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A Machine Learning Approach to Classify Vortex Wakes of
Energy Harvesting Oscillating Foils

Bernardo Luiz R. Ribeiro* and Jennifer A. Franck®
University of Wisconsin—Madison, Madison, WI, 53706

A machine learning model is developed to establish wake patterns behind oscillating foils whose kinematics are
within the energy harvesting regime. The role of wake structure is particularly important for array deployments
of oscillating foils, since the unsteady wake highly influences performance of downstream foils. This work explores
46 oscillating foil kinematics, with the goal of parameterizing the wake based on the input kinematic variables
and grouping vortex wakes through image analysis of vorticity fields. A combination of a convolutional neural
network (CNN) with long short-term memory (LSTM) units is developed to classify the wakes into three classes.
To fully verify the physical wake differences among foil kinematics, a convolutional autoencoder combined with
k-means++ clustering is utilized and four different wake patterns are found. With the classification model, these
patterns are associated with a range of foil kinematics. Future work can use these correlations to predict the

performance of foils placed in the wake and build optimal foil arrangements for tidal energy harvesting. E

I. Introduction

This paper utilizes a machine learning approach to classify vortex wake structures behind an energy harvesting
oscillating foil. Understanding the vortex formation and resulting wake structure reveals information about the upstream
disturbance, which could potentially be linked to the underlying flow conditions and/or oscillating foil kinematics.
Although commonly used in propulsive applications, oscillating foils can also extract energy from the flow in a
similar manner as a rotational turbine [1} 2l]. Furthermore, due to the coherent vortex wake of opposite vortex signs
generated from the upstroke and downstroke foil motion there is a potential for cooperative motion within tightly packed
array configurations to improve performance [3l]. In order to create control laws to optimize performance in array
configurations, it is critical to fully understand and model the wake structure as a function of flow conditions and foil
kinematics.

Traditional wake structure characterization is commonly investigated for cylindrical bluff bodies, such as the
canonical work of Williamson and Roshko [4]] who described vortex wakes with a ‘mS + nP’ notation, where m is the
number of single vortices (S) shed per cycle, and 7 is the number of clockwise/counter-clockwise vortex pairs (P). This

notation has been propagated to oscillating foils with some success when the foil is in pure pitching [5} 6] or plunging
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[7] motion. However, previous investigations focused on kinematics for propulsive foils and did not consider the wakes
generated by an oscillating foil in the energy harvesting regime. When used for energy harvesting, the foil kinematics
are characterized by a lower non-dimensional frequency and higher pitch/heave amplitudes compared to oscillating foil
propulsion. The high amplitudes result in a rich variety of wakes with multiple vortices shed each foil stroke that are
often chaotic and not easily identified by the ‘mS + nP’ notation [S8} 9]

To assist in the wake modeling of bluff bodies outside the canonical characterization, various machine learning
techniques can be utilized. Particularly, convolutional neural networks (CNN) receive much interest due to the ability to
process data from images for pattern recognition and prediction [[10]. For instance, a CNN is implemented to analyze
cylinder and airfoil flow for various Reynolds numbers and obtained accurate predictions of the velocity field [11}[12]
and force [13]] when compared to numerical data. Another example of a CNN is for vortex identification procedure [14]]
which does not require user-input for thresholding such as Q-criterion [[15] or A, criterion [16].

When analyzing unsteady flows, the time evolution of structures can be captured with recurrent neural networks
with the use of long short-term memory (LSTM) [17]], which can predict flow quantities by holding information from an
input sequence, and not simply from a single input [18]]. Using flow information from the past five timesteps, Nakamura
et al. [19] predicted turbulent structures in a channel flow using a convolutional autoencoder combined with LSTM.
LSTM was also implemented in a dynamic wind farm wake model that predicts the main features of unsteady wind
turbine wakes almost as well as high-fidelity computational models [20]. The integration of convolutional layers and
LSTM units has also predicted unsteady flow fields behind bluff bodies such as a cylinder and a foil [18]].

