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ABSTRACT: Difluoromethane (R32) and pentafluoroethane
(R125) are two common hydrofluorocarbon refrigerants, often
used in a mixture termed R410A. Many refrigerants, including R32
and especially R125, have high global warming potentials and so are
being phased out. There is a desire to develop processes that can
separate and recover these materials, which means that there is a
need to determine the thermodynamic and transport properties of
these fluids. In this work, we evaluate the ability of molecular
dynamics simulations to determine the key thermodynamic and
transport properties of these two fluids. We test whether classical
interatomic force fields (FFs) parametrized against vapor−liquid
equilibrium (VLE) data using a machine learning directed (MLD) approach can also yield accurate estimates of other key properties.
The top-performing MLD FFs tuned against VLE data were nearly indistinguishable based on VLE results. This work seeks to
investigate if these MLD-tuned FFs are transferable to other properties not used in tuning them and if they can be ranked to identify
the “best” FFs. Literature FFs, one each for R32 and R125, are included in the study. A total of ten FFs were tested. Thermal
conductivity (λ), viscosity (η), self-diffusivity (D), liquid density (ρ), isobaric heat capacity (CP), isochoric heat capacity (CV),
thermal expansivity (αP), thermal pressure coefficient (γρ), isothermal compressibility (βT), speed of sound (csound), Joule-Thomson
coefficient (μJT), and center of mass radial distribution functions (gr) were computed using molecular dynamics and compared with
experiments when possible. Somewhat surprisingly, the MLD-tuned FFs are found to be transferable to a wide range of properties
not used in tuning them. The MLD-tuned FFs were ranked. The FFs labeled R32a and R125b were found to be the “best” FFs for
R32 and R125, respectively, across a broad range of properties. The MLD-tuned FFs were found to be superior to previously
developed literature FFs.

■ INTRODUCTION
Hydrofluorocarbons (HFCs) are a class of materials that has
been the focus of much research over the last several decades.
This is due in part to the excellent suitability of HFCs as
working fluids for heating, ventilation, air conditioning, and
refrigeration (HVACR) systems with zero ozone depletion
potential (ODP). They became popular due to phase out of
chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons
(HCFCs), which were shown to be deleterious to the ozone
layer.1,2 HFCs are currently the major constituents of working
fluid mixtures used in domestic, commercial, and industrial
HVACR systems. They are also used in some fire extinguisher
equipment and in the manufacturing of certain foam products
as blowing agents.3,4

Unfortunately, HFCs have been found to contribute
significantly to global warming due to their high global
warming potentials (GWPs). The Kigali agreement has thus

been signed by 197 countries to phase out the production and
use of high GWP HFCs over the next few decades.3−7 There
are some technical challenges associated with the ongoing
phaseout of HFCs. One of the challenges is to recover high
GWP HFCs to prevent their continued release into the
atmosphere through leaks and end-of-life disposal. Recovering
harmful HFCs requires the design of efficient separation
systems for refrigerant mixtures that are often azeotropic and
difficult to separate.8,9
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The task of predicting the thermodynamic and transport
properties of HFCs can be achieved in a variety of ways.
Equation of state (EoS)10,11 and quantitative structure−
property relationship (QSPR) methods12−14 have been used
mainly for obtaining pure component properties as well as
properties of common refrigerant mixtures. However, the
sustainable refrigeration challenge demands more than pure
components or common refrigerant mixture properties. Future
refrigeration systems will require the design of new refrigerant
mixtures. These future refrigerant mixtures can be expected to
be binary or even ternary mixtures of relatively low global
warming potential (GWP) HFC molecules like difluoro-
methane (R32) and classes of molecules such as hydro-
fluoroolefins (HFOs), hydrochlorofluoroolefins (HCFOs), and
other newer classes being discovered. Reliable experimental
data on the thermodynamic and transport properties of binary
and ternary mixtures of low GWP HFCs, HFOs, HCFOs, and
other new refrigerant molecules are limited, and the
combinatorial problem makes it challenging to measure all of
the data needed. With scarce experimental data comes the
consequence of limited EoS for these mixtures. Another area of
need is in predicting the properties of mixtures of common
refrigerant molecules and special materials like ionic liquids
(ILs) for the separation and repurposing of, to be phased out,
refrigerant mixtures. Yet another area of need is gaining a
molecular-level understanding of the behavior of mixtures of
older refrigerant molecules in solvents such as ILs as well as in
future refrigerant mixtures. Molecular simulation (MS)
naturally lends itself as the tool of choice for meeting these
needs. Indeed, a synergy of diverse computational tools and
expertise combined with experiments is needed to tackle the
sustainable refrigerant problem.
MS has emerged as a valuable tool to predict thermody-

namic and transport properties for materials of industrial
interest and to understand their microscopic origin. MS can aid
in the design of novel processes for challenging separations,
such as those posed by HFC mixtures.15−23 MS requires
accurate representations of interatomic interactions to obtain
reliable predictions of properties and elucidation of molecular-
level phenomena. These representations, commonly referred to
as force fields (FFs), are mathematical models that describe the
potential energies and forces between interaction sites (usually
atomic nuclei). FFs can be classified as class I, class II, or class
III. Class I FFs use simple algebraic functional forms such as
harmonic potentials, trigonometric functions, and the 12−6
Lennard-Jones potential to model bonds, torsional barriers,
and dispersion interactions, respectively. They are widely used
in the simulation community, in part because of their ease of
implementation in MS software. Class II and class III FFs are
more complicated FFs. They in general have functional forms
that account for the coupling between neighboring bonds,
angles, and dihedral angles. Class III FFs may also account for
chemical effects as well as other features such as electro-
negativity and polarizability.24,25 While most of the HFC force
fields are class I FFs, a significant amount of work has also been
devoted to developing these generally more complex classes of
FFs for HFCs.26−32 The present work focuses on testing and
ranking class I FFs for difluoromethane (R32) and
pentafluoroethane (R125). The primary rationale for the
focus on class I FFs is due to their much better compatibility
with available MS codes. Furthermore, molecular simulations
with class I FFs can be expected to be faster than those using
class II and class III FFs, resulting in significant savings in

computational resources. Due to the relative simplicity of class
I FFs, they are easier to develop and parametrize. One of the
goals of this work is to see whether simple class I FFs are
accurate for HFCs or if more sophisticated models are needed.
Finally, for most practical applications and as will be further
established in this work, well-parametrized class I FFs are
adequate for capturing a broad range of the desired properties
and molecular-level physics of relatively simple molecules like
HFCs. It should be noted that the scope of the work presented
in this manuscript is for all-atom, fully flexible models. Fully
rigid, united atom models33 are not within the scope of this
manuscript and are, more importantly, not fit for our future
intended purposes.
Generalized FFs, such as the General Amber Force Field

(GAFF)34 or the Optimized Potentials for Liquid Simulations
All-Atom (OPLS-AA)35 force field, provide parameters to
generate class I force fields for a variety of small organic
molecules, including HFCs. GAFF has parameters for many of
the HFCs of interest, including the molecules of interest in this
study, R32 and R125. The performance of the GAFF force
field to simulate vapor−liquid equilibria (VLE) of R32 and
R125 has been evaluated by Befort et al.36 The authors showed
that properties such as liquid and vapor densities were not well
predicted. The limited accuracy of generalized FFs such as
GAFF is, in part, the reason for much of the work that has
gone into the development of molecule-specific FFs for these
HFCs.
For example, Raabe37 developed a fully flexible all-atom FF

for R32 that was optimized to reproduce VLE properties. It
was shown to give satisfactory predictions for saturated liquid
density (ρl) and vapor density (ρv), enthalpy of vaporization
(ΔHvap), critical temperature (Tc), and critical pressure
(Pc).

