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Abstract
Aim: The spectral variability hypothesis (SVH) predicts that spectral diversity, defined as 
the variability of radiation reflected from vegetation, increases with biodiversity. While 
confirmation of this hypothesis would pave the path for use of remote sensing to monitor 
biodiversity, support in herbaceous ecosystems is mixed. Methodological aspects related 
to scale have been the predominant explanation for the mixed support, yet biological char-
acteristics that vary among herbaceous systems may also affect the strength of the rela-
tionship. Therefore, we examined the influence of three biological characteristics on the 
relationship between spectral and taxonomic diversity: vegetation density, spatial species 
turnover and invasion by non-native species. We aimed to understand when and why spec-
tral diversity may serve as an indicator of taxonomic diversity and be useful for monitoring.
Location: Continental U.S.A.
Time Period: Peak greenness in 2017.
Major Taxa Studied: Grassland and herbaceous ecosystems.
Methods: For nine herbaceous sites in the National Ecological Observatory Network, 
we calculated taxonomic diversity from field surveys of 20 m × 20 m plots and derived 
spectral diversity for those same plots from airborne hyperspectral imagery with a 
spatial resolution of 1 m. The strength of the taxonomic diversity–spectral diversity 
relationship at each site was subsequently assessed against measurements of vegeta-
tion density, spatial species turnover and invasion.
Results: We found a significant relationship between taxonomic and spectral diversity 
at some, but not all, sites. Spectral diversity was more strongly related to taxonomic 
diversity in sites with high species turnover and low invasion, but vegetation density 
had no effect on the relationship.
Main Conclusions: Using spectral diversity as a proxy for taxonomic diversity in grass-
lands is possible in some circumstances but should not just be assumed based on the 
SVH. It is important to understand the biological characteristics of a community prior 
to considering spectral diversity to monitor taxonomic diversity.
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1  |  INTRODUC TION

Conserving and restoring biodiversity are among the major goals 
for society in the next decades (CBD, 2021). Achieving these goals 
is challenging, yet urgent, because biodiversity is changing rapidly 
across space and time (Blowes et al., 2019; Newbold et al., 2018). 
Monitoring programmes are crucial to detect biodiversity changes. 
However, field surveys are heavily limited by logistical and finan-
cial constraints. With the development of imaging spectrometers, 
complementary approaches are now arising to map biodiversity pat-
terns (Lausch et al., 2016; Wang & Gamon, 2019). In fact, harnessing 
remote sensing technology is increasingly suggested as the way to 
move forward to realizing frequent and spatially explicit biodiver-
sity observations (Besson et al.,  2022; Jetz et al.,  2016; Skidmore 
et al., 2015).

One approach to remotely sensing biodiversity is using spectral 
diversity, quantified as the variation in radiation reflected from a set 
of pixels across a set of wavelengths, as a proxy for taxonomic diver-
sity, quantified as species numbers and variation in their abundance 
(Magurran, 1988; Wang & Gamon, 2019). The spectral variation hy-
pothesis (SVH) predicts that spectral diversity increases as biodiver-
sity increases because spectral signatures capture subtle differences 
in biochemical, physiological and structural characteristics across 
plant species (Palmer et al., 2000, 2002). Over the last two decades, 
the SVH has been tested in various ecosystems and conditions, with 
some studies supporting the hypothesis (see references in Rocchini 
et al.,  2010 for older approaches; Hakkenberg et al.,  2018; Frye 
et al.,  2021), and others finding no or even negative relationships 
between spectral diversity and taxonomic diversity (e.g., Imran 
et al., 2021; Möckel et al., 2016; Rossi et al., 2022).

Across these cases, one intriguing pattern to emerge is that the 
SVH holds up more often in forests compared to herbaceous sys-
tems (Schweiger & Laliberté,  2022). This difference could be due 
to a scale mismatch between field sampling and remotely sensed 
data: individuals in grasslands and other herbaceous ecosystems are 
typically smaller than the pixel size of remotely sensed imagery (but 
see Lopatin et al., 2017; Wang et al., 2018). Nevertheless, there are 
some grassland studies where relatively coarse imagery was suc-
cessfully employed to assess taxonomic diversity (e.g., Gholizadeh 
et al., 2020; Wang et al., 2016), raising the question why the SVH 
holds in some grasslands but not in others. Here, in addition to meth-
odological issues of scale, we ask if biological characteristics might 
also be at play in affecting the strength of the relationship between 
taxonomic and spectral diversity.

