the occluded microaggregate fraction ($p < 0.05$, and

527 $p < 0.01$, respectively). For the between-plot comparisons, most were undominated— 60–80%.

528

529 **Figure 7.** The relative influences of community assembly processes, by tillage treatment, within
530 bulk soil, free microaggregate, and occluded microaggregate fractions at Arlington, WI (A and
531 B); and Lancaster, WI (C and D). Sample comparisons were made within-plot (A and C) or
532 between-plot (B and D). Community assembly processes were assigned within phylogenetically
533 related bins of OTUs for pairwise comparisons of samples using a null modeling approach, and
534 weighted by the relative abundance of OTUs in that bin (Ning et al., 2020). As detailed in the
535 text, first the influence of selection was determined using the β -mean nearest taxon distance, and
536 then the influence of dispersal was determined using the modified Raup-Crick metric based on
537 Bray-Curtis dissimilarity. For homogeneous selection and homogenizing dispersal (the processes
538 with $> 5\%$ influence), different letters signify a statistically significant difference in the influence
539 of that process due to tillage (within site and fraction).

540 3.7 *Taxonomic differences attributable to tillage*

541 The most common phyla across the sites were *Actinobacteria*, *Acidobacteria*, and

542 *Proteobacteria*, which together comprised about 60% of all reads at each site in both tillage

543 treatments. At Arlington, there was a generally consistent phylum-level response across the bulk

544 soil, free microaggregate, and occluded microaggregate fractions by which tillage resulted in

545 significant increases in relative abundances of *Actinobacteria*, *Armatimonadota*, *Chloroflexi*,

546 *Cyanobacteria*, *Firmicutes*, *Gemmatimonadetes*, and *Methylomirabilota*, and significant

547 decreases in relative abundances of *Acidobacteria*, *Myxococcota*, *Proteobacteria*, and

548 *Verrucomicrobia* (see Fig. S10 for relative abundances and *p* values). At Lancaster, tillage

549 resulted in significant increases in relative abundances of *Chloroflexi*, *Cyanobacteria*, and

550 *Gemmatimonadetes*, and significant decreases in relative abundances of *Crenarchaeota* and

551 *Verrucomicrobia* (see Fig. S11 for relative abundances and *p* values).

552 We also identified key taxa associated with no-tillage and tillage treatments, based on differential

553 abundance. Across both sites, we identified a total of 1658 taxa that were enriched with tillage

554 (relative to the no-tillage treatment), and 1602 taxa that were enriched in no-tillage (relative to

555 tillage). See Supplementary Table S3 for a complete list of enriched taxa, with coefficients of

556 differential abundance (μ) and sequences. For tractability, we focused on the taxa with the

557 biggest responses ($\mu > 1.0$), and only considered enriched taxa with mean relative abundances

558 greater than 0.001 (0.1%), which resulted in 15 and 9 focal taxa enriched under tillage and no-

559 tillage, respectively, at Arlington, and 9 and 4 focal taxa enriched under tillage and no-tillage,

560 respectively, at Lancaster (Figs. S12 and S13). Though some taxa were unique responders within

561 a soil fraction, numerous taxa were similarly enriched across bulk soil, free microaggregate, and
562 occluded microaggregate fractions.

563 *3.8 Taxonomic differences between microaggregate fractions*

564 We also identified a total of 382 taxa across both sites taxa that were enriched in the free or
565 occluded microaggregate fractions relative to the bulk soil, using differential abundance. See
566 Supplementary Table S4 for a complete list of enriched taxa. Narrowing our focus on taxa with
567 the biggest responses, as described above, there were 8 and 10 taxa enriched in the free
568 microaggregate and occluded microaggregate fractions, respectively, at Lancaster, most of which
569 were in the tillage treatment (Fig. S14), and no taxa fitting those parameters at Arlington. There
570 were several *Chloroflexi* OTUs representing the class *Anaerolineae*, and several *Cyanobacteria*
571 OTUs that were relatively enriched in the occluded microaggregate fraction. We did not assess
572 taxa that were depleted in microaggregate fractions relative to bulk soil because the former is
573 inherently a subset of the latter.

574 **4. Discussion**

575 We examined the effects of tillage on soil bacterial community composition and assembly,
576 specifically in the free and occluded microaggregate fractions, and will discuss these findings
577 with respect to soil carbon protection as modulated through changes to soil aggregation. Findings
578 generally supported our hypotheses that tillage would homogenize bacterial communities, with
579 community assembly driven by homogenizing dispersal. While fairly intuitive, this link between

580 physical soil disturbance in an applied setting (i.e., tillage) and community assembly has not
581 been previously established that we are aware of. On the other hand, our findings only weakly
582 supported hypothesized distinctions between the free and occluded microaggregate communities,
583 despite differences in soil C and a significant body of literature indicating various other
584 differences between these fractions. Overall, we found decreased aggregation, soil C, and soil N
585 with tillage (Figs. 2 and 3, Table S2), which agrees with previous work (Frey et al., 1999; Six et
586 al., 1999; Al-Kaisi et al., 2014; Zheng et al., 2018). Overall, this supports the paradigm that
587 tillage increases macroaggregate turnover, thus derailing occluded microaggregate formation,
588 and decreasing soil C content through enhanced decomposition and weakened long-term
589 protection (Six et al., 1999; King et al., 2019).

590 *4.1 Tillage decreased soil aggregation and soil carbon*

591 Our work provides further evidence supporting the relationship between soil aggregation and
592 SOC content, while reiterating that tillage reduces aggregation and SOC in surface soil. We
593 found that 90% of the increase in SOC under no-tillage relative to tillage was in aggregate
594 fractions, with the majority (> 75%) of this increase specifically in the microaggregate fractions
595 (Figs. 3 and S2). At Arlington, most of the increase in C under no-tillage was attributed to the
596 occluded microaggregate fraction, which is consistent with previous work (Denef et al., 2004;
597 Six and Paustian, 2014). However, at Lancaster, most of the increase in C was in the free
598 microaggregate fraction, which could reflect post-season sample timing with respect to
599 macroaggregate seasonal dynamics. As roots and hyphae die following crop plant senescence,

600 macroaggregates rapidly destabilize, liberating previously occluded microaggregates into the free
601 microaggregate pool (Perfect et al., 1990; Oades and Waters, 1991) (see Section 4.6).

602 As with the difference in SOC accumulation in the free vs. occluded microaggregate fractions,
603 the two sites continue to tell somewhat different stories of aggregation and SOC distribution.
604 Arlington exemplifies the “cultivation loop” (*sensu* Six et al., 1999), by which tillage stimulates
605 decomposition and macroaggregate turnover, thus precluding SOM enrichment and resulting in
606 older, C-depleted microaggregate fractions (Table S2). Alternatively, under no-tillage,
607 undisturbed macroaggregates foster development of new occluded microaggregates, as indicated
608 by higher C concentrations and wider C:N ratios in the microaggregate fractions (Table S2, Figs.
609 S3 & S4).