36,37 Fermeglia et al.38 developed a class I FF for R125
using liquid density and VLE data for FF validation. The
developed FFs were reported to show an excellent match with
experimental VLE data. However, the FF parameters for R125
were unfortunately not published, and attempts to obtain the
parameters from the authors failed.
Befort et al.36 optimized FFs for R32 and R125 using an

automated machine learning directed (MLD) method. The
authors refined the GAFF Lennard-Jones parameters to
develop R32 and R125 FFs that reproduce VLE properties36

with high accuracy. The proposed MLD method produced
twenty-six and forty-five distinct FF parameter sets for R32 and
R125, respectively, that outperformed the best available FFs.37

Recently, Wang et al.39 applied this machine learning-driven
FF optimization procedure to five other refrigerants: R143a,
R134a, R50, R-170, and R-14. Other molecule-specific FFs for
HFCs include R134a,40 R152a,41 and R161.42 The afore-
mentioned FFs were tuned to match specific thermodynamic
properties, such as VLE. Only a limited number of additional
properties have been computed with these force fields, leaving
questions about their transferability to a wider range of
properties and thermodynamic states.
The work presented in this paper seeks to extend the work

of Befort et al.36 by evaluating the transferability of their top-
performing R32 and R125 models to other properties. Eleven
thermophysical, transport, and structural properties not
included in the FF tuning process, namely, thermal
conductivity (λ), viscosity (η), self-diffusivity (D), isobaric
heat capacity (CP), isochoric heat capacity (CV), thermal
expansivity (αP), thermal pressure coefficient (γρ), isothermal
compressibility (βT), speed of sound (csound), Joule-Thomson

Journal of Chemical & Engineering Data pubs.acs.org/jced Article

https://doi.org/10.1021/acs.jced.3c00379
J. Chem. Eng. Data XXXX, XXX, XXX−XXX

B

pubs.acs.org/jced?ref=pdf
https://doi.org/10.1021/acs.jced.3c00379?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


coefficient (μJT) and center of mass radial distribution
functions (gr), were computed. The simulations were
conducted at several thermodynamic state points to further
assess the transferability of the models. We include in this
study the hand-tuned FF for R32 developed by Raabe37 and
the GAFF FF34 for R125 used in the work by Befort et al.36 We
also evaluate the top four FFs for R32 and R125 developed by
Befort et al.36 These FFs could not be differentiated based on
their performance in VLE calculations. One of our goals is to
see whether the addition of other properties allows us to see
differences in the performance of the different FFs. Another
goal is to see if FFs parametrized against VLE data using
machine learning methods can be used to obtain other
properties with good accuracy. This work provides the most
comprehensive set of molecular simulation FF validation data
for these two important refrigerant fluids to date. This will
serve as a foundation for future similar benchmarks for other
HFCs and refrigerant molecules. Finally, this work provides a
compilation of good practices on how to accurately compute
the aforementioned properties, along with sample simulation
setup and postprocessing scripts used in performing these
calculations.

■ METHODS
Force Fields. Figure 1 presents the structure and atom

types defined in this work for refrigerant molecules R32 and
R125, respectively.
The functional form of all force fields used in this work is the

same as that of GAFF.34 Table 1 shows the bonded FF
parameters from GAFF34 version 1.40 and the partial charges
derived previously36 using the restrained electrostatic potential
(RESP) method43 for both R125 and R32. The parameters of
the Raabe FF for R32 can be found elsewhere.37 This FF is
termed R32Raabe in this work. Note that R32Raabe parameters are
completely different from all the MLD-tuned FFs for R32,
whereas the only differences among the MLD-tuned FFs are in
the LJ parameters for both R32 and R125. The R125 FF from
GAFF differs from the MLD-tuned FFs for R125 only in terms
of the LJ parameters.
Table 2 shows all of the FFs studied in this work and their LJ

parameters. They include the top four MLD-tuned FFs for
R125 and R32.36 The parameter sets are labeled a, b, c, and d,
respectively. The LJ parameters for R125 from GAFF34 and
those for R32 from Raabe37 are also shown. This table stands
in lieu of a chemical compounds and models table. Note that
the atom type defined in this work for R125 is not the same as
those used by GAFF. The corresponding GAFF atom types to
those used in this work are presented in Table 1.
Simulation Details. All simulations were performed using

the LAMMPS (June 23 2022 version)44 molecular dynamics

(MD) package. Initial box configurations were generated using
PACKMOL45,46 by randomly inserting 2000 (R32) or 1000
(R125) molecules in a cubic box. This was followed by an
energy minimization scheme that applied the Polak−Ribiere
version of the conjugate gradient algorithm as implemented in
LAMMPS.44 Initial velocities were assigned to the atoms from
a Gaussian distribution such that there was no net angular or
linear momentum in the simulation box. The resulting
simulation box was then used for MD simulations in the
isothermal−isobaric (NPT) ensemble. The final configurations
at the equilibrium densities from the NPT simulations were
used for corresponding simulations in the canonical (NVT)
and microcanonical (NVE) ensembles. Simulations were
performed in the NPT, NVT, and NVE ensembles to
determine properties at saturated liquid conditions at temper-
atures of 243.15, 258.15, 273.15, and 298.15K and at pressures
close to the corresponding saturated liquid pressures from the
National Institute of Standards and Technology (NIST)
chemistry webbook.47

A 12 Å cutoff distance for the LJ and electrostatic
interactions was used for all simulations. Long-range tail

Figure 1. Molecular structures of R32 (left) and R125 (right) with atom type definitions.

Table 1. Bonded FF Parameters of R125 and R32 Taken
from GAFF and the Derived Partial Charges Used in This
Work

partial charges

atom GAFF atom type q/(e)

C c3 0.405467
F f −0.250783
H h2 0.0480495
C1 c3 0.224067
C2 c3 0.500886
F1 f −0.167131
F2 f −0.170758
H1 h2 0.121583
bond type kr/(kJ·mol−1·Å−2) ro/(Å)

c3-f 1493.3 1.3497
c3-h2 1387.8 1.0961
c3-c3 1259.0 1.5375

angle type kθ/(kJ·mol−1·rad−2) θo/(deg)

f-c3-f 296.6 107.36
f-c3-h2 213.8 108.79
c3-c3-f 276.6 109.24
c3-c3-h2 193.3 110.22
h2-c3-h2 163.2 110.20

dihedral type νn/(kJ·mol−1) n γ/(deg)
f-c3-c3-f 5.02 1 180.0
f-c3-c3-h2 0.65 3 0.0
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corrections were applied to the LJ interactions, and the Ewald
summation method with a relative error in force computation
of 0.0001 was used to handle long-range electrostatic
interactions.48,49 Periodic boundary conditions were applied
in all directions of the orthogonal simulation boxes. Lorentz−
Berthelot50 combining rules were used to compute LJ
interaction parameters between all unlike atoms. Thermo-
stating and barostating were achieved using Nose-́Hoover style
thermostatting and barostating schemes as implemented in
LAMMPS.44 The relaxation times for the thermostat and
barostat were set to 100 and 1000 fs, respectively, for all NPT
simulations. NVT simulations had only Nose-́Hoover style
thermostatting with a relaxation time of 100 fs. The equations
of motion developed by Shinoda et al.51 were solved using the
time integration algorithms that closely follow those developed
by Tuckerman et al.52 as implemented in LAMMPS44 with a
time step of 1.0 fs. Flexible bonds and angles were used in the
current study, whereas they were fixed in previous work.36

NPT Simulations. NPT simulations were performed to
calculate the residual isobaric heat capacity CP

res and the
thermal expansion coefficient αp. One way to compute these
thermodynamic quantities is to fit enthalpies and densities as a
function of temperature. Table 3 shows the temperatures and
corresponding pressures at which NPT simulations were
performed to obtain the data for these fits. The selected
thermodynamic state points correspond to either near-
saturated or subcooled liquid states. For reference, the
temperatures in bold correspond to near-saturated liquid
conditions for the given pressures. Once the system had been
prepared in the desired liquid state, NPT simulations were run
for 15 ns. A code to automate the determination of the point of
equilibration was used for all simulations and is available within
the sample NPT postprocessing tools on the GitHub
repository for this work at https://github.com/
MaginnGroup/Validation-of-HFC-FFs. The point of equilibra-
tion ranged from 6.5 to 12 ns for R32 and from 6 to 10.5 ns for

R125 after the system preparation, which involved an
annealing scheme. Further details on the system preparation
for NPT simulations are provided in the Supporting
Information (SI). The simulation beyond the equilibration
point was considered production and was used to compute
average system properties such as density, configurational and
internal energies, and enthalpies.