The goal of this investigation is to develop a neural network that integrates convolutional layers and LSTM units
towards classification of the bluff body wake structures behind oscillating foils. Using such classification will enable
predictive models for these chaotic wakes, and inform performance optimization of arrays of foils operating as energy
harvesters. Classification models have been previously implemented for wakes of propulsive foils [21 [22] and cylinders
[23]]. This work classifies and clusters the drag-based wake from an oscillating foil in energy harvesting mode, which
distinguishes itself from propulsive oscillating foils due to the lower oscillating frequency, higher pitch, and higher
heave amplitudes [24]. Prior work has also largely classified wake structures from point measurements within the
wake. In contrast, this research classifies vortex wake structures from vorticity flow fields. Using images as the
input data allows for connections linking wake features such as the size and strength of vortices with the underlying
foil kinematics. Due to the unsteady interactions between vortices that affect the wake trajectory behind each foil
configuration, the LSTM network aims to provide information on how each wake image is linked throughout time,
improving the classification outcomes. The results of the supervised classification groupings are compared directly
against an unsupervised convolutional autoencoder (CAE) and clustering methodology [25] to confirm and update the
boundaries between classes. Finally, the physics of the wake structure in each of the classified groups are explained and

correlated with energy harvesting efficiency and foil kinematics.
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Section [lI| gives an overview of the foil kinematics and simulation methods followed by the initial groupings for the
classification model in Section[[II. An overview of the classification network architecture and results are presented in
Section and Section[V|describes the groupings, and updates obtained from an unsupervised clustering of the input

images with conclusions presented in Section [V

I1. Computational Methods
This section discusses the computational fluid dynamics methods, including the foil kinematics, flow solver and

mesh.

A. Foil Parameters

The foil kinematics are defined by three parameters, namely pitch amplitude, 6, heave amplitude, #,,, and reduced
frequency, fc/Us, where c is the foil’s chord length and U, the freestream velocity. To generate a range of energy
harvesting vortex wake structures, 46 unique kinematics are prescribed to a 10% thick elliptical foil through numerical
simulations. The foil motion is sinusoidal in pitch and heave, utilizing a range of frequencies and amplitudes previously
established as effective at energy harvesting [8,126]. As opposed to an airfoil geometry, a thin elliptical foil is utilized
as geometry has shown to have minor effects on efficiency [27]] and the fore-aft symmetry is desirable for harvesting

energy from tidal flows. The kinematics with respect to time ¢ are described in lab-fixed coordinates as

h(t) = —h, cos(2n ft) (H

and

0(t) = -0, cosnft +n/2), 2)

where A(¢) and 6(¢) are the prescribed heave and pitch motions, respectively, with pitching about the center-chord.
The phase difference between pitch and heave is fixed at /2, which is found to yield the optimal energy harvesting
performance [28]]. At ¢ = 0 the foil is at the bottom of its heave stroke. Heave and pitch are changing simultaneously

during foil motion, which creates a time-varying relative angle of attack with respect to the freestream flow given by

@rer (1) = tan™" (=h(1) /Uso) + 6(1), 3)

with A(r) representing the time derivative of the heave motion. A characteristic relative angle of attack is evaluated

when the foil is at maximum pitch and maximum heave velocity, which occurs at one quarter of the cycle period 7', or



ars = @rer(t/T = 0.25) = tan™' (=27 fh | Uso) + 6. )

The foil motion along with the foil parameters are illustrated in Figure[T, The primary vortex, or the first vortex
s formed on the suction surface during each half stroke, is highlighted for the case fc¢/Us = 0.10; h, = 1.00; 6,, = 75°.

Previous vortices originating from prior oscillating cycles provide an overall view of the wake.

Primary vortex
from upstroke Primary vortex
from downstroke

;
o

Fig. 1 Foil kinematics: pitch amplitude (6,), heave amplitude (%,) and foil’s swept area (Y),) shown. Spanwise
vorticity at non-dimensional time /7T = 0.50 for the kinematics fc /U, = 0.10; h, = 1.00; 6, = 75° is displayed
as an example of the oscillating foil wake.

To evaluate performance the energy harvesting efficiency is defined as

P %)
=153y
2PULYp
which is the ratio of the average power extracted, P, to the power available in the freestream velocity throughout the

swept area Y,,. The power extracted is defined as

P(t) = Fyh+ M6, 6)

s where Fy and M are the vertical force and spanwise moment on the foil, respectively. To remove small cycle-to-cycle
variations the efficiency is phase-averaged over the last three cycles of simulation.

