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A B S T R A C T

The sustainable phaseout of high global warming potential hydrofluorocarbon (HFC) refrigerant mixtures
requires novel solvents, such as ionic liquids (ILs), for new HFC reuse and recycle technologies. Accurate,
predictive, and interpretable thermodynamic models for HFC/IL mixtures are essential for multiscale design
schemes aiding this phaseout. Still, there is limited guidance regarding the best thermodynamic model for
an HFC/IL system. We propose a rigorous thermodynamic model selection and analysis workflow for HFC/IL
mixtures which harnesses data science tools – visualization, nonlinear regression, Akaike information criteria,
Fischer information matrix (FIM)-based identifiability and uncertainty analyses, and model-based design of
experiments methods – to evaluate the accuracy, predictive capability, and interpretability of a thermodynamic
model. The open-source IDAES™ platform facilitates training and comparison of sixteen candidate HFC/IL
thermodynamic models, including two cubic equations of state, Peng–Robinson and Soave–Redlich–Kwong,
and eight variations on temperature dependence within a classical van der Waals mixing rule. We apply
this analysis to models for three HFC/IL systems: HFC-32/[emim][TF2N], HFC-125/[emim][TF2N], and HFC-
32/[bmim][PF6]. For these mixtures, we observe that models with a temperature dependent mixing rule are
consistently ranked higher by Akaike information criteria for model selection. However, these models may
still have high parameter uncertainty and correlation, indicating that data at multiple temperatures should
be obtained. This result differs from the current practice of generating single isotherm dataset for most
new HFC/IL mixtures. Additionally, we find that the most valuable experiments are taken at the bounds
of composition, temperature (e.g., 273 and 348 K), and pressure (e.g., 1 MPa) measurements. This analysis
guides data generation efforts, showing that optimally selected measurements across multiple temperatures are
adequate for regressing thermodynamic models for multiscale process design.
1. Introduction

1.1. Novel technology is needed for sustainable implementation of hydroflu-
orocarbon refrigerant phaseout

The phaseout of high global warming potential (GWP)1 refrigerants,
comprised of low and high GWP hydrofluorocarbons (HFCs) [4–6],
as been recently mandated by US law [7,8] and international agree-
ents [9,10]. For example, the commonly used refrigerant R-410a
GWP = 2088), comprised of an equimass mixture of the relatively low
WP HFC-32 (difluoromethane, GWP = 674) and the high GWP HFC-
25 (pentafluoroethane, GWP = 3500), is scheduled for phaseout [11].
hese HFC refrigerants are high-value chemicals. For example, the one

∗ Corresponding author.
E-mail address: adowling@nd.edu (A.W. Dowling).

1 The GWP of a substance is calculated relative to GWP of carbon dioxide which is defined as one. High GWPs of HFCs are the result of their long atmospheric
ifetimes and ability to absorb infrared radiation [1–3].

hundred million kilograms of HFC-32 in circulation are worth five
hundred million US dollars [12]. Additionally, the US Environmental
Protection Agency estimates the societal benefit of this phaseout is
seventeen billion US dollars by 2036, the goal year for 85% HFC re-
duction under the Kigali Amendment to the Montreal Protocol [8–10].
Furthermore, HFC phaseout provides opportunities for energy-saving
innovation in refrigeration technology and the ensuing reduction in
other harmful emissions, such as sulfur dioxide, nitrogen oxides, and
fine particle matter [13].

While illegal venting or expensive incineration are the simplest dis-
posal options, neither recoup the full HFC phaseout environmental or
economic benefits. Instead, HFC refrigerant mixtures must be separated
into their low-GWP HFC components, which can be reused [12,14], and
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their high-GWP HFC components, which can be recycled as feed stocks
for other chemical products or next generation refrigerants [5,15–
19]. Complicating this solution is the azeotropic nature of the HFC
refrigerant mixtures, which leads to exorbitant separation energy and
engineering costs [6,20].

Novel energy efficient separation systems, such as extractive distil-
lation [21,22], adsorption [19,23–28], and membrane separation [29–
3], can facilitate HFC phaseout, but require the development of sol-
ents or separation materials. Ionic liquids (ILs) are salts that are
iquids below 100 ◦C with essentially no vapor pressure that could
otentially be used to break azeotropes [34–39]. However, millions
f ILs exist, each with unique separation properties [39–41]. This
omplexity makes IL-enabled HFC separation schemes an excellent case
tudy for integrated multi-scale computer-aided molecular and process
esign (CAM/PD) paradigms [42–47].

.2. Numerous thermodynamic models are available for HFC/IL systems

Thermodynamic models predict thermophysical properties of pure
ubstances and their mixtures. They translate discrete experimental
ata into continuous functions which can be used in process design
nd optimization, making them essential to CAM/PD [48–50]. Thermo-
ynamic models are often calibrated using solubility data, e.g., liquid
hase composition versus pressure, of mixtures of HFCs and ILs at var-
ous temperatures. Asensio-Delgado et al., provide an excellent review
f phase equilibrium models for HFC/IL systems [34], categorized as
ctivity coefficient models [51–53], such as Margules, Wilson, and non-
andom two-liquid (NRTL), cubic equations of state (EoS) [54–64],
ncluding van der Waals (vdW), Peng–Robinson (PR), and Redlich–
wong (RK), statistical associating fluid theory (SAFT)-derived EoS [18,
5,66], predictive, e.g. COSMO-RS [66,67], more complicated EoS
vailable in process simulators, such as AspenPlus [68,69], molecular
odels [70] and machine learning models [34,71–73].
Often, authors of HFC/IL mixture studies, ourselves included, make

d hoc decisions when selecting a thermodynamic model guided by
rior experience, preference, or convenience. For example, we have
ollowed the path of Shiflett and Yokozeki [60], who observed in the
arly 2000s that cubic EoS used with the specially derived refrigerant–
ubricant mixing rules provided good fits of the HFC/IL mixtures [74].
ore recently, we used a five parameter cubic EoS with the refrigerant–
ubricant mixing rules to model the solubility of HFC-32 and HFC-125
n six ILs [61]. However, a parameter uncertainty analysis identified
arameter correlation, suggesting the possibility of a similarly accurate,
educed parameter thermodynamic model. In a subsequent study, we
tilized a two parameter PR EoS with classical vdW mixing rules for
our new HFC/IL systems [62].

.3. We propose a systematic method for thermodynamic model selection
emonstrated for HFC/IL systems

Thermodynamic model accuracy and uncertainty are significant
imiting factors of CAM/PD [75,76], making the current approach to
FC/IL thermodynamic model selection problematic. Thermodynamic
odels must be accurate, predictive, parsimonious, i.e., not over fit,
nd informative, i.e., physically interpretable and justified by the data.
nderstanding and balancing these model characteristics enables un-
ertainty quantification and propagation to the molecular and process
esign calculations and decisions [77].
Heuristics predominantly justify thermodynamic model selection.

euristics are based on fundamentals of the system of interest, includ-
ng the properties of interest (e.g., thermodynamic, transport proper-
ies) and available data; the composition and molecular interactions
e.g., presence of polarity); and the process pressures and temperatures
f interest, particularly with respect to system phase behavior [48,78,
9]. Process simulators, such as AspenPlus, [80] contain libraries of
2

hermodynamic models and regressed parameters for various systems, 𝑦
helping users apply heuristics to make informed modeling choices [81].
Once a model is identified with heuristics, it can be verified by eval-
uating its ability to reproduce binary phase diagrams in a process
simulator, ternary phase diagrams, or experimental data [82].

We argue that the field of data science, which encompasses data
curation, mining, and management, visualization, statistical inference,
machine learning and artificial intelligence paradigms, provides a more
principled framework for thermodynamic model selection than heuris-
tics [83]. In particular, statistical methods can help balance model
accuracy, predictiveness, and interpretability, while managing the bias
versus variance trade-offs (e.g., over and underfit models, extrapo-
lation) [84,85]. Data science applies to almost any data-rich field,
including chemical engineering, where it is transforming traditional un-
derstanding of chemical processes on molecular to systems scales [83,
86–88], including within CAM/PD frameworks [89,90].

