
Discrete & Computational Geometry (2022) 68:664–708
https://doi.org/10.1007/s00454-022-00403-x

On the Complexity of the Plantinga–Vegter Algorithm

Felipe Cucker1 · Alperen A. Ergür2 · Josué Tonelli-Cueto3

Received: 14 April 2020 / Revised: 11 October 2021 / Accepted: 26 January 2022 /
Published online: 29 August 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
We introduce tools fromnumerical analysis and high dimensional probability for preci-
sion control and complexity analysis of subdivision-based algorithms in computational
geometry. We combine these tools with the continuous amortization framework from
exact computation. We use these tools on a well-known example from the subdi-
vision family: the adaptive subdivision algorithm due to Plantinga and Vegter. The
only existing complexity estimate on this rather fast algorithm was an exponential
worst-case upper bound for its interval arithmetic version. We go beyond the worst-
case by considering both average and smoothed analysis, and prove polynomial time
complexity estimates for both interval arithmetic and finite-precision versions of the
Plantinga–Vegter algorithm.

Keywords Plantinga–Vegter algorithm · Subdivision methods · Complexity

Mathematics Subject Classification 65D18 · 68W40

Editor in Charge: Kenneth Clarkson

Felipe Cucker, Alperen A. Ergür, and Josué Tonelli-Cueto contributed equally to this work.

Felipe Cucker
macucker@cityu.edu.hk

Alperen A. Ergür
alperen.ergur@utsa.edu

Josué Tonelli-Cueto
josue.tonelli.cueto@bizkaia.eu

1 Department of Mathematics, City University of Hong Kong, Hong Kong, China

2 Mathematics Department, University of Texas at San Antonio, One UTSA Circle, San Antonio,
TX 78249, USA

3 OURAGAN team, Inria Paris & IMJ-PRG, Sorbonne Université, Paris, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00454-022-00403-x&domain=pdf
http://orcid.org/0000-0002-2904-1215

Discrete & Computational Geometry (2022) 68:664–708 665

Introduction

Subdivision based algorithms are ubiquitous in computational geometry. These algo-
rithms have the advantage of simplicity, and often have good practical performance.
The two main challenges related to subdivision based algorithms are the control of
precision (or a termination criterion), and complexity analysis. As late as summer
2019, complexity analysis aspect of subdivision based geometric algorithms was con-
sidered to be “largely open” [40]. In this paper, we contribute to both of the main
challenges by introducing a hybrid toolbox that combines condition numbers, high
dimensional probability theory, and continuous amortization framework introduced
by Burr et al. [12]. To keep our writing focused, and the length of the article finite, we
only showcase the toolbox on awell-knownmember of this large family; the algorithm
of Plantinga and Vegter.

Plantinga–Vegter (PV) algorithm is an adaptive subdivison algorithm for mesh-
ing curves and surfaces [30]. The algorithm admits an implicit equation of a curve
or a surface and outputs an isotopic piecewise linear approximation with controlled
Hausdorff distance. The initial paper of Plantinga and Vegter contained no complexity
analysis and not even a formal setting fixing either the kind of functions implicitly
defining the considered curves and surfaces or the arithmetic used. However, concrete
implementations in the paper indicated the efficiency of the algorithm. The algorithm
is now widely considered to be very efficient.

The first complexity analysis of the PV algorithm was published thirteen years
later by Burr et al. [10] (cf. [11]). The paper of Burr et al. focused on the subdivision
procedure of the Plantinga–Vegter algorithm and only analyzed the complexity for
polynomials with integer coefficients. The paper provides bounds that are exponential
both in the degree d of the input polynomial and in its logarithmic height τ . The
discrepancy between the exponential complexity estimate and the practical efficiency
of the PV algorithm was marked by the following comment at the end of the paper:

Even though our bounds are optimal, in practice, these are quite pessimistic […]

The authors further observe that, following from their Proposition 5.2 (see Theo-
rem 5.2 below) an instance-based analysis of the algorithm (i.e., one yielding a cost
that depends on the input at hand) could be derived from the evaluation of a certain
integral. And they conclude their paper by writing

Since the complexity of the algorithm can be exponential in the inputs [size],
the integral must be described in terms of additional geometric and intrinsic
parameters.

In this paper, we make progress towards these aims by going beyond the worst-case
analysis and by using condition numbers. We believe condition numbers are a perfect
fit for the latter aim as they provide a geometric and arguably intrinsic parameter.

We analyze the complexity of the PV algorithm in two different versions cor-
responding, roughly speaking, to its arithmetic complexity and its (arguably more
realistic) bit complexity. Our analysis deals with the subdivision routine of the PV
algorithm for curves and surfaces as the special cases for n = 2 and n = 3, but we
aim for estimates that hold for any n. We perform both average and smoothed analysis

123

666 Discrete & Computational Geometry (2022) 68:664–708

for the two versions of the PV algorithm, so we provide four different complexity
analyses.

The average analysis framework is well known. The smoothed analysis framework
might, in contrast, require a bit of an explanation. Suppose we endow the space of
n-variate degree d polynomials with a norm ‖ · ‖, and a probability measure μ (with
as few assumptions as possible on μ). Suppose g is a random polynomial distributed
with respect to μ. Then we consider an arbitrary polynomial f , and we fix a tolerance
parameter σ > 0. We consider q = f + σ‖ f ‖g as random perturbation of f with
tolerance σ , and conduct average analysis of the PV algorithm for q. This type of
estimate could a priori depend on the arbitrary polynomial f . We aim for a uniform
estimate that provides an upper bound for any f , and depends only on σ , n, and d.
This uniform upper bound will be the smoothed analysis of the PV algorithm. It turns
out that this random perturbation idea was already considered in the computational
geometry literature in an experimental fashion, and there were aims for building a
theoretical framework (see [23, Sect. 4]).

Our main results, Theorems 2.6 and 2.7, provide the four promised estimates on
the complexity of the PV algorithm for any number of variables n. For the special case
of the plane curves, the average and smoothed analysis of the arithmetic complexity
of the PV algorithm are respectively O(d7) and O(d7(1 + 1/σ)3). The average and
smoothed analysis of the bit complexity are just slightly worse: O(d7 log2d) and
O (d7(1 + 1/σ)3 log2d), respectively. These bounds are in marked contrast with the
O(2τd4 log d) worst-case complexity bound in [10].

For a clear presentation of our contribution and related complexity considerations
we need to make a few remarks:

(1) The use of floating-point arithmetic generates numerical errors which accumulate
during the computation. An important remark is that, despite this accumulation of
errors, our algorithm returns a correct output, a subdivision with the properties we
want. It is, in this sense, a certified algorithm. At the heart of this remark is the
fact that a sufficiently small perturbation of a correct subdivision is still a correct
subdivision for a generic (i.e., non-singular) input. Condition numbers allow us to
estimate how large this perturbation may be. Then, the fact that we can estimate
these condition numbers, we control the precision of the operations’ round-off, and
we know how these operations are sequenced further allows us to ensure that the
subdivision we constructed is close enough to the one we would have done in an
error-free context and both yield polygons with the same isotopy type. Needless
to say, for input data outside the set satisfying the generic property above our
reasoning does not hold. The set of such inputs, referred to as ill-posed in numerical
analysis, has measure zero. Condition numbers relate to ill-posedness in the sense
that the closer a data is to the set of ill-posed inputs the larger becomes its condition
number. It is these facts that allows one to establish average and smoothed analysis
bymeans of probabilistic estimates on the condition numbers. This general scheme
was proposed in [34]. Amore detailed discussion of these issues is in [2, Sect. 9.5].
A relatively early case of a fully studied variable-precision algorithm is in [19].
An account of the use of floating-point arithmetic in computational geometry is
given in [23].

123

Discrete & Computational Geometry (2022) 68:664–708 667

(2) Most of the probabilistic analyses for cost measures or condition numbers use the
Gaussian measure. This choice is mainly for technical convenience. For the analy-
sis of condition numbers, this goes back to Goldstine and von Neumann [25] and,
more recently, resulted in simple bounds for a large class of condition numbers
[4, 5, 20, 29]. In the last few years, however, the search for more robust complexity
analysis resulted in estimates that hold for a (quite) general family of measures.
The family of sub-Gaussian measures which includes all compactly supported
random variables provides a good testing ground. An analysis of a condition num-
ber for these distributions occupies [21, 22]. It is for this class of distributions
(sub-Gaussians with an anti-concentration property) that our results, both average
and smoothed, are proved.

(3) The subdivision procedure we analyze can be considered at three levels of gen-
erality: the abstract, in which we only take into account the number of iterations
of the subdivision procedure; the interval, in which we take also into account the
number of arithmetic operations; and the effective, in which we take into account
not only the number of arithmetic operations, but also the precision that they need,
obtaining a realistic estimation of the bit-cost of the algorithm. This division fol-
lows a trend for analysing subdivision algorithms initiated by Xu and Yap [39]
(cf. [40]). Our condition-based analysis can be applied at each of these three levels,
hopefully showing the usefulness of the approach. Whereas this paper focuses on
a particular subdivision procedure we believe that the techniques in this paper can
be readily applied to other subdivision based algorithms in computational geome-
try. We note, however, that the complexity analysis in this paper would have been
impossible without the continuous amortization technique developed in the exact
numerical context [8, 12]. In this regard, we hope to trigger a fruitful exchange of
ideas between the different approaches to continuous computation and improve
our (seemingly preliminary) understanding of the complexity of subdivision algo-
rithms in computational geometry.

Outline

The rest of the paper is structured as follows:We start with a section that contains nota-
tion. We beg readers’ pardon for this inconvenient start; this seemed the simplest way
for getting things clear. Then in Sect. 1 we discuss the Plantinga–Vegter algorithm and
the n-dimensional generalization of its subdivision method in the abstract, the interval
arithmetic, and the effective versions. Section 2 introduces our randomness model and
contains main complexity estimates of this paper. In Sect. 3, we present a geometric
framework (read Hilbert space structure) to deal with homogeneous polynomials. In
Sect. 4, we introduce the condition number κaff—both local, i.e., at a point x , and
global—along with its main properties. In Sect. 5, we present the existing results on
the complexity of Plantinga–Vegter algorithm from [10], and we relate these results
to the local condition number. In Sect. 6, we carry out the finite-precision analysis
deriving the corresponding bounds for bit-cost. Finally, in Sect. 7, we derive average
and smoothed complexity bounds under (quite) general randomness assumptions.

123

668 Discrete & Computational Geometry (2022) 68:664–708

Notation

Throughout the paper, we will assume some familiarity with the basics of differential
geometry. For a smooth map f : R

m → R, Dx f : TxR
m ∼= R

m → TxR ∼= R denotes
the tangent map of f at x ∈ R

m . We will write ∂ f : R
m → R

m , x �→ ∂ f (x),
when we see it as a smooth function of x . When we want to see ∂ f as a vector of
formal derivatives, we will write ∂ f (X) where X represents formal variables. For
general smooth maps between smooth manifolds F : M → N , we will just write
Dx F : TxM → TF(x)N as the tangent map.

In what follows, Pn,d will denote the set of real polynomials in the n variables
X1, . . . , Xn with degree at most d, Hn,d the set of homogeneous real polynomials in
the n + 1 variables X0, X1, . . . , Xn of degree d, and ‖ · ‖ and 〈 · , · 〉 will denote the
standard norm and inner product in R

m as well as the Weyl norm and inner product in
Pm
n,d andHm

n,d . Given a polynomial f ∈ Pn,d , f h ∈ Hn,d will be its homogenization
and ∂ f the polynomial map given by its partial derivatives. We will denote by the
Cyrillic character �, ’yu’, the central projection (3.1) that maps R

n into S
n . For

details see Sect. 3. Additionally, VR(f) and VC(f) will be, respectively, the real and
complex zero sets of f .

For a set S ⊂ R
n , we will denote by �S the set of n-boxes of the form x + I n ,

where I is an interval, that are contained in S and, for a given box B ∈ �R
n , m(B)

will be its middle point, w(B) its width, and vol B = w(B)n its volume.
Regarding probabilistic conventions,wewill denote the probability of an event byP,

random variables by x, y, . . . and random polynomials by f, g, q, . . . The expression
Ex∈K g(x)will denote the expectation of g(x)when x is sampled uniformly from the set
K andEyg(y) the expectation of g(y)with respect to a previously specified probability
distribution of y.

Regarding complexity parameters, n will be the number of variables, d the degree
bound, and N = (n+d

n

)
the dimension of Pn,d . Finally, ln will denote the natural

logarithm and log the logarithm in base 2.

1 The Plantinga–Vegter (Subdivision) Algorithm

Given a real smooth hypersurface in R
n described implicitly by a map f : R

n → R

and a region [−a, a]n , the Plantinga–Vegter Algorithm constructs a piecewise-linear
approximation of the intersection of its zero set VR(f) with [−a, a]n isotopic to
this intersection inside [−a, a]n . The Plantinga–Vegter algorithm (see Fig. 1 for an
illustration1) is divided in two phases:

(1) Subdivision phase: In this phase, the Plantinga–Vegter algorithm subdivides
[−a, a]n into smaller and smaller boxes until all the boxes satisfy a certain condi-
tion (see (1.1)).

(2) Post-processing phase: In this phase, the Plantinga–Vegter algorithm uses the
obtained subdivision to produce a piecewise-linear approximation of the given
hypersurface.