We explore three potential moderators that may explain vari-
ation in the strength of the taxonomic diversity–spectral diversity 
relationship (Figure 1). First, vegetation density could impact the re-
lationship between taxonomic and spectral diversity. Soil has a spec-
tral signature that is very distinct from that of vegetation and may 
increase spectral diversity in areas with sparse vegetation cover, 
regardless of whether the plant community is highly diverse or not 
(Gholizadeh et al., 2018). Second, the spatial distribution of species 
in a community could influence the relationship between taxonomic 

and spectral diversity. Since one pixel likely represents a commu-
nity rather than a plant individual in herbaceous systems, we ex-
pect that spectral diversity best picks up taxonomic diversity when 
species are heterogeneously distributed across the community, in 
other words, when spatial species turnover (beta diversity) is high 
(Wang & Gamon, 2019). For instance, spectral diversity was found 
to be a better proxy of taxonomic diversity in grasslands shortly 
after prescribed burning, presumably because this management 
action induced spatial heterogeneity in the community (Gholiza-
deh et al., 2020, 2022). Third, the relationship between taxonomic 
and spectral diversity could be affected by invasion of non-native 
species. This could be due to a variety of non-exclusive reasons. 
Invasion tends to reduce taxonomic diversity (Vilà et al.,  2011), 
so in order for spectral diversity to be a good proxy of taxonomic 
diversity, it should also decrease with invasion. However, the ad-
dition of non-native species to a community may disproportion-
ally increase spectral diversity compared to the addition of native 
species, because non-native species often exhibit biochemical and 
structural traits that are quite different from the native vegetation 
(Funk et al., 2008; Helsen et al., 2020; Van Cleemput et al., 2020). 
Alternatively, invasion may lead to biotic homogenization (Olden 
et al., 2004) and hence decreased species turnover, a pattern that 
we expect to weaken the relationship between taxonomic and spec-
tral diversity (see Moderator 2 in Figure 1). Consequently, we expect 
spectral diversity to be less closely related to taxonomic diversity 
when a system is invaded.

To test these predictions about biological characteristics affect-
ing the strength of the taxonomic diversity–spectral diversity re-
lationship, we examine this relationship across sites while holding 
spatial extent (plot size) and resolution (pixel size) constant. Using 
standardized data from the National Ecological Observatory Net-
work (NEON) on species presence and cover (1 m × 1 m quadrats 
nested in 20 m × 20 m plots) and airborne hyperspectral imagery 
with a spatial resolution of 1 m across nine herbaceous sites across 
the continental United States, we are able to test which biological 
characteristics influence the strength of the taxonomic diversity–
spectral diversity relationship. We predict that this relationship is 
context dependent, and that spectral diversity is more closely re-
lated to taxonomic diversity when (i) vegetation density is high; (ii) 
species turnover (beta diversity) is high; and (iii) invasion is low.

2  |  MATERIAL S AND METHODS

2.1  |  Sampling design

Our work is focused on terrestrial grassland and herbaceous ecosys-
tems included in NEON. NEON is a US-based monitoring initiative, 
that collects information on terrestrial and aquatic ecosystems using 
field-based measurements as well as airborne observations (Thorpe 
et al., 2016). Within the NEON network, there are 81 sites organ-
ized within 20 ecoclimatic domains, of which 10 terrestrial sites have 
“grassland/herbaceous” listed as a dominant cover type (sometimes 
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    |  2179VAN CLEEMPUT et al.

along with other dominant vegetation types). We further refer to 
these sites as herbaceous sites. We used data collected in 2017 since 
nine herbaceous sites were sampled with flights in that year (Fig-
ure 2, Table S1).

Within the terrestrial ecosystems, NEON employs a permanent 
plot network that is monitored yearly. Species presence is surveyed 
in plots of 20 m × 20 m. Within those plots, there are eight quad-
rats of 1 m × 1 m for which species percent cover is noted on top of 

F I G U R E  1  Conceptual figure of the sampling design (a) and the three proposed moderators that may affect the strength of the taxonomic 
diversity–spectral diversity relationship (b). At each site, the taxonomic diversity–spectral diversity relationship was fit using plot-level 
measurements (400 m2) of taxonomic and spectral diversity (as exemplified in the first row of b). To conceptually clarify the three proposed 
moderators, we zoom in on four pixels covering equal species richness (four species, indicated by the coloured leaf and star symbols) 
and, next to that, visualize each pixel's hypothetical spectral signature with a different shade of grey. We expect a stronger link between 
taxonomic and spectral diversity when vegetation density is high (Moderator 1), species turnover is high (Moderator 2) and invasion is low 
(Moderator 3). The reasoning behind this is that we expect spectral diversity (sdiv; i.e., the variation across the spectral signatures) to be 
disproportionally higher when vegetation density is low, due to contributions of bare soil to a pixel's spectral signature (Moderator 1), and 
disproportionally lower when species turnover is low, because spectral signatures represent pixel-level communities and not single plant 
individuals (Moderator 2). Invasion may break the link between taxonomic and spectral diversity because it disproportionally increases 
spectral diversity, due to non-native species (star symbols) exhibiting distinctive functional traits (Moderator 3), or because of alternative 
pathways (e.g., through a decreased species turnover, as depicted in Moderator 2). The size of the individuals visualized in this figure is not 
representative of real plant sizes, but was chosen for the purpose of conceptually visualizing the moderators.