Thus, this paper has two primary contributions. First, we propose a
general workflow that harnesses data science tools to systematically
evaluate, select, and analyze thermodynamic models for any mix-
ture. Second, we apply this workflow to identify accurate, predictive,
and informative thermodynamic models for three HFC/IL systems.
The ionic liquids are comprised of two different cations, 1-ethyl-3-
methylimidazolium (emim) and 1-n-butyl-3-methylimidazolium (bmim)
These are paired with two different anions, hexafluorophosphate (PF6)
and bis(trifluoromethylsulfonyl)imide (TF2N). The systems we investi-
gated are HFC-32/[emim][TF2N], HFC-125/[emim][TF2N], and HFC-
32/[bmim][PF6]. As part of this analysis, we provide guidance to
data generating collaborators on the most informative measurements
to minimize the use of experimental resources. The remainder of this
paper is organized as follows: in the Methods section, we review the
workflow in generic terms, showcasing accessible data science tools for
rigorous model selection and analysis. Then we apply this workflow to
a library of candidate models for the HFC/IL mixtures, presenting key
HFC/IL system insights. We conclude with recommendations and open
questions for the HFC/IL thermodynamic modeling and data generation
communities. Appendix A lists the abbreviations used throughout the
aper in Table 10.

. Methods

Fig. 1 shows our proposed data science workflow for rigorous
hermodynamic model selection and analysis. We start with gathering
hermophysical property data and postulating a library of candidate
hermodynamic models. In Step 1, each model’s parameters are esti-
ated. In Step 2, a regressed model’s fit is visualized and its error is
uantified. Step 3 uses a model’s error to rank the candidate models via
kaike information criterion (AIC). Step 4 includes computing the top
IC-ranked model’s Fischer Information Matrix (FIM) and performing
dentifiability, uncertainty, and optimality criteria analyses. Finally,
n Step 5, the FIM is used in model-based design of experiments
MBDoE) calculations to suggest new, informative measurements to
ata generating collaborators. This workflow is enabled by the open-
ource Institute for the Design of Advanced Energy Systems (IDAES™)
ntegrated Platform [91] and the Pyomo Python library [92,93]. These
pen-source packages enable transferability to various chemical sys-
ems and validation, reproducibility, and accountability. Additionally,
DAES provides opportunities to develop and explore the impacts of
ariations on traditional thermodynamic models, e.g., cubic EoS and
ixing rules, and provides access to advanced data analysis methods
e.g., regression, MBDoE) and state-of-the-art optimization algorithms.

.1. Step 1: Regress models

2

𝑖 = 𝑓 (𝐱𝑖,𝜽) + 𝜖𝑖, 𝜖𝑖 ∼  (0, 𝜎𝜖 ) (1)
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Fig. 1. Proposed data science enabled workflow for rigorous thermodynamic model selection and analysis.
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For the general model shown in Eq. (1) the observation, 𝑦𝑖, are a
unction of inputs, 𝐱𝑖, regressed parameters, 𝜽 ∈ R𝑝, and independent
nd identically normally distributed (mean zero, standard deviation 𝜎𝜖)
bservation error, 𝜖. The model parameters are estimated from the data
ia least-squares nonlinear regression:

̂ = argmin
𝜽≤𝜽≤𝜽̄

𝛹 (𝜽), 𝛹 (𝜽) =
𝐷
∑

𝑑=1

[ 𝑛𝑑
∑

𝑖=1

(

𝑦𝑖,𝑑 − 𝑓 (𝐱𝑖,𝑑 ,𝜽)
)2
]

(2)

In Eq. (2), 𝛹 is the least-squares loss function and 𝜽̂ is the best fit
estimate. Here we assume the dataset is partitioned into 𝐷 experiments.
Here 𝑛𝑑 represents the number of observations in experiment 𝑑 and𝑁 =
∑𝐷

𝑑=1 𝑛𝑑 is the total number of observations. Alternatively, parameter
estimation can be performed using maximum likelihood estimation
(MLE) [94,95] or Bayesian model calibration [96].

2.2. Step 2: Assess quality of fit

Visualization demonstrates how well a model interpolates between
its training data. Mean squared error (MSE) quantifies the quality of fit
using the normalized error between the data and model predictions:

𝑀𝑆𝐸 =
𝛹 (𝜽)
𝑁

, 𝑁 =
𝐷
∑

𝑑=1
𝑛𝑑 (3)

MSE quantifies the average error per data point, making it a good
etric to compare different models for single or multiple systems. In
eneral, the lower a model’s MSE value, the better the model’s fit to
he given data. Other fit metrics such as the sum of squared errors,
oot mean squared error, likelihood ratio test, or chi-square goodness
f fit may be considered [97,98].

.3. Step 3: Rank models

AIC is a mathematically rigorous method of model selection. AIC is
value assigned to rank a model based on its accuracy and parsimony,
s quantified by its number of fitted parameters [97,99–101]. For
nonlinear, least-squares regression problem, the AIC value can be
alculated based on the model’s MSE, the number of parameters, 𝑝, and
he total number of observations, 𝑁 [99]:

𝐼𝐶(𝑝) = 𝑁 log𝑒(𝑀𝑆𝐸) + 2𝑝 (4)

AIC can rank a library of models: a low value of AIC indicates the
3

odel is less over fit, i.e., its complexity, 𝑝, is justified by its accuracy,
𝑆𝐸. The model with the lowest value of AIC is generally the model
hat should be selected from a library of candidate models.
The relative likelihood of a model, 𝐿𝑖, can be computed via:

𝑖 = exp(
𝐴𝐼𝐶𝑚𝑖𝑛 − 𝐴𝐼𝐶𝑖

2
) (5)

where 𝐴𝐼𝐶𝑚𝑖𝑛 is the AIC value of the candidate model with the lowest
IC and 𝐴𝐼𝐶𝑖 is the AIC of candidate model 𝑖. 𝐿𝑖 is the relative proba-
ility of data given a hypothesized model. In other words, assuming a
odel 𝑖 (functional form, regressed parameters, and error structure) is
rue, 𝐿𝑖 quantifies the probability that the model 𝑖 will reproduce the
ata relative to a reference model. Models with near-zero likelihood
ave a low probability of reproducing the data.
In contrast to the frequentist AIC model selection technique,

ayesian model selection is based on probabilistic fits of a model
nd can be used for pairwise model comparison via the Bayes factor
nd ranking multiple candidate models using Bayesian information
riterion [97]. Bayesian methods allow modelers to account for exper-
mental error by encoding a prior distribution of the data, generate
robabilistic uncertainties of model parameters and predictions, and
ank models while accounting for prediction uncertainties [84]. These
ethods have been shown to provide rigorous selection of thermo-
ynamic models for such properties as viscosity [84], but require
nowledge of probability distributions and Bayesian statistical tools
o be implemented. At this time, Bayesian calibration and model
election remains computationally burdensome despite several recent
esearch advances, but is a promising research direction [102]. We
mphasize the proposed framework can be easily amended to use
ayesian statistical techniques.

.4. Step 4: Fischer information matrix analyses

.4.1. Compute the FIM
Using the best fit parameters, 𝜽̂, and the corresponding objective

alue, 𝛹 , of the top AIC-ranked model, the first order sensitivity of
he model, 𝑓 (⋅, ⋅), with respect to 𝜽̂ is computed. This matrix, 𝑸, of the
first partial derivatives of the model with respect to the parameters is
calculated via:

𝑸 =

⎡

⎢

⎢

⎢

⎢

𝜕𝑓 (𝑥1 ,𝜽̂)
𝜕𝜃̂1

… 𝜕𝑓 (𝑥1 ,𝜽̂)
𝜕𝜃̂𝑝

⋮ ⋱ ⋮
𝜕𝑓 (𝑥𝑁 ,𝜽̂) … 𝜕𝑓 (𝑥𝑁 ,𝜽̂)

⎤

⎥

⎥

⎥

⎥

(6)
⎣
𝜕𝜃̂1 𝜕𝜃̂𝑝 ⎦
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From 𝑸, the sensitivity of the objective, 𝛹 , to the parameters can
be calculated via the Hessian matrix, 𝑯 :

𝑯 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜕2𝛹
𝜕𝜃̂21

… 𝜕2𝛹
𝜕𝜃̂𝑛𝜕𝜃̂1

⋮ ⋱ ⋮
𝜕2𝛹

𝜕𝜃̂1𝜕𝜃̂𝑝
… 𝜕2𝛹

𝜕𝜃̂2𝑝

⎤

⎥

⎥

⎥

⎥

⎦

≈ 𝑸𝑇𝑸 (7)

This approximation holds when the model residuals, i.e., errors, are
small [95].

