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Abstract— Inspired by recent work by Christensen and
Popovski on secure 2-user product computation for finite-fields
of prime-order over a quantum multiple access channel, the
generalization to K users and arbitrary finite fields is explored.
Asymptotically optimal (capacity-achieving for large alphabet)
schemes are proposed. Additionally, the capacity of modulo-d
(d � 2) secure K-sum computation is shown to be 2/K com-
putations/qudit, generalizing a result of Nishimura and Kawachi
beyond binary, and improving upon it for odd K.

Index Terms— Capacity, quantum multiple access, secure com-
putation, private simultaneous quantum messages.

I. INTRODUCTION

SECURE multiparty quantum protocols for fundamen-
tal primitives such as summation and multiplication

have been explored under a variety of idealized mod-
els [1], [2], [3], [4], [5], [6], [7]. We focus in particular, on the
private simultaneous quantum messages (PSQM) setting intro-
duced in 2021 by Nishimura and Kawachi [2]. Related
multiparty computation models are surveyed in [7]. The PSQM
setting involves K users with private data W1, · · · , WK , and
a server who computes a function F (W1, · · · , WK), without
learning anything else about the users’ inputs. Common ran-
domness (Z) and quantum entanglement (Q) are distributed
to the K users. Each user manipulates its quantum-subsystem
locally and sends it to the server, who then recovers F with
zero error. Reference [2] explores the communication com-

plexity, i.e., the number of qubits of communication needed to
compute one instance of F . In this work, however, we take a
perspective common in information theory and focus instead
on the computation rate, i.e., the number of instances of
F that can be computed per qubit of communication cost.
Note that this allows for batch-processing, i.e., amortization
of cost by joint computation of multiple instances of F . The
fundamental limit of the computation rate is the information-
theoretic capacity.

Motivation: Some motivating questions for this work are
listed next, labeled as Q1-Q5 for reference. Reference [2]
explores various Boolean functions and presents in [2, Lemma
10] a PSQM scheme that computes a K-user modulo-2 sum,
achieving a rate 2/K computations/qubit if K is even and a
rate 2/(K +1) if K is odd. In [2, Lemma 11] another scheme
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Fig. 1. Secure K-user Computation over a Quantum MAC.

is presented that computes a K-user generalized equality
function GEQn (each user has an n bit input vector, n is
even, and the goal is to determine if the bit-wise modulo-2
sum of the input vectors is the all-zero vector), that achieves
the rate 2/(Kn) if K is even and 2/((K + 1)n) if K is odd.
For both schemes, the possibility of rate improvements for odd
K, n is open (Q1). Based on these schemes, it follows from [2,
Theorem 2] that there exists a total function F : ({0, 1}n)K !
{0, 1} (each user has n bit input, output is 1 bit) for which
quantum entanglement improves rate by a factor of 2 if K, n

are both even. It is not known (Q2) if the claim extends to odd
K, n. Another important development is the recent work by
Christensen and Popovski, who propose in [3] PSQM secure
product computation schemes for 2 users over any prime field
Fd. The possibility of rate improvements is open (Q3). Other
open problems in [3] include generalizations to finite fields Fd

for non-prime d (Q4), and from 2-users to K-users (Q5).
Contribution: We prove that the capacity of secure K-

user modulo-d sum computation is 2/K computations/qudit.
Besides the generalization from binary to modulo-d addition,
the new scheme strictly improves the rate from 2/(K + 1) in
[2, Lemma 10] to 2/K computations/qubit when K is odd.
Using the capacity achieving scheme and batch processing in
[2, Lemma 11] achieves the rate of 2/(Kn) for GEQn for all

K, n, thereby answering Q1. Furthermore, using the improved
rate GEQn scheme in [2, Theorem 2] shows that there exists
a total function F : ({0, 1}n)K ! {0, 1} for which quantum
entanglement improves computation rate by a factor of 2, for
all K, n, thus answering Q2.

For the secure product computation problem of [3],
as answers to Q4 and Q5, we present a K-user product
computation scheme over any finite field Fd (d need not be
prime), achieving the rate of at least (2/K)/[logd(2K � 1) +
logd(d � 1)], which is asymptotically optimal (asymptotic
capacity is 2/K computations/qudit) for large alphabet d.
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Fig. 2. Rates for QSK-Prod (UB: Upper bound, LB: Lower bound, i.e.,
achievable rate, QE: with Quantum Entanglement, U/C: Unentangled/Classical
Setting, Rem2 and Thm2: Remark 2 and Theorem 2 in this letter). Thick
circles mark achievable rates for d = 2 (AND).