A wide range of kinematics within the energy harvesting regime is considered, all of which directly influence

ar/s. Table outlines all simulated foil kinematics, with seven sets of different kinematics chosen specifically with the

same ar/s. All quantities reported in this manuscript are non-dimensionalized by the freestream velocity, U, and
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fr=0.10-0.15, 6, =40° - 80°, A, = 0.50 — 1.50.

¢ and thus, f* = fc/Us and h}, = h,/c. Reduced frequency, pitch amplitude and heave amplitude are varied from

Kinematics ar/a Kinematics ar/4

C4) £ = 0.15; b = 1.25;60, = 55°  5.3° f*=0.12;h; =0.50;6, = 50°  29.3°
Cob) = 0.12; 1% = 1.50;6, = 55°  6.5° f*=0.10; k%, = 0.75;6, = 55°  29.8°
(%) f* = 0.15; b = 1.00;60, = 50°  6.7° | P f*=0.12; k% = 0.75;6, = 60°  30.5°
W) f*=0.10; k5 = 1.00;0, =40°  7.9° | Y =015k = 1.00;0, =75°  31.7°
Cot) f* = 0.12; 1% = 1.00;0, =45°  8.0° | P f* =012,k =1.25;6, =75°  31.7°
f*=0.15h% =0.75;6, =45°  9.8° f*=0.10; k%, = 0.50;6, = 50°  32.6°
C4) £ = 0.12; b5 = 0.75,0, = 40°  10.5° | O f*=0.10; k% = 1.00;6, = 65°  32.9°
Cot) £ = 0.15; 1Y = 1.00;0, = 55°  11.7° f*=0.12;h% =0.50;6, =55°  34.3°
(%) 5 = 0.10; k= 1.00; 6, = 45°  12.9° f*=0.10;h% =0.75;6, = 60°  34.8°
) f*=0.12; 85 = 1.00;0, =50°  13.0° | 9 f*=0.12; 8 = 0.75;0, = 65°  35.5°
Cot) = 0.10; 1 = 0.75; 6, = 40°  14.8° f*=0.15;h% = 1.00;6, = 80°  36.7°
Cot) £+ = 0.15; 1 = 1.00; 6, = 60°  16.7° f*=0.10; 1% = 0.50;6, = 55°  37.6°
W) =0.12; 85 = 1.00;0, =55°  18.0° | Y f*=0.12; k% = 1.00;6, = 75°  38.0°
f*=0.12; k% = 0.50;6, =40°  19.3° f*=0.12; k% = 0.50;6, = 60°  39.3°
Co4) = 0.10; 1 = 0.75; 0, = 45°  19.8° f*=0.12;h; =0.75;6, = 70°  40.5°
) f* = 0.12; k%, = 0.75;6, = 50°  20.5° f*=0.10;h% =1.25;6, =80°  41.9°
Cb) £ = 012, 1% = 1.25;6, = 65°  21.7° | P f*=0.10; k% = 1.00;6, = 75°  42.9°
Co4) = 0.10; ki = 1.25;60, = 60°  21.9° f*=0.12; k% = 1.00; 6, = 80°  43.0°
f*=0.12; k% = 1.00;6, = 60°  23.0° f*=0.10; k% = 0.75;6, = 70°  44.8°
f*=0.12;h% = 0.50;0, =45°  24.3° | O £ =0.10; k) = 0.50; 60, = 65°  47.6°
Cot) £ = 0.15; b = 1.25;0, = 75°  25.3° f*=0.10; k% = 1.00;6, = 80°  47.9°
Cot) f* = 0.15; b = 1.00;6, = 70°  26.7° f*=0.12;h% =0.50;6, =70°  49.3°
) f* = 0.12; kY = 1.00;0, = 65°  28.0° f*=0.12;h% =0.75,0, = 80°  50.5°

* Training data, *-* First cycle in validation data and remaining two cycles are used in the training data

Table 1 Summary of all kinematics with their computed @74 values. Footnote refers to the unsupervised
clustering model.
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B. Flow Solver and Mesh

The computations utilize an incompressible Navier-Stokes solver performed using a second-order accurate finite
volume, pressure-implicit split-operator (PISO) method implemented in OpenFOAM [29]. The Reynolds number of
Re. = 1000 is selected for all simulations to enable a broad sweep of 46 kinematics within a tractable computational
time. Prior work comparing experiments with low and high Reynolds number simulations has demonstrated only minor
differences between the power generation and wake characteristics across a Reynolds number regime of 1000 — 50, 000
8. 9.