The covariance matrix quantifies how the measurement uncertainty,
𝜖, shown in Eq. (1), propagates into uncertainty in the regressed
parameters, 𝜽̂:

𝑽 𝜽̂ ≈ 𝜎2𝜖𝑯
−1 ≈ 𝜎2𝜖 (𝑸

𝑇𝑸)−1 (8)

Finally, the Fischer Information Matrix (FIM), 𝑴 , is approximately
the inverse of the covariance matrix:

𝑴 ≈ 𝑽 −1
𝜽̂

≈ 1
𝜎2𝜖

(𝑸𝑇𝑸) (9)

The FIM represents the information about the parameters, 𝜽̂, that
is contained in the set of measurements used to fit the model [95,103,
104]. A large FIM corresponds to a large amount of information within
the data used to regress a given model [103]. If the model predictions,
𝑓 (𝐱𝑖,𝜽) for all 𝑖, are insensitive to parameter 𝜃𝑗 , then this parameter
can take multiple values without diminishing the best fit objective
𝛹 (⋅). If so, the sensitivity matrix, 𝑸, Hessian matrix, 𝑯 , covariance
matrix, 𝑽 𝜽̂, and the FIM, 𝑴 , are rank deficient. This indicates the
dataset (𝐱𝑖, 𝑦𝑖 for all 𝑖) cannot identify 𝜃𝑗 in the model, 𝑓 (⋅, ⋅). Thus,
here is large uncertainty in 𝜃̂𝑗 and the corresponding elements of
he covariance matrix, 𝑽 𝜽̂. Consequently, if a rank deficient model
s used in subsequent predictive calculations, e.g., process models,
ncertainty associated with these calculations could be propagated
rom the model’s uncertain parameters [95,104].
We note that the covariance matrix, 𝑽 𝜽̂, and FIM,𝑴 , are symmetric

real-valued positive semi-definite matrices. As inverse matrices, 𝑽 𝜽̂ and
𝑴 have reciprocal eigenvalues, i.e., if 𝜆𝑗 is an eigenvalue of 𝑽 𝜽̂, 𝜆−1𝑗
is an eigenvalue of 𝑴 . Additionally, 𝑽 𝜽̂ and 𝑴 share eigenvectors.
While the remaining analyses in this workflow could be performed with
manipulations of either matrix, computing matrix inverses is slow and
numerically unreliable for poorly conditioned systems. As such, in this
work, we will perform subsequent analyses using the FIM, which we
obtain via direct computation of 𝑸 using automatic differentiation and
sensitivity analysis implemented in Pyomo.DoE [105].

2.4.2. Identifiability analysis
A model is said to be identifiable if there exists a single parameter

vector, 𝜽̂, that corresponds to the minimum objective value 𝛹 (⋅) [95,
104–107]. Likewise, if the objective function 𝛹 (⋅) is flat (i.e., almost no
curvature indicated by near-zero eigenvalues) then the model predic-
tions are insensitive to these parameters. Identifiability is an indicator
of whether the model functional form and parameters are justified by
the data. A model may be unidentifiable because of its functional form,
a lack of experimental data, or poor numerical conditioning[108].

Non-unique parameters in an unidentifiable model are called sloppy.
Sloppiness can be addressed by fixing parameters to specific values,
i.e., removing them from the regression problem; adding more, and
usually different, data to the model regression problem; or identifying
a new model functional form. Sloppy parameters can be identified by
eigendecomposition of the FIM. Eigenvalues of the FIM that are zero or
near-zero suggest parameter sloppiness and indicate the model is near-
singular. Additionally, a model is unidentifiable if its condition number,
𝐶𝐹𝐼𝑀 , is greater than 𝒪(103) [105,109,110]:

𝐶𝐹𝐼𝑀 =
max eig(𝑴)
min eig(𝑴)

≥ 𝒪(103) (10)

Here, max eig(𝑴) and min eig(𝑴) refer to the largest and small-
st eigenvalues, respectively, of a model’s FIM. Sloppy parameters
4

re identified in the eigenvectors which correspond to the sloppy
igenvalues. Often, an eigenvector points to a single direction, or pa-
ameter, which is sloppy. However, in some instances, the eigenvector
hows the sloppiness is in the direction of a linear combination of the
arameters [111,112].

.4.3. Uncertainty analysis
Quantifying thermodynamic parameter uncertainties is essential to

nderstand the technical risk at process scales in CAM/PD frame-
orks [64,112–117]. To date, we are unaware of any other con-
iderations of uncertainty within IL-enabled HFC separations studies
esides our own. We have explored parameter uncertainty using three
ethods: Monte Carlo (MC) uncertainty analyses [61,64], bootstrap
ethods [64], and covariance matrices [62]. MC uncertainty anal-
ses account for experimental error by simulating the regression of
thermodynamic model thousands of times. In each regression, the
riginal experimental data is varied within the bounds of the reported
xperimental error. See Morais et al., [61] and Garciadiego et al., [64]
or a full description of this method. Bootstrap uncertainty methods
nvolve leaving out a random subset of measurements from the fitting
ata set, regressing the parameters, and repeating this procedure mul-
iple times. Then, the uncertainties or variations within the resulting
arameter values are computed [64]. These small differences in data
ead to variations, or corresponding uncertainties, within fitted param-
ter values. For both the MC and bootstrap methods, these parameter
ncertainties are automatically used in process calculations to obtain
rocess variable uncertainties. MC methods explicitly add measurement
rror from a specified probability distribution, whereas the bootstrap
nd covariance methods assume the error from the distribution of the
ata (typically a normal distribution).
The covariance matrix, as defined in Eq. (8), describes the variance

f an individual model parameter and the co-varying relationship
etween two individual parameters. Covariance is defined as:

𝜽̂ =

⎡

⎢

⎢

⎢

⎣

𝜎211 … 𝜎21𝑝
⋮ ⋱ ⋮
𝜎2𝑝1 … 𝜎2𝑝𝑝

⎤

⎥

⎥

⎥

⎦

(11)

Here, 𝜎𝑖𝑖 is a parameter’s variance and 𝜎𝑖𝑗 represents the covariance
between parameters 𝑖 and 𝑗. These parameter uncertainties can be
propagated to a model, 𝑓 (⋅, ⋅), e.g., a thermodynamic model, that is
a function of the parameters, 𝜽̂, using a first order error propagation
formula:

𝜎2𝑓 ≈ 𝑸𝑇 𝑽 𝜽̂𝑸 + 𝜎2𝜖 (12)

The term 𝜎2𝜖 accounts for observation error for the new experiment
and may be omitted for process design calculations.

2.4.4. Optimality analysis
In MBDoE, alphabet design criteria, such as A-, D-, and E-optimality,

summarized in Table 1, convert the FIM into a scalar value [105].
Geometrically, these criteria quantify features of a parameter’s con-
fidence ellipse. Mathematically, the confidence ellipse is defined by
the eigendecomposition of the FIM. The FIM’s eigenvectors are the
directions of the axes of the ellipse for a given parameter, while the
corresponding eigenvalues define the length or magnitude of the ellipse
axes. The alphabet design criteria operate on the eigendecomposition
results to increase the information content of a model by decreasing
the uncertainty of its parameters, i.e., shrinking the confidence ellipse.
For example, A-optimality minimizes the average variance of parameter
estimates by minimizing the dimensions of the box which encloses the
confidence ellipse of a given parameter. D-optimality minimizes the
size, e.g., volume, of the confidence ellipse. E-optimality maximizes the
smallest eigenvalue of the FIM, which in turn minimizes the size of the
major axis of the confidence ellipse [105].
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Table 1
Alphabet optimality criteria.
Criteria Operation Optimization

A trace(𝑴) =
∑

𝑖 𝜆𝑖 max trace(𝑴)
D det(𝑴) =

∏

𝑖 𝜆𝑖 max det(𝑴)
E min eig(𝑴) = min(𝜆𝑖) maxmin eig(𝑴)

2.5. Step 5: Model-based design of experiments

Model-based design of experiments (MBDoE) is an iterative task
[105] which guides the selection of experimental conditions to improve
the precision of model parameters or discriminate between multiple
candidate models or both. After measurements are gathered, a model
is re-calibrated which results in new best fit parameters, 𝜽̂, and a new
FIM. With new experiments the FIM would contain more information,
ideally making the parameters less sloppy and less uncertain. There are
multiple types of MBDoE analyses, described below.

