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Abstract

Aim: The spectral variability hypothesis (SVH) predicts that spectral diversity, defined as
the variability of radiation reflected from vegetation, increases with biodiversity. While
confirmation of this hypothesis would pave the path for use of remote sensing to monitor
biodiversity, support in herbaceous ecosystems is mixed. Methodological aspects related
to scale have been the predominant explanation for the mixed support, yet biological char-
acteristics that vary among herbaceous systems may also affect the strength of the rela-
tionship. Therefore, we examined the influence of three biological characteristics on the
relationship between spectral and taxonomic diversity: vegetation density, spatial species
turnover and invasion by non-native species. We aimed to understand when and why spec-
tral diversity may serve as an indicator of taxonomic diversity and be useful for monitoring.
Location: Continental U.S.A.

Time Period: Peak greenness in 2017.

Major Taxa Studied: Grassland and herbaceous ecosystems.

Methods: For nine herbaceous sites in the National Ecological Observatory Network,
we calculated taxonomic diversity from field surveys of 20 mx 20 m plots and derived
spectral diversity for those same plots from airborne hyperspectral imagery with a
spatial resolution of 1 m. The strength of the taxonomic diversity-spectral diversity
relationship at each site was subsequently assessed against measurements of vegeta-
tion density, spatial species turnover and invasion.

Results: We found a significant relationship between taxonomic and spectral diversity
at some, but not all, sites. Spectral diversity was more strongly related to taxonomic
diversity in sites with high species turnover and low invasion, but vegetation density
had no effect on the relationship.

Main Conclusions: Using spectral diversity as a proxy for taxonomic diversity in grass-
lands is possible in some circumstances but should not just be assumed based on the
SVH. It is important to understand the biological characteristics of a community prior

to considering spectral diversity to monitor taxonomic diversity.

KEYWORDS
beta diversity, biodiversity, hyperspectral imagery, invasion, remote sensing, species turnover,
spectral variability hypothesis
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1 | INTRODUCTION

Conserving and restoring biodiversity are among the major goals
for society in the next decades (CBD, 2021). Achieving these goals
is challenging, yet urgent, because biodiversity is changing rapidly
across space and time (Blowes et al., 2019; Newbold et al., 2018).
Monitoring programmes are crucial to detect biodiversity changes.
However, field surveys are heavily limited by logistical and finan-
cial constraints. With the development of imaging spectrometers,
complementary approaches are now arising to map biodiversity pat-
terns (Lausch et al., 2016; Wang & Gamon, 2019). In fact, harnessing
remote sensing technology is increasingly suggested as the way to
move forward to realizing frequent and spatially explicit biodiver-
sity observations (Besson et al., 2022; Jetz et al., 2016; Skidmore
et al, 2015).

One approach to remotely sensing biodiversity is using spectral
diversity, quantified as the variation in radiation reflected from a set
of pixels across a set of wavelengths, as a proxy for taxonomic diver-
sity, quantified as species numbers and variation in their abundance
(Magurran, 1988; Wang & Gamon, 2019). The spectral variation hy-
pothesis (SVH) predicts that spectral diversity increases as biodiver-
sity increases because spectral signatures capture subtle differences
in biochemical, physiological and structural characteristics across
plant species (Palmer et al., 2000, 2002). Over the last two decades,
the SVH has been tested in various ecosystems and conditions, with
some studies supporting the hypothesis (see references in Rocchini
et al.,, 2010 for older approaches; Hakkenberg et al., 2018; Frye
et al.,, 2021), and others finding no or even negative relationships
between spectral diversity and taxonomic diversity (e.g., Imran
et al., 2021; Mockel et al., 2016; Rossi et al., 2022).

Across these cases, one intriguing pattern to emerge is that the
SVH holds up more often in forests compared to herbaceous sys-
tems (Schweiger & Laliberté, 2022). This difference could be due
to a scale mismatch between field sampling and remotely sensed
data: individuals in grasslands and other herbaceous ecosystems are
typically smaller than the pixel size of remotely sensed imagery (but
see Lopatin et al., 2017; Wang et al., 2018). Nevertheless, there are
some grassland studies where relatively coarse imagery was suc-
cessfully employed to assess taxonomic diversity (e.g., Gholizadeh
et al., 2020; Wang et al., 2016), raising the question why the SVH
holds in some grasslands but not in others. Here, in addition to meth-
odological issues of scale, we ask if biological characteristics might
also be at play in affecting the strength of the relationship between
taxonomic and spectral diversity.