TABLE I
QUANTUM/CLASSICAL AND SECURE/INSECURE K-USER AND

In addition to batch-processing, our scheme combines ideas
from the 2-sum protocol [5], [6], additive secret sharing, the
FKN scheme [8], and a field-group isomorphism [9].

In terms of Q3, for the 2-user secure product over F2 (equiv-
alently, the secure AND computation), the rate is improved
from 1/2 in [3] to 1/ log2(3) computations/qubit. For large
alphabet (i.e., 2-user secure product over Fd for large prime-
power d) the improvement approaches a factor of 2.

For further insights consider classical schemes for secure
product computation, namely the FKN scheme [8, Appendix
B] and the Linear Quadratic Residue scheme (LQR) of [10,
Table 2], which is limited to d = 2, i.e., the AND function.
A classical scheme for arbitrary Fd is devised in Remark 2 in
this work and shown in Fig. 2 as a baseline for comparison.
Evidently, our secure-product schemes improve significantly
on the quantum baseline from [3] as well as the classical
baselines, as shown by vertical arrows in Fig. 2.

Table I shows quantum-advantage vs security-penalty, list-
ing the best-known achievable costs (qubits/computation,
reciprocal of rate) for K-user AND. I

o
K is 1 if K is odd and

0 otherwise. The classical cost without security is K, as all K

inputs are necessary to compute the AND. For quantum cost
without security, the best scheme we are able to devise groups
the users into bK/2c pairs and computes the AND for each
pair with the scheme from Section III-B at the cost of log2(3)
qubits/computation. When K is odd, the remaining user sends
its input via a qubit. The product of pairwise ANDs and the
remaining user’s input yields the overall AND.

Notation: For integers a  b, [a : b] , {a, a + 1, · · · , b},
Y[a:b] , {Ya, Ya+1, · · · , Yb} and [b] , [1 : b]. The ring of

TABLE II
THREE TYPES OF QSK-COMP SETTINGS

integers modulo d is Zd = Z/dZ. A ^ B is the logical AND
of binary A, B. Define 1(x) = 1 if x 6= 0 and 0 otherwise.

II. PROBLEM STATEMENT

As shown in Fig. 1, there is one server, K users, and K

private data streams, such that the k
th private data stream

Wk is available only to User k, k 2 [K]. Wk(`) 2 W
denotes the `

th instance of Wk. The function to be securely
computed is F : WK ! F for some output alphabet F ,
and F (W1(`), · · · , WK(`)) , F (`) is the `

th instance of the
desired secure computation. Three types of Quantum Secure
K-user Computation (QSK-Comp) settings are considered,
as defined in Table II. QSK-AND is same as QSK-Prod for
d = 2.

A QSK-Comp coding scheme is specified by a 7-tuple
(L, Z, �[K], ⇢init,�[K], {My}y2Y , ). The batch size L 2 N
is the number of data instances to be encoded together. Z

is the common randomness, independent of the data streams.
For k 2 [K], denote W

(L)
k = [Wk(1), · · · , Wk(L)]T , and

F
(L) = [F (1), · · · , F (L)]T . The composite quantum sys-

tem Q is initially described by its density matrix ⇢init 2
C�⇥�

, � , �1�2 · · · �K , independent of (W1, · · · , WK , Z).
User k is allocated the �k-dimensional quantum subsystem Qk.
For k 2 [K], �k(W (L)

k , Z) = Uk is a unitary operator which
is applied to Qk. The resulting state of the overall quantum
system is ⇢ = U⇢initU

†, where U = U1 ⌦ · · · ⌦ UK . The
server applies POVM {My}y2Y and gets Y 2 Y as the output.
Finally, �(Y ) = F

(L) recovers the desired computation. The
scheme must correctly recover F

(L) for every realization of
(W (L)

1 , · · · , W
(L)
K ). Also, the scheme must be secure, i.e., for

any data realizations (W (L)
1 , · · · , W

(L)
K ) = (w1, · · · , wK) and

(w01, · · · , w
0
K) that yield the same F

(L), we require that ⇢

and ⇢
0 have the same distribution, where ⇢ and ⇢

0 are the
corresponding received states, respectively.