1 This figure is taken from [37, Fig. 5§1].

123

Discrete & Computational Geometry (2022) 68:664–708 669

Step 0 of subdivision phase Step 1 of subdivision phase

Step 2 of subdivision phase Step 4 of subdivision phase

Post-processing phase

Green: VR(f), Red: Subdivision, Blue: PL approximation of VR(f)

Fig. 1 Plantinga–Vegter applied to f = X4 − 6X3 + 2X2Y 2 − 6X2Y − 34 X2 − 6XY 2 − 320 XY +
376 X + Y 4 − 6Y 3 − 34 Y 2 + 376 Y + 3128 in [−10, 10]2

We will focus on the subdivision phase of the Plantinga–Vegter algorithm. We do this
because the complexity of subdivision-based algorithms is usually dominated by the
complexity of the subdivision phase. This follows the guidelines of the first complexity
analysis given by Burr et al. [10] (cf. [11]).

We note that it would be interesting to incorporate the complexity of the post-
processing phase of the algorithm to our estimates in this paper: either the original
one by Plantinga–Vegter [30], for n ≤ 3, or the generalization to higher dimensions

123

670 Discrete & Computational Geometry (2022) 68:664–708

by Galehouse [24], for arbitrary n. We also don’t cover existing extensions of the
Plantinga–Vegter algorithm to singular curves [9].

From now on, whenwe say Plantinga–Vegter algorithmwe are referring to the Plan-
tinga–Vegter subdivision phase and, following [10], we restrict to the case in which
f : R

n → R is a polynomial. We now describe this algorithm at three levels: abstract,
interval and effective.

1.1 Abstract Level: Algorithm PV-ABSTRACT

The Plantinga–Vegter algorithm subdivides [−a, a]n until a certain regularity condi-
tion is satisfied in each of the boxes B of the subdivision. Let h, h̃ : R

n → (0,∞)

be some fixed positive maps, conveniently chosen (see (1.3) and Remark 1.2 below).
Then this regularity condition is

C f (B) : either 0 /∈ (h f)(B) or 0 /∈ 〈(h̃∂ f)(B), (h̃∂ f)(B)〉. (1.1)

Here f (B) stands for the set of values of f on the box B. Note that this condition is
satisfied when either B does not contain any zero of f or no pair of gradient vectors
of f are orthogonal in B.

In its abstract form, the Plantinga–Vegter algorithm is described in Algorithm 1
below. The StandardSubdivision procedure in the description refers to taking a
box B and subdividing it into 2n boxes of equal size.

Algorithm 1: PV-Abstract
Input : f : R

n → R with interval approximations �[h f] and �[h̃∇ f]
a ∈ (0, ∞)

Precondition : VR(f) is smooth inside [−a, a]n

S̃ ← {[−a, a]n}
S ← ∅

repeat
Take B in S̃
S̃ ← S̃ \ {B}
if C f (B) true then

S ← S ∪ {B}
else

S̃ ← S̃ ∪ StandardSubdivision(B)

until S̃ = ∅

return S

Output : Subdivision S ⊆ �[−a, a]n of [−a, a]n
Postcondition : For all B ∈ S, C f (B) is true

123

Discrete & Computational Geometry (2022) 68:664–708 671

1.2 Interval Level: Algorithm PV-INTERVAL

To check condition C f (B), we use interval approximations allowing us to certify
whether or not 0 is in the image of B under a certain map. Recall that an interval
approximation [31] of a function F : R

m → R
m′

is a map

�[F] : �R
m → �R

m′
(1.2)

such that for all B ∈ �R
m ,

F(B) ⊆ �[F](B). (1.2)

A natural choice for the interval approximation of a C1-function F : R
m → R

m′
is its

standard interval approximation

�R
m � B �→ �std[F](B) := F(m(B)) + √

m

(
sup
x∈B

‖Dx F‖
)[

−w(B)

2
,
w(B)

2

]m′

where Dx F is the tangent map of F at x and ‖Dx F‖ its operator norm. Note that
to construct this one in practice, we need to be able to evaluate F and to compute
efficiently upper bounds for supx∈B ‖Dx F‖. In our case, this is possible due to the
fact that we are working with polynomials.

Let f ∈ Pn,d . We will consider

h(x) = 1

‖ f ‖(1 + ‖x‖2)(d−1)/2
and h̃(x) = 1

d‖ f ‖(1 + ‖x‖2)d/2−1 (1.3)

along with the maps

f̂ : x �→ h(x) f (x) = f (x)

‖ f ‖(1 + ‖x‖2)(d−1)/2
(1.4)

and

∂̂ f : x �→ h̃(x)∂ f (x) = ∂ f (x)

d‖ f ‖(1 + ‖x‖2)d/2−1 (1.5)

where ‖ f ‖ is the Weyl norm of f (which we recall in Definition 3.2). In Sect. 3.3 we
will prove the following property of f̂ and ∂̂ f .

Proposition 1.1 Let f ∈ Pn,d . Then

�[h f] : B �→ f̂ (m(B)) + (1 + √
d
)√

n

[
−w(B)

2
,
w(B)

2

]
(1.6)

is an interval approximation of h f , and

�[h̃∂ f] : B �→ ∂̂ f (m(B)) + (1 + √
d − 1

)√
n

[
−w(B)

2
,
w(B)

2

]n

is an interval approximation of h̃∂ f .

123

672 Discrete & Computational Geometry (2022) 68:664–708

Remark 1.2 A natural question at this point is why we are using interval approxima-
tions for h f and h̃∂ f instead of for f and ∂ f . We work with h f and h̃ f for the sake
of simplicity. We prefer to work with the simpler interval approximations for h f and
h̃∂ f (shown in Proposition 1.1) than with possibly more complex ones for f and ∂ f .

We now note that checking the condition “0 /∈ 〈B, B〉” for a box B can be reduced to
checking

√
n

2
w(B) ≤ ‖m(B)‖.

Todo the latterwewill useLemma3.6 (whichwe also prove inSect. 3.3). Togetherwith
the interval approximations in Proposition 1.1, we derive a condition C�

f , implying
C f (B) and easy to check.

Theorem 1.3 Let B ∈ �R
n. If the condition

C�
f (B) := | f̂ (m(B))| > 2

√
dn w(B) or ‖∂̂ f (m(B))‖ > 2

√
2d nw(B).

is satisfied, then C f (B) is true.

Theorem 1.3 is the basis of the interval version of Algorithm 2.

Algorithm 2: PV-Interval
Input : f ∈ Pn,d

a ∈ (0, ∞)

Precondition : VR(f) is smooth inside [−a, a]n

S̃ ← {[−a, a]n}
S ← ∅

repeat
Take B in S̃
S̃ ← S̃ \ {B}
if | f̂ (m(B))| > (1 + √

d)
√
n w(B) then

S ← S ∪ {B}
else if ‖∂̂ f (m(B))‖ >

√
2(1 + √

d − 1)nw(B) then
S ← S ∪ {B}

else
S̃ ← S̃ ∪ StandardSubdivision(B)

until S̃ = ∅

return S

Output : Subdivision S ⊆ �[−a, a]n of [−a, a]n
Postcondition : For all B ∈ S, C f (B) is true

Remark 1.4 There are other alternatives for interval approximations and our frame-
work has the flexibility to incorporate these alternatives. For instance, the interval
approximations in [10], which we will refer to as BGT, are based on the Taylor expan-
sion at the midpoint. In the interlude at the end of Sect. 5, we will show that our
complexity analysis also applies to this interval approximation.

123

Discrete & Computational Geometry (2022) 68:664–708 673

Remark 1.5 We have described Algorithm 2 without any reference to interval approxi-
mations. Such references have been replaced by explicit conditions on | f̂ (m(B))| and
‖∂̂ f (m(B))‖.

1.3 Effective Level: Algorithm PV-EFFECTIVE

For the effective version (Algorithm 3), we will use floating-point numbers (cf. [2,
Sect.O.3.1] or [26, Sect. 1.2]). We do this, instead of using fixed-point or big rationals,
because the use of floating-point is computationally cheap, both in time and space.
We want to emphasize, however, that our use of floating-point numbers does not
compromise the correctness of the algorithm (cf. Corollary 6.4). A floating-point
number has the form

± 0.a1a2 . . . am 2e,

where a1, . . . , am ∈ {0, 1} and e ∈ Z. In general, the number of significant digits, m,
is fixed during the computation of arithmetic expressions, but it can be updated at
different iterations of an algorithm if an increase in precision is needed.

We note that every real number x ∈ R has a floating-point approximation rm(x)
withm digits, such that

rm(x) = x(1 + δ)

for some δ ∈ (−2−(m−1), 2−(m−1)). Moreover, given two floating-point numbers x
and y withm significant digits, we can easily compute

rm(x + y), rm(x − y), rm(xy), rm(x/y), and rm(
√
x)

in O(m2) bit-operations. Comparisons between floating-point numbers can also be
made using this amount of bit-operations.

Remark 1.6 In the above estimation we are ignoring the complexity of adding the
exponents or operating with them. In general the size of e is of the order of |log|x ||,
and so the bit-size of e is of the order of |log log |x ||. This means that, unless the
numbers we deal with are enormous, one should not worry about the bit-size of e for
cost estimates.

Finite-precision analyses do not rely on the precise form of floating-point numbers but
just in some general properties which we now summarize. There is a subset F ⊂ R

of floating-point numbers (which we assume contains 0), a rounding map r : R → F,
and a round-off unit u ∈ (0, 1) satisfying the following conditions:

• For any x ∈ F, r(x) = x . In particular, r(0) = 0.
• For any x ∈ R, r(x) = x(1 + δ) with |δ| ≤ u.

Moreover, for ◦ ∈ {+,−,×, /}, there are approximate versions

◦̃ : F × F → F

123

674 Discrete & Computational Geometry (2022) 68:664–708

such that for all x, y ∈ F,
x ◦̃ y = (x ◦ y)(1 + δ) (1.6)

for some δ such that |δ| < u. We also assume that there is

√̃ : F → F

such that for all x ∈ F with x ≥ 0,

√̃
x = √

x(1 + δ)

for some δ such that |δ| < u. Each of these operations and comparisons between
numbers in F can be done with costO (log2(1/u)). For the floating-point numbers we
described above we have u = 2−(m−1).

Once thewaywe dealwith finite precision is clear, we introduce the efficient version
of the Plantinga–Vegter algorithm (Algorithm 3 below). We note that the algorithm
updates the number of significant digits,m := |logu| + 1, depending on the width of
the box that is being considered, being able, if necessary, to read the coefficients of f
with this updated precision.

Algorithm 3: PV- Effective
Input : f ∈ Pn,d

a ∈ [1, ∞)

Precondition : VR(f) is smooth inside [−a, a]n

m0 ← 7 + ⌈log√
dn
⌉

S̃ ← {[−a, a]n}
S ← ∅

repeat
Take B in S̃
S̃ ← S̃ \ {B}
mB ← m0 + �max {log a, log(a/w(B))}�
Switch to floating-point numbers with mB significant digits

if | f̂ (m(B))| > 4
√
dn w(B) then

S ← S ∪ {B}
else if ‖∂̂ f (m(B))‖ > 6

√
d nw(B) then

S ← S ∪ {B}
else

S̃ ← S̃ ∪ StandardSubdivision(B)

until S̃ = ∅

return S

Output : Subdivision S ⊆ �[−a, a]n of [−a, a]n
Postcondition : For all B ∈ S, C f (B) is true

Remark 1.7 As in the case ofAlgorithm 2,we could rewrite | f̂ (m(B))| > 4
√
dn w(B)

and ‖∂̂ f (m(B))‖ > 6
√
d nw(B) in Algorithm 3 by 0 /∈ �̃[h f] and 0 /∈ �̃[‖h̃∂ f ‖],

123

Discrete & Computational Geometry (2022) 68:664–708 675

respectively, for some effective interval approximations �̃ (in the sense of [40]). Our
writing of the algorithm, however, is led by the wish to explicitly describe the interval
approximations we use, as noted in Remark 1.5.

2 Main Results

In this section, we outline without proofs the main results of this paper. In the first
part, we describe our randomness assumptions for polynomials. In the second one, we
give precise statements for our bounds on the average and smoothed complexity of
phase I of the Plantinga–Vegter Algorithm with infinite precision. In the last part, we
state similar results in the context of finite-precision arithmetic.

2.1 Randomness Model

Most of the literature on random multivariate polynomials considers polynomials
with Gaussian independent coefficients and relies on techniques that are only useful
for Gaussian measures. We will instead consider a general family of measures relying
on robust techniques coming from geometric functional analysis. Let us recall some
basic definitions.

(P1) A random variable x ∈ R is called centered if Ex = 0.
(P2) A random variable x ∈ R is called subgaussian if there exists a K such that for

all p ≥ 1,

(E|x|p)1/p ≤ K
√
p.

The smallest such K is called the �2-norm of x.
(P3) A random variable x ∈ R satisfies the anti-concentration property with constant

ρ if

max {P (|x − u| ≤ ε) | u ∈ R} ≤ ρε.

The sub-Gaussian property (P2) has other equivalent formulations. We refer the inter-
ested reader to [38]. We note that the anti-concentration property (P3) is equivalent to
having a density (with respect to the Lebesgue measure) bounded by ρ/2.

Definition 2.1 A dobro random polynomial f ∈ Hn,d with parameters K and ρ is a
polynomial

f :=
∑

|α|=d

(
d

α

)1/2
cαX

α (2.1)

such that the cα are independent centered sub-Gaussian random variables with �2-
norm at most K and anti-concentration property with constant ρ. A dobro random
polynomial f ∈ Pn,d is a polynomial f such that its homogenization fh is so.

123

676 Discrete & Computational Geometry (2022) 68:664–708

Remark 2.2 The word “dobro” appears in several Slavic languages and it means good.
The word “dobra” in Turkish means straight and honest, and the word has similar
connotations in Greek.

Some classes of dobro random polynomials of interest are the following three.