 14668238, 2023, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/geb.13759 by U

niversity O
f C

olorado Librari, W
iley O

nline Library on [30/11/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



2180  |    VAN CLEEMPUT et al.

presence (number of quadrats changed to six from 2019 onwards) 
(NEON user guide DP1.10058.001) (Figure S1). Field-based obser-
vations of species presence and abundance are generally made in 
approximately a 1-2-month period around peak flowering (Table S1). 
We only considered “grassland/herbaceous” plots in this study 
(number of plots per site ranged between 6 and 33).

On a rotating basis, NEON sites are surveyed remotely, using 
a set of sensors mounted onto a De Havilland DHC-6 Twin Otter 
aircraft. NEON's Airborne Observations Platform operates a full 
waveform light detection and ranging (LiDAR) instrument and a push-
broom hyperspectral imaging spectrometer. The LiDAR instrument 
is an Optech Incorporated Airborne Laser Terrain Mapper Gemini, 
emitting pulses of 1064 nm with a width on the order of 10 ns and 
nominal pulse repetition frequency of 100 kHz. The hyperspectral 
sensor operates in the electromagnetic spectral region between 
0.38 and 2.5 microns with a spectral sampling of 0.5 nm (426 bands). 
NEON applies a series of in-house preprocessing algorithms to the 
LiDAR and spectrometer flight line data. Full waveforms measured 

by the LiDAR instrument are converted into discrete returns, which 
in turn are converted into a point cloud (NEON.DOC.001292). From 
this point, cloud several raster products are derived, including can-
opy height (NEON.DOC.002387). The raw radiance data from the 
spectrometer are first calibrated (NEON.DOC.001210), orthorec-
tified and co-registered to the LiDAR data (NEON.DOC.001290), 
after which they are converted to reflectance, using the ATCOR-4 
atmospheric correction algorithm (NEON.DOC.001288). Several 
spectral vegetation indices, including the normalized difference veg-
etation index (NDVI, NEON.DOC.002391), and other metrics, such 
as the leaf area index (LAI, NEON.DOC.002385), are subsequently 
computed from the reflectance cube and are readily available for 
download. Both the LiDAR and spectrometer data are processed 
and mosaicked in-house to 1-m spatial resolution products (NEON.
DOC.004365). Most sites are flown around peak greenness, but 
the timing does not necessarily align well with that of field-based 
surveys, due to the sometimes-substantial temporal variation in the 
field data collection (Table  S1). Therefore, we only retained plots 

F I G U R E  2  Location of NEON sites. We analysed data from grassland and herbaceous plots, extracted from nine sites: ABBY is Abby 
Road; CLBJ is Caddo—Lyndon B. Johnson National Grassland; CPER is Central Plains Experimental Range; KONZ is Konza Prairie Biological 
Station; NIWO is Niwot Ridge Mountain Research Station; NOGP is Northern Great Plains Research Laboratory; OAES is Marvin Klemme 
Range Research Station located on the Oklahoma Agricultural Experiment Station; SJER is San Joaquin Experimental Range; WOOD is 
Woodworth. Map tiles by Stamen Design, CC BY 3.0. Mat data: © OpenStreetMap contributors. All pictures are from NEON.
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    |  2181VAN CLEEMPUT et al.

that were surveyed within 2 months (61 days) before or after the air-
borne data were collected.

2.2  |  Taxonomic and spectral diversity

For each “grassland/herbaceous” plot, we quantified three met-
rics of taxonomic diversity. First, we calculated species richness 
based on species presence observations recorded for the full ex-
tent (400 m2) of the plots. Because species abundance is another 
important aspect of taxonomic diversity, we also calculated two 
abundance-weighted metrics of taxonomic diversity. Using spe-
cies cover data from the eight 1-m2 quadrats within a plot, we 
derived the exponentiated Shannon entropy and inverse Simpson 
concentration for each plot with the “vegan” R package (Oksanen 
et al.,  2019). We used exponentiated Shannon entropy and in-
verse Simpson concentration rather than their raw forms because 
they represent the “effective number of species” rather than “the 
uncertainty in species identity” in a plot (Jost,  2006). Given the 
sampling incompleteness of the abundance-based metrics and the 
more widespread use of species richness in ecosystem assess-
ments, we use species richness as our primary taxonomic diversity 
metric and report results of the abundance-weighted metrics in 
the Supplementary Information.