A rate R is feasible if there exists a secure quantum cod-
ing scheme (L, Z, �[K], ⇢init,�[K], {My}y2Y , ) so that R 
L/ logd(�). The unit of rate is computations/qudit (i.e., the
number of instances of d-ary F computed per d-dimensional
quantum system download), where d is as specified in Table II.
The capacity C is the supremum of all feasible rates.

III. RESULTS

A. Pre-Requisite: Modulo-d 2-Sum Protocol of [5], and [6]

Consider two transmitters, Alice and Bob, with inputs
A1, A2 2 Zd available to Alice and B1, B2 2 Zd available
to Bob. Alice and Bob possess one each of a pair of qudits
in an entangled state, namely the Bell state |�0,0iAB ,
1p
d

Pd�1
i=0 |iiA|iiB . Define |�x,ziAB , (Xx

AZz
A⌦IB)|�0,0iAB .
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TABLE III
THE MODULO-d 2-SUM PROTOCOL [5], [6]

TABLE IV
EQUIVALENT CHANNEL REPRESENTATION OF THE 2-SUM PROTOCOL

TABLE V
QS2-AND PROTOCOL IN [3]

According to [6, Proposition III.1], {|�x,ziAB | x, z 2
Zd} forms an orthonormal basis, so measurement in this
basis determines x, z. Alice and Bob apply X and Z gates
according to their data, resulting in the state (XA1

A ZA2
A ⌦

X�B1
B ZB2

B )|�0,0iAB = |�x,ziAB where x = A1 + B1, z =
A2 + B2, and the addition is modulo d. Note that the state of
the quantum system is fully determined by (x, z), i.e., it can
reveal nothing besides A1 + B1, A2 + B2.

As shown in Table III, since 2 instances of the sums are
computed with the total communication cost of 2 qudits, one
from each transmitter, the normalized cost is 1 qudit/sum.
Therefore, in our batched-setting the two-sum protocol may be
equivalently viewed as a classical modulo-d additive channel,
with the cost of one qudit per channel use, as in Table IV. Note
that without quantum entanglement the minimum communi-
cation cost even without security constraints is at least two

qudits/sum, thus demonstrating the advantage made possible
by quantum entanglement.

B. QS2-AND

Let us show how the QS2-AND protocol of [3] is also
achieved via the 2-sum protocol. Let A, B 2 Z2 be the inputs
available to Alice and Bob, respectively. Let Z be a random
variable uniformly drawn from {1, 2, 3}, which is shared only
between Alice and Bob. According to the realizations of Z,
Alice and Bob use the two-sum protocol as shown in Table V.
The scheme is correct because under all realizations of Z, the
output at Charlie is equal to (1, 1) if A = B = 1, and uniform
over {(0, 0), (0, 1), (1, 0)} otherwise, which also guarantees
security. Since this scheme securely computes 1 instance of the
AND function, with the total communication cost of 2 qubits,
it achieves rate 0.5 (computations/qubit), and requires log2(3)
bits of common randomness (i.e., a uniform 3-ary Z) per
computation.

As our first result let us present a scheme for QS2-AND, that
achieves a higher rate: 1/ log2(3) ⇡ 0.63 (computations/qubit)
instead of 0.5, while also requiring less classical common
randomness: 1 bit instead of log2(3) bits per computation. For
the new scheme we combine the additive channel of Table IV
with the FKN scheme [8, Appendix B]. The FKN scheme

TABLE VI
NEW QS2-AND PROTOCOL

is a classical scheme which enables the server to securely
compute the AND function once, with each user sending
log2(3) bits to the server. The rate achieved by the FKN
scheme is 1/

�
2 log2(3)