(N) A KSS random polynomial is a dobro random polynomial such that each cα in
(2.1) is Gaussian with unit variance. For this model we have Kρ = 1/

√
2π .

(U) A Weyl random polynomial is a dobro random polynomial such that each cα in
(2.1) has uniform distribution in [−1, 1]. For this model we have Kρ ≤ 1.

(E) For � ≥ 2, an �-random polynomial is a dobro random polynomial whose coef-
ficients are independent identically distributed random variables with density
function

t �→ 1

2
 (1 + 1/�)
e−|t |� .

We have in this case that ρ ≤ 1 and K ≤ 6/5.

Remark 2.3 The relevant complexity parameter for a dobro random polynomial f ∈
Pn,d with constants K and ρ is the product Kρ. This is so because this product is
invariant under scalings of f and condition numbers will be scale-invariant. Note that,
for t > 0, tf is still dobro, but with constants t K and ρ/t .

Remark 2.4 If we are interested in integer polynomials, dobro random polynomials
may seem inadequate. One may be inclined to consider random polynomials f ∈ Pn,d

such that cα is a random integer in the interval [−2τ , 2τ], i.e., cα is a random integer
of bit-size at most τ . As τ → ∞ and after we normalize the coefficients dividing
by 2τ , this randommodel converges to that ofWeyl random polynomials. Yet, in order
to have a more satisfactory understanding of random integer polynomials, one has
to consider random variables without a continuous density function. The techniques
we employed in this note, coming originally from geometric functional analysis, have
already been used to analyze condition numbers of randommatrices with such discrete
distributions [32, 38].

Remark 2.5 Even though there is a widespread agreement that average-case analysis
is a better picture of performance in practice than worst-case analysis, it is not itself
without contention. The most common objection to average-case analysis is that its
underlying probability distribution may not be an accurate reflection of “real life.” In
particular, that it may result in bounds that are too “optimistic.” An alternate form
of analysis, called smoothed analysis, was introduced by Spielmann and Teng with
the goal of overcoming this objection. The basic idea is to replace “behavior at a
random data” by “behavior at a random small perturbation of arbitrary data.” We
won’t attempt to describe the rationale of this setting. This can be read in [35, 36] or
in [2, Sect. 2.2.7]. But as our development allows to include smoothed-analysis results
without a substantial additional effort, we do so in parts (S) of Theorems 2.6, 2.7,
and 5.9.

123

Discrete & Computational Geometry (2022) 68:664–708 677

2.2 Complexity at the Interval and Effective Levels

The following two theorems give bounds for, respectively, the average and smoothed
complexity of Algorithms 2 and 3. In both of them, the ‘bigO’ notation is not asymp-
totic. It refers to the existence of a multiplicative constant, which we do not specify,
and holds for all values of a, K , ρ, d, and n.

Theorem 2.6 (complexity of Algorithm 2):

(A) Let f ∈ Pn,d be a dobro random polynomial with parameters K and ρ. The
expected number of boxes in the final subdivision S of Algorithm 2 on input (f, a)

is at most

dn N (n+1)/2 max {1, an} 212n log n+8(Kρ)n+1

and the expected number of arithmetic operations is at most

O(dn+1 N (n+3)/2 max {1, an} 212n log n+8(Kρ)n+1).

(S) Let f ∈ Pn,d , σ > 0, and g ∈ Pn,d a dobro random polynomial with parameters
K ≥ 1 and ρ. Then the expected number of n-cubes of the final subdivision S of
Algorithm 2 on input (qσ , a) where qσ = f + σ‖ f ‖g is at most

dn N (n+1)/2 max {1, an} 212n log n+8(Kρ)n+1
(
1 + 1

σ

)n+1

and the expected number of arithmetic operations is at most

O
(
dn+1 N (n+3)/2 max {1, an} 212n log n+8(Kρ)n+1

(
1 + 1

σ

)n+1)
.

Theorem 2.7 (complexity of Algorithm 3):

(A) Let f ∈ Pn,d be a dobro random polynomial with parameters K and ρ. The
expected number of boxes in the final subdivision S of Algorithm 3 on input (f, a)

is at most

dn N (n+1)/2 an215n log n+12(Kρ)n+1

and the expected number of arithmetic operations is at most

O(dn+1 N (n+3)/2 an215n log n+12(Kρ)n+1).

Moreover, the expected bit-cost of Algorithm 3 on input (f, a) is at most

O(dn+1 N (n+3)/2 an 215n log n+12 log2(dna)(Kρ)n+1),

123

678 Discrete & Computational Geometry (2022) 68:664–708

under the assumptions that floating-point arithmetic is done using standard arith-
metic and that the cost of operating with the exponents is negligible.

(S) Let f ∈ Pn,d , σ > 0, and g ∈ Pn,d a dobro random polynomial with parameters
K ≥ 1 and ρ. Then the expected number of n-cubes of the final subdivision S of
Algorithm 3 on input (qσ , a) where qσ = f + σ‖ f ‖g is at most

dn N (n+1)/2 an 215n log n+12(Kρ)n+1
(
1 + 1

σ

)n+1

and the expected number of arithmetic operations is at most

O
(
dn+1 N (n+3)/2 an215n log n+12(Kρ)n+1

(
1 + 1

σ

)n+1)
.

Moreover, the expected bit-cost of Algorithm 3 on input (qσ , a) is at most

O
(
dn+1 N (n+3)/2 an 215n log n+12 log2(dna)(Kρ)n+1

(
1 + 1

σ

)n+1)
,

under the assumptions that floating-point arithmetic is done using standard arith-
metic and that the cost of operating with the exponents is negligible.

Fix a dimension n, a box [−a, a]n and a dobro distribution (and with it, the param-
eters ρ and K). If d is let to vary, N = (n+d

n

) ≤ en(1 + d/n)n . Hence the bounds

of Theorems 2.6 and 2.7 are of the order d(n2+5n)/2. The complexity estimate in [10,
Thm. 4.3] reads as follows:

2O(dn+1(nτ+nd log (nd))n log a)

with τ being the largest bit-size of the coefficients of f . One can see that the average
analysis estimates (and the smoothed analysis, for a fixed σ) are exponentially smaller
than this worst-case estimate. This seems to relate better with the efficiency in practice
of the Plantinga–Vegter algorithm.

We note, however, that the bound in [10] and our bounds cannot be directly com-
pared. Not only because the former is worst-case and the latter average-case (or
smoothed) but because of the different underlying settings: the bound in [10] applies
to integer data, ours to real data. Nevertheless, the bounds for the effective version
Algorithm 3 apply to the real data under finite precision and provides estimates for
the bit complexity.

3 Geometric Framework

There is an extensive literature on norms of polynomials and their relation to norms
of gradients inHn,d . The PV algorithm, however, works in the affine space with non-
homogenous polynomials. We first establish basic definitions and inequalities that

123

Discrete & Computational Geometry (2022) 68:664–708 679

allow us to translate existing results into the setting of the PV algorithm. After the
transfer is completed, we continue with establishing interval approximations.

3.1 Weyl Norm

We first introduce the Weyl inner product on Hn,d .

Definition 3.1 The Weyl inner product onHn,d is given by

〈 f , g〉 :=
∑

α

(
d

α

)−1

fαgα

for f = ∑
α fαXα, g = ∑

α gαXα ∈ Hn,d ; and the Weyl inner product on Hq
n,d is

given by

〈f, g〉 :=
q∑

i=1

〈 fi , gi 〉

for f = (fi), g = (gi) ∈ Hq
n,d .

To extend this inner product to Pn,d , we use the homogeneization map

h : Pn,d → Hn,d ,

f �→ f h := f (X1/X0, . . . , Xn/X0)X
d
0

and its componentwise extension h : Pq
n,d → Hq

n,d .

Definition 3.2 The Weyl inner product on Pq
n,d is given by

〈f, g〉 := 〈fh, gh〉

for f, g ∈ Pq
n,d .

For both Hq
n,d and Pq

n,d the Weyl norm is the norm induced by the Weyl inner

product. Note that for F ∈ Hq
n,d , we have that ∂F(X) ∈ Hq(n+1)

n,d−1 and so we can
talk about the Weyl norm of ∂F(X). Recall that we write explicitly the vector X
of indeterminates to indicate that we are working with ∂F(X) as a vector of formal
derivatives of F . The following proposition comes in handy.

Proposition 3.3 Let f ∈ Hq
n,d and y ∈ S

n. Then, (1) ‖f(y)‖ ≤ ‖f‖, (2) ∥∥Dyf|TyS
n
∥
∥ ≤√

d‖f‖, and (3) ‖∂f(X)‖ ≤ d‖f‖.
Proof (1) is [2, Lem. 16.6], (2) is the Exclusion Lemma [2, Lem. 19.22], and (3)
can be shown by a direct computation, arguing as in the proof of [2, Lem. 16.46].
Alternatively, one can also see [37, 1§1] for a direct account of the proofs. ��

123

680 Discrete & Computational Geometry (2022) 68:664–708

3.2 Central Projection and Homogeneization

Let � : R
n → S

n be the map given by

� : x �→ 1
√
1 + ‖x‖2

(
1
x

)
. (3.1)

One can see that � is the map induced by the central projection of {1} × R
n onto the

sphere S
n and that this map induces a diffeomorphism between R

n and the upper half
of S

n .
Given f ∈ Pq

n,d , we observe that

fh(�(x)) = f(x)
(1 + ‖x‖2)d/2 , (3.2)

and so, by the chain rule,

D�(x)fhDx� = Dx f
(1 + ‖x‖2)d/2 − d · f(x) xT

(1 + ‖x‖2)d/2+1 (3.3)

where Dyfh : TyR
n+1 ∼= R

n+1 → Tfh(y)Rq∼=R
q , Dx f : TxR

n ∼= R
n → Tf(x)R

q ∼=
R
q , and Dx� : TxR

n → T�(x)S
n = �(x)⊥ are respectively the tangent maps of

fh, f , and �.
It is important to note that � deforms the metric. For each x ∈ R

n , we can see
that the singular values of Dx� are

σ1(Dx�) = . . . = σn−1(Dx�) = 1
√
1 + ‖x‖2 , σn(Dx�) = 1

1 + ‖x‖2 ,

and so, in particular,

‖Dx�‖ = 1
√
1 + ‖x‖2 . (3.4)

With the above, we next prove a version of Proposition 3.3 for Pq
n,d .

Proposition 3.4 Let f ∈ Pq
n,d be a polynomial map. Then the map

F : x �→ f(x)
‖f‖(1 + ‖x‖2)(d−1)/2

is (1 + √
d)-Lipschitz and, for all x, ‖F(x)‖ ≤ √1 + ‖x‖2.

Proof For the Lipschitz property, it is enough to bound the norm of the derivative of
the map by 1 + √

d . Due to (3.2),

F(x) =
√
1 + ‖x‖2 fh(�(x))

‖f‖ (3.5)

123

Discrete & Computational Geometry (2022) 68:664–708 681

and so, by the chain rule,

DxF = fh(�(x))

‖f‖ · xT
√
1 + ‖x‖2 +

√
1 + ‖x‖2 D�(x)f Dx�

‖f‖ .

Now, by the triangle inequality,

‖DxF‖ ≤ ‖fh(�(x))‖
‖f‖ · ‖x‖

√
1 + ‖x‖2 +

√
1 + ‖x‖2 ‖D�(x)f Dx�‖

‖f‖ .

On the one hand,

‖fh(�(x))‖
‖f‖ ≤ 1,

by Proposition 3.3 (1). On the other hand,

∥∥D�(x)f Dx�
∥∥ = ∥∥D�(x)f|T�(x)S

n Dx�
∥∥

≤ ∥∥D�(x)f|T�(x)S
n
∥∥ · ‖Dx�‖ ≤

√
d ‖f‖

√
1 + ‖x‖2 ,

by Proposition 3.3 (2) and (3.4). Hence

‖DxF‖ ≤ ‖x‖
√
1 + ‖x‖2 + √

d ≤ 1 + √
d

aswewanted to show.The claim about ‖F(x)‖ follows fromProposition 3.3 (1) applied
to the expression (3.5) for F. ��

3.3 Interval Approximations

Recall that our interval approximations, given in Proposition 1.1, rely on the functions
f̂ and ∂̂ f given, respectively, in (1.4) and (1.5). The following lemma will give us the
justification of our interval approximations, and with it a proof of Proposition 1.1.

Lemma 3.5 Let f ∈ Pn,d . Then:

(i) The map f̂ given in (1.4) is (1 + √
d)-Lipschitz and for all x ∈ R

n, it satisfies
| f̂ (x)| ≤ √1 + ‖x‖2.

(ii) The map ∂̂ f given in (1.5) is (1+√
d − 1)-Lipschitz and for all x ∈ R

n, it satisfies
‖∂̂ f (x)‖ ≤ √1 + ‖x‖2.

Proof of Proposition 1.1 It is a straightforward consequence of the Lipschitz properties
in Lemma 3.5. ��

123

682 Discrete & Computational Geometry (2022) 68:664–708

Proof of Lemma 3.5 (i) Apply Proposition 3.4 with f = f , then f̂ = F and both claims
follow. (ii) Apply Proposition 3.4 with f = f , then ∂̂ f = ‖∂ f (X)‖F/(d‖ f ‖) and
the claims follow since ‖∂ f (X)‖/(d‖ f ‖) ≤ 1 by Proposition 3.3 (3). ��
Once we have shown that our interval approximations are so, we show Theorem 1.3
which reduces the interval condition C f (B) to the condition C�

f (B) at a point.