We explore three potential moderators that may explain vari-
ation in the strength of the taxonomic diversity-spectral diversity
relationship (Figure 1). First, vegetation density could impact the re-
lationship between taxonomic and spectral diversity. Soil has a spec-
tral signature that is very distinct from that of vegetation and may
increase spectral diversity in areas with sparse vegetation cover,
regardless of whether the plant community is highly diverse or not
(Gholizadeh et al., 2018). Second, the spatial distribution of species
in a community could influence the relationship between taxonomic

and spectral diversity. Since one pixel likely represents a commu-
nity rather than a plant individual in herbaceous systems, we ex-
pect that spectral diversity best picks up taxonomic diversity when
species are heterogeneously distributed across the community, in
other words, when spatial species turnover (beta diversity) is high
(Wang & Gamon, 2019). For instance, spectral diversity was found
to be a better proxy of taxonomic diversity in grasslands shortly
after prescribed burning, presumably because this management
action induced spatial heterogeneity in the community (Gholiza-
deh et al., 2020, 2022). Third, the relationship between taxonomic
and spectral diversity could be affected by invasion of non-native
species. This could be due to a variety of non-exclusive reasons.
Invasion tends to reduce taxonomic diversity (Vila et al., 2011),
so in order for spectral diversity to be a good proxy of taxonomic
diversity, it should also decrease with invasion. However, the ad-
dition of non-native species to a community may disproportion-
ally increase spectral diversity compared to the addition of native
species, because non-native species often exhibit biochemical and
structural traits that are quite different from the native vegetation
(Funk et al., 2008; Helsen et al., 2020; Van Cleemput et al., 2020).
Alternatively, invasion may lead to biotic homogenization (Olden
et al., 2004) and hence decreased species turnover, a pattern that
we expect to weaken the relationship between taxonomic and spec-
tral diversity (see Moderator 2 in Figure 1). Consequently, we expect
spectral diversity to be less closely related to taxonomic diversity
when a system is invaded.

To test these predictions about biological characteristics affect-
ing the strength of the taxonomic diversity-spectral diversity re-
lationship, we examine this relationship across sites while holding
spatial extent (plot size) and resolution (pixel size) constant. Using
standardized data from the National Ecological Observatory Net-
work (NEON) on species presence and cover (Imx1m quadrats
nested in 20mx20m plots) and airborne hyperspectral imagery
with a spatial resolution of 1 m across nine herbaceous sites across
the continental United States, we are able to test which biological
characteristics influence the strength of the taxonomic diversity-
spectral diversity relationship. We predict that this relationship is
context dependent, and that spectral diversity is more closely re-
lated to taxonomic diversity when (i) vegetation density is high; (ii)

species turnover (beta diversity) is high; and (iii) invasion is low.

2 | MATERIALS AND METHODS
2.1 | Sampling design

Our work is focused on terrestrial grassland and herbaceous ecosys-
tems included in NEON. NEON is a US-based monitoring initiative,
that collects information on terrestrial and aquatic ecosystems using
field-based measurements as well as airborne observations (Thorpe
et al., 2016). Within the NEON network, there are 81 sites organ-
ized within 20 ecoclimatic domains, of which 10 terrestrial sites have
“grassland/herbaceous” listed as a dominant cover type (sometimes
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FIGURE 1 Conceptual figure of the sampling design (a) and the three proposed moderators that may affect the strength of the taxonomic
diversity-spectral diversity relationship (b). At each site, the taxonomic diversity-spectral diversity relationship was fit using plot-level
measurements (400 m?) of taxonomic and spectral diversity (as exemplified in the first row of b). To conceptually clarify the three proposed
moderators, we zoom in on four pixels covering equal species richness (four species, indicated by the coloured leaf and star symbols)

and, next to that, visualize each pixel's hypothetical spectral signature with a different shade of grey. We expect a stronger link between
taxonomic and spectral diversity when vegetation density is high (Moderator 1), species turnover is high (Moderator 2) and invasion is low
(Moderator 3). The reasoning behind this is that we expect spectral diversity (sdiv; i.e., the variation across the spectral signatures) to be
disproportionally higher when vegetation density is low, due to contributions of bare soil to a pixel's spectral signature (Moderator 1), and
disproportionally lower when species turnover is low, because spectral signatures represent pixel-level communities and not single plant
individuals (Moderator 2). Invasion may break the link between taxonomic and spectral diversity because it disproportionally increases
spectral diversity, due to non-native species (star symbols) exhibiting distinctive functional traits (Moderator 3), or because of alternative
pathways (e.g., through a decreased species turnover, as depicted in Moderator 2). The size of the individuals visualized in this figure is not
representative of real plant sizes, but was chosen for the purpose of conceptually visualizing the moderators.