For each plot, we computed three metrics of spectral diversity 
that are commonly used in spectral diversity studies (Frye et al., 2021; 
Gholizadeh et al., 2018). First, the coefficient of variation (CV; Wang 
et al., 2016) is a metric of the spectral “complexity” of a plot. It was 
computed by calculating the CV for each band across all pixels 
(1 m × 1 m) in a plot (20 m × 20 m) and then taking the average of all 
band-specific CVs. Second, the spectral angle mapper (SAM; Kruse 
et al., 1993) quantifies the dissimilarity between two spectral signa-
tures as the angle in multidimensional spectral space. For each plot, 
we calculated the angle between each individual pixels' spectral sig-
nature and the plot's average spectral signature. These angles were 
subsequently averaged across all pixels in a plot to retrieve the av-
erage SAM of a plot (script adapted from Frye et al., 2021). Third, we 
calculated the convex hull volume (CHV; Dahlin, 2016) encompassed 
by all pixels within a plot. We calculated this volume using the first 
three principal components derived from the hyperspectral data. For 
all three spectral diversity metrics, higher values indicate higher di-
versity. Because these three spectral diversity metrics were strongly 
correlated (Pearson r = 0.78–0.91, Figure S2), we focus on CV and in-
clude results for SAM and CHV in the Supplementary Information.

Prior to calculating plot-level spectral diversity metrics, we ap-
plied some standard preprocessing steps to the spectral signatures. 
This custom spectral preprocessing consisted of removing noise 
(350–400 nm and 2400–2550 nm) and atmospheric absorption bands 
(1325–1455 nm and 1775–1970 nm), rendering a total of 333 bands 
for analysis. We also applied the Savitzky–Golay spectral smoothing 
algorithm with a window of seven bands. Preprocessing steps were 
performed using the “hsdar” R package (Lehnert et al., 2019). Finally, 
we masked all pixels with an NDVI ≤ 0.2 and a canopy height ≥ 2 m 

(detection limit of the airborne LiDAR sensor) to retain only pixels 
that are dominated by live herbaceous vegetation (Figure S3).

2.3  |  Evaluating the spectral variability hypothesis

To evaluate the validity of the SVH and strength of the taxonomic 
diversity–spectral diversity relationship, we fit linear regression 
models with taxonomic diversity as the response variable and log-
transformed spectral diversity as the explanatory variable. We fit 
this model structure on the full dataset, containing taxonomic and 
spectral measurements of all sites combined, and on data of each 
site separately, to obtain site-specific taxonomic diversity–spectral 
diversity relationships. To more directly assess the context speci-
ficity of the SVH, we also fit linear regression models with taxo-
nomic diversity as the response variable, log-transformed spectral 
diversity, site and the interaction between log-transformed spec-
tral diversity and site as explanatory variables on the pooled data-
set. We fit a separate model for each metric of taxonomic diversity 
(species richness, exponentiated Shannon entropy and inverse 
Simpson concentration) and each metric of spectral diversity (CV, 
SAM and CHV). To assess the strength of the taxonomic diversity–
spectral diversity relationships, we determined the coefficient of 
determination (R2) and slope of the relationships. Both of these 
metrics are used in the SVH literature (e.g., Gholizadeh et al., 2020; 
Wang et al., 2018).

2.4  |  Evaluating the effect of biological 
characteristics on the strength of the taxonomic–
spectral diversity relationship

We determined three types of site-level characteristics to test our 
three potential moderators. First, we used measures of productivity 
as a proxy for vegetation density. These included NDVI and LAI de-
rived by NEON from the hyperspectral airborne imagery, and herba-
ceous net primary productivity (NPP, g carbon m−2 year−1), calculated 
as the sum of annual and perennial forbs and grasses NPP which 
is provided by the Rangeland Analysis Platform (https://range​lands.
app/, version 2 of the dataset). These NPP products are model-based 
predictions based on Landsat imagery (30-m spatial resolution) 
(Robinson et al., 2019) and were accessed using the Google Earth 
Engine. From the detailed cover surveys of the 1-m2 quadrats within 
each plot, we also calculated the average percentage soil cover per 
plot, as a more direct, but inverse, measure of vegetation density. 
Site-level plant density was computed as the average NDVI, LAI, 
herbaceous NPP and soil cover across all plots.

To test our second moderator, we determined within-plot spatial 
species turnover or beta diversity as the slope of the semilogarithmic 
species–area relationship (SAR; Ricotta et al., 2002). For each plot, 
a SAR was fit using the “sars” R package (Matthews et al., 2019), as

(1)SN = k + h log(N);
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where SN is the total number of species recorded within an area of 
N (m2). The paired information on SN and N was obtained from the 
individual quadrat surveys (8 times 1 m2) and computing all quadrat 
combinations (2–8 m2; 247 combinations per plot). The slope h of 
this relationship measures the (linear) rate of accumulation of spe-
cies with increasing area sampled, and therefore is an indication of 
the average magnitude of species turnover within a plot. Site-level 
species turnover was determined as the average slope across plots 
(Figure S4).

To evaluate our third moderator, for each plot, we determined 
the percentage of recorded species that are non-native, based on 
species presence/absence surveys of the entire plot, and the per-
centage vegetation cover of non-natives, based on abundance data 
observed in the quadrats. Again, site-level metrics were obtained by 
averaging across plots.