610 On the contrary, at Lancaster, the macroaggregate fraction *under tillage* had a high C
611 concentration, wide C:N ratio, and increased proportion of macroaggregate-occluded POM
612 relative to no-tillage (Table S2, Figs. 2 and S4), indicative of largely undecomposed residue.
613 Substantial residue at Lancaster is a testament to the continuous corn rotation—he residue from
614 the previous crop (corn) was potentially double that of Arlington (where the previous crop was
615 soybean), and of a higher C:N ratio (Ordóñez et al., 2020). Tillage breaks down and incorporates
616 crop residue, bringing it into direct contact with mineral particles and soil microbiota to nucleate
617 new macroaggregates, which could have enhanced C and POM concentration in the
618 macroaggregate fraction, despite the overall tillage-driven decrease in proportion of
619 macroaggregates. Though counter to how we typically characterize macroaggregates under
620 tillage (e.g., low soil C and POM concentrations), this evidently less processed SOM in the

621 macroaggregate fraction supports the overall narrative of a shorter mean macroaggregate lifespan
622 under higher turnover with tillage (Elliott, 1986). In contrast, the corn-soy rotation at Arlington
623 resulted in more straightforward soil C trends (e.g., C concentration in no-tillage > tillage; C
624 concentration in microaggregates > macroaggregates and bulk soil; Table S2 and Fig S3). It
625 would be relevant to repeat these measurements shortly after a fall tillage event to assess if
626 tillage accelerates the decomposition of occluded POM and decreases SOC in the
627 macroaggregate fraction, particularly in a system such as Lancaster where these metrics were
628 high just prior to a fall tillage event.

629 The overall weak aggregation at Lancaster (Fig. 2), with less than 15% of soil in aggregates,
630 lends support to a recently proposed paradigm shift that suggests soils under tillage may not be a
631 relevant application of the physicogenic aggregate, but instead represent engineered, loosely
632 arranged soil fragments that largely lack natural biopore networks (Or et al., 2021).

633 *4.2 Tillage homogenized bacterial communities via dispersal*

634 Tillage had a significant effect on bacterial community composition at both sites (Fig. 4), as
635 observed by others (Srour et al., 2020; Bhattacharyya et al., 2021), which resulted in more
636 homogeneous communities at both within-plot and between-plot scales, confirming hypothesis
637 H3 (Figs. 4 and 5). At the within-plot scale, decreased compositional differences with tillage
638 (Fig. 5) may be driven by homogenizing dispersal at Arlington (Fig. 7A), partially confirming
639 hypothesis H1. At Lancaster, the relatively smaller effect of tillage on community composition
640 (Fig. 4) and compositional dispersion (Fig. 5) may be attributable to the lack of increased

641 influence of homogenizing dispersal, and only small increases in homogeneous selection (Fig.
642 7).

643 At the between-plot scale, we might have expected to see an increase influence of homogeneous
644 selection and perhaps dispersal limitation with tillage, because management of these plots is
645 similar, yet they are spatially separated. However, like findings at the within-plot scale, tillage
646 also increased the influence of homogenizing dispersal at the between-plot scale at both sites.
647 Therefore, another tillage-driven mechanism increased the compositional similarity amongst
648 these spatially distinct plots, barring direct organismal dispersal, without increasing phylogenetic
649 similarity (which would have increased the influence of homogeneous selection). For example,
650 tillage systematically preserves the most stable, potentially older microaggregates, and therefore
651 we may be observing founder effects that manifest as compositional similarity between plots in a
652 field (Rillig et al., 2017). Despite some significant shifts in selection and dispersal, community
653 assembly is largely undominated at the between-plot scale, demonstrating a high level of
654 stochasticity, and potential for ecological drift.

655 Despite homogenizing community composition, tillage did not have a significant effect on
656 bacterial richness (Fig. S7). Previous work has found tillage to have both neutral and negative
657 effects on richness (Constancias et al., 2013; Smith et al., 2016). The tillage practices used at
658 these sites (fall chisel plow plus spring cultivation) are perhaps too infrequent or mild to affect
659 richness estimates, as previous work has found that richness significantly decreased only in soil
660 disturbed at least biweekly (West and Whitman, 2022). It is also possible that sequencing efforts
661 poorly represented the relative richness of these systems and soil fractions (Bach et al., 2018),

662 though the *betta* model that we used for richness estimation is specifically designed to account
663 for unobserved taxa (Willis et al., 2017).

664 We did not observe strong influences of dispersal limitation or variable selection under no-
665 tillage, as was hypothesized (H1). This may be attributed to the largely uniform, homogeneous
666 soil environment that is characteristic of intensively managed monocrop systems, regardless of
667 tillage practices.

668 *4.3 Tillage favors potential for fast growth*

669 Increased weighted mean predicted 16S gene copy number under tillage (Fig. 6) was also noted
670 in a recent global metanalysis (Wilhelm et al., 2023), and is consistent with the idea that pulses
671 of resources (e.g., C liberation or residue incorporation via tillage) select for bacterial
672 competitors with fast growth potential (Schmidt et al., 2018). These studies also found that larger
673 mean estimated genome size correlated with lower soil health ratings and tillage, indicating a
674 need for higher metabolic and regulatory capabilities under environmental instability (Schmidt et
675 al., 2018; Wilhelm et al., 2023). However, the fairly uniform effect on weighted mean predicted
676 16S gene copy number across soil fractions (Fig. 6), which do differ in chemical composition
677 (Table S2), indicate that physical disturbance may also influence fitness as it relates to other
678 aspects of life history strategy, such as chemical signaling, community goods, or secondary
679 metabolites. For example, this could point to a scenario by which oligotrophic organisms, which
680 invest heavily in extracellular enzymes, are at a disadvantage when proximity to these

681 metabolites is disrupted by physical disturbance (Junkins et al., 2022), as compared to
682 copiotrophic generalists, which are less reliant on proximity-based life strategies.

683 Tillage-driven increases in weighted mean predicted 16S gene copy number (Fig. 6) may be
684 expected to be accompanied by increases in soil respiration (on a per gram C basis), due to lower
685 carbon use efficiency (Roller et al., 2016). However, C respiration was similar across tillage
686 treatments at both sites (Fig. S5B), which implies that the no-tillage and tillage communities
687 processed C similarly, and/or the small, yet significant, increase in weighted mean predicted 16S
688 gene copy number was not biologically relevant for C mineralization. Further, sequencing-based
689 estimates of 16S gene copy numbers are limited due to the presence of relic DNA (Carini et al.,
690 2016) or dormant organisms (Lennon and Jones, 2011).

691 Soil respiration—on a per gram soil basis—did decrease under tillage at Arlington (Fig. S5A), as
692 a function of decreased bulk soil C concentration (Table S2). The no-tillage samples averaged
693 slightly higher gravimetric soil moisture, which also may help explain relative increases in
694 respiration (Moyano et al., 2013). Though our measurements of CO₂ evolution from sieved soil
695 may not accurately represent an intact soil (Vogel et al., 2022), this analysis indicates that the C
696 mineralization potential of these soil communities may not be limited by tillage-driven
697 compositional changes.