along with other dominant vegetation types). We further refer to Within the terrestrial ecosystems, NEON employs a permanent
these sites as herbaceous sites. We used data collected in 2017 since plot network that is monitored yearly. Species presence is surveyed
nine herbaceous sites were sampled with flights in that year (Fig- in plots of 20mx20m. Within those plots, there are eight quad-
ure 2, Table S1). rats of 1mx1m for which species percent cover is noted on top of
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ABBY: mountain meadow

Z: tallgrass

FIGURE 2 Location of NEON sites. We analysed data from grassland and herbaceous plots, extracted from nine sites: ABBY is Abby
Road; CLBJ is Caddo—Lyndon B. Johnson National Grassland; CPER is Central Plains Experimental Range; KONZ is Konza Prairie Biological
Station; NIWO is Niwot Ridge Mountain Research Station; NOGP is Northern Great Plains Research Laboratory; OAES is Marvin Klemme
Range Research Station located on the Oklahoma Agricultural Experiment Station; SJER is San Joaquin Experimental Range; WOOD is
Woodworth. Map tiles by Stamen Design, CC BY 3.0. Mat data: © OpenStreetMap contributors. All pictures are from NEON.

presence (number of quadrats changed to six from 2019 onwards)
(NEON user guide DP1.10058.001) (Figure S1). Field-based obser-
vations of species presence and abundance are generally made in
approximately a 1-2-month period around peak flowering (Table S1).
We only considered “grassland/herbaceous” plots in this study
(number of plots per site ranged between 6 and 33).

On a rotating basis, NEON sites are surveyed remotely, using
a set of sensors mounted onto a De Havilland DHC-6 Twin Otter
aircraft. NEON's Airborne Observations Platform operates a full
waveform light detection and ranging (LiDAR) instrument and a push-
broom hyperspectral imaging spectrometer. The LiDAR instrument
is an Optech Incorporated Airborne Laser Terrain Mapper Gemini,
emitting pulses of 1064 nm with a width on the order of 10ns and
nominal pulse repetition frequency of 100kHz. The hyperspectral
sensor operates in the electromagnetic spectral region between
0.38 and 2.5 microns with a spectral sampling of 0.5nm (426 bands).
NEON applies a series of in-house preprocessing algorithms to the
LiDAR and spectrometer flight line data. Full waveforms measured

by the LiDAR instrument are converted into discrete returns, which
in turn are converted into a point cloud (NEON.DOC.001292). From
this point, cloud several raster products are derived, including can-
opy height (NEON.DOC.002387). The raw radiance data from the
spectrometer are first calibrated (NEON.DOC.001210), orthorec-
tified and co-registered to the LiDAR data (NEON.DOC.001290),
after which they are converted to reflectance, using the ATCOR-4
atmospheric correction algorithm (NEON.DOC.001288). Several
spectral vegetation indices, including the normalized difference veg-
etation index (NDVI, NEON.DOC.002391), and other metrics, such
as the leaf area index (LAlI, NEON.DOC.002385), are subsequently
computed from the reflectance cube and are readily available for
download. Both the LiDAR and spectrometer data are processed
and mosaicked in-house to 1-m spatial resolution products (NEON.
DOC.004365). Most sites are flown around peak greenness, but
the timing does not necessarily align well with that of field-based
surveys, due to the sometimes-substantial temporal variation in the
field data collection (Table S1). Therefore, we only retained plots
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that were surveyed within 2 months (61 days) before or after the air-

borne data were collected.

2.2 | Taxonomic and spectral diversity

For each “grassland/herbaceous” plot, we quantified three met-
rics of taxonomic diversity. First, we calculated species richness
based on species presence observations recorded for the full ex-
tent (400 m?) of the plots. Because species abundance is another
important aspect of taxonomic diversity, we also calculated two
abundance-weighted metrics of taxonomic diversity. Using spe-
cies cover data from the eight 1-m? quadrats within a plot, we
derived the exponentiated Shannon entropy and inverse Simpson
concentration for each plot with the “vegan” R package (Oksanen
et al., 2019). We used exponentiated Shannon entropy and in-
verse Simpson concentration rather than their raw forms because
they represent the “effective number of species” rather than “the
uncertainty in species identity” in a plot (Jost, 2006). Given the
sampling incompleteness of the abundance-based metrics and the
more widespread use of species richness in ecosystem assess-
ments, we use species richness as our primary taxonomic diversity
metric and report results of the abundance-weighted metrics in
the Supplementary Information.