2.5.1. How much information does a data set contain?
Retrospective data analysis provides information about which data

were most valuable. Each measurement in a data set has an individual
FIM, 𝑴 𝑖, which quantifies the information experiment 𝑖 contributes to
a model.𝑴 𝑖 are computed using Pyomo.DoE [105] and are summed to
obtain the overall FIM for a model2:

𝑴 =
∑

𝑖
𝑴 𝑖 (13)

where 𝑴 𝑖 is computed with the sensitivity matrix 𝑸𝑖. The variation
of magnitudes of the measurements and local parameter estimates can
lead to ill-conditioned 𝑴 𝑖. One popular approach is scaling elements
of 𝑸 by the parameter values:

𝑄𝑖,𝑗 ← 𝜃𝑗 ⋅
𝜕𝑓 (𝑥𝑖,𝜽)

𝜕𝜃𝑗
, ∀𝑖 ∈ {1,… , 𝑁}, ∀𝑗 ∈ {1,… , 𝑝} (14)

D-optimality analyses recommends new experiments to maximize
the information content [118]. Wang et al. [118], describe an algorithm
using D-optimality for determining the most informative experiments.
This analysis provides information on the type of measurements, or
the design space conditions, which contain the most information, elu-
cidating the most valuable experiments for fitting a thermodynamic
model.

2.5.2. What data are needed to discriminate between two models?
Model performance at out-of-sample conditions helps discriminate

between two or more thermodynamic models. For two candidate mod-
els, 𝑓𝐴(𝝃, 𝜽̂𝐴) and 𝑓𝐵(𝝃, 𝜽̂𝐵), the Hunter–Reiner criterion identifies the
conditions, 𝜉, which maximize the difference between their predictions
for 𝑦 [119]:

max
𝜉

(

𝑓𝐴(𝝃, 𝜽̂𝐴) − 𝑓𝐵(𝝃, 𝜽̂𝐵)
)2

(15)

Alternative methods for model discrimination involve incorporat-
ng uncertainty information within the optimization problem [120,
21] in Eq. (15), developing a multi-objective formulation which al-
ows for joint model discrimination and improvement of parameter
onfidence [122–125], and probabilistic analyses [126].

.5.3. What new measurements contain the most information?
Design of experiments (DoE) analyses determine the conditions that

ptimize the amount of information contained within a measurement,
ften with the goal of reducing parameter uncertainty [105].

max
𝝃𝐿≤𝝃≤𝝃𝑈

𝜁 (𝑴(𝜽̂, 𝝃))

uch that Eqs. (6)–(9)
(16)

2 This formulation assumes that the measurement errors are uncorrelated.
5

Here, 𝜁 ∶ R𝑝×𝑝 → R are the A-, D-, or E-optimality metrics
summarized in Table 1 and 𝝃 represents the measurement conditions,
i.e., MBDoE degrees of freedom. For low dimensional problems, per-
forming a sensitivity analysis allows visualization of how each criterion
changes with 𝝃 which, in our opinion, is invaluable to build intuition
and facilitate conversations with experimentally-focused collaborators;
Pyomo.DoE facilitates this as well as numerically solving Eq. (16).

3. HFC/IL case study

Next, we describe specific considerations for applying the proposed
workflow to HFC/IL systems.

We perform rigorous thermodynamic model analysis for three sets
of HFC/IL solubility data, generated using an IGA gravimetric microbal-
ance [61,62]:

1. Binary solubility of HFC-32 and [emim][TF2N] at four temper-
atures: 283 K, 298 K, 323 K, and 348 K [127]. 27 total data
points.

2. Binary solubility of HFC-125 and [emim][TF2N] at four temper-
atures: 283 K, 298 K, 323 K, and 348 K [128]. 32 total data
points.

3. Binary solubility of HFC-32 and [bmim][PF6] at four temper-
atures: 283 K, 298 K, 323 K, and 348 K [129]. 31 total data
points. The data for this system at 298 K was verified by Morais
et al. [61].

These specific ILs were chosen because of the availability of high-
quality solubility data in literature and recent process engineering
analyses.

There are two major types of thermodynamic models, activity coef-
ficient models and EoS, each of which can take many functional forms.
Activity coefficient models express a solution’s deviation from ideality
while EoS represent relationships between state variables, i.e., temper-
ature, pressure, volume, and composition, as continuous and differ-
entiable functions [48]. Thermodynamic models contain parameters,
often found in literature [61,62,130], which must be regressed using
thermophysical data from the system of interest. Most thermodynamic
models are nonlinear, and the resulting nonconvex parameter estima-
tion problems require either multi-start initialization [64,131–135] or
global optimization [136] to safeguard against multiple locally optimal
solutions [95,104].

We now summarize the two cubic EoS, PR and Soave–Redlich–
Kwong (SRK), and mixing rules explored in this work, enumerate a
library of candidate models, and discuss the parameter estimation
procedure. We study the PR and SRK models because they are widely
used and popular in process simulators, such as AspenPlus [80], and
are available in the open-source IDAES modeling framework.

The generic formula for a cubic EoS is:[137]

0 = 𝑍3 − (1+𝐵− 𝑢𝐵)𝑍2 + (𝐴− 𝑢𝐵− (𝑢−𝑤)𝐵2)𝑍 −𝐴𝐵−𝑤𝐵2 −2𝐵3 (17)

Here, 𝑍 represents the compressibility factor 𝑍 = 𝑃𝑉
𝑅𝑇 , 𝑢 and 𝑤 are

parameters describing the specific type of the EoS, e.g., PR or SRK, and:

𝐴 =
𝑎𝑚𝑃
𝑅2𝑇 2

, (18)

𝐵 =
𝑏𝑚𝑃
𝑅𝑇

, (19)

where, 𝑃 is pressure, 𝑇 is temperature, 𝑅 is the gas constant, and 𝑎𝑚
and 𝑏𝑚 are mixture variables, which are calculating via the van der
Waals mixing rule:

𝑎𝑚 =
∑

𝑖

∑

𝑗
𝑦𝑖𝑦𝑗 (𝑎𝑖𝑎𝑗 )1∕2(1 − 𝑘𝑖,𝑗 ), (20)

𝑏𝑚 =
∑

𝑦𝑗𝑏𝑗 . (21)

𝑗
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Table 2
Cubic EoS parameters.
Parameter PR EoS SRK EoS

𝑢 2 1
𝑤 −1 0
𝛺𝐴 0.45724 0.42748
𝛺𝐵 0.07780 0.08664
𝜅𝑗 (1 + (1 −

√

𝑇𝑟)(0.37464 + 1.54226𝜔𝑗 − 0.26992𝜔2
𝑗 ))

2 (1 + (1 −
√

𝑇𝑟)(0.48 + 1.574𝜔𝑗 − 0.176𝜔2
𝑗 ))

2

Here 𝑦𝑗 is the mole fraction of each component, 𝑗, 𝑘𝑖,𝑗 represents
binary interaction parameters between components 𝑖 and 𝑗, described
ore below, and 𝑎𝑗 and 𝑏𝑗 are pure component parameters:

𝑗 =
𝛺𝐴𝑅2𝑇 2

𝐶,𝑗

𝑃𝐶,𝑗
𝜅𝑗 , (22)

𝑗 =
𝛺𝐵𝑅𝑇𝐶,𝑗

𝑃𝐶,𝑗
. (23)

𝐶,𝑗 and 𝑇𝐶,𝑗 are the critical temperature and pressure of component
. 𝛺𝐴, 𝛺𝐵 , and 𝜅𝑗 are parameters specific to the EoS type and each
omponent. These parameters are summarized for each cubic EoS in
able 2, where the reduced temperature is 𝑇𝑟 = 𝑇 ∕𝑇𝐶 and 𝜔𝑗 is the
centric factor for component 𝑗.
Equivalently, the SRK EoS can be expressed to compute pressure:

= 𝑅𝑇
𝑉 − 𝑏𝑚

−
𝑎𝑚

𝑉 (𝑉 + 𝑏𝑚)
(24)

The fugacity coefficient 𝜙𝑗 of component 𝑗 in the mixture with the
SRK EoS is calculated using:

log𝜙𝑗 =
𝑏𝑗
𝑏𝑚

(𝑍 − 1) − log(𝑍 − 𝐵) − 𝐴
𝐵
( 2
𝑎𝑚

∑

𝑗
𝑎𝑗 −

𝑏𝑗
𝑏𝑚

) log(1 + 𝐵
𝑍
) (25)

Likewise, the PR EoS calculates pressure as:

𝑃 = 𝑅𝑇
𝑉 − 𝑏𝑚

−
𝑎𝑚

𝑉 2 + 2𝑏𝑚𝑉 − 𝑏2𝑚
(26)

And, the fugacity coefficient 𝜙𝑗 of component 𝑗 in the mixture with
the PR EoS is calculated using:

log𝜙𝑗 =
𝑏𝑗
𝑏𝑚

(𝑍−1)−log(𝑍−𝐵)− 𝐴

2
√

2𝐵
( 2
𝑎𝑚

∑

𝑗
𝑎𝑗−

𝑏𝑗
𝑏𝑚

) log
𝑍 + (

√

2 + 1)𝐵

𝑍 − (
√

2 − 1)𝐵

(27)

We note that IL critical properties can only be estimated as pseu-
docritical points because their actual values are unknown. We previ-
ously [61,62] set the critical temperature to 1000 K, critical pressure
to 2.5 MPa, and acentric factor to 0.5 for all ILs and follow the same
conventions here [74,138,139]. In previous work [61,62], we showed
the quality of fit is insensitive to these parameter choices.

Garciadiego et al., [64] previously showed that adding linear tem-
perature dependence within the vdW mixing rule parameter improved
the fit compared to a PR model without temperature dependence. Here,
we expand upon this finding by considering four types of vdW mixing
rule parameter temperature dependence: none, 𝐴, (original vdW mixing
rule formulation); linear, 𝐵; quadratic, 𝐶; and order three polynomial,
𝐷.

𝑘(𝑇 ) = 𝑘𝑖𝑗,𝐴 + 𝑘𝑖𝑗,𝐵𝑇 + 𝑘𝑖𝑗,𝐶𝑇
2 + 𝑘𝑖𝑗,𝐷𝑇

3 (28)

Here, 𝑘𝑖𝑖,𝑋 = 𝑘𝑗𝑗,𝑋 = 0 with 𝑋 ∈ {𝐴,𝐵, 𝐶,𝐷}. Typically, symmetric
binary interaction parameters 𝑘𝑖𝑗,𝑋 = 𝑘𝑗𝑖,𝑋 are assumed. However, we
found it numerically challenging to converge the parameter estimation
problem when enforcing symmetric binary interaction parameters. By
relaxing this assumption to use asymmetric binary interaction pa-
rameters 𝑘𝑖𝑗,𝑋 ≠ 𝑘𝑗𝑖,𝑋 , we were able to more reliably converge the
parameter estimation problem. As future work, the symmetric binary
interaction parameters should be considered to reduce the number of
fitted parameters.
6

Table 3
Library of postulated models for representing HFC/IL mixture properties.
Model Temperature

dependence
𝑘𝑖𝑗,𝐴 𝑘𝑗𝑖,𝐴 𝑘𝑖𝑗,𝐵 𝑘𝑗𝑖,𝐵 𝑘𝑖𝑗,𝐶 𝑘𝑗𝑖,𝐶 𝑘𝑖𝑗,𝐷 𝑘𝑗𝑖,𝐷

PR-1A None ✓

PR-1B None ✓

PR-2 None ✓ ✓

PR-3A Linear ✓ ✓ ✓

PR-3B Linear ✓ ✓ ✓

PR-4 Linear ✓ ✓ ✓ ✓

PR-6 Quadratic ✓ ✓ ✓ ✓ ✓ ✓

PR-8 Polynomial ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SRK-1A None ✓

SRK-1B None ✓

SRK-2 None ✓ ✓

SRK-3A Linear ✓ ✓ ✓

SRK-3B Linear ✓ ✓ ✓

SRK-4 Linear ✓ ✓ ✓ ✓

SRK-6 Quadratic ✓ ✓ ✓ ✓ ✓ ✓

SRK-8 Polynomial ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Evaluating thermodynamic model temperature dependence for
HFC/IL systems is a unique contribution of this work. Recently, Pri-
vat and Jaubert [140] considered the theoretical interpretation of
temperature-dependent binary interaction parameters. However, we
are unaware of any other studies which systematically consider
temperature-dependent binary interaction parameters for HFC/IL sys-
tems. In fact, HFC/IL experimental data are often only measured at
room temperature, making temperature dependence analysis of the
thermodynamic model impossible [61,62]. We note temperature de-
pendence in the vdW mixing rule could be defined in multiple forms,
e.g., as an inverse relationship, which is often included in process
simulators [80]. To limit the candidate model library to a reasonable
number of models (sixteen per system), we leave the exploration of
other forms of temperature dependence to future work.

Finally, phase equilibrium between a vapor and liquid is calculated
via:

(𝑥𝑖𝜙𝑖)𝐿 = (𝑦𝑖𝜙𝑖)𝑉 (29)

Here, 𝑥𝑖 and 𝑦𝑖 are the mole fractions of the liquid and vapor,
respectively, for a given component, and 𝜙𝑖 is the fugacity coefficient
for component 𝑖 for a specific phase, calculated via Eqs. (25) or (27).
Because ILs have negligible vapor pressure, they do not exist in the
vapor, i.e., 𝑦𝐻𝐹𝐶 = 1. Thus, Eq. (29) becomes:

𝑥𝐻𝐹𝐶𝜙
𝐿
𝐻𝐹𝐶 = 𝜙𝑉

𝐻𝐹𝐶 (30)

Table 3 summarizes the library of candidate thermodynamic mod-
els. This library contains the two cubic EoS, PR and SRK, combined
with temperature dependence variations in the classical vdW mixing
rule, described in Eq. (28).

We used the parameter estimation formulation of Garciadiego et al.
[64], to minimize the difference between experimental and model
prediction pressures at a given temperature and composition:

𝑘̂ = arg min
𝑘𝑙≤𝑘≤𝑘𝑢

𝐷
∑

𝑑=1

[ 𝑛𝑑
∑

𝑖=1
(𝑃 (𝑘, 𝑇𝑖,𝑑 , 𝑥𝑖,𝑑 ) − 𝑃𝑖,𝑑 )2

]

subject to Eqs. (17)–(23), (28)

(31)

Here 𝑃𝑖,𝑑 is the experimental pressure, 𝑇𝑖,𝑑 is the experimental

temperature, and 𝑥𝑖,𝑑 is the experimental composition of observation 𝑖
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Table 4
Mean squared errors [MPa2] of candidate models in model library for each HFC/IL
ystem.
Model HFC-32/

[emim][TF2N]
HFC-125/
[emim][TF2N]

HFC-32/
[bmim][PF6]

PR-1A 1.26E−4 9.2E−6 1.82E−5
SRK-1A 1.39E−4 1.16E−5 2.31E−5
PR-1B 9.59E−4 8.09E−5 4.15E−4
SRK-1B 1.14E−3 2.50E−4 7.03E−4
PR-2 2.42E−5 5.82E−6 8.58E−6
SRK-2 2.99E−5 4.16E−6 1.11E−5
PR-3A 7.644E−6 3.68E−6 6.36E−6
SRK-3A 7.93E−6 3.71E−6 6.58E−6
PR-3B 2.41E−5 5.30E−6 8.30E−6
SRK-3B 2.95E−5 4.04E−6 1.16E−5
PR-4 1.67E−6 3.67E−6 4.34E−6
SRK-4 1.76E−6 3.71E−6 4.52E−6
PR-6 1.38E−6 3.54E−6 2.64E−6
SRK-6 1.42E−6 3.53E−6 2.68E−6
PR-8 1.32E−6 3.43E−6 2.36E−6
SRK-8 1.35E−6 3.43E−6 2.27E−6

in data set 𝑑. 𝑃 is the model prediction of pressure at the given exper-
imental temperature and composition and the set of binary interaction
parameters, 𝑘. 𝑛𝑑 is the number of data points in an individual data set
. There are 𝐷 total number of data sets. Each HFC/IL system has four
otal data sets, one at each temperature.
This optimization problem is constrained by Eqs. (17)–(23) and