698 *4.4 Evidence for fluidity between the free and occluded microaggregate fractions*

699 Within either tillage or no-tillage treatment, the fairly indistinct bacterial community
700 compositions and community assembly patterns of the free and occluded microaggregate

701 fractions (Figs. 4 and 7) ran contrary to hypothesis H2, in which we suggested that the
702 communities of the free and occluded microaggregate fractions would be distinct from each
703 other, driven by different community assembly processes. Despite differences in soil C and N
704 (Table S2), community similarity indicates that these operationally defined fractions likely have
705 substantial overlap, which may be attributable to wholesale shifts of occluded microaggregates to
706 the free fraction at the end of the temperate annual cropping season, when macroaggregates
707 rapidly degrade with root senescence (Oades and Waters, 1991), as detailed below in Section 4.6.
708 Further, the sample dispersion of community composition (i.e., the distance on a PCoA) of free
709 and occluded microaggregate fractions from within each soil core was unaffected by tillage
710 treatment (Fig. 5C and F), which indicates that the overlap or fluidity between the free and
711 occluded microaggregate fractions may not be particularly responsive to tillage. Since we did not
712 identify bacterial drivers that explain enhanced SOC persistence specific to the occluded
713 microaggregate fraction, future work could instead focus on the physical and chemical drivers of
714 C storage and persistence in microaggregate fractions (Bailey et al., 2019; Kravchenko et al.,
715 2019), or fungal community drivers (Lehmann and Rillig, 2015).

716 Generally speaking, the high level of similarity in microbial communities of the microaggregate
717 fractions and the bulk soil (Figs. 4, 6, & 7) supports previous work suggesting that the majority
718 of soil bacteria live in association with microaggregate structures (Ranjard et al., 2000), which
719 only comprised 25% and 15% of the bulk soil at Arlington and Lancaster, respectively (Fig. 2).

720 4.5 Taxonomic differences due to tillage

721 Some broad, phylum-level compositional differences follow archetypical expectations under
722 tillage: *Firmicutes*, generally thought to include fast-growing copiotrophs, increased in relative
723 abundance with tillage, as was previously noted (Schmidt et al., 2018), whereas *Verrucomicrobia*
724 include numerous oligotrophic taxa (Bergmann et al., 2011), and decreased under tillage (Figs.
725 S10 and S11). *Firmicutes* also had higher mean relative abundances in the bulk soil compared to
726 the microaggregate fractions. There were several taxa that responded to tillage representing the
727 genus *Nocardioides* (*Actinobacteria*), an observed responder to frequent soil disturbance (West
728 and Whitman, 2022) that has been negatively correlated with soil health (Wilhelm et al., 2023).
729 We also found relative enrichment of *Sphingomonas* and *Geodermatophilus* under tillage, both
730 of which have been identified as key tillage responders (Wilhelm et al., 2023). Under no-tillage,
731 we found enrichment of the genus *Gaiella*, (*Actinobacteria*), which was one of several identified
732 bioindicators of high biological soil health ratings (Wilhelm et al., 2023). We also found that
733 anaerobic taxa (e.g., *Anaerolineae*) (Yamada and Sekiguchi, 2020) were enriched in
734 microaggregates (Fig. S14), which have anoxic microsites (Sexstone et al., 1985).
735 The enrichment of *Cyanobacteria* in microaggregate fractions, where we would not expect
736 photosynthetic organisms to survive or thrive, may reflect the presence of relic DNA (Carini et
737 al., 2016) or dormant organisms (Lennon and Jones, 2011), integrated into the soil matrix via
738 tillage, and under microaggregate protection. The specific *Cyanobacteria* taxa enriched in our
739 study (*Microcoleus* PCC-7113 and *Tychonema* CCAP 1459-11BA) were both previously found
740 in soil under frequent disturbance (Santoni et al., 2022).

741 *4.6 Factors that may have moderated the measured impact of tillage*

742 We will briefly consider several nuanced factors in this study. The tillage treatment at both sites
743 included a fall chisel plowing, which is sometimes considered a reduced or even conservation
744 tillage approach because it is shallower and more moderate compared to moldboard or disk
745 plowing, and does not invert the soil (e.g., Zuber and Villamil, 2016). Some previous work has
746 found chisel plow tillage to have the same effect as no-tillage on aggregate stability and
747 microbial biomass (Al-Kaisi et al., 2014; Zuber and Villamil, 2016). Several other factors may
748 obscure or diminish the relative impacts of tillage in this study, including crop-related seasonal
749 macroaggregate dynamics, wet-dry or freeze-thaw cycles, and clay mineralogy.

750 As noted above, macroaggregates rapidly destabilize following crop senescence—which begins
751 four to eight weeks prior to grain harvest—thus potentially diminishing tillage-driven differences
752 in soil aggregation measured post-harvest (Fig. 2) and liberating occluded microaggregates into
753 the free microaggregate pool (Perfect et al., 1990; Oades and Waters, 1991). Similar aggregation
754 patterns across tillage treatments were previously observed by Huang et al. (2010), in which
755 sampling occurred months after corn harvest. Tillage differences may be further diminished by
756 the physically disruptive effects of freeze-thaw and wet-dry cycles at the soil surface, which
757 would impact aggregate stability of otherwise undisturbed soil under no-tillage (LeGuillou et al.,
758 2012; Bailey et al., 2019). Further, these effects are likely variable in tillage vs. no-tillage
759 treatments, given differences in protective surface residues and roughness (Cruse et al., 2001).

760 Another factor potentially contributing to differences in aggregation and C concentration
761 between sites may be variable mineralogy (Denef et al., 2004). Mollisols, such as at Arlington,
762 are generally recognized to promote organo-mineral complexes. The clay mineralogy of the
763 Plano silt loam at Arlington is interstratified smectite-illite (Liu et al., 1997); the high specific
764 surface area of illite may promote SOC retention, and the expandable nature of smectite may
765 physically protect organic matter (Sarkar et al., 2018). The Fayette silt loam at Lancaster
766 (Alfisol) has been mineralogically characterized as predominantly montmorillonite clay
767 minerals—an expandable layer phyllosilicate (Caldwell et al., 1955). However, the low activity
768 clay (1:1) may explain the largely unaggregated soil even under no-tillage (Fig. 2), as was
769 previously noted for a mixed-mineralogy clay (Six et al., 2000b). These literature-based
770 suppositions are supported by lower concentrations of base cations and lower overall cation
771 exchange capacity measured at Lancaster (Table S1). The mineralogical differences may explain
772 the higher proportion of aggregated soil at Arlington, and higher SOC and SOM concentrations
773 relative to Lancaster, despite similar texture (silt loam) and corn-based cropping systems.

774 **5. Conclusions**

775 This study both demonstrates that tillage homogenizes soil bacterial communities and links this
776 disturbance to the ecological process of homogenizing dispersal, while supporting previous
777 conclusions that tillage disrupts aggregation and decreases carbon at the soil surface. Counter to
778 one of our hypotheses, the bacterial communities of the free and occluded microaggregate
779 fractions are highly similar, indicating that microaggregates may readily shift between these

780 operationally defined soil fractions. Tillage may accentuate seasonal changes characteristic of
781 temperate annual cropping systems (e.g., crop senescence, freeze-thaw, and wet-dry cycles),
782 which together challenge the strength and longevity of macroaggregates in which occluded
783 microaggregates form and soil carbon is protected. Thus, while our findings reiterate the
784 importance of the occluded microaggregate fraction for soil C persistence, we also suggest that
785 this occluded microaggregate C is subject to an increased rate of turnover when the previously
786 occluded fraction becomes part of the free microaggregate fraction upon macroaggregate
787 turnover. Conceptually, this underscores how aggregate microhabitats develop and devolve
788 throughout the soil matrix, in concert with microbial activity, forming isolated hotspots driven by
789 resource availability in the patchy soil environment.