Lemma 3.6 Let x ∈ R
n and s ∈ [0, 1/√2]. Then for all v,w ∈ B(x, s ‖x‖), we have

〈v,w〉 > ‖v‖‖w‖(1 − 2s2) ≥ 0.

Proof of Theorem 1.3 By the standard �2-�∞ inequality—which states that ‖x‖ ≤√
n‖x‖∞ for x ∈ R

n—interval approximations of Proposition 1.1 satisfy that for
all B ∈ �R

n

dist ((h f)(m(B)),�[h f](B)) ≤ (1 + √
d
)
√
n w(B)

2
and (3.6)

dist
(
(h̃∂ f)(m(B)),�[h̃∂ f](B)

) ≤ (1 + √
d − 1

)nw(B)

2
(3.7)

where dist is the usual Euclidean distance.
When the inequality on f̂ (m(B)) in C�

f (B) is satisfied, then (3.6) guaran-

tees that 0 /∈ �[h f](B). Similarly, when the inequality on ∂̂ f (m(B)) in C�
f (B)

is satisfied, then (3.7) and Lemma 3.6 (with s = 1/
√
2) guarantee that 0 /∈〈

�[h̃∂ f](B),�[h̃∂ f](B)
〉
. Hence C�

f (B) implies C f (B). ��
Proof of Lemma 3.6 Let s = cos θ , so that θ ∈ [0, π/4], c = √

1 − s2 and Kc :=
{u ∈ R

n | 〈x, u〉 ≥ ‖x‖ ‖u‖ c} the convex cone of those vectors u whose angle x̂ u
with x , is at most θ .

Given v,w ∈ Kc, we have, by the triangle inequality, that ∠ (vw) ≤ ∠ (vx) +
∠ (xw) ≤ 2θ ≤ π/2 (here ∠ denotes angle). Thus

cos∠ (vw) ≥ cos (∠ (vx) + ∠ (xw)) ≥ cos 2θ = 1 − 2s2 ≥ 0.

And so, it is enough to show that B(x, s‖x‖) ⊆ Kc or, equivalently, to show that
dist (x, ∂Kc) ≤ s‖x‖.

Now, dist (x, ∂Kc) = min {‖x − u‖ | u ∈ Kc, 〈x, u〉 = ‖x‖ ‖u‖ c} and this min-
imum equals the distance of x to a line having an angle θ with x , which is ‖x‖ s.

��

4 Condition Number

As other numerical algorithms in computational geometry, the Plantinga–Vegter algo-
rithm has a cost which significantly varies with inputs of the same size, even if the
coefficients are rational and inputs have the same bit-size. One wants to explain this
variation in terms of geometric properties of the input. Condition numbers allow for
such an explanation.

123

Discrete & Computational Geometry (2022) 68:664–708 683

Definition 4.1 [3, 13, 18] Given f ∈ Hn,d , f �= 0, the local condition number of f
at y ∈ S

n is

κ (f , y) := ‖ f ‖
√

f (y)2 + ‖Dy f|TyS
n‖2/d

.

Given f ∈ Pn,d , the local affine condition number of f at x ∈ R
n is

κaff(f , x) := κ (f h,�(x)).

4.1 What Does �aff Measure?

The nearer the hypersurface VR(f) is to having a singularity at x ∈ R
n , the smaller are

the boxes drawn by the Plantinga–Vegter algorithm around x . Instead of controlling
how near x is of being a singularity of f , we perform a Copernican turn and we control
instead how near f is of having a singularity at x . This is precisely what κaff (f , x)
does.

Theorem 4.2 (condition number theorem) Let x ∈ R
n and

�x := {g ∈ Pn,d | g(x) = 0, Dx g = 0} (4.1)

be the set of polynomials inPn,d that have a singularity at x. Then for every f ∈ Pn,d ,

‖ f ‖
κaff(f , x)

= dist (f , �x),

where dist is the distance induced by the Weyl norm on Pn,d .

Proof This is a reformulation of [3, Thm. 4.4] (cf. [2, Prop. 19.6]). ��
Theorem 4.2 provides a geometric interpretation of the local condition number, and
a corresponding “intrinsic” complexity parameter as desired by Burr et al. [10, 11].
The next result is an essential tool for our probabilistic analyses. Note that, in the case
under consideration, �x is a linear subspace of codimension n + 1 inside Pn,d .

Corollary 4.3 Let x ∈ R
n and let Rx : Pn,d → �⊥

x be the orthogonal projection onto
the orthogonal complement of the linear subspace �x . Then

κaff(f , x) = ‖ f ‖
‖Rx f ‖ .

Proof We have that dist (f , �x) = ‖Rx f ‖ since �x is a linear subspace. Hence
Theorem 4.2 finishes the proof. ��

123

684 Discrete & Computational Geometry (2022) 68:664–708

4.2 Regularity Inequality

After doing our Copernican turn, we can control how near is f ∈ Pn,d of having a
singularity at x ∈ R

n . The regularity inequality [6, Prop. 3.6] (cf. [37, Prop. 1§23])
allows us to recover how near is x of being a singularity of f . More precisely, the
regularity inequality gives lower bounds for the value of the function or its derivative
in terms of the condition number.

Proposition 4.4 (regularity inequality) Let f ∈ Pn,d and x ∈ R
n. Then either

| f̂ (x)| >
1

2
√
2d κaff(f , x)

or ‖∂̂ f (x)‖ >
1

2
√
2d κaff(f , x)

.

Proof Without loss of generality assume that ‖ f ‖ = 1. Let y := �(x), g := f h, and
assume that the first inequality does not hold. Then, by (3.2),

|g(y)| ≤ 1

2
√
2d κ(g, y)

√
1 + ‖x‖2 .

Now,

1√
2 κ(g, y)

≤ max

{
|g(y)|, ‖∂yg|TyS

n‖√
d

}
= ‖∂yg|TyS

n‖√
d

,

since |g(y)| < 1/(
√
2 κ(g, y)). Thus, by (3.3) and (3.4), we get

1√
2 κ(g, y)

≤
∥∥∥∥

Dx f

(1 + ‖x‖2)d/2 − d f (x) xT

(1 + ‖x‖2)d/2+1

∥∥∥∥

(
1 + ‖x‖2√

d

)
.

We divide by
√
d and use the triangle inequality to obtain

1√
2d κ(g, y)

≤ ‖Dx f ‖
d (1 + ‖x‖2)d/2−1 + | f (x)|

(1 + ‖x‖2)(d−1)/2
· ‖x‖
√
1 + ‖x‖2

= ‖∂̂ f (x)‖ + | f̂ (x)| ‖x‖
√
1 + ‖x‖2 .

By our assumption and ‖x‖ <
√
1 + ‖x‖2, the above inequality implies

1√
2d κ(g, y)

< ‖∂̂ f (x)‖ + 1

2
√
2d κaff(f , x)

,

from where the desired inequality follows. ��

123

Discrete & Computational Geometry (2022) 68:664–708 685

5 Complexity Analysis of the Interval Version

We analyze the complexity of Algorithm 2 in terms of the number of arithmetic
operations the algorithm performs. This task reduces to estimating the number of
boxes in the final subdivision produced by the algorithm. At the interval level, this
is so, because each iteration of the algorithm takes the same number of arithmetic
operations and the number of iterations is bounded by twice the number of final
cubes. This was the underlying strategy in [10].

5.1 Local Size Bound Framework

The original analysis in [10] was based on the notion of local size bound.

Definition 5.1 A local size bound for C : �R
n → {True,False} is a function

b : R
n → [0,∞) such that for all x ∈ R

n ,

b(x) ≤ inf {vol(B) | x ∈ B ∈ �R
n and C(B) = False}.

The idea behind the local size bound is that it gives us the size fromwhich every box
containing x satisfiesC . In our case, we will apply this to the conditionC�

f introduced
in Theorem 1.3. The following result, based on the notion of continuous amortization
developed by Burr et al. [8, 12] is proven in [10, Prop. 5.2].

Theorem 5.2 The number of boxes in the final subdivision S returned by Algorithm 2
on input (f , a) is at most

max

{
1,
∫

[−a,a]n
2n

b(x)
dx

}
,

where b is a local size bound for C�
f (of Theorem 1.3). Moreover, the bound is finite if

and only if the algorithm terminates.

To effectively use Theorem 5.2 we need explicit constructions for the local size
bound.

5.2 Condition-Based Local Size Bound and Complexity

The following result expresses a local size bound forC�
f in terms of the local condition

number κaff(f , x).

Theorem 5.3 The map

x �→ 1

(25/2dn κaff(f , x))n

is a local size bound for C�
f (of Theorem 1.3).

123

686 Discrete & Computational Geometry (2022) 68:664–708

Proof Let x ∈ R
n . Since x ∈ B, ‖x − m(B)‖ ≤ √

n w(B)/2. Hence, by Lemma 3.5
and the regularity inequality (Proposition 4.4), either

| f̂ (m(B))| ≥ 1

2
√
2d κaff(f , x)

− (1 + √
d)

√
n w(B)

2
or

‖∂̂ f (m(B))‖ ≥ 1

2
√
2d κaff(f , x)

− (1 + √
d − 1)

√
n w(B)

2
.

This means that C�
f (B) is true if either

2
√
2d (1 + √

d)
√
n κaff(f , x) w(B) < 1 or

2
√
2d (1 + √

d − 1) nκaff(f , x) w(B) < 1.

Hence we get that C�
f (B) is true when both conditions are satisfied and the inequality

1 + √
d ≤ 2

√
d finishes the proof. ��

Using the results above, we get the following theorem exhibiting a condition-based
complexity analysis of Algorithm 1.

Theorem 5.4 The number of boxes in the final subdivision S of Algorithm 2 on input
(f , a) is at most

dn max {1, an} 2n log n+9n/2
Ex∈[−a,a]n (κaff(f , x)n).

The number of arithmetic operations performed by Algorithm 2 on input (f , a) is at
most

O(dn+1 max {1, an} 2n log n+9n/2 N Ex∈[−a,a]n (κaff(f , x)n)
)
.

Proof The first statement follows from Theorems 5.2 and 5.3 combined with the
fact that

∫
[−a,a]n κaff(f , x)n dx equals (2a)n Ex∈[−a,a]n (κaff(f , x)n). The latter follows

from the fact that one performs O(dN) arithmetic operations to test C�
f and that the

number of boxes that the algorithm generates is at most two times the number of final
boxes. ��

The above condition-based complexity estimate will become the main tool to prove
Theorem 2.6 in Sect. 7 where we will study the quantity Ex∈[−a,a]n (κaff(f , x)n) for
random f.

In the literature on numerical algorithms in real algebraic geometry [3, 6, 7, 15–18],
it is customary the use the following global condition number

κaff(f) := max
x∈[−a,a]n κaff(f , x).

The quantity Ex∈[−a,a]n (κaff(f , x)n) in Theorem 5.4 is an average quantity, whereas
the condition number κaff(f) is a global supremum. The average quantity has finite

123

Discrete & Computational Geometry (2022) 68:664–708 687

expectation (over f), whereas the global supremum does not admit a bounded first
moment. This shows that a condition-based precision control combined with adap-
tive complexity techniques such as continuous amortization may lead to substantial
improvements in computational real algebraic geometry.

5.3 Interlude: Complexity of the Interval Version of [10]

In [10], Burr et al. gave an interval version of Algorithm 1 different from Algorithm
2 based in the BGT interval approximation which relies on Taylor series. We provide
a condition-based and probabilistic complexity analysis of this algorithm, although
only for the interval version, on which we only bound the number of cubes and not
the number of arithmetic operations. We recall that Burr et al. [10] showed that

C(f , x) := min

{
2n−1d/ln (1 + 22−2n) + √

n/2

dist (x, VC(f))
,
22n(d − 1)/ln (1 + 22−4n) + √

n/2

dist ((x, x), VC(g f))

}
,

where g f is the polynomial 〈D f (X), ∂ f (Y)〉, is a local size bound for the condition
that their interval version of Algorithm 1 checks.

Theorem 5.5 [10] The map

x �→ 1

C(f , x)n

is a local size bound function for the condition that the BGT interval version of Algo-
rithm 1 checks.

Looking at the definition of C(f , x) in [10] one can see that 1/C measures how near
is x of being a singular zero of f . This is similar to 1/κaff which, by Theorem 4.2,
measures how near is f of having x as a singular zero. The following result relates
these two quantities.

Theorem 5.6 Let d > 1 and f ∈ Pn,d . Then, for all x ∈ R
n,

C(f , x) ≤ 23nd2κaff(f , x).

Proof Note that Lemma 3.5 holds over the complex numbers as well. Due to this and
the fact that VC(f) = VC(f̂), we have that

| f̂ (x)| ≤ (1 + √
d) dist (x, VC(f)).

Now, if
√
2 (1 + √

d − 1) dist ((y1, y2), (x, x)) < ‖∂̂ f (x)‖, then √
2 (1 + √

d − 1)
‖yi − x‖ < ‖∂̂ f (x)‖. Thus, by Lemma 3.5,

√
2 ‖∂̂ f (yi) − ∂̂ f (x)‖ < ‖∂̂ f (x)‖ and

so, by Lemma 3.6, 0 �= 〈∂̂ f (y1), ∂̂ f (y2)〉. Hence

‖∂̂ f (x)‖ ≤ √
2 (1 + √

d − 1) dist (x, VC(g f)).

123

688 Discrete & Computational Geometry (2022) 68:664–708

The bound now follows from Proposition 4.4, together with 23(n−1)d +√
n ≤ 23n−2d

and

min

{
2n−1d

ln (1 + 22−2n)
+

√
n

2
,

22n(d − 1)

ln (1 + 22−4n)
+
√
n

2

}
≤ 23n−4d +

√
n

2
.