28), with specific parameters for the PR and SRK models described
n Table 3. To estimate parameters, the model is formulated in Pyomo
ia IDAES (version: 1.13.0.dev0) and solved using the parmest package
ith the IPOPT [141] (version: 3.13.2) and HSL (MA27) [142] solvers.
he set of binary interaction parameters, 𝑘, are bounded by 𝑘𝑙 = −20
nd 𝑘𝑢 = 20.
Finally, the MSE is computed for each model via:

𝑆𝐸 =

∑𝐷
𝑑=1

[

∑𝑛𝑑
𝑖=1(𝑃 (𝑘, 𝑇𝑖,𝑑 , 𝑥𝑖,𝑑 ) − 𝑃𝑖,𝑑 )2

]

𝑁
(32)

For clarity, Eq. (1) is a general nonlinear calibration model, whereas
Eqs. (26) (PR) and (24) (SRK) are the specific models considered here.
he general parameter estimation optimization problem, Eq. (2), cor-
esponds to Eq. (31). The generalized MSE equation, (3), corresponds
o Eq. (32).

. Results and discussion

We now analyze the results of applying the workflow in Fig. 1 to
he three HFC/IL systems: HFC-32/[emim][TF2N], HFC-125/[emim]
TF2N], and HFC-32/[bmim][PF6].

.1. Visualization provides an incomplete view of thermodynamic model
egressions results

Fig. 2 shows each calibrated candidate model for the HFC-32/
emim][TF2N] system. SI Figures SI1 and SI2 report similar results
or the HFC-32/[bmim][PF6] and HFC-125/[emim][TF2N] systems.
Moreover, SI Figures SI3 and SI4 are companion parity plots for Fig. 2.
The four one parameter models, PR-1 A and PR-1B (a) and SRK-
1 A and SRK-1B (b), have visually poor fits for all HFC/IL systems.
The fits for the models with two or more parameters (plots c-h) are
visually indistinguishable, making model selection via visualization
alone impossible. These results raise a fundamental question of whether
the data support the additional complexity of the models with more
than two parameters.

Table 4 shows the MSE values for each candidate model for each
HFC/IL system. For all three systems, the PR-8 and SRK-8 models
(polynomial temperature dependence) have the lowest MSE values
7

Table 5
AIC ranking and relative likelihood for candidate models for the HFC-32/[emim][TF2N]
system.
Rank Model 𝑝 AIC Likelihood, %

1 PR-6 6 −165.749 100
2 SRK-6 6 −165.055 70.7
3 PR-4 4 −164.664 58.1
4 SRK-4 4 −163.227 28.3
5 PR-8 8 −163.047 25.9
6 SRK-8 8 −162.320 18.0
7 PR-3A 3 −125.592 𝑂(10−7)
8 SRK-3A 3 −124.603 𝑂(10−7)
9 PR-2 2 −96.508 𝑂(10−7)
10 PR-3B 3 −94.601 𝑂(10−7)
11 SRK-2 2 −90.790 𝑂(10−7)
12 SRK-3B 3 −89.102 𝑂(10−7)
13 PR-1A 1 −53.919 𝑂(10−7)
14 SRK-1A 1 −51.216 𝑂(10−7)
15 PR-1B 1 0.860172 𝑂(10−7)
16 SRK-1B 1 5.564 𝑂(10−7)

while the one parameter models give the worst fits, which is consistent
with Fig. 2. There are two to three orders of magnitude difference
between the MSEs of the one parameter and eight parameter models.
Adding parameters to a model increases the optimization degrees of
freedom and cannot increase the error objective, although the opti-
mizer is free to set parameters to zero, which would result in a lower
complexity model. We additionally observe that PR-1B and SRK-1B, the
models in which only the 𝑘𝐼𝐿,𝐻𝐹𝐶,𝐴 parameter is fit while the 𝑘𝐻𝐹𝐶,𝐼𝐿,𝐴
parameter is fixed at zero, have the highest MSE values of all of the
models, indicating that these models strongly depend on the presence
of the 𝑘𝐻𝐹𝐶,𝐼𝐿,𝐴 parameter.

This analysis, which is Step 2 of Fig. 1, shows that visualization
and quality of fit metrics alone cannot discriminate between models,
but can identify poorly performing models.

4.2. AIC rankings provide insight into the balance between model accuracy
and parsimony

Tables 5–7 show the AIC values and relative likelihoods for the
library of candidate models for each system.

HFC-32/[emim][TF2N]
Table 5 shows the models for the HFC-32/[emim][TF2N] system,

ranked in order of lowest to highest AIC. The results are: PR-6, likeli-
hood: 100%; SRK-6, likelihood: 70.7%; PR-4, likelihood: 58.1%; SRK-4,
likelihood: 28.3%; PR-8, likelihood: 25.9%; and SRK-8, likelihood:
18.0%. The remainder of the models for this system have relative like-
lihoods that are essentially zero, i.e., on the order of 10−7 or smaller. A
trade-off is observed between the quality of fit and parsimony between
the six and eight parameter models. Although PR-8 and SRK-8 (which
contain 8 fitted parameters) have lower MSE values than PR-6 and SRK-
6 (which contain 6 fitted parameters), the contribution of their eight
parameters makes their AIC values higher, decreasing the likelihood
that they will best reproduce the data.

Based on AIC rank alone, PR-6 would be the model selected for the
HFC-32/[emim][TF2N] system. However, the top six models all have
non-negligible likelihoods, resulting from very similar low MSE values.
This suggests that none of these models are over fit and that they all
are generally able to balance accuracy with parsimony, i.e., any of these
top six models may justifiably reproduce the data.

HFC-125/[emim][TF2N]
Table 6 shows all of the models except the one parameter models

(PR-1 A, PR-1B, SRK-1 A, and SRK-1B) which have likelihoods greater
than 𝑂(10−3) for the HFC-125/[emim][TF2N] system. PR-3 A (likeli-
hood: 100%) is ranked highest, closely followed by SRK-3 A (likelihood:
88.0%). Rounding out the top five models are PR-4 (likelihood: 38.1%),

SRK-2 (likelihood: 37.3%), and SRK-4 (likelihood: 32.4%). As with the
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Fig. 2. Fits of the sixteen candidate models to HFC-32/[emim][TF2N] solubility data [127]. Points are experimental data and lines are model fits. Plot (a) shows the fit for the
R-1 A [dashed] and the PR-1B [dotted] models. Plot (b) shows the fit for the SRK-1 A [dashed] and the SRK-1B [dotted] models. Plot (c) shows the fit for the P-3 A [dashed]
nd the PR-3B [dotted] models and plot (d) shows the fit for the SRK-3 A [dashed] and the SRK-3B [dotted] models. Plots (e)–(h) show the results of the PR [dashed] and SRK
dotted] no temperature dependence (2 parameters), linear temperature dependence (4 parameter), quadratic temperature dependence (six parameter), and polynomial temperature
ependence (eight parameter), respectively.
Table 6
AIC ranking and relative likelihood for candidate models for the
HFC-125/[emim][TF2N] system.
Rank Model 𝑝 AIC Likelihood, %

1 PR-3A 3 −173.395 100
2 SRK-3A 3 −173.139 88.0
3 PR-4 4 −171.466 38.1
4 SRK-2 2 −171.422 37.3
5 SRK-4 4 −171.140 32.4
6 SRK-3B 3 −170.412 22.5
7 SRK-6 6 −168.677 9.45
8 PR-6 6 −168.626 9.22
9 SRK-8 8 −165.616 2.05
10 PR-8 8 −165.580 2.01
11 PR-3B 3 −161.691 0.287
12 PR-2 2 −160.703 0.175
13 PR-1A 1 −147.959 3E−4
14 SRK-1A 1 −140.520 𝑂(10−7)
15 PR-1B 1 −78.484 𝑂(10−7)
16 SRK-1B 1 −42.354 𝑂(10−7)

other HFC/IL systems, the one parameter models have essentially zero
likelihood of being able to reproduce the data.