790 **Supplementary Information**

791 Supplementary Information can be found online.

792 **Acknowledgements**

793 The authors are indebted to the researchers and operators who established and/or maintained
794 these long-term tillage studies over the years, and provided information about their histories,
795 including Thierno Diallo, Doug Wiedenbeck, Satish Gupta, Holly Dolliver, and the crews at the
796 Arlington and Lancaster Agricultural Research Stations. The authors would like to thank Alexa
797 Hanson, Kallysa Taylor, Emma Johnson, and Isabelle Bartholomew for their direct contributions
798 to this project in the lab and field; Erika Marín-Spiotta and members of the Whitman lab for their
799 thoughtful input; Daliang Ning for guidance with iCAMP analysis; and Harry Read and Anna
800 Cates for their perspectives on soil fractionation and use of the microaggregate isolator.

801 The authors also acknowledge the UW Biotechnology Center DNA Sequencing Facility
802 (Research Resource Identifier—RRID:SCR_017759). Part of this research was performed using
803 the computational resources and assistance of the UW–Madison Center for High Throughput
804 Computing (CHTC) in the Department of Computer Sciences, with the help of Christina Koch.
805 The CHTC is supported by UW–Madison, the Advanced Computing Initiative, the Wisconsin
806 Alumni Research Foundation, the Wisconsin Institutes for Discovery, and the National Science
807 Foundation, and is an active member of the OSG Consortium, which is supported by the
808 National Science Foundation (NSF) and the U.S. Department of Energy's Office of Science. This
809 work was financially supported by the O.N. Allen Professorship (UW–Madison CALS), the
810 Louis and Elsa Thomsen Wisconsin Distinguished Graduate Fellowship (UW–Madison CALS),
811 and a NSF EAGER grant (award #2024230).

812 ***Conflict of Interest.*** None declared.

813 ***Author contributions.*** JW and TW conceived of the project. JL has maintained the tillage
814 experiment in Arlington, WI since 1994. JW collected soil samples, conducted lab work,
815 analyzed the data, and drafted the manuscript. All authors reviewed and edited the manuscript.

816 **References**

817

818 Al-Kaisi, M.M., Douelle, A., Kwaw-Mensah, D., 2014. Soil microaggregate and macroaggregate
819 decay over time and soil carbon change as influenced by different tillage systems. *Journal of
820 Soil and Water Conservation* 69, 574–580. doi:10.2489/jswc.69.6.574

821 Anderson, M.J., 2006. Distance-Based Tests for Homogeneity of Multivariate Dispersions.
822 *Biometrics* 62, 245–253. doi:10.1111/j.1541-0420.2005.00440.x

823 Anderson, M.J., 2001. A new method for non-parametric multivariate analysis of variance.
824 *Austral Ecology* 26, 32–46. doi:10.1111/j.1442-9993.2001.01070.pp.x

825 Bach, E.M., Williams, R.J., Hargreaves, S.K., Yang, F., Hofmockel, K.S., 2018. Greatest soil
826 microbial diversity found in micro-habitats. *Soil Biology and Biochemistry* 118, 217–226.
827 doi:10.1016/j.soilbio.2017.12.018

828 Bailey, V.L., Pries, C.H., Lajtha, K., 2019. What do we know about soil carbon destabilization?
829 *Environmental Research Letters* 14, 083004. doi:10.1088/1748-9326/ab2c11

830 Benjamini, Y., Hochberg, Y., 1995. Controlling the False Discovery Rate: A Practical and
831 Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society: Series B*
832 (Methodological) 57, 289–300. doi:10.1111/j.2517-6161.1995.tb02031.x

833 Bergmann, G.T., Bates, S.T., Eilers, K.G., Lauber, C.L., Caporaso, J.G., Walters, W.A., Knight,
834 R., Fierer, N., 2011. The under-recognized dominance of Verrucomicrobia in soil bacterial
835 communities. *Soil Biology and Biochemistry* 43, 1450–1455.
836 doi:10.1016/j.soilbio.2011.03.012

837 Bhattacharyya, R., Rabbi, S.M.F., Zhang, Y., Young, I.M., Jones, A.R., Dennis, P.G., Menzies,
838 N.W., Kopittke, P.M., Dalal, R.C., 2021. Soil organic carbon is significantly associated with
839 the pore geometry, microbial diversity and enzyme activity of the macro-aggregates under
840 different land uses. *Science of The Total Environment* 778, 146286.
841 doi:10.1016/j.scitotenv.2021.146286

842 Biesgen, D., Frindte, K., Maarastawi, S., Knief, C., 2020. Clay content modulates differences in
843 bacterial community structure in soil aggregates of different size. *Geoderma* 376, 114544.
844 doi:10.1016/j.geoderma.2020.114544

845 Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A.,
846 Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K.,
847 Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M., Chase,
848 J., Cope, E.K., Silva, R.D., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M.,
849 Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibbons,
850 S.M., Gibson, D.L., González, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H.,
851 Huttenthaler, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L., Kaehler, B.D., Kang,
852 K.B., Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciolka, T., Kreps, J.,
853 Langille, M.G.I., Lee, J., Ley, R., Liu, Y.-X., Loftfield, E., Lozupone, C., Maher, M., Marotz,
854 C., Martin, B.D., McDonald, D., McIver, L.J., Melnik, A.V., Metcalf, J.L., Morgan, S.C.,
855 Morton, J.T., Naimey, A.T., Navas-Molina, J.A., Nothias, L.F., Orchanian, S.B., Pearson, T.,
856 Peoples, S.L., Petras, D., Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson,
857 M.S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R.,
858 Swafford, A.D., Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-
859 Hasan, S., Hooft, J.J.J. van der, Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., Hippel, M.
860 von, Walters, W., Wan, Y., Wang, M., Warren, J., Weber, K.C., Williamson, C.H.D., Willis,

861 A.D., Xu, Z.Z., Zaneveld, J.R., Zhang, Y., Zhu, Q., Knight, R., Caporaso, J.G., 2019.
862 Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2.
863 *Nature Biotechnology* 37, 852–857. doi:10.1038/s41587-019-0209-9

864 Bray, J.R., Curtis, J.T., 1957. An Ordination of the Upland Forest Communities of Southern
865 Wisconsin. *Ecological Monographs* 27, 325–349. doi:10.2307/1942268

866 Caldwell, A.C., Farnham, R.S., Hammers, F.L., 1955. A Chemical and Mineralogical Study of
867 Clay Materials from Several Gray-Brown Podzolic Soils of Minnesota. *Soil Science Society
868 of America Journal* 19, 351–354. doi:10.2136/sssaj1955.03615995001900030025x

869 Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016.
870 DADA2: High-resolution sample inference from Illumina amplicon data. *Nature Methods* 13,
871 581–583. doi:10.1038/nmeth.3869