�
(computations/bit), which is optimal

for the classical setting as shown by [11]. To construct our
QS2-AND protocol based on the FKN scheme, specifically,
we let d = 3 and use common randomness Z that is uniform
in {1, 2}. The new protocol is shown in Table VI. For the
correctness of this scheme note that the output at Charlie
is equal to 0 if and only if A ^ B = 1. Security is also
guaranteed as given any (A, B) 6= (1, 1), the distribution of
the output at Charlie is the same (uniform over {1, 2}). The
rate achieved is 1/ log2(3) (computations/qubit). Note that in
the classical setting the FKN scheme in [8] also requires an
additional log2(3) bits of common randomness that serves as
additive noise which is not needed in the QS2-Prod scheme,
because of the inherent additive property of the two-sum
protocol over the quantum MAC. As a result, the FKN scheme
needs 1 + log2(3) = log2(6) bits of common randomness
per computation, while our QS2-AND only needs 1 bit of
common randomness per computation. Relative to the unen-
tangled/classical setting represented by the FKN scheme, the
quantum entanglement advantage is 2-fold, reflected in both
higher rate and lower requirement of common randomness.

The generalization to QSK-AND appears in Section III-D
as a special case of QSK-Prod.

C. QSK-Sum

The capacity for QSK-Sum (modulo-d) is stated below.
Theorem 1: The capacity of QSK-Sum is Cs = 2/K.

Proof: Let us start with the proof of achievability.
1) Achievability: The case of even K is simple. For d = 2

(binary sums) the achievability of rate 2/K already follows
from [2, Lemma 10]. The generalization to arbitrary d uses
additive secret sharing and the 2-sum protocol. Specifically,
8i 2 [K/2], User 2i� 1 and User 2i use the additive channel
of Table IV to transmit the modulo-d sum W2i�1 +W2i +Zi,
where Z2, Z3, · · · , ZK/2 are i.i.d. uniform in Zd and Z1 +
Z2 + · · ·+ZK/2 = 0. The server computes the modulo-d sumPK

k=1 Wk +
PK/2

i=1 Zi =
PK

k=1 Wk by adding (modulo-d) the
sums received from the K/2 pairs of users.

Now say K is odd. Since K = 1 is trivial, assume K � 3.
Consider L = 2 data instances, i.e., Wk(1) and Wk(2) for each
data stream. Let Users 1, 2, Users 1, 3 and Users 2, 3 use the
additive channel once each (thus three times among the first
three users). For the remaining users, Users 2i, 2i + 1 use the
additive channel twice for each i 2 {2, 3, · · · , (K � 1)/2}.
The inputs and outputs of the additive channels are specified
in Table VII, where Z0, Zi(`),8i 2 [2 : (K � 1)/2], ` 2 [2]
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TABLE VII
QSK-SUM (MODULO-d) SCHEME FOR ODD K

are i.i.d. uniform in Zd and

Z1(`) + Z2(`) + · · ·+ Z(K�1)/2(`) = 0, 8` 2 {1, 2}. (1)

In Table VII, each Yi represents the output for one use of the
additive channel of Table IV, e.g., the first row of Table VII
means that User 1 and User 2 use the additive channel once,
with User 1’s input specified as W1(1)�W1(2) and User 2’s
input specified as W2(1) + Z0 + Z1(1). The output is Y1 =
W1(1)�W1(2) + W2(1) + Z0 + Z1(1).

a) Correctness: The server is able to recover the two
computation instances F (1) and F (2) as,

Y1 + Y3| {z }
W1(1)+W2(1)+W3(1)+Z1(1)

+ Y4 + Y6 + · · ·+ YK�1| {z }
P(K�1)/2

i=2 W2i(1)+W2i+1(1)+Zi(1)

= W1(1) + W2(1) + · · ·+ WK(1) = F (1), (2)
and similarly, Y2 + Y3 + Y5 + Y7 + · · ·+ YK = F (2). (3)

b) Security: The scheme is based on the two-sum proto-
col. Recall that the received quantum states are deterministic
(pure states) conditioned on the measurement outputs. It there-
fore suffices to show that all the outputs of the two-sum
protocols are collectively independent of the data, conditioned
on the desired computation F . Let us prove this for the case
where K is odd. The proof for even K follows similarly.