The latter follows from

1

ln (1 + 22−2n)
≤ 22n−3 and

1

ln (1 + 22−4n)
≤ 24n−3,

which are deduced from first-order approximations of the natural logarithm. ��
Theorems5.5 and5.6 combine to give an analogofTheorem5.3 for theBGT interval

version of Algorithm 1. Also, [10, Thm. 5.1] provides an analog of Theorem 5.2 in
this setting. We can therefore proceed to derive the following result, a BGT version of
Theorem 5.4, in the same manner that the latter is derived from Theorems 5.2 and 5.3.

Corollary 5.7 The number of boxes in the final subdivision S of the BGT interval
version of Algorithm 1 on input (f , a) is at most

d2n max {1, an} 23n2+2n
Ex∈[−a,a]n (κaff(f , x)n).

Remark 5.8 The main difference between C(f , x) and κ(f , x) is that C(f , x) is a
non-linear quantity and is hard to compute and to analyze, while the local condition
number κ(f , x)—as indicated in Corollary 4.3—is a linear quantity, easier to compute
and analyze.

We finish this interlude giving a form of Theorem 2.6 for the BGT version of
Algorithm 1 (which, obviously, deals only with number of boxes, not with number
of arithmetic operations). It is proved as Theorem 2.6 (see Sects. 7.2 and 7.3) with
Corollary 5.7 taking the role of Theorem 5.2.

Theorem 5.9 (A) Let f ∈ Pn,d be a dobro random polynomial with parameters K
and ρ. The expected number of boxes in the final subdivision S of the BGT interval
version of Algorithm 1 on input (f, a) is at most

dn
2
N (n+1)/2 max {1, an} 23n2+n log n+7n+15/2(Kρ)n+1.

(S) Let f ∈ Pn,d , σ > 0, and g ∈ Pn,d a dobro random polynomial with parameters
K ≥ 1 and ρ. Then the expected number of boxes of the final subdivision F of the
BGT interval version of Algorithm 1 on input (qσ , a) where qσ = f + σ‖ f ‖ g is
at most

dn
2
N (n+1)/2 max {1, an} 23n2+n log n+7n+15/2(Kρ)n+1

(
1 + 1

σ

)n+1

.

123

Discrete & Computational Geometry (2022) 68:664–708 689

6 Error and Complexity Analysis of the Effective Version

We next work on the framework of floating-point numbers introduced in §1.3. For
an arithmetic expression φ and a point x ∈ R, we will denote by fl(φ(x)) ∈ F the
value obtained when evaluating φ at r(x) ∈ F using floating-point finite precision. In
general, our objective is to show that for such expressions φ in our algorithm we have,
for some other expression ψ(x) and some k ≥ 1 satisfying ku < 1,

fl(φ(x)) = φ(x) + ψ(x) θk

where θk is any number δ ∈ R satisfying

|δ| ≤ ku
1 − ku

.

This is the general strategy in [26, Chap. 3].

6.1 Finite-Precision Computations

We study the errors due to finite-precision in Algorithm 3 and show its correctness.
In all what follows, we use numerical algorithm to refer to an algorithm meant to be
implemented with finite precision and analyzed in terms of error accumulation. This
is common terminology.

The following two propositions bound the forward error in the computation of
| f̂ (x)| and ‖∂̂ f (x)‖. Because their proofs are a variation of well-known results (e.g.
[15, Thm. 6.10]) and aremore tedious than enlightening, we defer them to an appendix.

Proposition 6.1 There is a numerical algorithm which, with input f ∈ Pn,d and
x ∈ R

n, computes | f̂ (x)|. This algorithm performs O(dN) arithmetic operations,
and, on input x ∈ F

n and f ∈ Pn,d ∩F [X1, . . . , Xn], the computed value fl(| f̂ (x)|)
satisfies

fl(| f̂ (x)|) = | f̂ (x)| +√1 + ‖x‖ θ32 d log(n+1).

In particular, if the round-off unit satisfies

u ≤ 1

64 d log (n + 1)
,

then for x ∈ [−a, a]n ∩ F
n,

∣
∣fl(| f̂ (x)|) − | f̂ (x)|∣∣ ≤ 64

√
2 d

√
n + 1 log (n + 1)max {1, a} u.

The above remains true for arbitrary f and x if we apply the algorithm to r(f) and
r(x).

123

690 Discrete & Computational Geometry (2022) 68:664–708

Proposition 6.2 There is a numerical algorithm which, with input f ∈ Pn,d and
x ∈ R

n, computes ‖∂̂ f (x)‖. It performs O(dN) arithmetic operations, and, on input
x ∈ F

n and f ∈ Pn,d ∩ F[X1, . . . , Xn], the computed value ‖∂̂ f (x)‖ satisfies

fl(‖∂̂ f (x)‖) = ‖∂̂ f (x)‖ +√1 + ‖x‖ θ32 d log (n+1).

In particular, if the round-off unit satisfies

u ≤ 1

64 d log (n + 1)
,

then for x ∈ [−a, a]n ∩ F
n,

∣∣fl(‖∂̂ f (x)‖) − ‖∂̂ f (x)‖∣∣ ≤ 64
√
2 d

√
n + 1 log (n + 1)max {1, a} u.

The above remains true for arbitrary f and x if we apply the algorithm to r(f) and
r(x).

We can now show the correctness of Algorithm 3. We will denote by fl(B) the
rounding r(B) of a box B given by

m(fl(B)) = m(B)(1 + θ1) and w(fl(B)) = w(B)(1 + θ1).

Similarly, we will write fl(f) to denote the rounding r(f) of f . The next theorem
shows that if the round-off unit is sufficiently small, then a floating-point version of
condition C�

f (B) is good enough to check C f (B).

Theorem 6.3 Let B ∈ �[−a, a]n. If

CFP
f :=

{
fl
(|f̂l(f)(m(fl(B)))|) > fl

(
4
√
d
√
n + 1w(fl(B))

)
or

(‖ ̂∂fl(f)(m(fl(B)))‖) > fl
(
6
√
d (n + 1) w(fl(B))

)

and

u ≤ 1

128
√
dn

· min {1, w(B)}
max {1, a} ,

then C�
f (B) holds and, hence, so does C f (B).

Corollary 6.4 Algorithm 3 is correct.

Proof of Theorem 6.3 Note that the conditions of Propositions 6.1 and 6.2 are satisfied.
Therefore, using our hypothesis on the magnitude of u, we have

| f̂ (m(B))| > fl
(|f̂l(f)(m(fl(B)))|)− √

d log (n + 1)min {1, w(B)}, (6.1)

‖∂̂ f (m(B))‖ > fl
(‖ ̂∂fl(f)(m(fl(B)))‖)− √

d log (n + 1)min {1, w(B)}. (6.2)

123

Discrete & Computational Geometry (2022) 68:664–708 691

By error analysis (Proposition A.1), we have that

fl
(
4
√
d
√
n + 1w(fl(B))

) = 4
√
d
√
n + 1w(B)(1 + θ8) and (6.3)

fl
(
4
√
d (n + 1) w(fl(B))

) = 6
√
d (n + 1) w(B)(1 + θ8). (6.4)

Hence, again by the bound on u, from (6.3) we get

fl
(
4
√
d
√
n + 1w(fl(B))

)
> 4

√
d
√
n + 1w(B)

(
1 − 1

8
√
dn

· min {1, w(B)}
max {1, a}

)

(6.5)
and from (6.4)

fl
(
4
√
d(n + 1) w(fl(B))

)
> 6

√
d(n + 1) w(B)

(
1 − 1

8
√
dn

· min {1, w(B)}
max {1, a}

)
.

(6.6)
Now, combining (6.1) and (6.5), we get

| f̂ (m(B))| > 2
√
d
√
n + 1w(B) (6.7)

+ 2
√
d
√
n + 1w(B)

(
1 − 1

4
√
dn

· min {1, w(B)}
max {1, a} − log (n + 1)

2
√
n + 1

min

{
1,

1

w(B)

})

and, combining (6.2) and (6.6),

‖∂̂ f (m(B))‖ > 3
√
d (n + 1) w(B) (6.8)

+ 3
√
d (n + 1) w(B)

(
1 − 1

6
√
dn

· min {1, w(B)}
max {1, a} − log (n + 1)

2(n + 1)
min

{
1,

1

w(B)

})
.

Now, the term between parentheses in the right-hand side of (6.7) is positive since

1

4
√
dn

· min {1, w(B)}
max {1, a} + log (n + 1)

2
√
n + 1

min

{
1,

1

w(B)

}

≤ 1

4
√
dn

+ log (n + 1)

2
√
n + 1

≤ 1

4
+ 1

2
< 1,

and so is the one in the right-hand side of (6.8) since

1

6
√
dn

· min {1, w(B)}
max {1, a} + log (n + 1)

2(n + 1)
min

{
1,

1

w(B)

}

≤ 1

6
√
dn

+ 1

2
√
n + 1

≤ 1

6
+ 1

2
√
2

< 1.

Therefore our claim holds. ��

123

692 Discrete & Computational Geometry (2022) 68:664–708

6.2 Complexity of Algorithm 3

We now prove the analogous of Theorem 5.3 in the finite-precision setting. To do
so we have to slightly modify the sense of the term ‘local size bound’ to take finite
precision into account.

Definition 6.5 A local size bound for CFP
f is a function bFPf : R

n → [0,∞) such that
for all x ∈ R

n ,

bFPf (x) ≤ inf

⎧
⎨

⎩
vol(B)

∣
∣
∣
x ∈ B ∈ �R

n, CFP
f (B) = False

with u ≤ 1

128
√
dn

· min {1, w(B)}
max {1, a}

⎫
⎬

⎭
.

Themodification takes into account that the conditionCFP
f is checked with sufficiently

large precision, as indicated by Theorem 6.3. The theorem below gives us the local
size bound for finite precision.

Theorem 6.6 The map

x �→ 1

(26dnκaff(f , x))n

is a local size bound for CFP
f (of Theorem 6.3).

Proof The proof is similar to the one of Theorem 6.3. For now on, let B ∈ �R
n be

such that x ∈ B. By Propositions 6.1 and 6.2, and the bound on u, we have that

fl
(|f̂l(f)(m(fl(B)))|) > | f̂ (m(B))| − √

d log (n + 1)min {1, w(B)} and

fl
(‖ ̂∂fl(f)(m(fl(B)))‖) > ‖∂̂ f (m(B))‖ − √

d log (n + 1)min {1, w(B)}.

By error analysis (Proposition A.1),

4
√
d
√
n + 1w(B)

(
1 + 1

8
√
dn

· min {1, w(B)}
max {1, a}

)
> fl

(
4
√
d
√
n + 1w(fl(B))

)
,

6
√
d (n + 1) w(B)

(
1 + 1

8
√
dn

· min {1, w(B)}
max {1, a}

)
> fl

(
4
√
d (n + 1) w(fl(B))

)
.

123

Discrete & Computational Geometry (2022) 68:664–708 693

By the regularity inequality (Proposition 4.4) and Lemma 3.5, we know that either

fl
(|f̂l(f)(m(fl(B)))|)

>
1

2
√
2dκaff(f , x)

− (1 + √
d)

√
n

2
w(B) − √

d log (n + 1)min {1, w(B)}

>
1

2
√
2dκaff(f , x)

− 2
√
dn w(B) or

fl
(‖ ̂∂fl(f)(m(fl(B)))‖)

>
1

2
√
2dκaff(f , x)

− (1 + √
d − 1)

√
n

2
w(B) − √

d log (n + 1)min {1, w(B)}

>
1

2
√
2dκaff(f , x)

− 2
√
dn w(B).

Hence CFP
f (B) holds as long as

1

2
√
2dκaff(f , x)

− 2
√
dn w(B)

> 6
√
d (n + 1) w(B)

(
1 + 1

8
√
dn

· min {1, w(B)}
max {1, a}

)
,

which is implied by

26 d(n + 1) κaff(f , x) w(B) < 1.

This means that CFP
f (B) is true when vol(B) < 1/(26dnκaff(f , x))n , which is what

we wanted to show. ��
Using continuous amortization [8, 12] (we use the statement in [11, Thm. 5]), we

obtain the following condition-based complexity analysis of Algorithm 3.

Theorem 6.7 The number of boxes in the final subdivision S of Algorithm 3 on input
(f , a) is at most

dnan2n log n+8n
Ex∈[−a,a]n (κaff(f , x)n).

The number of arithmetic operations performed by Algorithm 3 on input (f , a) is at
most

O(dn+1 an 2n log n+8n N Ex∈[−a,a]n (κaff(f , x)n)
)
.

Furthermore, the bit-cost of Algorithm 3 on input (f , a) is at most

O(dn+1 an 2n log n+8n N log2(dna) Ex∈[−a,a]n (κaff(f , x)n log2κaff(f , x))
)

123

694 Discrete & Computational Geometry (2022) 68:664–708

under the assumptions that floating-point arithmetic is done using standard arithmetic
and that the cost of operating with the exponents is negligible.

Proof The first two claims follow from Theorems 6.6 and 5.2. For the third claim, we
recall the following variant of Theorem 5.2 that can be found in [11, Thm. 5]. Let S
be the final subdivision output by Algorithm 3 and h : (0,∞) → (0,∞) a continuous
map. Then

∑

B∈S
h(w(B)) ≤ max

{

h(2a),

∫

[−a,a]n
2n

bFPf (x)
h

(bFPf (x)1/n

2

)
dx

}

.

Applying Theorem 6.6, we get that
∑

B∈S h(w(B)) is bounded by

max

{
h(2a), 2n log n+7ndn

∫

[−a,a]n
κaff(f , x)

n h(25dnκaff(f , x)) dx

}
.