872 Campbell, C.D., Chapman, S.J., Cameron, C.M., Davidson, M.S., Potts, J.M., 2003. A Rapid
873 Microtiter Plate Method to Measure Carbon Dioxide Evolved from Carbon Substrate
874 Amendments so as To Determine the Physiological Profiles of Soil Microbial Communities
875 by Using Whole Soil. *Applied and Environmental Microbiology* 69, 3593–3599.
876 doi:10.1128/aem.69.6.3593-3599.2003

877 Carini, P., Marsden, P.J., Leff, J.W., Morgan, E.E., Strickland, M.S., Fierer, N., 2016. Relic
878 DNA is abundant in soil and obscures estimates of soil microbial diversity. *Nature
879 Microbiology* 1–6. doi:10.1038/nmicrobiol.2016.242

880 Cates, A.M., Ruark, M.D., Hedtcke, J.L., Posner, J.L., 2016. Long-term tillage, rotation and
881 perennialization effects on particulate and aggregate soil organic matter. *Soil and Tillage
882 Research* 155, 371–380. doi:10.1016/j.still.2015.09.008

883 Chamberlain, L.A., Whitman, T., Ané, J.-M., Diallo, T., Gaska, J.M., Lauer, J.G., Mourtzinis, S.,
884 Conley, S.P., 2021. Corn-soybean rotation, tillage, and foliar fungicides: Impacts on yield and
885 soil fungi. *Field Crops Research* 262, 108030. doi:10.1016/j.fcr.2020.108030

886 Chase, J.M., Kraft, N.J.B., Smith, K.G., Vellend, M., Inouye, B.D., 2011. Using null models to
887 disentangle variation in community dissimilarity from variation in α -diversity. *Ecosphere* 2,
888 1–11. doi:10.1890/es10-00117.1

889 Constancias, F., Prévost-Bouré, N.C., Terrat, S., Aussems, S., Nowak, V., Guillemin, J.-P.,
890 Bonnotte, A., Biju-Duval, L., Navel, A., Martins, J.M., Maron, P.-A., Ranjard, L., 2013.
891 Microscale evidence for a high decrease of soil bacterial density and diversity by cropping.
892 *Agronomy for Sustainable Development* 34, 831–840. doi:10.1007/s13593-013-0204-3

893 Cruse, R.M., Mier, R., Mize, C.W., 2001. Surface Residue Effects on Erosion of Thawing Soils.
894 Soil Science Society of America Journal 65, 178–184. doi:10.2136/sssaj2001.651178x

895 Davinic, M., Fultz, L.M., Acosta-Martinez, V., Calderón, F.J., Cox, S.B., Dowd, S.E., Allen,
896 V.G., Zak, J.C., Moore-Kucera, J., 2012. Pyrosequencing and mid-infrared spectroscopy
897 reveal distinct aggregate stratification of soil bacterial communities and organic matter
898 composition. *Soil Biology and Biochemistry* 46, 63–72. doi:10.1016/j.soilbio.2011.11.012

899 DeGryze, S., Six, J., Merckx, R., 2006. Quantifying water-stable soil aggregate turnover and its
900 implication for soil organic matter dynamics in a model study. *European Journal of Soil
901 Science* 57, 693–707. doi:10.1111/j.1365-2389.2005.00760.x

902 Denef, K., Six, J., Merckx, R., Paustian, K., 2004. Carbon Sequestration in Microaggregates of
903 No-Tillage Soils with Different Clay Mineralogy. *Soil Science Society of America Journal*
904 68, 1935–1944. doi:10.2136/sssaj2004.1935

905 Dini-Andreote, F., Stegen, J.C., Elsas, J.D. van, Salles, J.F., 2015. Disentangling mechanisms
906 that mediate the balance between stochastic and deterministic processes in microbial
907 succession. *Proceedings of the National Academy of Sciences of the United States of
908 America* 112, E1326–32. doi:10.1073/pnas.1414261112

909 Dolliver, H., Gupta, S., 2008. Antibiotic Losses in Leaching and Surface Runoff from Manure-
910 Amended Agricultural Land. *Journal of Environmental Quality* 37, 1227–1237.
911 doi:10.2134/jeq2007.0392

912 Elliott, E.T., 1986. Aggregate Structure and Carbon, Nitrogen, and Phosphorus in Native and
913 Cultivated Soils. *Soil Science Society of America Journal* 50, 627–633.
914 doi:10.2136/sssaj1986.03615995005000030017x

915 Faith, D.P., 1992. Conservation evaluation and phylogenetic diversity. *Biological Conservation*
916 61, 1–10. doi:10.1016/0006-3207(92)91201-3

917 Frey, S.D., Elliott, E.T., Paustian, K., 1999. Bacterial and fungal abundance and biomass in
918 conventional and no-tillage agroecosystems along two climatic gradients. *Soil Biology and
919 Biochemistry* 31, 573–585. doi:10.1016/s0038-0717(98)00161-8

920 Garland, G., Bünemann, E.K., Oberson, A., Frossard, E., Snapp, S., Chikowo, R., Six, J., 2018.
921 Phosphorus cycling within soil aggregate fractions of a highly weathered tropical soil: A
922 conceptual model. *Soil Biology and Biochemistry* 116, 91–98.
923 doi:10.1016/j.soilbio.2017.10.007

924 Gupta, S., Munyankusi, E., Moncrief, J., Zvomuya, F., Hanewall, M., 2004. Tillage and Manure
925 Application Effects on Mineral Nitrogen Leaching from Seasonally Frozen Soils. *Journal of*
926 *Environmental Quality* 33, 1238–1246. doi:10.2134/jeq2004.1238

927 Huang, S., Sun, Y.-N., Rui, W.-Y., Liu, W.-R., Zhang, W.-J., 2010. Long-Term Effect of No-
928 Tillage on Soil Organic Carbon Fractions in a Continuous Maize Cropping System of
929 Northeast China. *Pedosphere* 20, 285–292. doi:10.1016/s1002-0160(10)60016-1

930 Hutchinson, G.E., 1957. Concluding remarks. *Cold Spring Harbor Symposia. Quantitative*
931 *Biology* 22, 415–427. doi:10.1101/sqb.1957.022.01.039

932 Janzen, H.H., 2006. The soil carbon dilemma: Shall we hoard it or use it? *Soil Biology and*
933 *Biochemistry* 38, 419–424. doi:10.1016/j.soilbio.2005.10.008

934 Jenkins, E.N., McWhirter, J.B., McCall, L.-I., Stevenson, B.S., 2022. Environmental structure
935 impacts microbial composition and secondary metabolism. *ISME Communications* 2, 15.
936 doi:10.1038/s43705-022-00097-5

937 Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D.,
938 Blomberg, S.P., Webb, C.O., 2010. Picante: R tools for integrating phylogenies and ecology.
939 *Bioinformatics* 26, 1463–1464. doi:10.1093/bioinformatics/btq166

940 King, A.E., Congreves, K.A., Deen, B., Dunfield, K.E., Voroney, R.P., Wagner-Riddle, C.,
941 2019. Quantifying the relationships between soil fraction mass, fraction carbon, and total soil
942 carbon to assess mechanisms of physical protection. *Soil Biology and Biochemistry* 135, 95–
943 107. doi:10.1016/j.soilbio.2019.04.019