NVT Simulations. NVT simulations were performed to
calculate the residual isochoric heat capacity CV

res and the
thermal pressure coefficient γρ. Table 4 shows the temperatures
and corresponding densities at which the NVT simulations
were performed. ρt* in Table 4 means the saturated liquid
density obtained from NPT simulations at a temperature of t +
0.15 K. Final simulation box configurations from NPT

Table 2. LJ Parameters Studied in This Worka

R125a R125b R125c R125d R125GAFF
ϵ/kB/(K)

C1 59.3807 45.0463 59.5321 43.0749 55.0522
C2 27.4944 50.4590 48.5607 52.4979 55.0522
F1 28.3145 31.6841 24.4512 20.3573 30.6964
F2 17.6325 28.9380 17.6264 23.3728 30.6964
H1 6.4942 6.5283 6.5810 9.7908 7.9005

σ/(Å)
C1 3.8049 3.6946 3.6614 3.1102 3.3997
C2 3.6167 3.1003 3.4576 3.9294 3.3997
F1 3.2009 2.5192 3.4845 2.7069 3.1181
F2 2.6441 3.1586 2.5062 3.1018 3.1181
H1 2.4877 2.3889 2.5833 2.4840 2.2932

R32a R32b R32c R32d R32Raabe
ϵ/kB/(K)

C 55.6481 59.2086 59.5493 58.9345 54.6000
F 39.1405 30.0647 28.8311 38.8941 44.0000
H 3.6644 7.7619 9.3946 2.2268 7.9000

σ/(Å)
C 3.7992 3.7122 3.7096 3.6530 3.1500
F 2.7427 2.7555 2.8215 2.8658 2.9400
H 1.9689 2.2664 2.1281 1.9171 2.2930

aThe ones with the best overall performance found in this work for
R32 and R125 are indicated in bold.

Table 3. NPT Simulation Temperatures and Pressures for
R32 and R125a

R32 R125

P/(kPa) T/(K) P/(kPa) T/(K)

271.41 243.15 227.25 243.15
233.15 233.15
223.15 223.15

488.58 258.15 405.17 258.15
243.15 243.15
233.15 233.15

807.28 273.15 667.54 273.15
263.15 263.15
258.15 258.15
248.15 248.15
243.15 243.15

1690.14 298.15 1378.27 298.15
273.15 273.15
263.15 263.15
258.15 258.15

2479.13 298.15 2009.60 298.15
273.15 273.15

3521.36. 298.15 2840.82 298.15
aThe bold-faced temperatures are the saturation temperatures at
which all computed properties are reported at the corresponding near-
saturation pressures also in bold.

Table 4. NVT Simulation Temperatures and Densities for
R32 and R125

T/(K) ρt*/(kg·m−3)

243.15 ρ243*
1.025 × ρ243*
1.05 × ρ243*

258.15 ρ258*
ρ243*
1.025 × ρ243*

273.15 ρ273*
ρ258*
ρ243*

283.15 ρ273*
ρ258*

298.15 ρ298*
ρ273*
1.025 × ρ273*

313.15 ρ298*
323.15 ρ298*
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simulations were used to start corresponding NVT simulations
at the same temperature but with the densities adjusted to the
desired simulation box densities, as shown in Table 4. It is
important to note that the actual values of the densities in
Table 4 are FF dependent for both R125 and R32. NVT
simulation runs were performed for 15 ns, and the point of
equilibration was determined as was done for NPT
simulations. Postequilibration data were used in computing
the average pressures and average configurational internal
energies.
Choice of State Points Studied. We recognize that the

complete fluid state regions for the HFCs studied include the
gas, subcooled liquid, near-saturated liquid, VLE, and super-
critical states. Studies on the models’ ability to capture VLE
properties have been completed in previous work.36 The fluid
state points in Tables 3 and 4 for which simulations were
performed include the subcooled liquid and near-saturated
liquid states. A total of 30 state points are included in Tables 3
and 4 at which simulations were performed. These state points
include 4 near-saturated liquid state points and 26 subcooled
liquid state points. We consider that the fluid state regions
covered in this work in addition to the VLE region covered in
previous work36 represent the most important fluid state
regions for these HFC applications in refrigeration. Certain gas
phase properties, such as the gas phase heat capacity and
compressibility, are important. It may be useful to investigate
and benchmark these for our models in future studies. For the
sake of completeness, the supercritical region may also be of
interest in future studies.
General Uncertainty Quantification. The block averag-

ing method by Flyvbjberg and Petersen53,54 was used to
estimate uncertainties of properties that were computed
directly by simulation. The errors in derived thermodynamic
properties, such as speed of sound (csound) or Joule-Thomson
coefficient (μJT), were estimated by using error propagation
formulas. Finally, the curve fitting tool in the optimize
subpackage of the SciPy Python package55 was used to
estimate the error in properties that require linear fits, such as
residual isobaric heat capacity. Additional details are available
in the SI.

■ RESULTS AND DISCUSSION
Except where otherwise stated, all experimental data referred
to in this work are taken from the NIST chemistry webbook
and REFPROP.47 Note that REFPROP results are actually

derived from accurate models fit to the experimental data.
These include the Tillner-Roth and Yokozeki’s equation of
state for R32 and Lemmon and Jacobsen’s equation of state for
R125.10,11 It is generally accepted that REFPROP results,
which apply to pure fluids and their mixtures, are valid over the
entire fluid range, including gas, liquid, and supercritical states.
It is claimed47 that uncertainties approach the level of the
underlying experimental data. We note that the equation of
state (EoS) used in the NIST REFPROP calculations may not
extrapolate quite well outside the temperatures at which
experimental data were measured. The experimental data used
in developing the EoS do cover, and actually go well beyond,
the fluid state conditions for which we have used them in this
work. In this work, we are assuming that the data from NIST
REFPROP are reliable and reasonably sufficient for our
purpose.
Numerical data presented in plots are available in tabular

format in the SI of this work. In the plot captions, the
percentage values represent the calculated mean absolute
percentage errors (MAPEs) between simulation and experi-
ments. All values in bold represent the minimum MAPEs for
R32 and R125, respectively.

Density. Figure 2 shows the densities of R32 and R125 as a
function of temperature for all of the FFs tested in this work.
All FFs for R32 agree well with experiments across all
temperatures studied. The MLD-tuned FFs for R125 have an
excellent performance in capturing the density with temper-
ature, although larger deviations from experimental values at
higher temperatures are observed. The R32Raabe FF compares
favorably with the MLD-tuned FF in capturing the liquid
density for R32, whereas the GAFF FF for R125 shows
generally worse performance compared with the MLD-tuned
FFs.

Isobaric and Isochoric Heat Capacity. To calculate heat
capacity, the ideal and residual contributions were computed
according to the method described by Cadena et al.56

C C C C C C,P P
ideal

P
res

V V
ideal

V
res= + = + (1)

The ideal parts were determined by quantum mechanical
calculations. It would be possible to use tabulated ideal gas
heat capacities for CP

ideal, but we wanted to assess the accuracy
of a fully computational approach. According to the
recommendations by Lucas et al.,57 the second-order Møller-
Plesset perturbation theory (MP2) was applied to compute the
molecular electronic energies with the 6-31G** basis set. All

Figure 2. Density as a function of saturation temperature at the corresponding saturation pressure shown in Table 3 for R32 and R125. MAPEs are
R32a = 0.39%, R32b = 0.63%, R32c = 0.16%, R32d = 0.57%, and R32Raabe = 0.51%; R125a = 2.26%, R125b = 0.44%, R125c = 0.68%, R125d = 1.10%,
and R125GAFF = 2.06%.
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quantum mechanical calculations were performed using the
Psi4 package.58 Values of the ideal isobaric and isochoric heat
capacities, CP

ideal and CV
ideal of R125 and R32 were obtained with

a 1−2% underestimation when compared with ideal heat
capacities from NIST.47 The residual portions of the isobaric
and isochoric heat capacities CP

res and CV
res were computed from

NPT and NVT simulations, respectively, according to eqs 2, 3,
and 4.
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config
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V
res

config

V

= =
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U U U Uconfig
intermol
vdwl

intermol
coul long= + + (3)