For each plot, we computed three metrics of spectral diversity
that are commonly used in spectral diversity studies (Frye et al., 2021;
Gholizadeh et al., 2018). First, the coefficient of variation (CV; Wang
et al., 2016) is a metric of the spectral “complexity” of a plot. It was
computed by calculating the CV for each band across all pixels
(Imx1m) in a plot (20mx20m) and then taking the average of all
band-specific CVs. Second, the spectral angle mapper (SAM; Kruse
et al., 1993) quantifies the dissimilarity between two spectral signa-
tures as the angle in multidimensional spectral space. For each plot,
we calculated the angle between each individual pixels' spectral sig-
nature and the plot's average spectral signature. These angles were
subsequently averaged across all pixels in a plot to retrieve the av-
erage SAM of a plot (script adapted from Frye et al., 2021). Third, we
calculated the convex hull volume (CHV; Dahlin, 2016) encompassed
by all pixels within a plot. We calculated this volume using the first
three principal components derived from the hyperspectral data. For
all three spectral diversity metrics, higher values indicate higher di-
versity. Because these three spectral diversity metrics were strongly
correlated (Pearson r=0.78-0.91, Figure S2), we focus on CV and in-
clude results for SAM and CHYV in the Supplementary Information.

Prior to calculating plot-level spectral diversity metrics, we ap-
plied some standard preprocessing steps to the spectral signatures.
This custom spectral preprocessing consisted of removing noise
(350-400nm and 2400-2550nm) and atmospheric absorption bands
(1325-1455nm and 1775-1970nm), rendering a total of 333 bands
for analysis. We also applied the Savitzky-Golay spectral smoothing
algorithm with a window of seven bands. Preprocessing steps were
performed using the “hsdar” R package (Lehnert et al., 2019). Finally,
we masked all pixels with an NDVI <0.2 and a canopy height=2m

and Biogeography Macoecohogy

(detection limit of the airborne LiDAR sensor) to retain only pixels

that are dominated by live herbaceous vegetation (Figure S3).

2.3 | Evaluating the spectral variability hypothesis

To evaluate the validity of the SVH and strength of the taxonomic
diversity-spectral diversity relationship, we fit linear regression
models with taxonomic diversity as the response variable and log-
transformed spectral diversity as the explanatory variable. We fit
this model structure on the full dataset, containing taxonomic and
spectral measurements of all sites combined, and on data of each
site separately, to obtain site-specific taxonomic diversity-spectral
diversity relationships. To more directly assess the context speci-
ficity of the SVH, we also fit linear regression models with taxo-
nomic diversity as the response variable, log-transformed spectral
diversity, site and the interaction between log-transformed spec-
tral diversity and site as explanatory variables on the pooled data-
set. We fit a separate model for each metric of taxonomic diversity
(species richness, exponentiated Shannon entropy and inverse
Simpson concentration) and each metric of spectral diversity (CV,
SAM and CHV). To assess the strength of the taxonomic diversity-
spectral diversity relationships, we determined the coefficient of
determination (R?) and slope of the relationships. Both of these
metrics are used in the SVH literature (e.g., Gholizadeh et al., 2020;
Wang et al., 2018).

2.4 | Evaluating the effect of biological
characteristics on the strength of the taxonomic-
spectral diversity relationship

We determined three types of site-level characteristics to test our
three potential moderators. First, we used measures of productivity
as a proxy for vegetation density. These included NDVI and LAI de-
rived by NEON from the hyperspectral airborne imagery, and herba-
ceous net primary productivity (NPP, g carbon m2year?), calculated
as the sum of annual and perennial forbs and grasses NPP which
is provided by the Rangeland Analysis Platform (https://rangelands.
app/, version 2 of the dataset). These NPP products are model-based
predictions based on Landsat imagery (30-m spatial resolution)
(Robinson et al., 2019) and were accessed using the Google Earth
Engine. From the detailed cover surveys of the 1-m? quadrats within
each plot, we also calculated the average percentage soil cover per
plot, as a more direct, but inverse, measure of vegetation density.
Site-level plant density was computed as the average NDVI, LA,
herbaceous NPP and soil cover across all plots.

To test our second moderator, we determined within-plot spatial
species turnover or beta diversity as the slope of the semilogarithmic
species-area relationship (SAR; Ricotta et al., 2002). For each plot,
a SAR was fit using the “sars” R package (Matthews et al., 2019), as

Sy =k + hlog(N); (1)
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where Sy is the total number of species recorded within an area of
N (m?). The paired information on Sy and N was obtained from the
individual quadrat surveys (8 times 1 m?) and computing all quadrat
combinations (2-8m?; 247 combinations per plot). The slope h of
this relationship measures the (linear) rate of accumulation of spe-
cies with increasing area sampled, and therefore is an indication of
the average magnitude of species turnover within a plot. Site-level
species turnover was determined as the average slope across plots
(Figure S4).

To evaluate our third moderator, for each plot, we determined
the percentage of recorded species that are non-native, based on
species presence/absence surveys of the entire plot, and the per-
centage vegetation cover of non-natives, based on abundance data
observed in the quadrats. Again, site-level metrics were obtained by
averaging across plots.