944 Klappenbach, J.A., Dunbar, J.M., Schmidt, T.M., 2000. rRNA operon copy number reflects
945 ecological strategies of bacteria. *Applied Environmental Microbiology* 66, 1328–1333.
946 doi:10.1128/aem.66.4.1328-1333.2000

947 Kozich, J.J., Westcott, S.L., Baxter, N.T., Highlander, S.K., Schloss, P.D., 2013. Development of
948 a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence
949 Data on the MiSeq Illumina Sequencing Platform. *Applied Environmental Microbiology* 79,
950 5112–5120. doi:10.1128/aem.01043-13

951 Kravchenko, A.N., Guber, A.K., Razavi, B.S., Koestel, J., Quigley, M.Y., Robertson, G.P.,
952 Kuzyakov, Y., 2019. Microbial spatial footprint as a driver of soil carbon stabilization. *Nature*
953 *Communications* 10, 3121. doi:10.1038/s41467-019-11057-4

954 Kuzyakov, Y., Blagodatskaya, E., 2015. Microbial hotspots and hot moments in soil: Concept &
955 review. *Soil Biology and Biochemistry* 83, 184–199. doi:10.1016/j.soilbio.2015.01.025

956 Legendre, P., Gallagher, E.D., 2001. Ecologically meaningful transformations for ordination of
957 species data. *Oecologia* 129, 271–280. doi:10.1007/s004420100716

958 LeGuillou, C., Angers, D.A., Leterme, P., Menasseri-Aubry, S., 2012. Changes during winter in
959 water-stable aggregation due to crop residue quality. *Soil Use and Management* 28, 590–595.
960 doi:10.1111/j.1475-2743.2012.00427.x

961 Lehmann, A., Rillig, M.C., 2015. Understanding mechanisms of soil biota involvement in soil
962 aggregation: A way forward with saprobic fungi? *Soil Biology and Biochemistry* 88, 298–
963 302. doi:10.1016/j.soilbio.2015.06.006

964 Lennon, J.T., Jones, S.E., 2011. Microbial seed banks: the ecological and evolutionary
965 implications of dormancy. *Nature Publishing Group* 9, 119–130. doi:10.1038/nrmicro2504

966 Liu, Y.J., Laird, D.A., Barak, P., 1997. Release and Fixation of Ammonium and Potassium under
967 Long-Term Fertility Management. *Soil Science Society of America Journal* 61, 310–314.
968 doi:10.2136/sssaj1997.03615995006100010044x

969 Martin, B.D., Witten, D., Willis, A.D., 2021. corncob: Count Regression for Correlated
970 Observations with the Beta-Binomial.

971 McMurdie, P.J., Holmes, S., 2013. phyloseq: An R Package for Reproducible Interactive
972 Analysis and Graphics of Microbiome Census Data. *PLOS ONE* 8, e61217.
973 doi:10.1371/journal.pone.0061217

974 Moyano, F.E., Manzoni, S., Chenu, C., 2013. Responses of soil heterotrophic respiration to
975 moisture availability: An exploration of processes and models. *Soil Biology and Biochemistry*
976 59, 72–85. doi:10.1016/j.soilbio.2013.01.002

977 Nemerger, D.R., Knelman, J.E., Ferrenberg, S., Bilinski, T., Melbourne, B., Jiang, L., Violle, C.,
978 Darcy, J.L., Prest, T., Schmidt, S.K., Townsend, A.R., 2016. Decreases in average bacterial
979 community rRNA operon copy number during succession. *The ISME Journal* 10, 1147–1156.
980 doi:10.1038/ismej.2015.191

981 Ning, D., Yuan, M., Wu, L., Zhang, Y., Guo, X., Zhou, X., Yang, Y., Arkin, A.P., Firestone,
982 M.K., Zhou, J., 2020. A quantitative framework reveals ecological drivers of grassland
983 microbial community assembly in response to warming. *Nature Communications* 11, 4717.
984 doi:10.1038/s41467-020-18560-z

985 Oades, J., Waters, A., 1991. Aggregate hierarchy in soils. *Soil Research* 29, 815–828.
986 doi:10.1071/sr9910815

987 Oades, J.M., 1984. Soil organic matter and structural stability: mechanisms and implications for
988 management. *Plant and Soil* 76, 319–337. doi:10.1007/bf02205590

989 Ogle, S.M., Alsaker, C., Baldock, J., Bernoux, M., Breidt, F.J., McConkey, B., Regina, K.,
990 Vazquez-Amabile, G.G., 2019. Climate and Soil Characteristics Determine Where No-Till
991 Management Can Store Carbon in Soils and Mitigate Greenhouse Gas Emissions. *Scientific
992 Reports* 9, 11665. doi:10.1038/s41598-019-47861-7

993 Or, D., Keller, T., Schlesinger, W.H., 2021. Natural and managed soil structure: On the fragile
994 scaffolding for soil functioning. *Soil and Tillage Research* 208, 104912.
995 doi:10.1016/j.still.2020.104912

996 Ordóñez, R.A., Archontoulis, S.V., Martinez-Feria, R., Hatfield, J.L., Wright, E.E., Castellano,
997 M.J., 2020. Root to shoot and carbon to nitrogen ratios of maize and soybean crops in the US
998 Midwest. *European Journal of Agronomy* 120, 126130. doi:10.1016/j.eja.2020.126130

999 Paustian, K., Collins, H.P., Paul, E.A., 1997. Management Controls on Soil Carbon, in: *Soil
1000 Organic Matter in Temperate Agroecosystems*. CRC Press, Inc., pp. 15–49.
1001 doi:10.1201/9780367811693-2

1002 Paustian, K., Six, J., Elliott, E.T., Hunt, H.W., 2000. Management options for reducing CO₂
1003 emissions from agricultural soils. *Biogeochemistry* 48, 147–163.
1004 doi:10.1023/a:1006271331703

1005 Pedersen, P., Lauer, J.G., 2003. Corn and Soybean Response to Rotation Sequence, Row
1006 Spacing, and Tillage System. *Agronomy Journal* 95, 965–971. doi:10.2134/agronj2003.9650

1007 Pérez-Valera, E., Goberna, M., Verdú, M., 2015. Phylogenetic structure of soil bacterial
1008 communities predicts ecosystem functioning. *FEMS Microbiology Ecology* 91, fiv031.
1009 doi:10.1093/femsec/fiv031

1010 Perfect, E., Kay, B.D., Loon, W.K.P., Sheard, R.W., Pojasok, T., 1990. Factors Influencing Soil
1011 Structural Stability within a Growing Season. *Soil Science Society of America Journal* 54,
1012 173–179. doi:10.2136/sssaj1990.03615995005400010027x

1013 Piazza, G., Pellegrino, E., Moscatelli, M.C., Ercoli, L., 2020. Long-term conservation tillage and
1014 nitrogen fertilization effects on soil aggregate distribution, nutrient stocks and enzymatic
1015 activities in bulk soil and occluded microaggregates. *Soil and Tillage Research* 196, 104482.
1016 doi:10.1016/j.still.2019.104482