H U PVconfig config= + (4)

where Uconfig and Hconfig are the configurational internal energy
and enthalpy, respectively; they do not contain contributions
from the kinetic and intramolecular energies.59 Uintermol

vdwl is the
intermolecular van der Waals energy, Uintermol

coul is the energy
from intermolecular short-range Coulombic interactions within
the electrostatic interaction cutoff, and Ulong is the energy from
long-range electrostatic interactions which are computed using
the Ewald summation method48 as implemented in
LAMMPS.44 Uintermol

vdwl and Uintermol
coul are not readily available

from the output of a simulation. The tally package in recent
versions of LAMMPS44 was used to split the short-range

Coulombic and van der Waals interactions into intramolecular
and intermolecular components.
Uconfig and Hconfig were computed as described above, and

the uncertainties were estimated accordingly. These quantities
and their associated uncertainties were then fitted to
temperature over a temperature range for which these
quantities can be assumed to be linear with temperature. For
the residual isobaric heat capacity at 243.15 K, the configura-
tional enthalpies at 243.15, 233.15, and 223.15 K at a constant
saturation pressure corresponding to 243.15 K were used. In a
like manner, the value at 258.15 K was computed using
configurational enthalpies at 258.15, 243.15, and 233.15 K. For
273.15 K, configurational enthalpies at 273.15, 263.15, and
248.15 K were used. Finally, configurational enthalpies at
298.15, 273.15, and 263.15 K at a fixed pressure corresponding
to the saturation pressure at 298.15 K were used for computing
the residual isobaric heat capacity at 298.15 K. These
simulated state points are shown in Table 3. For the residual
isochoric heat capacity at 243.15 K, the configurational internal
energies at 243.15, 258.15, and 273.15 K at a constant
saturated liquid density corresponding to 243.15 K were used.
In a like manner, the value at 258.15 K was computed using
configurational internal energies at 258.15, 273.15, and 283.15
K. For 273.15 K, configurational internal energies at 273.15,
283.15, and 298.15 K were used. Finally, configurational
internal energies at 298.15, 313.15, and 323.15 K at a fixed
saturated liquid density corresponding to 298.15 K were used

Figure 3. Isobaric heat capacity as a function of saturation temperature at the corresponding saturation pressure shown in Table 3 for R32 and
R125. MAPEs are R32a = 5.70 %, R32b = 7.23%, R32c = 8.90%, R32d = 5.87%, and R32Raabe = 16.70%; R125a = 6.91%, R125b = 7.11%, R125c =
4.95 %, R125d = 5.27%, and R125GAFF = 6.55%.

Figure 4. Isochoric heat capacity as a function of saturation temperature at the corresponding saturation pressure shown in Table 3 for R32 and
R125. MAPEs are R32a = 6.92%, R32b = 7.01%, R32c = 6.64%, R32d = 7.13%, and R32Raabe = 4.75 %; R125a = 5.13%, R125b = 3.72 %, R125c =
4.67%, R125d = 4.28%, and R125GAFF = 3.79%.
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for computing the residual isochoric heat capacity at 298.15 K.
These simulated state points are detailed in Table 4. This
allows the partial derivatives in eq 2 to be approximated using
linear fits. The slope of these linear fits gives the residual
isobaric or isochoric heat capacity. Note that the uncertainties
from QM calculations are ignored, as they make negligible
contributions. We also note that CP

res and CV
res can also be

computed via appropriate fluctuation formulas. However, the
use of the fluctuation equations has been reported to suffer
from high statistical uncertainties.56,60

Figures 3 and 4 display the calculated isobaric and isochoric
heat capacities for R32 and R125, respectively. The error bars
in Figure 3 by visual observation may look large. However, a
quantitative assessment of the relative magnitudes of these
error bars using the relative standard deviations (RSDs),
expressed in percentage form, shows that the maximum RSDs
in the isobaric heat capacity results are 4.1% and 5.0% for R32
and R125, respectively. The minimum RSDs are 1.1% and
0.9%, respectively. These values are reasonably low, consider-
ing typical uncertainty values associated with this property in
the context of a molecular simulation. Table S2 shows the
values of the standard deviations associated with each
computation of the isobaric heat capacity.
The MD results agree well with experiments in predicting

the increasing trend in CP and CV with temperature, although
some of the FFs for R32 show inconsistency between adjacent
state points like 243.15 and 258.15 K as an example.
Considering the uncertainties, MD simulations predict no
difference between these close state points. A small systematic
overestimation of CP and underestimation of CV is observed in
general. However, the quantitative agreement between MD
simulations and experiments is generally good for both CP and
CV, especially given the difficulty of computing these
“derivative” properties; errors are generally less than 10%.
The MLD-tuned FFs generally perform better than the
generalized GAFF FF for both CP and CV, and the expert-
tuned FFs perform better for CP. However, R32Raabe performed
better than all of the R32 MLD-tuned FFs for CV.
Thermal Expansion Coefficient (αP). The thermal

expansion coefficient αP is given by eq 5. One way to apply

this equation is to calculate the partial derivative ( )T P
using

finite difference formulas. In practice, these finite difference
methods are implemented by fitting ρ or lnρ data to a linear
function of temperature at constant pressure in the temper-
ature range that αP is to be calculated.61−63
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In this work, we fitted ρ data from MD to a cubic function of
both the pressure and temperature. This is a modification to
the more common approach of doing a linear fit of ρ with
temperature, as stated previously. The linear fit method
assumes that ρ is a linear function of T at any given P and
that the partial derivative of ρ with respect to T at a given P
must be a constant value. These assumptions, although
sometimes good enough, are not very accurate. A study of
any EoS that relates ρ with T and P clearly shows that ρ is not
a linear function of T and P. Applying a cubic fit to widely
separated data from MD may allow a better representation of
the relationship between ρ, T, and P over the entire T and P
range of interest. In addition, the simple mathematical form of

the cubic function allows for easy calculation of the required
derivatives with a reasonable number of fitting parameters for
the MD data used.
Equation 6 shows the cubic function used, while eq 7 is the

corresponding expression for ( )T P
. The values of the

coefficients a0 to a9 in eq 6 are determined by fitting the ρ
data obtained from NPT MD simulations at the conditions

detailed in Table 3. With the coefficients determined, ( )T P
can then be evaluated according to eq 7 and αP can then finally
be computed using eq 5.
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The uncertainties in the values of αP were estimated by using
the block averaging method. Three blocks were considered,
which ensured that the individual block sizes were large
enough to minimize the correlation between them and to
provide a sufficient number of separately computed values for
calculating averages and uncertainties for αP. We divided the
last 3 ns of the postequilibration data for the instantaneous
densities from molecular simulations into three blocks. We
then found the average density of each block. Therefore, for
each state point at which a simulation was performed, we had
three values of computed average densities corresponding to
the three blocks. This then meant we had three sets of average
density values, corresponding to the three blocks, across all the
state points, where, as an example, density values for the first
block across all the state points at which simulations were
performed correspond to the first set of density data and so on.
We then independently used each of the three sets of density
data to compute αP at the desired saturation temperatures and
pressures using the cubic fit method described above. This
means that, for each saturation temperature and pressure of
interest, we computed three values of αP using the three sets of
density data corresponding to the three blocks. The
uncertainties (or error bars) correspond to the standard
deviation of the three independently computed values of αP for
each saturation temperature and pressure of interest.
As is the case for CP

res and CV
res, αP can also be computed via

appropriate fluctuation formulas. However, calculations using
these formulas may suffer from high statistical uncertain-
ties.56,60 The experimental values of αP were indirectly
obtained using eq 8, where ⟨V⟩ is the molar volume.
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Experimental values of βT, the isothermal compressibility, in
eq 8 were obtained by using eq 9. The rest of the experimental
data used in eqs 8 and 9 were obtained from the NIST
REFPROP database.47 csound is the speed of sound.