I(W (2)
[K];Y[K] | F (2))

= H(Y[K] | F (2))�H(Y[K] | F (2)
, W

(2)
[K]) (4)

= H(Y[K] | F (2))�H(Z0, Z
(2)
[(K�1)/2] | F

(2)
, W

(2)
[K]) (5)

= H(Y[K] | F (2))�H(Z0, Z
(2)
[(K�1)/2]) (6)

= H(Y[K] | F (2))�H(Z0, Z
(2)
[2:(K�1)/2]) (7)

= H(Y[K] | F (2))� (K � 2) log(d) (8)

= H(Y[3:K] | F (2))� (K � 2) log(d) (9)
 H(Y[3:K])� (K � 2) log(d) (10)
 0 (11)

Step (5) holds because given all data streams (W (2)
[K]), the tuple

containing all common randomness terms (Z0, Z
(2)
[(K�1)/2]) is

an invertible function of Y[K] (see Table VII). Step (6) simi-
larly holds because the common randomness is independent of
the data and the function to be computed. Step 7 holds because

Z1(`) is determined by Z2(`), Z3(`), · · · , Z(K�1)/2(`) for
` = 1, 2 according to (1). Step 8 holds because the remaining
common randomness terms are i.i.d. uniform in Zd and there
are K � 2 of them. Step 9 used the fact that Y[K] is an
invertible function of (F (1), F (2), Y3, Y4, · · · , YK) according
to (2), (3). Step (10) follows because conditioning reduces
entropy, and Step (11) uses the fact that uniform distri-
bution maximizes entropy. Thus, the derivation shows that
I(W (2)

[K];Y[K] | F
(2))  0. Since mutual information cannot

be negative we must have I(W (2)
[K];Y[K] | F (2)) = 0. Thus the

protocol is secure.
c) Rate: For even K, the additive channel is used

K/2 times in order to compute the K-sum once. For odd
K, the additive channel is used a total of K times in order
to compute the K-sum twice. Thus, the rate achieved in both
cases is 2/K.

2) Converse: Let us show that even without the secu-
rity constraint the rate achieved cannot be more than 2/K.
Suppose there exists a feasible coding scheme C for the
tuple (L, Z, �[K], ⇢init,�[K], {My}y2Y , ). Let us show that
2 logd(�k) � L for every k 2 [K]. Start with k = 1. Note
that a feasible coding scheme must allow correct decoding for
all data realizations. So let User 1’s data W

(L)
1 be uniformly

distributed in FL
d , while all other users’ data is constant, say all

zeros. Let Users 2, 3, · · · , K and the server combine all their
resources, forming, say a super-server. Because the coding
scheme C is correct by assumption, applying the scheme must
allow the super-server to recover F

(L), and therefore recover
W

(L)
1 because W

(L)
1 = F

(L) when the other users’ data is
all zeros. The super-server and User 1 now share quantum
entanglement, but since the only communication between them
is the �1 dimensional quantum system Q1, it follows from
the information causality bound [12, Prop. 6], [4, IV.A] that
2 logd(�1) � I(W (L)

1 ;Y ) = H(W (L)
1 ) = L, where the mutual

information is measured in dits (logd(·)). Repeating the same
argument for k = 2, 3, · · · , K we have 2 logd(�k) � L

for all k 2 [K]. Thus, 2 logd(�1�2 · · · �K) � KL =)
L/ logd(�1�2 · · · �K)  2/K and thus C  2/K. ⌅

Remark 1: Note that the achievable scheme requires only

additive inverses (which exist over both rings and finite fields),

and the converse applies over finite fields as well. It follows

that the capacity of QSK-Sum over finite fields is also 2/K,

extending the corresponding result of [4] to the secure setting.

D. QSK-Prod

Theorem 2: The capacity of QSK-Prod is bounded as fol-

lows.

2/K

logd(2K � 1) + logd(d� 1)
 Cp  2/K. (12)

In particular, as d !1 the asymptotic capacity is 2/K.

Proof: We begin with the proof of achievability.
1) Achievability: The achievable scheme consists of two

phases. The first phase allows the server to securely com-
pute 1(W1)1(W2) · · · 1(WK), which is a QSK-AND problem.
If d = 2 then the computation is complete, otherwise the
second phase allows the server to securely compute the product
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W1W2 · · ·WK if the AND computation is non-zero.1 Both
phases make use of the QSK-Sum scheme, and for d > 2 both
phases are performed in all cases to preserve security.

a) Phase I (QSK-AND): In the first phase, the server
securely computes 1(W1)1(W2) · · · 1(WK), combining the 2-
sum protocol and the FKN scheme [8, Appendix B]. To do this,
let p be a prime such that K < p < 2K. The existence of such
a p is guaranteed by the Bertrand–Chebyshev Theorem [13].
Then let R be uniformly distributed in Fp\{0}. We apply the
QSK-Sum scheme over Fp and let the input from User k

be R(1 � 1(Wk)), for all k 2 [K]. The QSK-Sum scheme
allows the server to securely compute Y = R