1017 Powlson, D.S., Stirling, C.M., Jat, M.L., Gerard, B.G., Palm, C.A., Sanchez, P.A., Cassman,
1018 K.G., 2014. Limited potential of no-till agriculture for climate change mitigation. *Nature*
1019 *Climate Change* 4, 678–683. doi:10.1038/nclimate2292

1020 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O.,
1021 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-
1022 based tools. *Nucleic Acids Research* 41, D590–D596. doi:10.1093/nar/gks1219

1023 Ranjard, L., Poly, F., Combrisson, J., Richaume, A., Gourbière, F., Thioulouse, J., Nazaret, S.,
1024 2000. Heterogeneous Cell Density and Genetic Structure of Bacterial Pools Associated with
1025 Various Soil Microenvironments as Determined by Enumeration and DNA Fingerprinting
1026 Approach (RISA). *Microbial Ecology* 39, 263–272. doi:10.1007/s002480000032

1027 Ranjard, L., Richaume, A., 2001. Quantitative and qualitative microscale distribution of bacteria
1028 in soil. *Research in Microbiology* 152, 707–716. doi:10.1016/s0923-2508(01)01251-7

1029 R-Core-Team, 2018. R: A Language and Environment for Statistical Computing, R
1030 Foundation for Statistical Computing.

1031 Rillig, M.C., Muller, L.A., Lehmann, A., 2017. Soil aggregates as massively concurrent
1032 evolutionary incubators. *The ISME Journal* 11, 1943–1948. doi:10.1038/ismej.2017.56

1033 Roller, B.R.K., Stoddard, S.F., Schmidt, T.M., 2016. Exploiting rRNA Operon Copy Number to
1034 Investigate Bacterial Reproductive Strategies. *Nature Microbiology* 1, 16160–16160.
1035 doi:10.1038/nmicrobiol.2016.160

1036 Sae-Tun, O., Bodner, G., Rosinger, C., Zechmeister-Boltenstern, S., Mentler, A., Keiblinger, K.,
1037 2022. Fungal biomass and microbial necromass facilitate soil carbon sequestration and
1038 aggregate stability under different soil tillage intensities. *Applied Soil Ecology* 179, 104599.
1039 doi:10.1016/j.apsoil.2022.104599

1040 Santoni, M., Verdi, L., Pathan, S.I., Napoli, M., Marta, A.D., Dani, F.R., Pacini, G.C.,
1041 Ceccherini, M.T., 2022. Soil microbiome biomass, activity, composition and CO₂ emissions
1042 in a long-term organic and conventional farming systems. *Soil Use and Management*.
1043 doi:10.1111/sum.12836

1044 Sarkar, B., Singh, M., Mandal, S., Churchman, G.J., Bolan, N.S., 2018. The Future of Soil
1045 Carbon. pp. 71–86. doi:10.1016/b978-0-12-811687-6.00003-1

1046 Schimel, J.P., Schaeffer, S.M., 2012. Microbial control over carbon cycling in soil. *Frontiers in*
1047 *Microbiology* 3, 348–11. doi:10.3389/fmicb.2012.00348

1048 Schmidt, R., Gravuer, K., Bossange, A.V., Mitchell, J., Scow, K., 2018. Long-term use of cover
1049 crops and no-till shift soil microbial community life strategies in agricultural soil. PLOS ONE
1050 13, e0192953. doi:10.1371/journal.pone.0192953

1051 Sextone, A.J., Revsbech, N.P., Parkin, T.B., Tiedje, J.M., 1985. Direct Measurement of Oxygen
1052 Profiles and Denitrification Rates in Soil Aggregates. Soil Science Society of America
1053 Journal 49, 645–651. doi:10.2136/sssaj1985.03615995004900030024x

1054 Sheehy, J., Regina, K., Alakukku, L., Six, J., 2015. Impact of no-till and reduced tillage on
1055 aggregation and aggregate-associated carbon in Northern European agroecosystems. Soil and
1056 Tillage Research 150, 107–113. doi:10.1016/j.still.2015.01.015

1057 Simpson, R.T., Frey, S.D., Six, J., Thiet, R.K., 2004. Preferential Accumulation of Microbial
1058 Carbon in Aggregate Structures of No-Tillage Soils. Soil Science Society of America Journal
1059 68, 1249–1255. doi:10.2136/sssaj2004.1249

1060 Six, J., Bossuyt, H., Degryze, S., Denef, K., 2004. A history of research on the link between
1061 (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research 79,
1062 7–31. doi:10.1016/j.still.2004.03.008

1063 Six, J., Callewaert, P., Lenders, S., Gryze, S.D., Morris, S.J., Gregorich, E.G., Paul, E.A.,
1064 Paustian, K., 2002. Measuring and Understanding Carbon Storage in Afforested Soils by
1065 Physical Fractionation. Soil Science Society of America Journal 66, 1981–1987.
1066 doi:10.2136/sssaj2002.1981

1067 Six, J., Elliott, E.T., Paustian, K., 2000a. Soil macroaggregate turnover and microaggregate
1068 formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biology and
1069 Biochemistry 32, 2099–2103. doi:10.1016/s0038-0717(00)00179-6

1070 Six, J., Elliott, E.T., Paustian, K., 1999. Aggregate and Soil Organic Matter Dynamics under
1071 Conventional and No-Tillage Systems. Soil Science Society of America Journal 63, 1350–
1072 1358. doi:10.2136/sssaj1999.6351350x

1073 Six, J., Elliott, E.T., Paustian, K., Doran, J.W., 1998. Aggregation and Soil Organic Matter
1074 Accumulation in Cultivated and Native Grassland Soils. Soil Science Society of America
1075 Journal 62, 1367–1377. doi:10.2136/sssaj1998.03615995006200050032x

1076 Six, J., Paustian, K., 2014. Aggregate-associated soil organic matter as an ecosystem property
1077 and a measurement tool. Soil Biology and Biochemistry 68, A4–A9.
1078 doi:10.1016/j.soilbio.2013.06.014

1079 Six, J., Paustian, K., Elliott, E.T., Combrink, C., 2000b. Soil Structure and Organic Matter I.
1080 Distribution of Aggregate-Size Classes and Aggregate-Associated Carbon. *Soil Science Society of America Journal* 64, 681–689. doi:10.2136/sssaj2000.642681x

1082 Smith, C.R., Blair, P.L., Boyd, C., Cody, B., Hazel, A., Hedrick, A., Kathuria, H., Khurana, P.,
1083 Kramer, B., Muterspaw, K., Peck, C., Sells, E., Skinner, J., Tegeler, C., Wolfe, Z., 2016.
1084 Microbial community responses to soil tillage and crop rotation in a corn/soybean
1085 agroecosystem. *Ecology and Evolution* 6, 8075–8084. doi:10.1002/ece3.2553

1086 Srour, A.Y., Ammar, H.A., Subedi, A., Pimentel, M., Cook, R.L., Bond, J., Fakhoury, A.M.,
1087 2020. Microbial Communities Associated With Long-Term Tillage and Fertility Treatments
1088 in a Corn-Soybean Cropping System. *Frontiers in Microbiology* 11, 1363.
1089 doi:10.3389/fmicb.2020.01363