Now, we note that testingCFP
f at each of the boxes along the way takes at mostO(dN)

arithmetic operations and that the number of boxes that the algorithm deals with is at
most twice the number of final boxes. Because of this, the bit-cost of the algorithm
(ignoring the cost of operating with exponents) in floating-point arithmetic is

O
(

dN
∑

B∈S
m2

B

)

.

This is so, because each arithmetic operation takes O(m2) bit-time and mB is the
largest precision needed to test CFP

f in any box that is an ancestor of B. Hence, by
Theorem 6.3 and the relation of mB to u, taking

h(w(B)) = O
(
max

{
log2 29

√
dna, log2 29

√
dn

a

w(B)

})

gives the final bound. ��
The above condition-based complexity estimate will become the complexity esti-

mates in Theorem 2.7 in the coming Sect. 7.

7 Probabilistic Analyses

In this section, we prove Theorems 2.6 and 2.7 stated in Sect. 2 using Theorems 5.3
and 6.6 and their corollaries respectively.

7.1 Some Useful Tools

The main tools we are going to use are a tail bound on the norm of a random vector
and a small ball type estimate to ensure norm of a random projection is not too small.

123

Discrete & Computational Geometry (2022) 68:664–708 695

Following [37, 5§1], we will give explicit constants avoiding the use of undefined
absolute constants. This will require us to sketch some proofs.

Theorem 7.1 Let x ∈ R
N be a random vector where each component xi is centered

and sub-Gaussian with �2-norm K . Then for all t ≥ 5K
√
N,

P (‖x‖ ≥ t) ≤ exp

(
− t2

(5K)2

)
.

Sketch of proof We follow the ideas in [38, Thm. 2.6.3]. Note that ‖x‖ ≥ t is equivalent
to es

2‖x‖2 ≥ es
2t2 . By Markov’s inequality and independence,

P (‖x‖ ≥ t) ≤ e−s2t2
Ees

2‖x‖2 =
N∏

i=1

Ees
2x2i .

By assumption, for each i ,

Ees
2lx2i =

∞∑

l=0

s2lEx2li
l! ≤

∞∑

l=1

s2l K 2l(2l)l

l! ≤
∞∑

l=0

(2eK 2sl)l ,

since l! ≥ (l/e)l . Thus, taking s2 = 1/(4eK 2), we get

P (‖x‖ ≥ t) = 2Ne−t2/(4eK 2).

The claim is now trivial assuming t ≥ √
8e ln 2 K

√
N . ��

Theorem 7.2 [33, Cor. 1.4] Let x ∈ R
N be a random vector where each component xi

has the anti-concentration property with constant ρ and P : R
N → R

N an orthogonal
projection onto a k-dimensional linear subspace of R

N . Then for all ε > 0,

P (‖Px‖ ≤ √
kε) ≤ (3ρε)k .

Sketch of proof Note that by assumption, each xi has probability density (with respect
to the Lebesguemeasure) bounded by ρ/2. Then, by [28, Thm. 1.1], Px has probability
density (with respect to the Lebesgue measure) bounded by (ρ/

√
2)k . Thus

P (‖Px‖ ≤ √
kε) ≤ ωk

(√
kρ√
2

)k
,

where ωk is the volume of the k-dimensional Euclidean ball. Now, ωkkk/2 ≤
(2e)k/2πk/2, from where the claim follows. ��

123

696 Discrete & Computational Geometry (2022) 68:664–708

7.2 Average Complexity Analysis

The following theorem is the main technical result fromwhich the average complexity
bound will follow.

Theorem 7.3 Let f ∈ Pn,d be a dobro random polynomial with parameters K and ρ.
For all x ∈ R

n and t ≥ e,

P (κaff(f, x) ≥ t) ≤ 2

(
N

n + 1

)(n+1)/2

(15 Kρ)n+1 (ln t)(n+1)/2

tn+1 .

Remark 7.4 By [21, (1)], we have Kρ ≥ 1/4 for a dobro random polynomial f with
parameters K and ρ. This fact will be used without mention in the bounds below.

Proof of Theorem 7.3 By Corollary 4.3, we have that κaff(f, x) = ‖f‖/‖Rx f‖ with Rx

an orthogonal projection onto the (n + 1)-dimensional linear subspace �⊥
x . By the

union bound, for all u, t > 0,

P (κaff(f, x) ≥ t) ≤ P (‖f‖ ≥ u) + P (‖Rx f‖ ≤ u/t). (7.1)

We apply now Theorems 7.1 to the first term and 7.2 to the second. Thus for u >

5K
√
N and t > 0,

P (κaff(f, x) ≥ t) ≤ exp
−u2

(5K)2
+
(

3uρ

t
√
n + 1

)n+1

.

We set u = 5K
√
N ln t , so we get

P (κaff(f, x) ≥ t) ≤ t−N +
(
15 Kρ

√
N√

n + 1

)n+1
(ln t)(n+1)/2

tn+1

for t ≥ e. The inequality n + 1 ≤ N and Remark 7.4 finish the proof. ��
Theorem 7.3 immediately gives probabilistic bounds for Ex∈[−a,a]n (κaff(f, x)n)

and Ex∈[−a,a]n (κaff(f, x)n log2 κaff(f, x)) for a random f. The two corollaries below,
together with Theorems 5.3 and 6.6, give us the proof of the part (A) of Theorems 2.6
and 2.7.

Theorem 7.5 Let f ∈ Pn,d be a dobro random polynomial with parameters K and ρ

and α ∈ [1, n + 1). Then

EfEx∈[−a,a]n (κaff(f, x)α) ≤ 4
α
√
n + 1

n + 1 − α

(
N

n + 1 − α

)(n+1)2

(25 Kρ)n+1.

Corollary 7.6 Let f ∈ Pn,d be a dobro random polynomial with parameters K and ρ.
Then

EfEx∈[−a,a]n (κaff(f, x)n) ≤ N (n+1)/225n+(3/2) log n+15/2(Kρ)n+1.

123

Discrete & Computational Geometry (2022) 68:664–708 697

Corollary 7.7 Let f ∈ Pn,d be a dobro random polynomial with parameters K and ρ.
Then

EfEx∈[−a,a]n
(
κaff(f, x)

n log2κaff(f, x)
) ≤ N (n+1)/2 26n+(3/2) log n+12(Kρ)n+1.

Proof of Theorem 7.5 By the Fubini–Tonelli theorem,

EfEx∈[−a,a]n (κaff(f, x)α) = Ex∈[−a,a]αEf(κaff(f, x)
n),

so it is enough to have a uniform bound for

Ef(κaff(f, x)
α) =

∫ ∞

1
P (κaff(f, x)

α ≥ t) dt .

Now, by Theorem 7.3, this is bounded by

eα + 2

(
N

α(n + 1)

)(n+1)/2

(15 Kρ)n+1
∫ ∞

1

(ln t)(n+1)/2

t (n+1)/α
dt .

After the change of variables t = eαs/(n+1−α) the bound becomes

eα + 2
α

n + 1 − α

(
N

(n + 1 − α)(n + 1)

)(n+1)/2

(15 Kρ)n+1
∫ ∞

1
s(n+1)/2e−s ds

= eα + 2
α

n + 1 − α

(
N

(n + 1 − α)(n + 1)

)(n+1)/2

(
n + 3

2

)
(15 Kρ)n+1,

where
 is Euler’s Gamma function. We note that eα ≤ en+1 and that, by the Stirling
estimates,

(
n + 3

2

)
≤ √

2π

(
n + 3

2e

)(n+2)/2

≤ √
2π

(
n + 1

e

)(n+2)/2

.

Combining all these inequalities, we obtain the desired upper bound. ��
Proof of Corollary 7.6 We take α = n in Theorem 7.5. ��
Proof of Corollary 7.7 Recall that log2 y ≤ 5

√
y for y ≥ 1. Hence

EfEx∈[−a,a]n (κaff(f, x)n log2 κaff(f, x)) ≤ 25/2EfEx∈[−a,a]n (κaff(f, x)n+1/2)

and the claim follows using Theorem 7.5 with α = n + 1/2. ��
We can finally prove the average complexity bounds in our main theorems.

123

698 Discrete & Computational Geometry (2022) 68:664–708

Proof of Theorem 2.6 (A) The expected number of boxes we want to bound is bounded
by the expectation of the estimate for this quantity in Theorem 5.4 with respect to a
dobro random f ∈ Pn,d , that is,

dn max {1, an} 2n log n+9n/2
Ef∈Pn,dEx∈[−a,a]n (κaff(f, x)n).

A bound for the inner double expectation is in Corollary 7.6. The bound for the
expected number of operations is similarly derived. ��
Proof of Theorem 2.7 (A) Similar to the proof above but using Corollaries 7.6 and 7.7
to get upper bounds for the two expectations (arithmetic cost and, also now, bit-cost).

��

7.3 Smoothed Complexity Analysis

The tools used for our average complexity analysis yield also a smoothed complexity
analysis (see [35] or [2, Sect. 2.2.7]). We provide this analysis following the lines
of [22].

The main idea of smoothed complexity is to have a complexity measure interpolat-
ing between worst-case complexity and average-case complexity. More precisely, we
are interested in the maximum—over f ∈ Pn,d—of the average cost of the algorithm
when the input polynomial has the form

qσ := f + σ‖ f ‖ g (7.2)

with g ∈ Pn,d a dobro random polynomials with parameters K ≥ 1 and ρ, and
σ ∈ (0,∞). Notice that the perturbation σ‖ f ‖ g of f is proportional to bothσ and ‖ f ‖.
The following lemma shows how Theorems 7.1 and 7.2 apply to this class of random
polynomials.

Lemma 7.8 Let qσ be as in (7.2). Then for t > 1 + σ
√
N

P (‖qσ‖ ≥ t‖ f ‖) ≤ exp
−(t − 1)2

(σ5K)2

and, for every x ∈ R
n,

P (‖Rxqσ ‖ ≤ ε) ≤
(

3ρε

σ ‖ f ‖√n + 1

)n+1

,

where Rx is as in Corollary 4.3.

Proof By the triangle inequality we have P (‖qσ ‖ ≥ t‖ f ‖) ≤ P (‖g‖ ≥ (t − 1)/σ).
Then we apply Theorem 7.1 which finishes the proof of the first claim. The second
claim is a direct consequence of Theorem 7.2. ��

As in the average case, this leads to a tail bound.

123

Discrete & Computational Geometry (2022) 68:664–708 699

Theorem 7.9 Let qσ be as in (7.2) and x ∈ R
n. Then for σ > 0 and t ≥ e,

P (κaff(qσ , x) ≥ t) ≤ 2

(
N

n + 1

)(n+1)/2

(15 Kρ)n+1 (ln t)(n+1)/2

tn+1

(
1 + 1

σ

)n+1

.

Proof We proceed as in the proof of Theorem 7.3, but with Lemma 7.8 using u =
‖ f ‖(σ5K√

N ln t + 1). This gives the desired bound arguing as in that proof after
noticing that

u ≤ ‖ f ‖(1 + σ)5K
√
N ln t,

which holds since 5K
√
N ln t ≥ 1. ��

As in the average case, Theorem 7.9 yields probabilistic bounds for both
Ex∈[−a,a]n (κaff(f, x)n) and Ex∈[−a,a]n (κaff(f, x)n log2κaff(f, x)) for random f. The two
corollaries below, together with Theorems 5.3 and 6.6, give us the proof of the part (S)
of Theorems 2.6 and 2.7.

Theorem 7.10 Let qσ be as in (7.2) and α ∈ [1, n + 1). Then for all f ∈ Pn,d and all
σ > 0,

Eqσ Ex∈[−a,a]n (κaff(qσ , x)α)

≤ 4
α
√
n + 1

n + 1 − α

(
N

n + 1 − α

)(n+1)/2

(25 Kρ)n+1
(
1 + 1

σ

)n+1

.

Proof The proof is as that of Theorem 7.5, but using Theorem 7.9 instead of Theo-
rem 7.3. ��
Corollary 7.11 Let qσ be as in (7.2). Then for all f ∈ Pn,d and all σ > 0,

Eqσ Ex∈[−a,a]n (κaff(qσ , x)n) ≤ N (n+1)/2 25n+(3/2) log n+15/2(Kρ)n+1
(
1 + 1

σ

)n+1

.

Corollary 7.12 Let qσ be as in (7.2). Then for all f ∈ Pn,d and all σ > 0,

Eqσ Ex∈[−a,a]n (κaff(qσ , x)n log2κaff(qσ , x))

≤ N (n+1)/2 26n+(3/2) log n+12(Kρ)n+1
(
1 + 1

σ

)n+1

.

Proof of Corollaries 7.11 and 7.12 We do as in the proof of Corollaries 7.6 and 7.7 but
using Theorem 7.10 instead of Theorem 7.5. ��

We conclude showing how the smoothed complexity estimates follow.

Proof of Theorem 2.6 (S) The proof is the same as that of Theorem 2.6 (A), but using
Corollary 7.11 instead of Corollary 7.6. ��
Proof of Theorem 2.7 (S) The proof is the same as that of Theorem 2.6 (A), but using
Corollaries 7.11 and 7.12 instead of Corollaries 7.6 and 7.7. ��

123

700 Discrete & Computational Geometry (2022) 68:664–708

Acknowledgements We cordially thank Michael Burr and Elias Tsigaridas for useful discussions. We also
thank the two anonymous reviewers for their very detailed feedback that greatly helped us to improve this
paper. Additionally, J. T.-C. is grateful to Evgenia Lagoda for moral support and Gato Suchen for useful
suggestions for this paper.