PK
i=1(1 �

1(Wk)), with a cost (K/2) logd(p) qudits/computation. Note
that Y = 0 if and only if all Wk are non-zero, which is
the case when 1(W1)1(W2) · · · 1(WK) = 1. Otherwise, Y

is uniformly distributed in Fp\{0}, which is the case when
1(W1)1(W2) · · · 1(WK) = 0. Therefore, the scheme allows
the server to securely compute 1(W1)1(W2) · · · 1(WK).

b) Phase II: Since F⇥d is isomorphic to Zd�1, the
QSK-Prod of non-zero elements in Fd reduces to the
QSK-Sum of elements in Zd�1. Let � : F⇥d ! Zd�1 be an
isomorphism from F⇥d to Zd�1 such that for any two elements
u, v 2 F⇥d , �(u) + �(v) = �(uv). For non-zero Wk, define
wk = �(Wk),8k 2 [K]. For Wk = 0, define wk = �(W̃k)
where W̃k is generated uniformly over F⇥d by User k. Then we
apply the proposed QSK-Sum scheme over Zd�1 to compute
w1+w2+· · ·+wK modulo-(d�1), and by the isomorphism the
secure computation of the product of the K non-zero elements
is accomplished. Note that if any of the data symbols Wk is
zero, then this product is uniform over F⇥d and independent of
all data because of the way W̃k was generated. The cost for
this phase is (K/2) logd(d�1) qudits/computation. The idea of
using the isomorphism to compute the product is not new, e.g.,
see [9]. A key difference is that in [9], the size of the additive
group must be a prime to allow linear coding/decoding. This
is not feasible in our setting as we require the additive group
to have a size exactly equal to d � 1 (otherwise the protocol
would violate the security constraint).

c) Security: Note that Phase I reveals only the AND
function, i.e., the product 1(W1)1(W2) · · · 1(WK), which is
necessarily revealed by the desired product computation. If the
AND is 0, then because of the random choice of W̃k terms,
the product computed in Phase II is independent and uniform
over F⇥d , thus preserving security. If the AND is non-zero then
by the security guarantee of the QSK-Sum protocol, Phase II
reveals only the desired product, so security is preserved.

d) Rate: In Phase I, the cost is (K/2) logd(p) 
(K/2) logd(2K � 1) qudits/computation, and in Phase II,
the cost is (K/2) logd(d � 1) qudits/computation. There-
fore, the rate achieved by the scheme is lower bounded by
(2/K)/(logd(2K � 1) + logd(d� 1)) (computations/qudit).

2) Converse: The converse proof is similar to the proof of
the converse for Theorem 1 (QSK-Sum) in Section III-C.2.
It follows by replacing 0 (the all 0 vector) with 1, the all
1 vector of length L. The rest of the proof immediately applies
as the server must be able to compute W

(L)
k as well. ⌅

1Wk here denotes one instance of the kth data stream.

Remark 2: A classical scheme for product computation

follows from the same 2 phase construction, using the FKN

scheme [8, Appendix B] for Phase I, and additive secret

sharing for Phase II. Thus Phase I incurs cost K logd(p) 
K logd(2K � 1) dits/computation, and Phase II incurs cost

K logd(d � 1). This produces an achievable classical rate
1/K

logd(2K�1)+logd(d�1) . To our knowledge, a more efficient

classical scheme is not available in the literature.

IV. CONCLUSION

The rate improvements found in this work are essentially
due to (i) optimized batch-processing, (ii) the linearization,
in Phase II, of the non-zero product to a sum via isomorphism,
and (iii) exploiting linear combinations of inputs obtained
through quantum entanglement via the 2-sum protocol [5], [6].
The latter advantage is similar to over-the-air computation
advantage in wireless, as noted in [14]. For the secure compu-
tation of arbitrary functions in the PSQM setting, a promising
approach suggested by this work for future efforts is to (i) find
generalizations of the 2-sum protocol, as explored in [14],
and (ii) find ways to linearize non-linear computations, e.g.,
by isomorphisms or by embedding non-linear computations
into linear computations, as explored in [10], and [15].
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