C
c CT

P

sound
2

V
=

(9)

This indirect approach of obtaining the experimental values
of αP and also βT by using standard thermodynamic
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relationships was adopted to enable uncertainty quantification
for these properties. The errors associated with these derivative
properties were not readily or directly available via the NIST
REFPROP database.47

Figure 5 shows αP as a function of saturation temperature at
corresponding saturation pressure shown in Table 3 for R32
and R125.
The general qualitative trends are well captured by the FFs

for both R32 and R125. However, the quantitative agreement
seems to be better at lower temperatures. Visual inspection of
the error bars in Figure 5 may suggest that they are quite large.
RSDs for αP from molecular simulations are often in the range
of 5−15%.64−67 Uncertainties with higher RSDs than these
have also been reported.66,68 We confirm that the RSDs for
most (about 75%) of the data points across multiple state
points and models for αP are well within the range of RSDs for
αP from some other molecular simulation studies. Most of the
RSDs are between 2% and 15% for R32 and R125. The few
data points that have higher relative uncertainties outside this
range still have RSDs that are still comparable to some
previous molecular simulation studies.66,68 In any case, the
relatively high uncertainties for these few data points do not
undermine the overall comparisons in predictive performance
between the models that are to be made for the case of αP. In
general, quantities with smaller magnitudes can be more
challenging to capture precisely, resulting in higher relative
uncertainties compared to some other properties.

It is important to state at this point that the general
performance of these FFs for calculating αP is impressive. αP is
a derivative property with numerically small values and is not
always an easy property to compute within a 10% or even 20%
accuracy based on results for similar calculations in the
literature.62,63,69 Alkhwaji et al.69 computed αP for water at
multiple state points and obtained results that had a MAPE of
approximately 20% relative to experiments. This MAPE was
estimated by us from the plots of results for αP as a function of
temperature in the work by Alkhwaji et al.69 They reported
that the results were good enough for engineering applications.
Wang et al.62 obtained a mean percentage deviation of 21.7%
from the experimental value in αP at a single state point for an
ionic liquid using different mole fractions of the constituent
anions and cations. It was reported that this result was in good
enough agreement with the experiments. All of the MLD-tuned
FFs in this work and R32Raabe were able to predict αP to less
than 20% MAPE from experiments. Seven of the eight MLD-
tuned FFs achieved less than 15% MAPE, with the best of
them being able to capture this property to within 10% MAPE
relative to experiments for both R32 and R125.

Thermal Pressure Coefficient (γρ). The thermal pressure
coefficient (γρ) can be expressed as
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Figure 5. Thermal expansion coefficient as a function of saturation temperature at the corresponding saturation pressure shown in Table 3 for R32
and R125. MAPEs are R32a = 2.72 %, R32b = 17.57%, R32c = 11.42%, R32d = 11.95%, and R32Raabe = 14.89%; R125a = 10.04%, R125b = 8.59 %,
R125c = 13.61%, R125d = 11.55%, and R125GAFF = 31.87%.

Figure 6. Thermal pressure coefficient as a function of saturation temperature at the corresponding saturation pressure shown in Table 3 for R32
and R125. MAPEs are R32a = 4.56%, R32b = 3.21 %, R32c = 5.59%, R32d = 7.24%, and R32Raabe = 3.47%; R125a = 17.75%, R125b = 8.02 %, R125c
= 15.75%, R125d = 15.03%, and R125GAFF = 34.88%.
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γρ can also be defined according to

P

T

=
(11)

which was used in determining the experimental values of γρ
with uncertainties obtained using standard error propagation.
NVT simulations were performed under the conditions

detailed in Table 4. Pressure data from MD were fitted to
linear functions of temperature to approximate eq 10. Block
averaging was used to determine the average pressure and
uncertainties. The partial derivative in eq 10 was approximated
using a linear fit of the pressure to temperature at a constant
density. The uncertainties in the slopes of the linear fits were
determined as previously discussed.
Figure 6 gives the plots of γρ as a function of saturation

temperature at the corresponding saturation pressure shown in
Table 3 for R32 and R125. A good qualitative and quantitative
agreement was observed for all R32 FFs with the lowest MAPE
obtained being 3.21% for R32b. The expert-tuned FF, R32Raabe,
compares favorably with the MLD-tuned FF for this property.
The performance of the R125 FFs is worse when compared
with the R32 FFs; however, the results are still reasonable.
R125b and R125d excellently capture the qualitative trend in γρ
of a nearly linear decrease with increasing temperature. Other
R125 FFs predict the overall trend but to a lesser degree of
satisfaction. For example, between 258.15 and 273.15 K, the
trend is contrary to experimental results. It is probable that
there may be an underestimation in the uncertainties in the γρ
estimated for these two state points. This may arise from an
underestimation of the uncertainties in the pressures by using
block averaging. There may also be an underestimation of the
uncertainties in the slopes of the linear fit of the pressure with
temperature. As is well-known, instantaneous pressures from
MD simulations show wide and erratic fluctuations. Thus,
calculations using average pressures and errors in these
averages can show the behavior observed in Figure 6 for
some of the R125 FFs. R125b gives the best quantitative
agreement with experiments with a MAPE of 8.02%. The
MLD-tuned FFs generally perform better than the general FF
R125GAFF for γρ.
Isothermal Compressibility (βT), Speed of Sound

(csound), and Joule-Thomson Coefficient (μJT). The
isothermal compressibility (βT) can be computed using γρ

and αP obtained from molecular simulation by rearranging eq
11 to give

T
P=

(12)

with uncertainties estimated using error propagation. Exper-
imental values of βT were obtained using eq 9 as previously
discussed.
This quantity can also be computed directly from a

molecular simulation in either the isothermal−isobaric
ensemble or the canonical ensemble according to the following
expression
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using the finite-difference approach to approximate the partial
derivatives.
It is evident that there are several routes to compute the set

of thermodynamic properties investigated in this study. Our
focus is not to assess the various routes but instead to use a
route that is convenient and reliable. In general, of the three
quantities αP, γρ, and βT, only two need to be directly
computed using MS. Once the choice of which two are to be
directly computed is made, the third one can be indirectly
computed using an appropriate form of eq 12. In this work, we
chose to compute αP and γρ directly from MS as these
quantities are significantly larger in magnitude than βT. We
opine that accurately computing derivative quantities such as
βT, which have very little magnitude, on the order of 10−8 Pa−1,
may be more challenging in general compared to γρ, with
magnitude on the order of 106 Pa·K−1, when using the finite
difference based methods.
Figure 7 shows that the FFs generally capture the qualitative

trends of the increase in βT with temperature. A decrease in βT
is observed between 258.15 and 273.15 K for some of the
R125 FFs. This can be related to the behavior of the γρ values
between these two temperatures for the same FFs. As this
property was indirectly computed, the quantitative accuracy, as
well as uncertainties in this property, is a function of the
accuracy and uncertainties in αP and γρ. This explains the large
uncertainties associated with these values. Overall, R32a and
R125b give the best quantitative agreement among the R32 and
R125 FFs with a MAPE of 3.75% and 15.74% respectively,

Figure 7. Isothermal compressibility as a function of saturation temperature at the corresponding saturation pressure shown in Table 3 for R32 and
R125. MAPEs are R32a = 3.76 %, R32b = 18.16%, R32c = 7.06%, R32d = 14.65%, and R32Raabe = 11.12%; R125a = 20.75%, R125b = 15.24 %, R125c
= 24.96%, R125d = 21.37%, and R125GAFF = 47.57%.
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which can be considered a good agreement for a derivative
property such as isothermal compressibility.
The speed of sound (csound) values were computed from

other properties obtained via molecular simulation via the
following expressions

c
C

Csound
2 P

V T

=
(14)
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V P
P

2

T
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(15)

and standard error propagation was used to estimate
uncertainties.
Values of CP and CV obtained as previously discussed could

be used directly in eq 14. This was found to give less reliable
results since the values of CP and CV systematically
overestimate and underestimate experimental values, respec-
tively, as previously stated and as shown in Figures 3 and 4.
One approach for mitigating the effects of the errors in the
individual properties to be used in calculating csound is to
substitute for CV in eq 14 by using eq 15. This is the approach
adopted in this work and is the same approach used in the
work by Aimoli et al.59 An alternative approach is to substitute
for CP in eq 14 using eq 15 by expressing CP in terms of CV and
other quantities in eq 15.