Finally, we evaluated the link between these site-level biological 
characteristics and the strength of the taxonomic diversity–spectral 
diversity relationship by fitting linear models. We fit a simple uni-
variate model for each of the biological characteristics, linking them 
individually to the site-specific R2 values and slope parameters ex-
tracted from the taxonomic diversity–spectral diversity models. If 
our first proposed moderating effect holds, we should observe a 
positive relation between the strength of the taxonomic diversity–
spectral diversity relationships (R2 and slope) and metrics of vege-
tation density. The same pattern should be observed with the SAR 
slopes (indicating species turnover) to confirm our second moder-
ating effect. In contrast, for our third moderating effect to be true, 

the link between taxonomic diversity and spectral diversity should 
weaken with increasing presence of non-native species.

3  |  RESULTS

3.1  |  Spectral diversity as a proxy for taxonomic 
diversity

There was considerable variation in taxonomic and spectral diversity 
across sites (Figure  3a,b). Some sites with high species richness 
ranked high on spectral diversity (e.g., CLBJ), though some sites with 
low richness also had high spectral diversity (e.g., SJER).

When combining data across all sites, spectral diversity signifi-
cantly increased with taxonomic diversity (p < 0.001), yet only ex-
plained a small amount of the total variation in taxonomic diversity 
(R2 = 0.08) (Figure  4a, Table  1). The fit improved considerably when 
including site as an additional explanatory variable (R2 = 0.65), indicat-
ing that the relationship between taxonomic and spectral diversity is 
context-specific (Table 1). These patterns were observed when linking 
species richness to CV, but also for the other taxonomic and spectral 
diversity metrics (Tables S2 and S3). Site-specific models, linking taxo-
nomic and spectral diversity at each site separately, had an R2 ranging 
between 0.0002 and 0.38 (Table 1). We found a (marginally) significant 
positive relationship between species richness and spectral CV at some 
sites (CLBJ: p = 0.02, CPER: p = 0.09, NOGP: p = 0.06, OAES: p = 0.01), 
but not at others (p > 0.10 for ABBY, SJER, KONZ, NIWO, SJER and 

F I G U R E  3  Boxplots of species richness (a), spectral diversity (b; here represented by the log-transformed spectral coefficient of variation; 
CV), vegetation density (c; represented as leaf area index), species turnover (d) and invasion (e; represented as the proportion of the total 
species richness that is non-native). Pairwise group comparisons were performed via Dunn's tests with Benjamini–Hochberg adjusted p-
values (code adapted from Van Cleemput et al., 2021). Groups that share a letter were not significantly different (0.95 confidence level). For 
site abbreviations, see Figure 2.
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    |  2183VAN CLEEMPUT et al.

WOOD) (Figure 4b, Table 1). For some sites, the significance of the tax-
onomic diversity–spectral diversity relationship changed when using 
other metrics of taxonomic and spectral diversity (Table S4).

3.2  |  Which biological variables explain variation 
in the taxonomic diversity–spectral diversity 
relationship?

We found mixed support for our proposed biological characteristics 
moderating the strength of the taxonomic diversity–spectral diver-
sity relationship.

First, there was no general support for a moderating effect of 
vegetation density on the strength of the taxonomic–spectral di-
versity relationship. We did not find significant effects of LAI, nor 
NDVI, herbaceous NPP or soil cover, on the strength (R2 and slope) 
of the species richness–spectral diversity relationships (Figure 5a, 
Table 2). This was also observed for the models using abundance-
weighted taxonomic diversity metrics, with a few exceptions (Ta-
bles S5 and S6).

We found evidence for our second proposed moderating ef-
fect: Spectral diversity was a better proxy for taxonomic diversity 
in sites with higher within-plot species turnover (beta diversity). 
Both the slope and the R2 of the species richness–spectral diversity 

F I G U R E  4  Relationships between taxonomic diversity, here represented by species richness, and spectral diversity, here represented 
by the log-transformed spectral coefficient of variation. Each point represents a plot for which taxonomic and spectral diversity were 
calculated. Taxonomic diversity–spectral diversity relationships were fit for all plots of all sites combined (a) and for each site separately 
(b). Full and dashed lines indicate sites for which the p-value of the slope was ≤0.1 and >0.1 respectively (Table 1). See Tables S2 and S4 for 
model statistics and model results based on other taxonomic and spectral diversity metrics. For site abbreviations, see Figure 2.

TA B L E  1  Regression results of models 
relating taxonomic diversity (here species 
richness) to spectral diversity (sdiv; here 
log-transformed spectral coefficient of 
variation).