Finally, we evaluated the link between these site-level biological
characteristics and the strength of the taxonomic diversity-spectral
diversity relationship by fitting linear models. We fit a simple uni-
variate model for each of the biological characteristics, linking them
individually to the site-specific R? values and slope parameters ex-
tracted from the taxonomic diversity-spectral diversity models. If
our first proposed moderating effect holds, we should observe a
positive relation between the strength of the taxonomic diversity-
spectral diversity relationships (R? and slope) and metrics of vege-
tation density. The same pattern should be observed with the SAR
slopes (indicating species turnover) to confirm our second moder-

ating effect. In contrast, for our third moderating effect to be true,

the link between taxonomic diversity and spectral diversity should

weaken with increasing presence of non-native species.

3 | RESULTS
3.1 | Spectral diversity as a proxy for taxonomic
diversity

There was considerable variation in taxonomic and spectral diversity
across sites (Figure 3a,b). Some sites with high species richness
ranked high on spectral diversity (e.g., CLBJ), though some sites with
low richness also had high spectral diversity (e.g., SJER).

When combining data across all sites, spectral diversity signifi-
cantly increased with taxonomic diversity (p<0.001), yet only ex-
plained a small amount of the total variation in taxonomic diversity
(R>=0.08) (Figure 4a, Table 1). The fit improved considerably when
including site as an additional explanatory variable (R>=0.65), indicat-
ing that the relationship between taxonomic and spectral diversity is
context-specific (Table 1). These patterns were observed when linking
species richness to CV, but also for the other taxonomic and spectral
diversity metrics (Tables S2 and S3). Site-specific models, linking taxo-
nomic and spectral diversity at each site separately, had an R? ranging
between 0.0002 and 0.38 (Table 1). We found a (marginally) significant
positive relationship between species richness and spectral CV at some
sites (CLBJ: p=0.02, CPER: p=0.09, NOGP: p=0.06, OAES: p=0.01),
but not at others (p>0.10 for ABBY, SJER, KONZ, NIWO, SJER and
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CV), vegetation density (c; represented as leaf area index), species turnover (d) and invasion (e; represented as the proportion of the total
species richness that is non-native). Pairwise group comparisons were performed via Dunn's tests with Benjamini-Hochberg adjusted p-
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site abbreviations, see Figure 2.
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FIGURE 4 Relationships between taxonomic diversity, here represented by species richness, and spectral diversity, here represented
by the log-transformed spectral coefficient of variation. Each point represents a plot for which taxonomic and spectral diversity were
calculated. Taxonomic diversity-spectral diversity relationships were fit for all plots of all sites combined (a) and for each site separately
(b). Full and dashed lines indicate sites for which the p-value of the slope was <0.1 and>0.1 respectively (Table 1). See Tables S2 and S4 for
model statistics and model results based on other taxonomic and spectral diversity metrics. For site abbreviations, see Figure 2.

p-value
R? Slope sdiv sdiv
All sites combined (n=156)
Species richness ~ sdiv 0.08 7.99 <0.001
Species richness ~ sdiv + 0.65 Ranges between <0.001
site + sdiv:site -3.49 and 31.08
Individual sites
Species richness ~ sdiv at
ABBY (n=6) 0.12 10.1 0.49
CLBJ (n=15) 0.35 31.08 0.02
CPER (n=32) 0.09 7.46 0.09
KONZ (n=9) 0.23 19.65 0.19
NIWO (n=14) 0.18 13.61 0.13
NOGP (n=33) 0.11 8.61 0.06
OAES (n=16) 0.38 18.57 0.01
SJER (n=16) 0.0002 0.37 0.96
WOOD (n=15) 0.04 3.49 0.49

TABLE 1 Regression results of models

-val -val . - . .
p, vaiue p va ue. relating taxonomic diversity (here species
site interaction . . N X
richness) to spectral diversity (sdiv; here
log-transformed spectral coefficient of
variation).

<0.001 0.029

Note: Models were fit for data pooled across sites and for each site separately. Results for
other taxonomic and spectral diversity metrics can be found in the Supplementary Information

(Tables S2-5S4). For site abbreviations, see Figure 2.

WOOD) (Figure 4b, Table 1). For some sites, the significance of the tax-
onomic diversity-spectral diversity relationship changed when using

other metrics of taxonomic and spectral diversity (Table S4).

3.2 | Which biological variables explain variation
in the taxonomic diversity-spectral diversity
relationship?

We found mixed support for our proposed biological characteristics
moderating the strength of the taxonomic diversity-spectral diver-
sity relationship.