Figure 8 gives the calculated speed of sound of R32 and
R125 as a function of temperature. The general qualitative
trends are well captured. Again some of the FFs for R125 show
an opposite trend as compared to experiments between 258.15
and 273.15 K. This again is due to the behavior observed for γρ
at these temperatures. The minimum MAPE values are 2.11%
and 6.10% for R32 and R125, respectively, which is considered
excellent for this property. R125GAFF gives a less satisfactory
performance for this property.
Simulation and experimental values of the Joule-Thomson

coefficient (μJT) were indirectly calculated using the following
expression

V T
C

( 1)
JT

P

P
=

(16)

The uncertainties in μJT were computed by applying standard
error propagation methods to eq 16.
Figure 9 shows the results of the computed μJT as a function

of saturation temperature at the corresponding saturation
pressure shown in Table 3 for R32 and R125. Visual
observation of these plots shows qualitative agreement
between simulation and experiments. However, a closer
inspection suggests that the uncertainties in these values are
extremely high as are the MAPE values, especially for R125. An
analysis of eq 16 helps to understand, to some extent, why this
is the case. It can easily be verified that the computed values of

Figure 8. Speed of sound as a function of saturation temperature at the corresponding saturation pressure shown in Table 3 for R32 and R125.
MAPEs are R32a = 4.82%, R32b = 2.11 %, R32c = 5.88%, R32d = 6.74%, and R32Raabe = 3.63%; R125a = 14.56%, R125b = 6.11 %, R125c = 13.80%,
R125d = 12.08%, and R125GAFF = 36.77%.

Figure 9. Joule-Thomson coefficient as a function of saturation temperature at the corresponding saturation pressure shown in Table 3 for R32 and
R125. MAPEs are R32a = 3.44 %, R32b = 99.80%, R32c = 42.80%, R32d = 58.89%, and R32Raabe = 90.00%; R125a = 386.26%, R125b = 288.41 %,
R125c = 598.58%, R125d = 523.89%, and R125GAFF = 1387.13%.
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μJT are extremely sensitive to the accuracy of the αP values
used. αP values with 10−20% deviation from the experimental
value can result in a deviation of close to 100% or even higher
depending on the sign of μJT. The point at which the μJT curve
changes sign from negative to positive is known as the
inversion temperature. At this point, μJT is generally associated
with high uncertainties. μJT has a value of zero at the inversion
temperature; thus, any estimate of the percentage absolute
deviation from the experimental value at (or near) the
inversion temperature tends toward infinity. The very high
overall MAPE values in μJT observed for R125 are due to the
extremely high percentage deviation from experimental values
close to the inversion temperature. Figure 9 shows that 273.15
K is very close to the inversion temperature. The experimental
value of μJT at 273.15 K is −3.52 × 10−9 K/Pa. The percentage
absolute deviations from experiments for R125b, which had the
best performance of the R125 FFs for μJT, are 0.5%, 17.8%,
1112.4%, and 44.3% at 243.15, 258.15, 273.15, and 298.15 K
respectively. If the data at 273.15 K (near inversion
temperature) is excluded, the MAPE value for R125b is
approximately 21%, which is much lower than 288.31% when
this value is included. A MAPE of 21% is quite good
considering the sensitivity of the results to the values of αP. It is
interesting to note that R32a gives a MAPE of 3.48% which is
very good. The high accuracy can be attributed to the very low
MAPE value of 2.72% in αP for this particular R32 FF. Overall,
it can be concluded that the best MLD-tuned FFs for both R32
and R125 give a decent overall qualitative and quantitative
prediction of μJT.
Thermal Conductivity (λ) and Viscosity (η). Thermal

conductivity (λ) and viscosity (η) were computed using
nonequilibrium molecular dynamics (NEMD) based methods.
These methods require the use of a cuboid-shaped simulation
box that is usually longer in one dimension than in the other
two. In this work, the final configurations from NPT
simulations were used as inputs for a box reshaping run. A
0.5 ns NVT simulation was carried out at the desired ρ and
temperature. This was followed by a reshaping of the box to
x:y:z dimensions of 3:3:20. These x:y:z dimensions of 3:3:20
are based on the recommendation by Ohara et al.70 as a way of
mitigating box length effects on thermal conductivity results.
The deform tool in LAMMPS44 was used to enforce the box
reshaping during a 0.1 ns run in an NVE simulation. To
resume the desired simulation temperature, a 5.4 ns NVT

simulation was performed using the reshaped simulation box,
after which a 4 ns NVE run was performed. The final
configuration from this step was used as input for the onward
calculation of λ or η in an NVE ensemble using NEMD
methods.

Thermal Conductivity. To compute thermal conductivity,
we used the heat exchange method proposed by Hafskjold and
co-workers.71,72 The energy exchange was implemented using
the enhanced heat exchange (eHEX) algorithm.73 The energy
withdrawal and supply impose a heat flux on the system and
drive it away from equilibrium. The system’s response results
in a temperature gradient in the simulation box from the hot to
cold regions. At steady state, this temperature gradient can be
related to the magnitude of the external heat flux imposed on
the system by Fourier’s law of heat conduction to give the
thermal conductivity

Q
T zd /d

=
(17)

Q is the imposed heat flux given by

Q e
Ac

=
(18)

where e ̇̇ is the energy exchange rate, which was set to 0.0025
kcal/(mol·fs) in this work and corresponds to 6.95 × 10−6 J/s.
Ac is the cross-sectional area of the box.
The simulation box was divided into 20 layers along the z-

axis; the two middle layers were defined as the cold region,
while the first and last layers at the ends were defined as hot
layers with all axes of the simulation box fully periodic. The
slope of the linear plot of the temperature profile along the z-
axis was used to evaluate dT/dz. The NVE simulations for λ
were carried out for 15 ns.
The uncertainties in λ were estimated by using block

averaging techniques applied to dT/dz. Preliminary simu-
lations showed that a 6 ns simulation with energy swapping
was sufficient to attain a steady state for the value of e ̇̇ used. In
this work, the last 7.5 ns of the 15 ns simulation was used for
further analysis. Calculations of average λ and the associated
uncertainties were performed using the instantaneous temper-
atures in the layers. The uncertainty in λ is a function of the
uncertainty in dT/dz as Q is a constant.
Figure 10 shows calculated results of thermal conductivity as

a function of saturation temperature at the corresponding

Figure 10. Thermal conductivity as a function of saturation temperature at the corresponding saturation pressure shown in Table 3 for R32 and
R125. MAPEs are R32a = 37.28%, R32b = 28.18 %, R32c = 30.26%, R32d = 36.23%, and R32Raabe = 29.19%; R125a = 3.88%, R125b = 5.40%, R125c
= 2.13 %, R125d = 4.43%, and R125GAFF = 16.83%.
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saturation pressure shown in Table 3 for R32 and R125. The
experimental data and associated experimental uncertainties
used for comparison are the averages of three sets of data for
both R3247,74−77 and R125.76−78 There is an excellent
qualitative and quantitative match between MD simulations
and experimental measurements for the MLD-tuned R125 FFs,
which clearly outperform the general R125GAFF, as can be
observed from Figure 10. R125c gave the best quantitative
agreement with a MAPE of 2.14%. The calculated results for
R32 show good qualitative agreement but significant
quantitative deviations from the experimental measurements.
The reason(s) for these discrepancies are not known for
certain. We have a hypothesis that there may be some
molecular-level mechanisms of heat conduction that these FFs
for R32 do not sufficiently capture. One such molecular-level
interaction that is worthy of suspicion is weak hydrogen
bonding (WHB). R32 is known to demonstrate WHB,30,79−81

which can be more pronounced than those in some other
HFCs that also demonstrate WHB. This hydrogen bonding
may have a significant effect on heat conduction at the
molecular level.82,83 Electrostatic and LJ parameters used in
classical FFs can be expected to reproduce the hydrogen
bonding interactions in molecules; however, there may be a
need to apply special treatment to interactions between atomic
sites involved in hydrogen bonding25 to better reproduce
certain properties. The reason the R125 FFs are able to predict
thermal conductivity values with high accuracy, whereas the
R32 FFs do not, may lie with the fact that R125 shows
negligible WHB compared to R32. It is worth mentioning,
however, that the lowest MAPE value for R32, which is
28.18%, is not too bad since thermal conductivity is generally a
challenging transport property to accurately capture.
Viscosity. Viscosity (η) can be reliably computed using an

equilibrium molecular dynamics method proposed by Zhang et
al.84 While this is a good approach for computing η and
estimating uncertainties, we chose to adopt an NEMD scheme
in this work instead. The choice to use NEMD in this work is
mainly a matter of convenience. This is because the work
performed in preparing the system for a NEMD computation
of λ can be leveraged for computing η for the same state points
at which λ values were computed. It can be argued that this
may be computationally more efficient than having to set up
multiple (30 in the original work by Zhang et al.84)
independent simulations in the canonical ensemble to compute

viscosity at a single state point. For the NEMD approach, we
only need one additional simulation for a single state point.
There are several NEMD schemes for computing viscosity.85