R2 Slope sdiv
p-value 
sdiv

p-value 
site

p-value 
interaction

All sites combined (n = 156)

Species richness ~ sdiv 0.08 7.99 <0.001

Species richness ~ sdiv + 
site + sdiv:site

0.65 Ranges between 
−3.49 and 31.08

<0.001 <0.001 0.029

Individual sites

Species richness ~ sdiv at

ABBY (n = 6) 0.12 10.1 0.49

CLBJ (n = 15) 0.35 31.08 0.02

CPER (n = 32) 0.09 7.46 0.09

KONZ (n = 9) 0.23 19.65 0.19

NIWO (n = 14) 0.18 13.61 0.13

NOGP (n = 33) 0.11 8.61 0.06

OAES (n = 16) 0.38 18.57 0.01

SJER (n = 16) 0.0002 0.37 0.96

WOOD (n = 15) 0.04 3.49 0.49

Note: Models were fit for data pooled across sites and for each site separately. Results for 
other taxonomic and spectral diversity metrics can be found in the Supplementary Information 
(Tables S2–S4). For site abbreviations, see Figure 2.
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relationships increased with beta diversity (Figure 5b, Table 2). Sim-
ilarly, the slope of the relationship between abundance-weighted 
taxonomic diversity metrics and spectral diversity increased with 
beta diversity (Tables S5 and S6). Variation in species turnover was 
independent of variation in vegetation density, as indicated by low 
pairwise correlations (r ranging between −0.06 and 0.17; Figure S2). 
Species turnover positively correlated to both taxonomic diversity 

(r ranging between 0.65 and 0.94) and spectral diversity (r ranging 
between 0.23 and 0.34) (Figure S2).

Third, we found support for our last proposed moderator, inva-
sion, weakening the relationship between taxonomic and spectral 
diversity. The slope of the species richness–spectral diversity rela-
tionship decreased as the percentage of total species richness and 
vegetation cover that was non-native increased (Figure 5c, Table 2). 
Likewise, the R2 of the link between species richness and spectral 
diversity decreased with an increasing proportion of species that 
are non-native (Table  2). The slope of the relationship between 
abundance-weighted taxonomic diversity metrics and spectral 
diversity also declined with invasion (Table  S5). Highly invaded 
plots were associated with higher vegetation density (r ranging 
between −0.0004 and 0.44) and lower species turnover (r = −0.55 
and r = −0.56) (Figure  S2). Invaded plots showed lower taxonomic 
diversity (r ranging between −0.37 and −0.54), but, despite the lower 
species turnover, also exhibited higher spectral diversity (r ranging 
between 0.07 and 0.32) (Figure S2).

4  |  DISCUSSION

Across grassland and herbaceous ecosystems in NEON, we found 
mixed support for the spectral variability hypothesis, which assumes 
that spectral diversity is positively related to taxonomic diversity. 

F I G U R E  5  Variation in the strength of the taxonomic diversity–
spectral diversity relationship (quantified as the slope of the 
tdiv~sdiv relationship at each site) as a function of vegetation 
density, represented as leaf area index (a); within-plot beta 
diversity, represented as spatial species turnover (b); and invasion, 
represented as the proportion of species that are non-native (c). 
Taxonomic diversity and spectral diversity are represented by 
species richness and the log-transformed spectral coefficient of 
variation respectively. For site abbreviations, see Figure 2.

TA B L E  2  Regression results of models relating the strength 
(slope and R2) of the taxonomic diversity–spectral diversity 
relationship to biological characteristics, to test our three proposed 
moderators (M).

Slope of species 
richness ~ sdiv 
relationship

R2 of species richness ~ sdiv 
relationship

ß (p-value) R2 ß (p-value) R2

M1: vegetation density
LAI 1.70 (0.85) 0.01 −0.002 (0.98) 0.0001
NDVI 2.90 (0.92) 0.002 −0.002 (0.996) 0.000004
Herbaceous 

NPP
0.32 (0.29) 0.16 0.004 (0.23) 0.20

Soil cover 0. (040) 0.11 −0.0 (0.71) 0.02
M2: beta diversity

Species 
turnover

2.53 (<0.001) 0.81 0.03 (0.01) 0.63

M3: invasion
%SR invaded −57.72 (0.02) 0.58 −0.67 (0.03) 0.51
% cover 

invaded
−0.21 (0.03) 0.51 −0.002 (0.07) 0.39

Note: Taxonomic diversity and spectral diversity (sdiv) are represented 
by species richness and the log-transformed coefficient of variation 
respectively. Models were fit for each biological characteristic 
separately to test each moderator. ß denotes the slope of the models. 
LAI is leaf area index; NDVI is the normalized difference vegetation 
index; NPP is net primary production. Significant relations (p ≤ 0.05) 
are indicated in bold. Results for other spectral diversity metrics and 
other metrics of vegetation density and invasion can be found in the 
Supplementary Information (Tables S5 and S6).
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Our results demonstrate that spectral diversity represents relative 
variation in taxonomic diversity at some sites, even when the spatial 
resolution of pixels does not match the spatial scale of plant individ-
uals, and we identified biological factors that moderate the strength 
of the relationship between taxonomic and spectral diversity.