First, there was no general support for a moderating effect of
vegetation density on the strength of the taxonomic-spectral di-
versity relationship. We did not find significant effects of LAI, nor
NDVI, herbaceous NPP or soil cover, on the strength (R2 and slope)
of the species richness-spectral diversity relationships (Figure 5a,
Table 2). This was also observed for the models using abundance-
weighted taxonomic diversity metrics, with a few exceptions (Ta-
bles S5 and Sé).

We found evidence for our second proposed moderating ef-
fect: Spectral diversity was a better proxy for taxonomic diversity
in sites with higher within-plot species turnover (beta diversity).
Both the slope and the R? of the species richness-spectral diversity
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FIGURE 5 Variation in the strength of the taxonomic diversity-
spectral diversity relationship (quantified as the slope of the
tdiv~sdiv relationship at each site) as a function of vegetation
density, represented as leaf area index (a); within-plot beta
diversity, represented as spatial species turnover (b); and invasion,
represented as the proportion of species that are non-native (c).
Taxonomic diversity and spectral diversity are represented by
species richness and the log-transformed spectral coefficient of
variation respectively. For site abbreviations, see Figure 2.

relationships increased with beta diversity (Figure 5b, Table 2). Sim-
ilarly, the slope of the relationship between abundance-weighted
taxonomic diversity metrics and spectral diversity increased with
beta diversity (Tables S5 and Sé). Variation in species turnover was
independent of variation in vegetation density, as indicated by low
pairwise correlations (r ranging between -0.06 and 0.17; Figure S2).
Species turnover positively correlated to both taxonomic diversity

TABLE 2 Regression results of models relating the strength
(slope and R?) of the taxonomic diversity-spectral diversity
relationship to biological characteristics, to test our three proposed
moderators (M).

Slope of species

richness ~ sdiv R? of species richness ~ sdiv

relationship relationship
R (p-value) R? R (p-value) R?
M1: vegetation density
LAI 1.70(0.85) 0.01 -0.002(0.98) 0.0001
NDVI 2.90(0.92) 0.002 -0.002(0.996) 0.000004
Herbaceous 0.32(0.29) 0.16 0.004(0.23) 0.20
NPP
Soil cover 0. (040) 0.11 -0.0(0.71) 0.02
M2: beta diversity
Species 2.53(<0.001) 0.81 0.03(0.01) 0.63
turnover

M3: invasion
%SR invaded -57.72(0.02) 0.58
-0.21(0.03) 0.51

-0.67 (0.03) 0.51

% cover -0.002 (0.07) 0.39

invaded

Note: Taxonomic diversity and spectral diversity (sdiv) are represented
by species richness and the log-transformed coefficient of variation
respectively. Models were fit for each biological characteristic
separately to test each moderator. B denotes the slope of the models.
LAl is leaf area index; NDVI is the normalized difference vegetation
index; NPP is net primary production. Significant relations (p <0.05)
are indicated in bold. Results for other spectral diversity metrics and
other metrics of vegetation density and invasion can be found in the
Supplementary Information (Tables S5 and Sé).

(r ranging between 0.65 and 0.94) and spectral diversity (r ranging
between 0.23 and 0.34) (Figure S2).

Third, we found support for our last proposed moderator, inva-
sion, weakening the relationship between taxonomic and spectral
diversity. The slope of the species richness-spectral diversity rela-
tionship decreased as the percentage of total species richness and
vegetation cover that was non-native increased (Figure 5c, Table 2).
Likewise, the R? of the link between species richness and spectral
diversity decreased with an increasing proportion of species that
are non-native (Table 2). The slope of the relationship between
abundance-weighted taxonomic diversity metrics and spectral
diversity also declined with invasion (Table S5). Highly invaded
plots were associated with higher vegetation density (r ranging
between -0.0004 and 0.44) and lower species turnover (r=-0.55
and r=-0.56) (Figure S2). Invaded plots showed lower taxonomic
diversity (r ranging between -0.37 and -0.54), but, despite the lower
species turnover, also exhibited higher spectral diversity (r ranging
between 0.07 and 0.32) (Figure S2).

4 | DISCUSSION

Across grassland and herbaceous ecosystems in NEON, we found
mixed support for the spectral variability hypothesis, which assumes
that spectral diversity is positively related to taxonomic diversity.
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Our results demonstrate that spectral diversity represents relative
variation in taxonomic diversity at some sites, even when the spatial
resolution of pixels does not match the spatial scale of plant individ-
uals, and we identified biological factors that moderate the strength
of the relationship between taxonomic and spectral diversity.