The Muller-Plathe method86 was applied in this work. The
method involves imposing an external momentum flux in the
simulation box via a momentum swap between two regions of
the box. The system’s “natural” attempt to counter this
imposed momentum flux results in a velocity gradient, which is
related to the total imposed momentum flux J ̇ to give the fluid
viscosity according to

J
v zd /d

=
(19)

where dv/dz is the velocity gradient along the z-axis. In this
work, momentum swap was performed every 400 fs on the z-
components of the momenta of the target atoms, resulting in a
velocity gradient along the z-axis. The total imposed
momentum flux can be obtained directly from LAMMPS as
an output of the “fix viscosity” command and dv/dz is obtained
by a linear fit of the velocity profile along the z direction. The
uncertainties in η were computed using a similar block
averaging method as applied for λ.
The results in Figure 11 show excellent qualitative and

quantitative agreement between MD and the experiments for
all FFs except R125GAFF. R32Raabe compares favorably with the
MLD-tuned FFs for R32. The MLD-tuned FFs for R125
clearly outperformed the generalized FF R125GAFF. In a
previous study, Fouad and Alasiri used a class II FF to
calculate the viscosity of R32.30 Their simulation generally
underestimates the experimental values. For example, the
values predicted at 243 and 273 K are 195 and 138 μPa·s,
respectively, corresponding to an absolute percentage deviation
(APD) of 7.9% and 8.3% from experimental values. In the
current work, the highest APDs of the MLD-tuned R32 FFs for
η are 6.9% and 5.3% at 243.15 and 273.15 K, respectively. The
best of the MLD-tuned R32 FF, R32a, gives APDs of 1.3% and
2.1% at 243.15 and 273.15 K respectively.

Self-Diffusivity (D). Experimental self-diffusivity data are
not available for R32 or R125, and therefore, no comparison
can be made between simulation and experiments. However,
self-diffusivity was still computed in this work, and the results
are reported, as it is considered an important transport
property. This will provide data for future MD or experimental
work against which to compare.

Figure 11. Viscosity as a function of saturation temperature at the corresponding saturation pressure shown in Table 3 for R32 and R125. MAPEs
are R32a = 2.83%, R32b = 3.66%, R32c = 4.51%, R32d = 1.98 %, and R32Raabe = 3.10%; R125a = 3.90 %, R125b = 5.47%, R125c = 4.87%, R125d =
3.97%, and R125GAFF = 26.62%.
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Self-diffusivity is given by the Einstein relation as shown in
eq 20.87

D
t

tr r
1
6

lim
d
d

( ) (0)
t

2= [ ]
(20)

Three independent NVT simulations were used to compute
the average D and the uncertainties. The first NVT simulation
was carried out for 15 ns after which the velocities were
reassigned using a different random seed. A new NVT
simulation was then performed for 5 ns. The atomic velocities
were reassigned again, and the third independent trajectory
was generated. Python LAMMPS Analysis Tools (PyLAT)88

were used to compute self-diffusivities from these trajectories.
The uncertainties in D were estimated as the standard
deviation in the independently calculated values of D. System
size corrections were applied using Yeh and Hummer’s
method89 with the viscosities calculated in this work.
Figure 12 shows the results of D for R32 and R125. MD

results by Fouad and Alasiri30 for R32 are also included. There
is generally good qualitative and quantitative agreement
between the results from this work and those of Fouad and
Alasiri; however, those of Fouad and Alasiri are slightly higher.
This is to be expected since the class II FF used in the work by
Fouad and Alasiri30 underestimates the viscosities. It is
observed in the current work that the MLD-tuned FFs agree
with one another, while R125GAFF predicts lower D values.
Center of Mass (COM) Radial Distribution Function

(RDF). PyLAT88 was used to calculate COM RDFs from the
same trajectories used in computing D.

Figure 13 shows that the MLD-tuned FFs for R32 predict
very similar liquid structures. R32Raabe predicts the same peak
positions as the MLD-tuned FFs but suggests slightly reduced
ordering in the first coordination shell in the liquid state at
273.15 K, as shown by the lower peak height. The results for
R125 show more pronounced differences in the structural
predictions of the MLD-tuned FFs compared to those for R32.

FF Ranking. Tables 5 and 6 compare the results from this
work that are relevant to rank the FFs. The first six properties,
λ, η, CP, CV, αP, and γρ, are directly simulated properties
(DSPs). The other properties, βT, csound, and μJT, were
computed indirectly using standard thermodynamic relations
involving the relevant DSPs. In each row, the best FF is
highlighted in bold.
To ensure a robust parameter recommendation, we

considered several different quantitative ranking criteria to
identify, if possible, the best force field for each molecule. In
our opinion, averaging the MAPEs for all DSPs is the most
straightforward approach, as this assigns equal weights to each
physical property. Alternately, we can average the MAPEs for
all DSPs except λ, which has an order of magnitude larger
MAPE compared to the other DSPs for all considered R32
FFs. Yet another ranking criterion is the average MAPE for all
properties (directly and indirectly computed), with the
exception of μJT. This can be useful for accessing the
performance of FFs studied across more properties in addition
to the DSPs while avoiding the overbearing effects of the
curious sensitivity of μJT to αP. Finally, we considered
averaging the MAPEs for all nine properties. The last two
criteria were considered less objective for ranking compared

Figure 12. Calculated self-diffusivity as a function of saturation temperature at the corresponding saturation pressure shown in Table 3 for R32 and
R125.

Figure 13. Calculated COM RDFs for R32 and R125 at 273.15 K.
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with the criterion of averaging MAPEs for all DSPs only. This
is because using the last two criteria may lead to an
overweighting of the effects of some of the DSPs such as αP.
Interestingly, we find that all four ranking criteria

recommend the same best FFs: R32a and R125b. This outcome
is not guaranteed, and we do not expect it to hold universally
that all four ranking criteria will always suggest the same “best”
FF. We also observe that all four ranking criteria give different
orders besides the top rank, e.g., rank 2 and rank 3. For
comparison, the MAPE results for VLE properties used by
Befort et al.36 to rank the force fields are reported at the
bottom of Tables 5 and 6.
The MAPEs for μJT in Tables 5 and 6 suggest at first glance

that the MLD-tuned FFs for R125 perform significantly worse
at capturing μJT than the R32 FFs. However, such a conclusion
may be misleading. To enable a better quantitative assessment
of the performance of the FFs for predicting μJT, the mean
absolute errors (MAEs) and normalized MAEs for μJT are
included in Tables 5 and 6. The MAEs are normalized using
the maximum absolute values of the corresponding exper-
imental data for R32 and R125, within the temperature range
of interest. The comparison of the MAEs and normalized
MAEs of the MLD-tuned FFs for R32 and R125 in Tables 5
and 6 shows that the R125 FFs are not much worse than the