4.1  |  Species turnover and invasion, but not 
vegetation density, influence the strength of the 
taxonomic diversity–spectral diversity relationship

We assessed the influence of three biological characteristics on the 
strength of the taxonomic diversity–spectral diversity relationship. 
First, contrary to Schweiger and Laliberté  (2022), spectral diver-
sity was not a better proxy of species richness at sites with higher 
vegetation density. Despite restricting our analysis to herbaceous 
sites, there was a considerable range of vegetation density across 
our plots and study sites: Mean LAI ranged between 0.34 and 1.83, 
NDVI ranged between 0.30 and 0.78, herbaceous NPP ranged be-
tween 107.1 and 517.5 g carbon m−2 year−1 and percentage soil cover 
ranged between 2.0 and 48.1%. Yet, this variation was not associ-
ated with a variation in the strength of the taxonomic diversity–
spectral diversity relationship. While we masked out pixels that 
were purely soil (based on an NDVI threshold of 0.2), we expected 
vegetation density to still be a moderating variable because it “con-
taminates” spectral signatures of sparsely (but unmasked) vegetated 
pixels. One explanation for the lack of support for this moderator 
could be related to plant community characteristics other than soil 
that confound the relationship between taxonomic and spectral di-
versity at both low and high vegetation densities. At densely veg-
etated sites, structural complexity of the canopy may be influential. 
With increasing complexity of the vertical structure of a commu-
nity, spectral diversity may overestimate taxonomic diversity due to 
shadow effects, but it could also underestimate taxonomic diversity 
when short species get obscured by taller species and hence are not 
picked up by the sensor (Conti et al., 2021). Alternatively, especially 
at lower densities, mosses and lichens may contribute to spectral 
variation but are typically not included in metrics of taxonomic di-
versity because they are not identified to the species level during 
field surveys. Second, higher within-plot spatial species turnover 
(beta diversity) improved the relationship between taxonomic and 
spectral diversity. This finding may explain the mixed support for the 
SVH in grassland studies using imagery with a similar spatial resolu-
tion as we use here (1 m × 1 m pixels) but different spatial extents 
or plot sizes: Spectral diversity has been linked to taxonomic diver-
sity when plot sizes are rather large (e.g., Gholizadeh et al., 2020; 
Wang et al., 2016), but not when using smaller plots (e.g., Möckel 
et al., 2016; Wang et al., 2018). With increasing plot size, composi-
tional change within a plot (spatial species turnover) becomes more 
prominent. Species turnover may be related to spatial heterogene-
ity in environmental variables, which influence the ecological niches 
available to different species (Soberón, 2007), and can be shaped by 
management. For instance, grazing and prescribed burns can modify 

the spatial heterogeneity of vegetation (Adler et al.,  2001; Collins 
& Smith, 2006; Werner et al., 2021), which in turn could affect the 
link between taxonomic and spectral diversity (e.g., Gholizadeh 
et al., 2020, 2022).While it has been suggested that beta diversity 
may promote a positive taxonomic diversity–spectral diversity rela-
tionship (Wang & Gamon, 2019), to our knowledge our study is the 
first to explicitly demonstrate this.

Third, we found a weakened link between taxonomic diver-
sity and spectral diversity with increasing invasion. This was also 
observed in an experimental grassland setting by Gholizadeh 
et al.  (2019), but has so far not been demonstrated using obser-
vational data. Highly invaded plots exhibited lower taxonomic di-
versity, which is consistent with previous studies (Vilà et al., 2011), 
yet also had higher spectral diversity, which could be due to the 
introduction of distinct plant characteristics (Funk et al.,  2008; 
Helsen et al.,  2020; Van Cleemput et al.,  2020). Big changes in 
the biochemical or structural composition following invasion may 
disproportionally increase spectral diversity and this could explain 
the disconnect between taxonomic and spectral diversity when 
non-native abundance is high. However, some highly invaded sites 
(e.g., WOOD, NOGP) did not show higher spectral diversity com-
pared to less invaded sites. Instead, these sites exhibited lower 
species turnover, suggesting that the weaker relationship between 
taxonomic and spectral diversity at highly invaded sites might 
be partly explained by a biotic homogenization effect (Olden 
et al.,  2004), or in other words through the second moderator. 
There could be other community changes related to invasion that 
explain the disconnect between taxonomic and spectral diversity 
at more invaded sites (e.g., patchiness, structural complexity), and 
these pathways require further exploration to fully understand 
the mechanisms driving our results. For instance, while we no-
ticed that highly invaded plots also had lower species evenness 
(Figure  S2), evenness was not correlated with the strength of 
the taxonomic–spectral diversity relationship (Table  S7). Fusing 
data from multiple remote sensing instruments can help unravel 
these mechanisms. Invasion is substantial at some of our study 
sites (e.g., at SJER on average 42% of a plot's species richness was 
non-native), and our results suggest that monitoring biodiversity 
changes from hyperspectral imagery in these circumstances is 
challenging.