The HFC-125/[emim][TF2N] system again highlights the trade-off
between model fit and parsimony. Although the four, six, and eight
8

parameter models have lower MSEs than the two and three parameter
models, their MSE values are not sufficiently low enough to compen-
sate for their larger number of parameters, i.e., higher complexity,
so the more parsimonious three parameter models are ranked higher.
Additionally, we note the significant difference in relative likelihoods
between the top two models for this system, PR-3 A (100%) and SRK-
3 A (88.0%), and the model ranked third, PR-4 (38.1%). PR-3 A and
SRK-3 A are more than twice as likely than PR-4 to reproduce the data,
emphasizing their accuracy (MSE of 3.68E−6 MPa2 and 3.71E−6 MPa2,
respectively, compared to the MSE of PR-4 of 3.67E−6 MPa2). The
HFC-125/[emim][TF2N] system has the highest MSE values of all the
HFC/IL systems and does not justify the larger number of parameters.
Conversely, the HFC-32 systems have low enough MSEs to justify the
number of parameters using AIC. The differences in MSE between the
HFC-32 and HFC-125 systems explains the significant differences in AIC
model ranking results.

HFC-32/[bmim][PF6]
Table 7 shows there are six models with a relative likelihood greater

than 𝑂(10−1) for the HFC-32/[bmim][PF6] system. The top six models
are: SRK-8 (likelihood: 100%); PR-6 (likelihood: 72.2%); SRK-6 (like-
lihood: 58.5%); PR-8 (likelihood: 57.4%); PR-4 (likelihood: 0.244%);
and SRK-4 (likelihood: 0.132%). Models with four or fewer parameters
have relative likelihoods of near zero. Unlike the other two systems,
the most likely model for the HFC-32/[bmim][PF ] system is SRK-8,
6
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Table 7
AIC ranking and relative likelihood for candidate models for the HFC-32/[bmim][PF6]
system.
Rank Model 𝑝 AIC Likelihood, %

1 SRK-8 8 −172.671 100
2 PR-6 6 −172.018 72.2
3 SRK-6 6 −171.600 58.5
4 PR-8 8 −171.560 57.5
5 PR-4 4 −160.642 0.244
6 SRK-4 4 −159.405 0.132
7 PR-3A 3 −150.811 1.79×10−3
8 SRK-3A 3 −149.736 1.05×10−3
9 PR-2 2 −143.503 𝑂(10−7)
10 PR-3B 3 −142.548 𝑂(10−7)
11 SRK-2 2 −135.588 𝑂(10−7)
12 SRK-3B 3 −132.217 𝑂(10−7)
13 PR-1A 1 −122.272 𝑂(10−7)
14 SRK-1A 1 −114.748 𝑂(10−7)
15 PR-1B 1 −25.280 𝑂(10−7)
16 SRK-1B 1 −8.909 𝑂(10−7)

the model with the most parameters. The low AIC score indicates the
improvement in MSE outweighed the complexity of regressing eight
parameters. In contrast, although PR-8 had the next lowest MSE value
of all the models, its MSE was not sufficiently low enough to balance
its eight parameters and was ranked fourth.

Discussion
This AIC ranking analysis, comprising Step 3 of Fig. 1, leads to three

ey observations:

• The AIC rankings show that thermodynamic model temperature
dependence is preferred in all HFC/IL systems, indicating the
importance of gathering data at multiple temperatures.

• The AIC rankings show different thermodynamic models have
higher likelihoods of reproducing the data for each HFC/IL sys-
tem, indicating that there is not one thermodynamic model that
is best for all HFC/IL systems.

• AIC provides insight as to whether a model is overfit, which is
overlooked with visualization and error metrics (Step 2) alone.

The best fit parameters for the top AIC-ranked model for each
ystem are shown in SI Table S1.

.3. FIM analyses evaluate a model’s physical interpretability

The FIMs for each of the sixteen models for the HFC-32/[emim]
TF2N] system are reported in the SI. The FIMs were scaled by Eq. (14)
nd computed using 𝜎𝜖 = 0.0008 MPa, which was also used in Morais
t al. [61] and was verified by analysis of the model residuals. Each
odel’s condition number for the HFC-32/[emim][TF2N] system is
eported in Table 8; the optimality criteria can be seen in SI Table S2.
his analysis is limited to the HFC-32/[emim][TF2N] for conciseness
ut can be applied to the other systems.
We observe that the four, six, and eight parameter models have con-

ition numbers above 𝑂(103), indicating these are sloppy models [105].
he eigendecomposition of PR-6, the top AIC ranked model for the
FC-32/[emim][TF2N] system, is shown in Table 9. The PR-6 model
as two small eigenvalues, 1.34×104 and 1.28×102, and another eigen-
alue, 3.32×105, that are more than three orders of magnitude smaller
han the largest eigenvalue. Evaluation of the corresponding eigenvec-
ors shows that the largest direction of sloppiness arises from the 𝑘𝑗𝑖,𝐵 ,
𝑖𝑗,𝐶 , and 𝑘𝑗𝑖,𝐶 parameters, which are part of the higher order temper-
ture dependent terms. This suggests that these regressed parameters
re highly correlated and most likely to be influenced by experimental
oise and have high uncertainty. The correlation matrices reported in
he Supporting Information confirm a strong (anti)correlation between
airwise combinations of 𝑘𝑖𝑗,𝐴, 𝑘𝑖𝑗,𝐵 , and 𝑘𝑖𝑗,𝐶 as well as pairs of
9

𝑗𝑖,𝐴, 𝑘𝑗𝑖,𝐵 , and 𝑘𝑗𝑖,𝐶 , which complicates the physical interpretability of
Table 8
Condition number of the Fisher information matrices
(FIMs) for each candidate model 𝑖 for the HFC-
32/[emim][TF2N] system. The FIM of a one parameter
model is a scalar on which eigendecomposition is not
informative. Recall, the number of parameters in a
given model corresponds with the model’s name (e.g.,
PR-6 is a six parameter model).
Model Condition number

PR-1A –
SRK-1A –
PR-1B –
SRK-1B –
PR-2 2.76×101
SRK-2 9.02×100
PR-3A 2.88×103
SRK-3A 2.89×103
PR-3B 1.67×103
SRK-3B 9.89×102
PR-4 1.48×104
SRK-4 1.59×104
PR-6 2.72×108
SRK-6 1.74×109
PR-8 3.43×1014
SRK-8 1.75×1012

the parameter estimates. Moreover, we note the discrepancy between
AIC-based thermodynamic model ranking and selection and parameter
identifiability analysis results. Although AIC provides information on
whether a model’s fit justifies its complexity (number of parameters),
it does not quantify the correlation between parameters as seen by
examining the FIM.

Thus, Step 4 of Fig. 1 provides another insight: FIM analyses provide
nformation on the interpretability of these chosen model parameters,
.e., whether the chosen parameters and the model function form are
ustified by the data.

.4. MBDoE analyses optimize future data generation efforts

Fig. 3a shows the minimum set of experiments that are necessary to
egress the top AIC ranked PR-6 model for the HFC-32/[emim][TF2N]
system. As expected, we observe the determinant is zero with fewer
than six experiments. This is because calibrating a six parameter model
requires at least six experiments. Moreover, the determinant increases
as measurements are added and begins to reach a plateau at twenty
experiments. The determinant remains 𝑂(101) in Fig. 3a after approx-
imately ten experimental data points, indicating that the ten best
experiments contain the majority of the information needed to ac-
curately calibrate the PR-6 model. This implies that ten experiments
provide essentially the same amount of information as the original full
data set (twenty-seven observations). While this is a retrospective anal-
ysis, we emphasize that this is informative for future data generating
efforts.