R32 FFs in predicting μJT. The MAE values are, in general,
very low. Three of the four MLD-tuned FFs for R32 and all of
the MLD-tuned R125 FFs have MAE values ranging between
5−10 × 10−8/(K·Pa−1) showing that the performances of the
FFs for R125 are in general comparable to those of the R32
FFs. The normalized MAE values are generally less than 0.3 for
most of the MLD-tuned FFs for R32 and R125. This can be
considered a decent value considering the sensitivity of μJT to
αP. This further addresses the issue of the poor predictive
performance of R125 FFs for μJT that may arise by focusing on
only MAPE values.
The MLD-tuned FFs generally demonstrate excellent

transferability across all of the properties investigated at
multiple state points. They perform better than the expert-
tuned FF for R32 and the generalized FF for R125. We
consider it remarkable that the MLD-tuned FFs are trans-
ferable to a wide range of properties not used in tuning them.
There is no simple or direct correlation between the properties
used for tuning and some of the captured properties, like
transport properties for example. Furthermore, only the LJ
parameters were tuned for these MLD-tuned FFs using
bonded parameters from one of the early GAFF versions,
which used relatively less expensive quantum calculations for
obtaining the bonded parameters. Our results suggest that, for
the purposes of capturing thermophysical and transport

Table 5. Summary of the Performance of the R32 FFsa

MAPE/(%)

property R32a R32b R32c R32d R32Raabe
λ (DSP, NVE) 37.28 28.18 30.26 36.23 29.19
η (DSP, NVE) 2.83 3.66 4.51 1.98 3.10
CP (DSP, NPT) 5.70 7.23 8.90 5.87 16.70
CV (DSP, NVT) 6.92 7.01 6.64 7.13 4.75
αP (DSP, NPT) 2.72 17.57 11.42 11.95 14.89
γρ (DSP, NVT) 4.56 3.21 5.59 7.24 3.47
βT 3.76 18.16 7.06 14.65 11.12
csound 4.82 2.11 5.88 6.74 3.63
MAPEs for μJT/(%) 3.44 99.80 42.80 58.89 90.00
MAEs for μJT × 108/(K·
Pa−1)

0.46 10.42 5.27 5.88 7.76

normalized MAEs for μJT 0.02 0.50 0.25 0.28 0.37
averaged MAPEs for
DSPs except λ/(%)

4.55 7.74 7.41 6.84 8.58

averaged MAPEs for all
DSPs/(%)

10.00 11.14 11.22 11.74 12.02

averaged MAPEs for all
properties except μJT/
(%)

8.57 10.89 10.03 11.48 10.86

averaged MAPEs for all
properties/(%)

8.00 20.77 13.67 16.74 19.65

rank based on averaged
MAPEs for all DSPs

1 2 3 4 5

MAPEs of VLE properties/(%)36

R32a R32b R32c R32d R32Raabe
ρsat
l 0.29 0.49 0.27 0.15 1.45

ρsat
v 1.20 1.34 1.25 1.23 7.17

Pvap 1.03 1.09 0.53 1.48 4.30
ΔHvap 0.77 0.63 1.00 0.45 2.49
Tc 0.43 0.16 0.40 0.08 2.08
ρc 0.26 0.49 0.18 0.30 0.26

averaged MAPEs for VLE
properties

0.66 0.70 0.60 0.61 2.96

aMinimum per row in bold.

Table 6. Summary of the Performance of the R125 FFsa

MAPE/(%)

property R125a R125b R125c R125d R125GAFF
λ (DSP, NVE) 3.88 5.40 2.13 4.43 16.83
η (DSP, NVE) 3.90 5.47 4.87 3.97 26.62
CP (DSP, NPT) 6.91 7.11 4.95 5.27 6.55
CV (DSP, NVT) 5.13 3.72 4.67 4.28 3.79
αP (DSP, NPT) 10.04 8.59 13.61 11.55 31.87
γρ (DSP, NVT) 17.75 8.02 15.75 15.03 34.88
βT 20.75 15.24 24.96 21.37 47.57
csound 14.56 6.11 13.80 12.08 36.77
MAPEs for μJT/(%) 386.26 288.41 598.58 523.89 1387.13
MAEs for μJT × 108/
(K·Pa−1)

6.74 5.79 9.73 8.31 20.70

normalized MAEs for
μJT

0.18 0.15 0.25 0.22 0.54

averaged MAPEs for
DSPs except λ/(%)

8.75 6.58 8.77 8.02 20.74

averaged MAPEs for all
DSPs/(%)

7.94 6.39 7.67 7.42 20.09

averaged MAPEs for all
properties except
μJT/(%)

10.36 7.46 10.59 9.75 25.61

averaged MAPEs for all
properties/(%)

52.13 38.67 75.93 66.87 176.89

rank based on averaged
MAPEs for all DSPs

4 1 3 2 5

MAPEs of VLE properties/(%)36

R125a R125b R125c R125d R125GAFF
ρsat
l 1.03 0.69 1.74 0.40 2.92

ρsat
v 2.21 1.60 1.00 2.47 50.52
Pvap 2.20 1.76 1.99 2.42 46.05
ΔHvap 1.42 2.47 0.93 2.39 22.37
Tc 1.08 0.71 0.63 0.91 9.02
ρc 0.83 0.77 1.57 0.17 8.48

averaged MAPEs for VLE
properties

1.46 1.33 1.31 1.46 23.23

aMinimum per row in bold.
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properties of simple fluids like HFCs, we do not always have to
tune bonded parameters to very high accuracy, decent is good
enough. We consider this to be remarkable. Finally, we find it
somewhat surprising that MLD-tuning was able to obtain not
one but several FF parameter sets that outperform expert-
tuned FFs in terms of transferability to other properties. The
qualities and performances of these MLD-tuned FFs for VLE
properties are generally transferred to the other properties
computed in this work, further confirming that these MLD-
tuned FFs capture to a good extent the actual physics of the
molecules they have been designed to represent.
The extensive and rigorous evaluation of MLD-tuned FFs

using various properties that were not involved in tuning them
can help to better distinguish and rank FFs that were nearly
indistinguishable solely on the basis of VLE properties. The
range of the average MAPE for VLE properties is 0.1% and
0.15% for MLD-tuned R32 and R125 FFs, respectively,
whereas, for the DSPs studied in this work, we obtain a
range of 1.73% and 1.54% for R32 and R125, respectively. This
is more than an order of magnitude higher than that in the
VLE properties. When derivative properties, such as αP and γρ,
are also considered, for which significant differences were
observed between the FFs, we can confidently conclude that
these MLD-tuned FFs, though similar in performance for
several properties, are indeed different and may not always tell
the same story.
From Tables 5 and 6, we see that the FF parameter sets that

give the lowest MAPE values for multiple VLE properties do
not necessarily provide the best generalizability to several other
properties. For both R32 and R125, the FFs with the lowest
average MAPE based on VLE results, which may have been
considered the best FFs in our prior work,36 were not the best
FF parameter sets for the physical properties examined in this
study. One interpretation is that the FFs optimized only for
VLE properties, i.e., top FF from Befort et al.,36 are overfit and
thus have relatively higher errors for properties not used for
calibration. This is consistent with common knowledge in
statistics, data science, and machine learning about overfitting
and the bias-variance trade-off.
We may speculate from Tables 5 and 6 that inputting liquid

densities outside saturation conditions as a property for tuning
FFs in addition to the VLE properties used by Befort et al.36

may lead to a significant improvement in the transferability of
these MLD-tuned FFs to other thermodynamic properties. For
example, predicting αP for the saturated liquid state using
finite-difference methods requires highly accurate liquid
densities not just at saturation conditions but also at conditions
outside saturation conditions. Therefore, including liquid
densities outside saturation conditions for training FFs may
be important for a better performance of MLD-tuned FFs for
predicting volumetric thermodynamic properties. This will in
turn lead to more accurate indirectly computed thermody-
namic properties.

■ CONCLUSIONS
This work has demonstrated that MLD-tuned FFs developed
previously based on VLE properties are transferable to a wider
range of thermophysical and transport properties not used in
the tuning procedure. We have also found that the similarities
observed in performance in the VLE properties are also
observed across other properties but to a significantly lower
degree, such that we can begin to distinguish between these
FFs by calculating properties not used in tuning the FFs

parameters. Based on the properties studied in this work, we
identified R32a and R125b as the overall best and therefore
recommend them for future simulations.
This paper provides an extensive set of simulation data on a

wide range of thermophysical, transport, and structural
properties for two important refrigerants. The results and
corresponding postprocessing tools should be helpful to others
wishing to perform simulations on similar or other systems.
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