Declarations

Funding This work was supported by the Einstein Fundation Berlin. F.C. was partially supported by a
GRF grant from the Research Grants Council of the Hong Kong SAR (project number CityU 11302418).
A.E. is supported by US National Science Foundation grant CCF 2110075. J. T.-C. was by a postdoctoral
fellowship of the 2020 “Interaction” program of the Fondation Sciences Mathématiques de Paris, and
partially supported by ANR JCJC GALOP (ANR-17-CE40-0009), the PGMO grant ALMA, and the PHC
GRAPE.

Sources An extended abstract containing some of the results was presented at ISSAC’19 [14]. Some pre-
liminary versions of the results in Sect. 7 was included in the doctoral thesis of Tonelli-Cueto [37].

Appendix A Proofs of Propositions 6.1 and 6.2

We proceed by introducing a new error symbol which will make our manipulations
easier, then we recall some fundamental numerical algorithms for computing inner
product and monomials and we apply them to the computed quantities during the
execution of Algorithm 3.

A.1 The Arithmetic of Error Accumulation

To ease the technique of [26, Chap. 3], we will use the symbol θk allowing any real
number k ≥ 1 in the subindex. Note that this does not affect any of the results. As the
symbol θk might be difficult to parse, let us explain in more detail how it works. Let
φ be some arithmetic expression. Whenever we write an expression of the form

fl(φ(x)) = φ̃ (x, θt1 , . . . , θt�) (A1)

for some arithmetic expression φ̃ and for some real numbers t1, . . . , t� ≥ 1, we will
mean that, as long as max {t1, . . . , t�}u < 1/2, we have

fl(φ(x)) = φ̃ (x, τ1, . . . , τ�)

for some

τ1 ∈
[
− t1u
1 − t1u

,
t1u

1 − t1u

]
, . . . , τ� ∈

[
− t�u
1 − t�u

,
t�u

1 − t�u

]
.

We note that in this notation we are allowing more freedom as we do not require
t1, . . . , t� to be integers. Furthermore, and this will make it computationally as useful
as Landau notation, we introduce the following additional, asymmetric, notation.

123

Discrete & Computational Geometry (2022) 68:664–708 701

Assume max {t1, . . . , t�, t ′1, . . . , t ′�′ }u < 1/2 and x ∈ R. We write

φ̃(x, θt1 , . . . , θt�) = φ̃′(x, θt ′1 , . . . , θt ′�′
)

(A2)

to mean that for every

τ1 ∈
[
− t1u
1 − t1u

,
t1u

1 − t1u

]
, . . . , τ� ∈

[
− t�u
1 − t�u

,
t�u

1 − t�u

]
,

there exist

τ ′
1 ∈

[
− t ′1u
1 − t ′1u

,
t ′1u

1 − t ′1u

]
, . . . , τ ′

�′ ∈
[
− t ′

�′u

1 − t ′
�′u

,
t ′
�′u

1 − t ′
�′u

]

—of course, depending on τ1, . . . , τ�—such that

φ̃(x, τ1, . . . , τ�) = φ̃′(x, τ ′
1, . . . , τ

′
�′).

This is consistent with notation (A1) in the sense that if both (A1) and (A2) hold then
fl(φ(x)) = φ̃′(x, θt1 , . . . , θt�). This will allow us to mechanically perform the finite
precision analysis using the following rules.

Proposition A.1 For all s, s′ ≥ 1, the following holds for the error symbol:

(E1) If s ≤ s′, θs = θs′ .
(E2) θs + θs′ + θsθs′ = θs+s′ . In particular, θs + θs′ = θs+s′ and (1+ θs)(1+ θs′) =

1 + θs+s′ .
(E3) (1 + θs)

−1 = 1 + θ2s .
(E4)

√
1 + θs = 1 + θs .

(E5) For all t ∈ R, tθs = |t |θs = θmax {1,|t |}s .
(E6) For all t, t ′ ∈ R, tθs + t ′θs′ = (|t | + |t ′|)θmax {s,y}.
(E7) For all t, t ′ ∈ (0,∞), if t < t ′, then tθs = t ′θs .
(E8) |1 + θs | = 1 + θs .

Proof This follows from [26, Lem. 3.1 and 3.3] ��
The definition and properties of θ follow the lines of classical error analysis, as

e.g., in [26, Chap. 3]. Our presentation may differ in minor details which we have
chosen for our own convenience. In all what follows, the round-off unit u is always
sufficiently small, so that the inequalities tu < 1/2 hold true for the values of t at
hand. As is customary in finite-precision analyses, we will not explicitly point to these
bounds.

A.2 Basic Finite Precision Algorithms

The following twopropositions show the nice properties of the numerical computations
that underlie the Algorithm 3. Their statements refer to three aspects: (1) the number

123

702 Discrete & Computational Geometry (2022) 68:664–708

of arithmetic operations performed, (2) error estimates for a given input, and (3) error
estimates for approximate inputs. From these bounds we can obtain bit-complexity
estimates, as floating-point operations takeO(|logu|2)-time (this being non-tight, one
can obtain better bounds using fast multiplication algorithms).

An algorithm computing inner products with sharper error bounds was recently
analyzed in [1] (see also [27] for a survey on another family of recent improvements
in this respect). For our purposes, however, the simpler Proposition A.2 is sufficient.

Proposition A.2 There is a numerical algorithm which, with input x, y ∈ R
m, com-

putes 〈x, y〉. This algorithm satisfies the following:

(i) It performs O(m) arithmetic operations.
(ii) On input x, y ∈ F

m, the computed value fl (〈x, y〉) satisfies

fl (〈x, y〉) = 〈x, y〉 + 〈|x |, |y|〉 θlogm+2,

where |x | = (|x1|, . . . , |xn|).
(iii) Assume x̃, ỹ ∈ F

m and x, y ∈ R
m are such that, for all i ,

x̃i = xi + tiθε and ỹi = yi + t ′i θε′

for some t, t ′ ∈ [0,∞)m and ε, ε′ ≥ 1. Then the computed value fl (〈x̃, ỹ〉)
satisfies

fl (〈x̃, ỹ〉) = 〈x, y〉 + max {〈|x |, |y|〉, 〈|t |, |y|〉, 〈|x |, |t ′|〉, 〈|t |, |t ′|〉} θlogm+ε+ε′+2.

Proposition A.3 There is a numerical algorithm which, with input x ∈ R
m, com-

putes ‖x‖. This algorithm satisfies the following:

(i) It performs O(m) arithmetic operations.
(ii) On input x ∈ F

m, the computed value fl(‖x‖) satisfies

fl(‖x‖) = ‖x‖(1 + θlogm+3).

(iii) Assume x̃ ∈ F
m and x ∈ R

m are such that, for all i ,

x̃i = xi + tiθε

for some t ∈ [0,∞)m and ε ≥ 1. Then the computed value fl(‖x̃‖) satisfies

fl(‖x̃‖) = ‖x‖ + max {‖x‖, ‖t‖}θlogm+ε+3.

Proposition A.4 There is a numerical algorithm which, with input x ∈ R
n and α ∈ N,

computes xα . This algorithm satisfies the following:

(i) It performs O(log|α|) arithmetic operations.

123

Discrete & Computational Geometry (2022) 68:664–708 703

(ii) On input x ∈ F
n, the computed value fl(xα) satisfies

fl(xα) =
{
xα
(
1 + θ|α|−1

)
, if |α| > 1,

xα, otherwise.

(iii) Assume that x̃ ∈ F
n and x ∈ R

n are such that, for all i ,

x̃i = xi (1 + θε)

for some t ∈ [0,∞)m and ε ≥ 1. Then the computed value fl(x̃α) satisfies

fl(x̃α) =
{
xα
(
1 + θ|α|(1+ε)−1

)
, if α �= 0,

1, otherwise.

Proof of Proposition A.2 The algorithmwill first perform all the products xi yi and them
perform their sum by recursively dividing the sum into

∑

i∈I
xi yi +

∑

i∈I�
xi yi ,

where I and its complement, I� have size almost equal, differing in at most one.

(i) We initially perform m products and then m − 1 additions. Note that the latter is
independent of how we achieve the final sum, we sum as we do to minimize the error.

(ii) We will prove using induction the stronger claim that for the above algorithm

fl (〈x, y〉) = 〈x, y〉 + 〈|x |, |y|〉 θ�logm�+1,

where �x� is the minimum integer bigger or equal than x . Note that the claim is true
for m = 1 and m = 2. By the recursive nature of the algorithm, we have that

fl

(
m∑

i=1

xi yi

)

= fl

(
∑

i∈I
xi yi

)

+̃ fl

⎛

⎝
∑

i∈I�
xi yi

⎞

⎠

=
{
∑

i∈I
xi yi +

(
∑

i∈I
|xi ||yi |

)

θ�log |I |�+1

+
∑

i∈I�
xi yi +

⎛

⎝
∑

i∈I�
|xi ||yi |

⎞

⎠ θ�log (n−|I |)�+1

⎫
⎬

⎭
(1 + θ1) (induction)

=
{

n∑

i=1

xi yi +
(

n∑

i=1

|xi ||yi |
)

θlogmax {|I |,n−|I |}+1

}

(1 + θ1)

= (〈x, y〉 + 〈|x |, |y|〉 θ�logmax {|I |,n−|I |}�+1
)
(1 + θ1). (E6)

123

704 Discrete & Computational Geometry (2022) 68:664–708

Now, when |I | and n − |I | differ in at most one, we have that

⌈
logmax {|I |, n − |I |}⌉+ 1 ≤ �log n�.

Thus

= (〈x, y〉 + 〈|x |, |y|〉 θ�log n�
)
(1 + θ1)

= 〈x, y〉 + 〈x, y〉 θ1 + 〈|x |, |y|〉(θ�log n� + θ�log n�θ1
)

= 〈x, y〉 + 〈|x |, |y|〉θ1 + 〈|x |, |y|〉(θ�log n� + θ�log n�θ1
)〈x, y〉 ≤ 〈|x |, |y|〉

= 〈x, y〉 + 〈|x |, |y|〉(θ�log n� + θ1 + θ�log n�θ1
)

(E1)

= 〈x, y〉 + 〈|x |, |y|〉 θ�log n�+1. (E2)

(iii) Note that

〈x̃, ỹ〉 = 〈x, y〉 + 〈(tiθε), y〉 + 〈x, (t ′i θε′)〉 + 〈(tiθε), (t
′
i θε′)〉

= 〈x, y〉 + 〈|t |, |y|〉θε + 〈|x |, |t ′|〉θε′ + 〈|t |, |t ′|〉 θεθε′ (E6)

= 〈x, y〉 + max {〈|t |, |y|〉, 〈|x |, |t ′|〉, 〈|t |, |t ′|〉} (θε + θε′ + θεθε′) (E7)
= 〈x, y〉 + max {〈|t |, |y|〉, 〈|x |, |t ′|〉, 〈|t |, |t ′|〉} θε+ε′ . (E2)

An analogous statement holds for 〈|x̃ |, |ỹ|〉. Now, combining this and (A.2), we get
that

fl(〈x̃, ỹ〉) = 〈x̃, ỹ〉 + 〈|x̃ |, |ỹ|〉 θlogm+2

= 〈x, y〉 + max {〈|t |, |y|〉, 〈|x |, |t ′|〉, 〈|t |, |t ′|〉} θε+ε′

+ (〈|x |, |y|〉 + max {〈|t |, |y|〉, 〈|x |, |t ′|〉, 〈|t |, |t ′|〉} θε+ε′
)
θlogm+2

= 〈x, y〉 + max {〈|x |, |y|〉, 〈|t |, |y|〉, 〈|x |, |t ′|〉, 〈|t |, |t ′|〉} (E7)

· (θε+ε′ + θlogm+2 + θε+ε′θlogm+2)

=〈x, y〉+max {〈|x |, |y|〉, 〈|t |, |y|〉, 〈|x |, |t ′|〉, 〈|t |, |t ′|〉} θlogm+ε+ε′+2. ��

Proof of Proposition A.3 The proof is analogous to that of Proposition A.2. ��
Proof of Proposition A.4 The proof is analogous to that of Proposition A.2, but we have
to take into account that errors accumulate additively since in each multiplication the
errors of the computed quantities are added by (E2). ��

A.3 The Final Proofs

The following lemma is useful.

Lemma A.5 There is a numerical algorithm which, with input f ∈ Pn,d , computes the
Weyl norm ‖ f ‖ of f . This algorithm performs O(N) arithmetic operations, and, on
input f ∈ Pn,d ∩ F [X1, . . . , Xn], the computed value fl(‖ f ‖) satisfies

fl(‖ f ‖) = ‖ f ‖(1 + θlog N+8).

123

Discrete & Computational Geometry (2022) 68:664–708 705

Moreover, for general f ∈ Pn,d ,

fl(‖r(f)‖) = ‖ f ‖(1 + θlog N+9).

Proof To compute the Weyl norm, we first compute the vector

((
d

α

)−1/2

fα

)

and then its norm. To compute the vector, we take the floating point approximation of(d
α

)
, we compute its square root and we divide fα by the computed square root. Hence

fl

((
d

α

)−1/2

fα

)

=
(
d

α

)−1/2

fα
1 + θ1√

1 + θ1(1 + θ1)

=
(
d

α

)−1/2

fα(1 + θ5) (Proposition A.1)

Now, the lemma follows from Proposition A.3. ��

We can now give the proofs of Propositions 6.1 and 6.2.