Fig. 3b identifies the most valuable and informative experiments in
the original data set. The six measurements with the most information
are shown as dots in Fig. 3b: 283 K, 44.8 mol% HFC-32, 0.4 MPa;
283 K, 78.6 mol% HFC-32, 0.85 MPa; 298 K, 64.3 mol% HFC-32, 1.0
MPa; 323 K, 41.7 mol% HFC-32, 1.0 MPa; 348 K, 17.5 mol% HFC-32,
0.55 MPa; and 348 K, 28.8 mol% HFC-32, 1.0 MPa. Note these are
measurements at the extreme values of the available data: there are
two data points at mid-range and high pressures at the highest and
lowest experimental temperature and an additional two data points at
the highest pressures and compositions at the two middle temperatures.
Thermodynamic models interpolate between the extremes of the data

(between the temperature ranges), making the intermediate data less
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Table 9
The FIM eigendecomposition of the top AIC ranked PR-6 model for the HFC-32/[emim][TF2N] system.
Eigenvalue Eigenvector

– 𝑘𝑖𝑗,𝐴 𝑘𝑗𝑖,𝐴 𝑘𝑖𝑗,𝐵 𝑘𝑗𝑖,𝐵 𝑘𝑖𝑗,𝐶 𝑘𝑗𝑖,𝐶
3.49×1010 0.4510 0.1527 0.7371 −0.04012 0.4767 0.03248
4.07×108 −0.1044 −0.7464 0.1724 0.5616 0.09957 0.2773
2.07×107 0.8290 −0.1648 −0.1386 0.08606 −0.5075 −0.03739
3.32×105 −0.07748 −0.5045 0.1762 −0.3609 −0.01606 −0.7602
1.34×104 0.2995 −0.2163 −0.5942 −0.1978 0.6843 0.05479
1.28×102 −0.05151 −0.3017 0.1536 −0.7115 −0.1917 0.5829
Fig. 3. Individual measurement information content analysis for the PR-6 model for the HFC-32/[emim][TF2N] system. Plot (a) shows the change in the D-optimality criteria as
experimental data is added to the model training set. Plot (b) shows the experimental solubility data for the HFC-32/[emim][TF2N] used in this system [127]. The bold dots show
the first six recommended experiments, the bold star shows the seventh recommended experiment, and the triangle shows the eighth recommended experiment.
Fig. 4. A-, D-, and E-optimality criteria of measurement design space for the HFC-32/[emim][TF2N] system using the PR-6 model after the best six data points, shown as dots (a,
b, c), top seven data points (d, e, f), and eight data points (g, h, i) are added. The stars and triangles mark the seventh and eight best experiments, respectively.
10
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informative. The seventh and eighth most informative data points occur
at 323 K, 26.4 mol% HFC-32, 0.55 MPa (X) and 283 K, 57.0 mol% HFC-
32, and 0.55 MPa (square). This indicates additional measurements
at the temperature measurement range boundaries are useful. The
additional measurement at a mid-range temperature, composition, or
pressure likely provides more insight into the model’s prediction of the
isotherm’s curvature. Fig. 4 shows the changes in the DoE metrics as
hese most informative six, seven, and eight experiments are added
o the FIM calculation. Fig. 4 emphasizes mid-to-high pressure and
omposition measurements contain the most information across all
emperatures, verifying the suggested locations of the seventh and
ighth most valuable experiments. Recall these results assume a con-
tant variance for the measurement error and as such measurements at
igher pressures have a better signal-to-noise ratio. An alternate error
tructure, such as percent error, may result in different findings about
he most valuable measurement.
Finally, we considered MBDoE for model discrimination. The max-

mum difference between pressure predictions for the HFC-32/[emim]
TF2N] systems of the first and second AIC-ranked models, PR-6 and
RK-6, respectively, occur at 71.0 mol% HFC-32 and 273 K, as deter-
ined by Eq. (15). This reinforces the insights gained from Figs. 3 and
: data at the extremes of available experimental conditions, e.g., high
ressures and mole fractions, contain more information than those at
ow or midduel pressures and mole fractions. For this analysis, measure-
ent design space was expanded beyond the ranges of the current data
et to encompass temperatures ranging from 273–360K, which are the
xtremes of currently accessible experimental conditions [61,62]. This
esult is confirmed by Fig. 2 which showed that the models consistently
erformed worse at low temperatures and high HFC-32 mole fractions;
dding measurements at these conditions will show which model is
etter able to capture solubility phenomena at these conditions.
MBDoE analyses, comprising Step 5 of Fig. 1, provide the following

nsights:

• For PR-6, ten optimally selected experiments contain a majority of
the information. This suggests the minimum number of necessary
experiments is only a few more than the number of parameters.

• Experimental data should be collected at the extremes of accessi-
ble measurement design space.

• MBDoE metrics guide where additional measurement should be
obtained in measurement design space.

These insights help optimize future laboratory experiments or molec-
lar simulations. We note that obtaining data at the extremes of avail-
ble measurement design space may be challenging or impossible using
urrently available data collection setups. This may motivate new ad-
ancements in instrumentation to expand the limits of thermodynamic
odel understanding.

. Conclusion

We present a data science framework for rigorous thermodynamic
odel selection and analysis. We consider HFC/IL systems for which
here are no prior studies on systematic model selection or experiment
ptimization. From this case study, we learn three key general recom-
endations widely applicable to thermodynamic modeling. First, visu-
lization alone is not useful for model selection. Next, MSE, AIC, and
dentifiability analyses must be used in concert to evaluate a model’s
ccuracy, predictive capability, and interpretability. Finally, MBDoE
nalyses can provide data generation recommendations that could
ignificantly improve the efficient use of data generation resources.
We gained additional insights about thermodynamic modeling de-

isions for HFC/IL systems, which suggest new thermodynamic model
election and data generating protocols. Current practices emphasize
easuring full solubility isotherms at a single temperature and then
11

sing the data with the most convenient thermodynamic model in
spenPlus [61,62,68]. However, we observed that HFC/IL systems
avor temperature dependence in the thermodynamic model, meaning
hat HFC/IL thermophysical data must be obtained at multiple tempera-
ures. We also show that there is not a ‘‘one size fits all’’ thermodynamic
odel for HFC/IL systems as the top AIC-ranked models were the
R-6, PR-3 A, and SRK-8 models for the HFC-32/[emim][TF2N], HFC-
125/[emim][TF2N], and HFC-32/[bmim][PF6] systems, respectively.
Instead, we provide a systematic selection of the best SRK or PR
thermodynamic model for each system and report the estimated param-
eters with uncertainty. We recommend using these models for process
design and scale-up. Finally, we provided recommendations for how
HFC/IL thermophysical data generating collaborators can most effi-
ciently obtain data and that the most informative HFC/IL data is found
at the measurement extremes (e.g., highest and lowest temperatures,
pressures, and compositions).

These findings open new questions for data generators and thermo-
dynamic modelers:

• How does the end use of a thermodynamic model, e.g., molecular
insights or engineering design, inform the acceptable uncertainty
and efforts to minimize data requirements?

• How does the finding that most informative data are at measure-
ment bounds inform the design of new experimental or simulation
techniques?

• How can we best incorporate this thermodynamic model selection
and analysis workflow within a CAM/PD framework?

We emphasize these considerations are important for HFC/IL sys-
tems but are also likely to be insightful for most multiscale separation
engineering endeavors.
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Appendix A

Table 10
Description of abbreviations utilized.
Abbreviation Expansion

AIC Akaike information criteria
CAM/PD Computer-aided molecular and process design
DoE Design of experiments
EoS Equation of state
FIM Fischer information matrix
GWP Global warming potential
HFC Hydrofluorocarbon
IDAES Institute for the Design of Advanced Energy Systems
IL Ionic liquid
MBDoE Model-based design of experiments
MC Monte Carlo
MSE Mean squared error
NRTL Non-random two liquid
PR Peng–Robinson
RK Redlick–Kwong
SAFT Statistical associating fluid theory
SRK Soave–Redlich–Kwong
vdW van der Waals

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.fluid.2023.113833.

PDF document describes the multistart initialization procedures
nd reports additional results for the HFC-125/[emim][TF2N] and
FC-32/[bmim][PF6] systems. Excel spreadsheet reports the fitted pa-
ameters, Fisher information matrices, correlation matrices, and eigen-
ecompositions for the studied models and systems.
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