4.1 | Species turnover and invasion, but not
vegetation density, influence the strength of the
taxonomic diversity-spectral diversity relationship

We assessed the influence of three biological characteristics on the
strength of the taxonomic diversity-spectral diversity relationship.
First, contrary to Schweiger and Laliberté (2022), spectral diver-
sity was not a better proxy of species richness at sites with higher
vegetation density. Despite restricting our analysis to herbaceous
sites, there was a considerable range of vegetation density across
our plots and study sites: Mean LAl ranged between 0.34 and 1.83,
NDVI ranged between 0.30 and 0.78, herbaceous NPP ranged be-
tween 107.1 and 517.5g carbon m2year* and percentage soil cover
ranged between 2.0 and 48.1%. Yet, this variation was not associ-
ated with a variation in the strength of the taxonomic diversity-
spectral diversity relationship. While we masked out pixels that
were purely soil (based on an NDVI threshold of 0.2), we expected
vegetation density to still be a moderating variable because it “con-
taminates” spectral signatures of sparsely (but unmasked) vegetated
pixels. One explanation for the lack of support for this moderator
could be related to plant community characteristics other than soil
that confound the relationship between taxonomic and spectral di-
versity at both low and high vegetation densities. At densely veg-
etated sites, structural complexity of the canopy may be influential.
With increasing complexity of the vertical structure of a commu-
nity, spectral diversity may overestimate taxonomic diversity due to
shadow effects, but it could also underestimate taxonomic diversity
when short species get obscured by taller species and hence are not
picked up by the sensor (Conti et al., 2021). Alternatively, especially
at lower densities, mosses and lichens may contribute to spectral
variation but are typically not included in metrics of taxonomic di-
versity because they are not identified to the species level during
field surveys. Second, higher within-plot spatial species turnover
(beta diversity) improved the relationship between taxonomic and
spectral diversity. This finding may explain the mixed support for the
SVH in grassland studies using imagery with a similar spatial resolu-
tion as we use here (1mx1m pixels) but different spatial extents
or plot sizes: Spectral diversity has been linked to taxonomic diver-
sity when plot sizes are rather large (e.g., Gholizadeh et al., 2020;
Wang et al., 2016), but not when using smaller plots (e.g., Mockel
et al., 2016; Wang et al., 2018). With increasing plot size, composi-
tional change within a plot (spatial species turnover) becomes more
prominent. Species turnover may be related to spatial heterogene-
ity in environmental variables, which influence the ecological niches
available to different species (Soberdn, 2007), and can be shaped by
management. For instance, grazing and prescribed burns can modify

and Biogeography Macoecohogy

the spatial heterogeneity of vegetation (Adler et al., 2001; Collins
& Smith, 2006; Werner et al., 2021), which in turn could affect the
link between taxonomic and spectral diversity (e.g., Gholizadeh
et al., 2020, 2022).While it has been suggested that beta diversity
may promote a positive taxonomic diversity-spectral diversity rela-
tionship (Wang & Gamon, 2019), to our knowledge our study is the
first to explicitly demonstrate this.

Third, we found a weakened link between taxonomic diver-
sity and spectral diversity with increasing invasion. This was also
observed in an experimental grassland setting by Gholizadeh
et al. (2019), but has so far not been demonstrated using obser-
vational data. Highly invaded plots exhibited lower taxonomic di-
versity, which is consistent with previous studies (Vila et al., 2011),
yet also had higher spectral diversity, which could be due to the
introduction of distinct plant characteristics (Funk et al., 2008;
Helsen et al., 2020; Van Cleemput et al., 2020). Big changes in
the biochemical or structural composition following invasion may
disproportionally increase spectral diversity and this could explain
the disconnect between taxonomic and spectral diversity when
non-native abundance is high. However, some highly invaded sites
(e.g., WOOD, NOGP) did not show higher spectral diversity com-
pared to less invaded sites. Instead, these sites exhibited lower
species turnover, suggesting that the weaker relationship between
taxonomic and spectral diversity at highly invaded sites might
be partly explained by a biotic homogenization effect (Olden
et al., 2004), or in other words through the second moderator.
There could be other community changes related to invasion that
explain the disconnect between taxonomic and spectral diversity
at more invaded sites (e.g., patchiness, structural complexity), and
these pathways require further exploration to fully understand
the mechanisms driving our results. For instance, while we no-
ticed that highly invaded plots also had lower species evenness
(Figure S2), evenness was not correlated with the strength of
the taxonomic-spectral diversity relationship (Table S7). Fusing
data from multiple remote sensing instruments can help unravel
these mechanisms. Invasion is substantial at some of our study
sites (e.g., at SJER on average 42% of a plot's species richness was
non-native), and our results suggest that monitoring biodiversity
changes from hyperspectral imagery in these circumstances is

challenging.