4.2  |  Important caveats and future steps

Surprisingly, Schweiger and Laliberté (2022) found a negative taxo-
nomic diversity–spectral diversity relationship for Lyndon B. John-
son National Grassland (CLBJ) and Niwot Ridge (NIWO), for which 
we found positive associations. It is important to note that both 
of these sites contain forested plots, which we excluded from our 
analyses, but likely influenced the site-level patterns observed by 
Schweiger and Laliberté (2022). This illustrates that the taxonomic 
diversity–spectral diversity relationship can be biome-specific and 
adds to recent work warning researchers to not assume the general 
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validity of the SVH based on theory (Fassnacht et al., 2022). Since 
a biome's LAI is more or less correlated with the size of the plant 
individuals it hosts (trees > grasses, forbs and small shrubs; Asner 
et al., 2003), it is difficult to disentangle scale and vegetation density 
effects on the taxonomic diversity–spectral diversity relationship 
when looking across biomes.

In this study, we sought to obtain insights into the biological condi-
tions under which spectral variation could be a good indicator of biodi-
versity, and tackled this from the perspective of taxonomic diversity as 
it is the most widely used aspect of biodiversity. Obviously, this work 
can be extended to other dimensions of biodiversity. Although spec-
tral diversity was linked to taxonomic diversity in some sites, it does 
not mean that spectral diversity represents species richness directly 
or that spectral signatures reflect species identity, per se. Instead, it 
is more likely that spectral diversity represents the variation in bio-
chemical and structural properties (functional traits) of the vegetation, 
which presumably is related to species richness to some extent (Flynn 
et al., 2011; Petchey & Gaston, 2002), dictated by evolutionary history 
(phylogeny; Meireles et al., 2020) and adaptations to environmental 
and resource limitations (e.g., light, water, nutrients). Given that plant 
biochemical and structural properties have specific light absorption 
and scattering characteristics (Curran,  1989; Ollinger,  2011; Ustin 
et al., 2009), variation in these properties can lead to variation in spec-
tral signatures, and thus drive spectral diversity. The idea that spectral 
diversity links to different aspects of biodiversity is also referred to as 
the “surrogacy hypothesis” (Wang et al., 2018; Wang & Gamon, 2019). 
Future research could explore the moderators identified here in the 
context of functional and phylogenetic diversity.

Our results are only valid for the spatial scale and grain of our 
study, calculating diversity for 20 m × 20 m plots and using spectral 
imagery acquired with a 1-m spatial resolution. While investigating 
the scale dependence of the taxonomic diversity–spectral diversity 
relationship is important for designing future combined field and 
remote sensing data collection campaigns, there is limited room to 
tweak operational settings of airborne (and spaceborne) missions. 
Sensors on drones often offer a finer spatial resolution compared 
to sensors on aircrafts, but this currently comes at a cost of reduced 
spectral resolution and total area flown. Today, advanced technol-
ogy allows us to obtain hyperspectral airborne imagery with a spatial 
resolution of 1 m. For example, other airborne imaging spectrome-
ters, such as the National Aeronautics and Space Administration's 
AVIRIS (Airborne Visible/Infrared Imaging Spectrometer, https://
aviris.jpl.nasa.gov/) and the European Space Agency's APEX (Air-
borne PRISM Experiment, https://apex-esa.org/en/apex), operate at 
settings offering a similar or often coarser spatial resolution com-
pared to NEON's hyperspectral imaging spectrometer. Therefore, 
evaluating biological moderating effects on the SVH is extremely 
relevant for grassland research and management, where the size of 
plant individuals typically does not match the grain/pixel size of re-
mote sensing observations. As airborne spectral campaigns are be-
coming more common, we hope that intercontinental comparisons 
of sites become possible using data collected with the same stan-
dardized design.

5  |  CONCLUSION

Monitoring biodiversity patterns is an essential part of restora-
tion and management practices. However, because traditional field 
methods are extremely time and labour intensive, field surveys are 
often restricted in space and time. Consequently, remote sensing 
is increasingly suggested as a complementary tool to measure di-
versity, capitalizing on the idea that species have unique spectral 
signatures. Yet, remotely sensing biodiversity remains challenging, 
especially in grasslands and herbaceous systems, where individual 
plants are often smaller than the size of a pixel. Given that the op-
erational settings of most remote sensing collection campaigns are 
set, or have limited room to be adjusted, there will be many circum-
stances for which the spatial resolution of the imagery does not cor-
respond with the spatial scale of plant individuals. In this study, we 
started from the idea that operational settings are predetermined 
and sought to obtain insights into when and why a strong relation-
ship between taxonomic and spectral diversity can be expected. Al-
together, our results show that in low stature vegetation, spectral 
diversity can be a proxy of taxonomic diversity, if within-plot spatial 
species turnover is high and invasion is low. These results demand 
careful consideration of the actual use of remote sensing technology 
to follow up restoration and management efforts over large spatial 
scales, map biodiversity hotspots to guide conservation and tackle 
sampling incompleteness of field-based surveys in grasslands and 
herbaceous ecosystems.
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