Proof of Proposition 6.1 We first compute f (x) as 〈(fα), (xα)〉, where the xα are com-
puted one by one, and then divide the result by the computed ‖ f ‖‖(1, x)‖d−1 to obtain
f̂ (x). By Propositions A.2 and A.4 and (E7), we have that

fl (f (x)) = f (x) + ‖ f ‖ ‖(1, x)‖dθlog N+d+1,

since 〈(| fα|), (|xα|)〉 = g(|x |), where g =∑α| fα|Xα , is bounded by ‖ f ‖ ‖(1, x)‖d ,
by Lemma 3.5. Also, by Proposition A.3, Lemma A.5, and (E2), we have that

fl (‖ f ‖ ‖(1, x)‖d−1) = ‖ f ‖ ‖(1, x)‖d−1(1 + θlog N+d log(n+1)+4d+2
)
.

Now, N ≤ (n + 1)d . Thus we have that

fl (f (x)) = f (x) + ‖ f ‖ ‖(1, x)‖dθ3d log(n+1) and

fl (‖ f ‖ ‖(1, x)‖d−1) = ‖ f ‖ ‖(1, x)‖d−1(1 + θ8d log(n+1)
)
.

Although, doing this we are not obtaining tight bounds, we have to recall that the
number of digits is proportional to the logarithm of what is inside θ · To finish, we only

123

706 Discrete & Computational Geometry (2022) 68:664–708

have to do the division. Thus

fl(f̂ (x)) = fl(f (x))

fl(‖ f ‖ ‖(1, x)‖d−1)
(1 + θ1)

= f (x) + ‖ f ‖‖(1, x)‖dθ3d log(n+1)

‖ f ‖ ‖(1, x)‖d−1(1 + θ7d log(n+1))
(1 + θ1)

= f̂ (x) + ‖(1, x)‖ θ3d log(n+1)

1 + θ8d log(n+1)
(1 + θ1)

= (f̂ (x) + ‖(1, x)‖ θ3d log(n+1)
(
1 + θ16d log(n+1)+1

)

= f̂ (x) + f̂ (x) θ10d log(n+1)+1

+ ‖(1, x)‖(θ3d log(n+1) + θ3d log(n+1)θ14d log(n+1)+1
)

= f̂ (x) + ‖(1, x)‖(θ16d log(n+1)+1

+ θ3d log(n+1) + θ3d log(n+1)θ16d log(n+1)+1
)

= f̂ (x) + ‖(1, x)‖ θ19d log(n+1)+1

= f̂ (x) + ‖(1, x)‖ θ20d log(n+1)

where the first equality follows from the way we compute f̂ (x), the second one from
the above identities, the fourth one from (E3) and (E2), the sixth one from Lemma 3.5
and (E7), the eighth one from (E2), and the last one from (E1). The result for r(f)
and r(x) follows similarly. ��

Proof of Proposition 6.2 Wecompute each ∂ j f (x) aswe computed f (x). After that,we
compute ‖∂ f (x)‖, d‖ f ‖‖(1, x)‖d−2 and their quotient. By Propositions A.2 and A.4,
and (E7), we have that

fl(∂ j f (x)) = ∂ j f (x) + ∂ j g(|x |) θlog N+d+1,

where g =∑α| fα| Xα . Now, by Proposition A.3, we have that

fl(‖∂ f (x)‖) = ‖∂ f (x)‖ + max {‖∂ f (x)‖, ∂g(|x |)‖} θlog N+log n+d+4.

However, by Lemma 3.5, ‖∂ f (x)‖ and ‖∂g(|x |)‖ are bounded by d‖ f ‖ ‖(1, x)‖d−1.
Thus, by (E7),

fl (‖∂ f (x)‖) = ‖∂ f (x)‖ + d‖ f ‖ ‖(1, x)‖d−1θlog N+log n+d+4.

Again, by Proposition A.3, Lemma A.5, and (E2), we have that

fl (d‖ f ‖ ‖(1, x)‖d−2) = d‖ f ‖ ‖(1, x)‖d−2(1 + θlog N+d log(n+1)+4d+2
)
.

123

Discrete & Computational Geometry (2022) 68:664–708 707

Now, as N ≤ (n + 1)d , we have

fl (‖∂ f (x)‖) = ‖∂ f (x)‖ + d‖ f ‖ ‖(1, x)‖d−1θ7d log(n+1) and

fl (d‖ f ‖ ‖(1, x)‖d−2) = d‖ f ‖ ‖(1, x)‖d−2(1 + θ8d log(n+1)
)
.

Now, arguing as in Proposition 6.1, the desired statement follows.

References

1. Blanchard, P., Higham, N.J., Mary, T.: A class of fast and accurate summation algorithms. SIAM J.
Sci. Comput. 42(3), A1541–A1557 (2020)

2. Bürgisser, P., Cucker, F.: Condition. Grundlehren der Mathematischen Wissenschaften, vol. 349.
Springer, Heidelberg (2013)

3. Bürgisser, P., Cucker, F., Lairez, P.: Computing the homology of basic semialgebraic sets in weak
exponential time. J. ACM 66(1), # 5 (2019)

4. Bürgisser, P., Cucker, F., Lotz, M.: Smoothed analysis of complex conic condition numbers. J. Math.
Pures Appl. 86(4), 293–309 (2006)

5. Bürgisser, P., Cucker, F., Lotz, M.: The probability that a slightly perturbed numerical analysis problem
is difficult. Math. Comput. 77(263), 1559–1583 (2008)

6. Bürgisser, P., Cucker, F., Tonelli-Cueto, J.: Computing the homology of semialgebraic sets. I: Lax
formulas. Found. Comput. Math. 20(1), 71–118 (2020)

7. Bürgisser, P., Cucker, F., Tonelli-Cueto, J.: Computing the homology of semialgebraic sets. II: General
formulas. Found. Comput. Math. 21(5), 1279–1316 (2021)

8. Burr, M.A.: Continuous amortization and extensions: with applications to bisection-based root isola-
tion. J. Symbol. Comput. 77, 78–126 (2016)

9. Burr,M.,Choi, S.W.,Galehouse,B.,Yap,Ch.K.:Complete subdivision algorithms. II: Isotopicmeshing
of singular algebraic curves. J. Symbol. Comput. 47(2), 131–152 (2012)

10. Burr, M.A., Gao, S., Tsigaridas, E.: The complexity of an adaptive subdivision method for approxi-
mating real curves. In: 42nd ACM International Symposium on Symbolic and Algebraic Computation
(Kaiserslautern 2017), pp. 61–68. ACM, New York (2017)

11. Burr, M., Gao, S., Tsigaridas, E.: The complexity of subdivision for diameter-distance tests. J. Symbol.
Comput. 101, 1–27 (2020)

12. Burr, M., Krahmer, F., Yap, Ch.: Continuous amortization: a non-probabilistic adaptive analysis tech-
nique. In: Electronic Colloquium on Computational Complexity, # 136 (2009). https://eccc.weizmann.
ac.il/report/2009/136/

13. Cucker, F.: Approximate zeros and condition numbers. J. Complex. 15(2), 214–226 (1999)
14. Cucker, F., Ergür, A.A., Tonelli-Cueto, J.: Plantinga–Vegter algorithm takes average polynomial time.

In: 44th ACM International Symposium on Symbolic and Algebraic Computation (Beijing 2019), pp.
114–121. ACM, New York (2019)

15. Cucker, F., Krick, T., Malajovich, G., Wschebor, M.: A numerical algorithm for zero counting. I.
Complexity and accuracy. J. Complex. 24(5–6), 582–605 (2008)

16. Cucker, F., Krick, T., Malajovich, G., Wschebor, M.: A numerical algorithm for zero counting. II.
Distance to ill-posedness and smoothed analysis. J. Fixed Point Theory Appl. 6(2), 285–294 (2009)

17. Cucker, F., Krick, T., Malajovich, G., Wschebor, M.: A numerical algorithm for zero counting. III:
Randomization and condition. Adv. Appl. Math. 48(1), 215–248 (2012)

18. Cucker, F., Krick, T., Shub, M.: Computing the homology of real projective sets. Found. Comput.
Math. 18(4), 929–970 (2018)

19. Cucker, F., Peña, J.: A primal-dual algorithm for solving polyhedral conic systems with a finite-
precision machine. SIAM J. Optim. 12(2), 522–554 (2002)

20. Demmel, J.W.: The probability that a numerical analysis problem is difficult. Math. Comput. 50(182),
449–480 (1988)

21. Ergür, A.A., Paouris, G., Rojas, J.M.: Probabilistic condition number estimates for real polynomial
systems I: a broader family of distributions. Found. Comput. Math. 19(1), 131–157 (2019)

123

https://eccc.weizmann.ac.il/report/2009/136/
https://eccc.weizmann.ac.il/report/2009/136/

708 Discrete & Computational Geometry (2022) 68:664–708

22. Ergür, A.A., Paouris, G., Rojas, J.M.: Smoothed analysis for the condition number of structured real
polynomial systems. Math. Comput. 90(331), 2161–2184 (2021)

23. Funke, S.:Ofwhat use is floating-point arithmetic in computational geometry? In: EfficientAlgorithms.
Lecture Notes in Comput. Sci., vol. 5760, pp. 341–354. Springer, Berlin (2009)

24. Galehouse, B.T.: Topologically AccurateMeshing Using Domain Subdivision Techniques. PhD thesis,
New York University (2009)

25. Goldstine, H.H., von Neumann, J.: Numerical inverting of matrices of high order. II. Proc. Am. Math.
Soc. 2, 188–202 (1951)

26. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia (1996)
27. Jeannerod, C.-P.: Exploiting structure in floating-point arithmetic. In: Mathematical Aspects of Com-

puter and Information Sciences (Berlin 2015). Lecture Notes in Comput. Sci., vol. 9582, pp. 25–34.
Springer, Cham (2016)

28. Livshyts, G., Paouris, G., Pivovarov, P.: On sharp bounds for marginal densities of product measures.
Israel J. Math. 216(2), 877–889 (2016)

29. Lotz, M.: On the volume of tubular neighborhoods of real algebraic varieties. Proc. Am. Math. Soc.
143(5), 1875–1889 (2015)

30. Plantinga, S., Vegter, G.: Isotopic approximation of implicit curves and surfaces. In: 2004 Eurograph-
ics/ACM SIGGRAPH Symposium on Geometry Processing (Nice 2004), pp. 245–254. ACM, New
York (2004)

31. Ratschek, H., Rokne, J.: Computer Methods for the Range of Functions. Ellis Horwood Series: Math-
ematics and its Applications. Halsted Press, New York (1984)

32. Rudelson, M., Vershynin, R.: The Littlewood–Offord problem and invertibility of random matrices.
Adv. Math. 218(2), 600–633 (2008)

33. Rudelson, M., Vershynin, R.: Small ball probabilities for linear images of high-dimensional distribu-
tions. Int. Math. Res. Not. IMRN 2015(19), 9594–9617 (2015)

34. Smale, S.: Complexity theory and numerical analysis. In: Acta Numer., vol. 6, pp. 523–551. Cambridge
University Press, Cambridge (1997)

35. Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms. In: International Congress of Mathe-
maticians (Beijing 2002), vol. 1, pp. 597–606. Higher Ed. Press, Beijing (2002)

36. Spielman, D.A., Teng, S.-H.: Smoothed analysis: an attempt to explain the behavior of algorithms in
practice. Commun. ACM 52(10), 77–84 (2009)

37. Tonelli-Cueto, J.: Condition and Homology in Semialgebraic Geometry. PhD thesis, Technische Uni-
versität Berlin (2019). https://doi.org/10.14279/depositonce-9453

38. Vershynin, R.: High-Dimensional Probability. Cambridge Series in Statistical and Probabilistic Math-
ematics, vol. 47. Cambridge University Press, Cambridge (2018)

39. Xu, J., Yap, Ch.: Effective subdivision algorithm for isolating zeros of real systems of equations, with
complexity analysis. In: 44th ACM International Symposium on Symbolic andAlgebraic Computation
(Beijing 2019), pp. 355–362. ACM, New York (2019)

40. Yap, Ch.: Towards soft exact computation (invited talk). In: Computer Algebra in Scientific Computing
(Moscow 2019). Lecture Notes in Comput. Sci., vol. 11661, pp. 12–36. Springer, Cham (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

123

https://doi.org/10.14279/depositonce-9453

	On the Complexity of the Plantinga–Vegter Algorithm
	Abstract
	Introduction
	Outline
	Notation
	1 The Plantinga–Vegter (Subdivision) Algorithm
	1.1 Abstract Level: Algorithm PV-ABSTRACT
	1.2 Interval Level: Algorithm PV-INTERVAL
	1.3 Effective Level: Algorithm PV-EFFECTIVE

	2 Main Results
	2.1 Randomness Model
	2.2 Complexity at the Interval and Effective Levels

	3 Geometric Framework
	3.1 Weyl Norm
	3.2 Central Projection and Homogeneization
	3.3 Interval Approximations

	4 Condition Number
	4.1 What Does κaff Measure?
	4.2 Regularity Inequality

	5 Complexity Analysis of the Interval Version
	5.1 Local Size Bound Framework
	5.2 Condition-Based Local Size Bound and Complexity
	5.3 Interlude: Complexity of the Interval Version of Burr, Gao, and Tsigarias (2017)

	6 Error and Complexity Analysis of the Effective Version
	6.1 Finite-Precision Computations
	6.2 Complexity of Algorithm [alg:PVAlgorithmFP]3

	7 Probabilistic Analyses
	7.1 Some Useful Tools
	7.2 Average Complexity Analysis
	7.3 Smoothed Complexity Analysis

	Acknowledgements
	Appendix A Proofs of Propositions 6.1 and 6.2
	A.1 The Arithmetic of Error Accumulation
	A.2 Basic Finite Precision Algorithms
	A.3 The Final Proofs

	References