1090 Stegen, J.C., Lin, X., Fredrickson, J.K., Chen, X., Kennedy, D.W., Murray, C.J., Rockhold,
1091 M.L., Konopka, A., 2013. Quantifying community assembly processes and identifying
1092 features that impose them. *The ISME Journal* 7, 2069–2079. doi:10.1038/ismej.2013.93

1093 Stegen, J.C., Lin, X., Fredrickson, J.K., Konopka, A.E., 2015. Estimating and mapping
1094 ecological processes influencing microbial community assembly. *Frontiers in Microbiology* 6.
1095 doi:10.3389/fmicb.2015.00370

1096 Stegen, J.C., Lin, X., Konopka, A.E., Fredrickson, J.K., 2012. Stochastic and deterministic
1097 assembly processes in subsurface microbial communities. *The ISME Journal* 6, 1653–1664.
1098 doi:10.1038/ismej.2012.22

1099 Stoddard, S.F., Smith, B.J., Hein, R., Roller, B.R.K., Schmidt, T.M., 2015. rrnDB: improved
1100 tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for
1101 future development. *Nucleic Acids Research* 43, D593–D598. doi:10.1093/nar/gku1201

1102 Tisdall, J.M., Oades, J.M., 1982. Organic matter and water-stable aggregates in soils. *Journal of*
1103 *Soil Science* 33, 141–163. doi:10.1111/j.1365-2389.1982.tb01755.x

1104 Totsche, K.U., Amelung, W., Gerzabek, M.H., Guggenberger, G., Klumpp, E., Knief, C.,
1105 Lehndorff, E., Mikutta, R., Peth, S., Prechtel, A., Ray, N., Kögel-Knabner, I., 2018.
1106 Microaggregates in soils. *Journal of Plant Nutrition and Soil Science* 181, 104–136.
1107 doi:10.1002/jpln.201600451

1108 Trivedi, P., Delgado-Baquerizo, M., Jeffries, T.C., Trivedi, C., Anderson, I.C., Lai, K., McNee,
1109 M., Flower, K., Singh, B.P., Minkey, D., Singh, B.K., 2017. Soil aggregation and associated
1110 microbial communities modify the impact of agricultural management on carbon content.
1111 *Environmental Microbiology* 19, 3070–3086. doi:10.1111/1462-2920.13779

1112 Upton, R.N., Bach, E.M., Hofmockel, K.S., 2019. Spatio-temporal microbial community
1113 dynamics within soil aggregates. *Soil Biology and Biochemistry* 132, 58–68.
1114 doi:10.1016/j.soilbio.2019.01.016

1115 Vellend, M., 2010. Conceptual Synthesis in Community Ecology. *The Quarterly Review of
1116 Biology* 85, 183–206. doi:10.1086/652373

1117 Vogel, H., Balseiro-Romero, M., Kravchenko, A., Otten, W., Pot, V., Schlüter, S., Weller, U.,
1118 Baveye, P.C., 2022. A holistic perspective on soil architecture is needed as a key to soil
1119 functions. *European Journal of Soil Science* 73. doi:10.1111/ejss.13152

1120 Walters, W., Hyde, E.R., Berg-Lyons, D., Ackermann, G., Humphrey, G., Parada, A., Gilbert,
1121 J.A., Jansson, J.K., Caporaso, J.G., Fuhrman, J.A., Apprill, A., Knight, R., Bik, H., 2016.
1122 Improved Bacterial 16S rRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer
1123 Marker Gene Primers for Microbial Community Surveys. *MSystems* 1, e00009-15.
1124 doi:10.1128/msystems.00009-15

1125 West, J.R., Whitman, T., 2022. Disturbance by soil mixing decreases microbial richness and
1126 supports homogenizing community assembly processes. *FEMS Microbiology Ecology*.
1127 doi:10.1093/femsec/fiac089

1128 Whitman, T.L., Whitman, E., Wootton, J., Flannigan, M.D., Thompson, D.K., Parisien, M.-A.,
1129 2019. Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a
1130 burn severity gradient. *Soil Biology and Biochemistry* 107571–59.
1131 doi:10.1016/j.soilbio.2019.107571

1132 Wickham, H., 2016. *ggplot2: Elegant Graphics for Data Analysis*, Springer-Verlag.

1133 Wilhelm, R.C., Amsili, J.P., Kurtz, K.S.M., Es, H.M. van, Buckley, D.H., 2023. Ecological
1134 insights into soil health according to the genomic traits and environment-wide associations of
1135 bacteria in agricultural soils. *ISME Communications* 3, 1. doi:10.1038/s43705-022-00209-1

1136 Willis, A.D., Bunge, J., Whitman, T.L., 2017. Improved detection of changes in species richness
1137 in high diversity microbial communities. *Journal of the Royal Statistical Society: Series C
1138 (Applied Statistics)* 66, 963–977. doi:10.1111/rssc.12206

1139 Wilpiszeski, R.L., Aufrecht, J.A., Retterer, S.T., Sullivan, M.B., Graham, D.E., Pierce, E.M.,
1140 Zablocki, O.D., Palumbo, A.V., Elias, D.A., 2019. Soil Aggregate Microbial Communities:
1141 Towards Understanding Microbiome Interactions at Biologically Relevant Scales. *Applied
1142 and Environmental Microbiology* 85, 689. doi:10.1128/aem.00324-19

1143 Yamada, T., Sekiguchi, Y., 2020. Bergey's Manual of Systematics of Archaea and Bacteria 1–2.
1144 doi:10.1002/9781118960608.cbm00064

1145 Yilmaz, P., Parfrey, L.W., Yarza, P., Gerken, J., Pruesse, E., Quast, C., Schweer, T., Peplies, J.,
1146 Ludwig, W., Glöckner, F.O., 2013. The SILVA and “All-species Living Tree Project (LTP)”
1147 taxonomic frameworks. *Nucleic Acids Research* 42, D643–D648. doi:10.1093/nar/gkt1209

1148 Zheng, H., Liu, W., Zheng, J., Luo, Y., Li, R., Wang, H., Qi, H., 2018. Effect of long-term tillage
1149 on soil aggregates and aggregate-associated carbon in black soil of Northeast China. *PLOS*
1150 *ONE* 13, e0199523. doi:10.1371/journal.pone.0199523

1151 Zhou, J., Ning, D., 2017. Stochastic Community Assembly: Does It Matter in Microbial
1152 Ecology? *Microbiology and Molecular Biology Reviews* 81, 1–32. doi:10.1128/mmbr.00002-
1153 17

1154 Zuber, S.M., Villamil, M.B., 2016. Meta-analysis approach to assess effect of tillage on
1155 microbial biomass and enzyme activities. *Soil Biology and Biochemistry* 97, 176–187.
1156 doi:10.1016/j.soilbio.2016.03.011

1157 Zulauf, C., Brown, B., 2019. Tillage Practices, 2017 US Census of Agriculture [WWW
1158 Document]. Farmdoc Daily. URL <https://farmdocdaily.illinois.edu/2019/07/tillage-practices-2017-us-census-of-agriculture.html>
1159

1160