4.2 | Important caveats and future steps

Surprisingly, Schweiger and Laliberté (2022) found a negative taxo-
nomic diversity-spectral diversity relationship for Lyndon B. John-
son National Grassland (CLBJ) and Niwot Ridge (NIWO), for which
we found positive associations. It is important to note that both
of these sites contain forested plots, which we excluded from our
analyses, but likely influenced the site-level patterns observed by
Schweiger and Laliberté (2022). This illustrates that the taxonomic
diversity-spectral diversity relationship can be biome-specific and
adds to recent work warning researchers to not assume the general
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validity of the SVH based on theory (Fassnacht et al., 2022). Since
a biome's LAl is more or less correlated with the size of the plant
individuals it hosts (trees > grasses, forbs and small shrubs; Asner
etal., 2003), it is difficult to disentangle scale and vegetation density
effects on the taxonomic diversity-spectral diversity relationship
when looking across biomes.

In this study, we sought to obtain insights into the biological condi-
tions under which spectral variation could be a good indicator of biodi-
versity, and tackled this from the perspective of taxonomic diversity as
it is the most widely used aspect of biodiversity. Obviously, this work
can be extended to other dimensions of biodiversity. Although spec-
tral diversity was linked to taxonomic diversity in some sites, it does
not mean that spectral diversity represents species richness directly
or that spectral signatures reflect species identity, per se. Instead, it
is more likely that spectral diversity represents the variation in bio-
chemical and structural properties (functional traits) of the vegetation,
which presumably is related to species richness to some extent (Flynn
etal., 2011; Petchey & Gaston, 2002), dictated by evolutionary history
(phylogeny; Meireles et al., 2020) and adaptations to environmental
and resource limitations (e.g., light, water, nutrients). Given that plant
biochemical and structural properties have specific light absorption
and scattering characteristics (Curran, 1989; Ollinger, 2011; Ustin
et al., 2009), variation in these properties can lead to variation in spec-
tral signatures, and thus drive spectral diversity. The idea that spectral
diversity links to different aspects of biodiversity is also referred to as
the “surrogacy hypothesis” (Wang et al., 2018; Wang & Gamon, 2019).
Future research could explore the moderators identified here in the
context of functional and phylogenetic diversity.

Our results are only valid for the spatial scale and grain of our
study, calculating diversity for 20mx20m plots and using spectral
imagery acquired with a 1-m spatial resolution. While investigating
the scale dependence of the taxonomic diversity-spectral diversity
relationship is important for designing future combined field and
remote sensing data collection campaigns, there is limited room to
tweak operational settings of airborne (and spaceborne) missions.
Sensors on drones often offer a finer spatial resolution compared
to sensors on aircrafts, but this currently comes at a cost of reduced
spectral resolution and total area flown. Today, advanced technol-
ogy allows us to obtain hyperspectral airborne imagery with a spatial
resolution of 1 m. For example, other airborne imaging spectrome-
ters, such as the National Aeronautics and Space Administration's
AVIRIS (Airborne Visible/Infrared Imaging Spectrometer, https://
aviris.jpl.nasa.gov/) and the European Space Agency's APEX (Air-
borne PRISM Experiment, https://apex-esa.org/en/apex), operate at
settings offering a similar or often coarser spatial resolution com-
pared to NEON's hyperspectral imaging spectrometer. Therefore,
evaluating biological moderating effects on the SVH is extremely
relevant for grassland research and management, where the size of
plant individuals typically does not match the grain/pixel size of re-
mote sensing observations. As airborne spectral campaigns are be-
coming more common, we hope that intercontinental comparisons
of sites become possible using data collected with the same stan-
dardized design.

5 | CONCLUSION

Monitoring biodiversity patterns is an essential part of restora-
tion and management practices. However, because traditional field
methods are extremely time and labour intensive, field surveys are
often restricted in space and time. Consequently, remote sensing
is increasingly suggested as a complementary tool to measure di-
versity, capitalizing on the idea that species have unique spectral
signatures. Yet, remotely sensing biodiversity remains challenging,
especially in grasslands and herbaceous systems, where individual
plants are often smaller than the size of a pixel. Given that the op-
erational settings of most remote sensing collection campaigns are
set, or have limited room to be adjusted, there will be many circum-
stances for which the spatial resolution of the imagery does not cor-
respond with the spatial scale of plant individuals. In this study, we
started from the idea that operational settings are predetermined
and sought to obtain insights into when and why a strong relation-
ship between taxonomic and spectral diversity can be expected. Al-
together, our results show that in low stature vegetation, spectral
diversity can be a proxy of taxonomic diversity, if within-plot spatial
species turnover is high and invasion is low. These results demand
careful consideration of the actual use of remote sensing technology
to follow up restoration and management efforts over large spatial
scales, map biodiversity hotspots to guide conservation and tackle
sampling incompleteness of field-based surveys in grasslands and

herbaceous ecosystems.
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