All simulations are performed with a 2D unstructured mesh, with foil motion generated through the boundary
condition of a dynamic mesh solver that updates the position of all nodes in the domain at every timestep. The dynamic
mesh algorithm utilized in this manuscript is previously validated against a stationary mesh in the work from Ribeiro et
al. [9]]. The total domain size is 106¢ in the horizontal direction and 100c in the vertical direction, with the foil located
50c¢ upstream in the x direction and vertically centered when the foil is at the bottom of its heave stroke (¢/7 = 0). The

mesh is generated using Gmsh [30]], with a subset of the mesh displayed in Figure 2]

FREE 5; TRE 7]
'A" LA ]
% "' ’ “‘“grv NI
| )#— 4 &'ﬁ Fkr x
.‘, %ﬁuﬁmmwx?gub LR
SESISTRE el y

x/c=8.0

Fig. 2 Computational domain zoomed in on the foil mesh. The mesh 3A is displayed with its characteristics
outlined in Table[2|

The boundary conditions entail a no-slip condition at the foil surface with zero pressure gradient, inlet flow on the
left boundary, and outlet flow on the top, bottom and right boundaries. Simulations are run for a total of six oscillation
cycles, and become stationary after three cycles.

Mesh refinement is evaluated through eight meshes with varying resolution near-foil and in the wake, where N
corresponds to the total number of nodes. All mesh characteristics are displayed in Table 2, where the characteristic
wake resolution is measured at x/c = 3.0; y/c = 0. This resolution is held approximately constant until 8¢ downstream
as displayed in Figure@ Along the foil surface, a characteristic Ax is measured along the mid-chord, and Ny represents

the total number of nodes on the body in the azimuthal direction. The CPU time is calculated for one oscillation cycle
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using a single processor on the Intel Cascade architecture.

Table 2 Mesh characteristics.

Wake Foil
Mesh N Ax Ny Ax n CPU time (hrs)
Mesh 1A 0.30x 10° 0.14 150 0.013 29.3% 1.6
Mesh2A 0.48x 10° 0.10 150 0.013 29.7% 1.8
Mesh3A 1.64x10° 0.05 150 0.013 26.9% 12.8
Mesh4A 3.66x10° 0.03 150 0.013 25.7% 41.2
Mesh 1B 0.31x10° 0.14 240 0.008 30.7% 1.5
Mesh2B  0.49x10° 0.10 240 0.008 29.9% 2.1
Mesh3B 1.56x10° 0.05 240 0.008 26.9% 11.3
Mesh4B 3.68x10° 0.03 240 0.008 25.4% 40.0

Foil efficiency and spanwise vorticity flow fields are evaluated across all meshes. Foil efficiency decreases with

increasing wake resolution, demonstrating a Ay of 3% between mesh 2 and mesh 3 which has twice the wake resolution.

As shown in the vorticity fields, the same number of coherent vortices are observed between meshes 3 and 4, with only

small variations in vortex positioning in the wake as displayed in Figure|3| There is little difference between meshes A

and B, indicating both have sufficient near-foil resolution. Therefore, as a balance in computational cost and accuracy of

both the foil forces and flow fields, mesh 3A is utilized in all simulations.
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Fig.3 Instantaneous vorticity field in the z direction, w,. Kinematics: f* = 0.12; h; = 1.00; 6, = 65°.
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I11. Initial Class Selection

The kinematics outlined in Table [T cover a large parameter space, which contributes to a range of energy harvesting

modes, which range in efficiency from close to zero up to 30%. These results demonstrate that the optimal performance

is not strongly correlated with a single set of foil kinematics. As displayed in Figure @a high energy harvesting efficiency

is found within the range f* = 0.12 - 0.15; 6, = 65°

- 80°% h} =0.50

> Yo

— 1.00 with no clear correlation with a single

10 kinematic parameter. Thus, it is convenient to reduce the parameter space into a single and representative variable,

ar/4, the characteristic relative angle of attack as defined in Equation E, which allows foil efficiency to be expressed

as a simpler function of foil kinematics as shown in Figure @b [26]. The efficiency increases monotonically until

a4 ~ 28.0° and then varies for higher 74 values due to a high degree of flow separation [8]9].
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Fig. 4 (a) Energy harvesting efficiency, 1, as a function of pitch amplitude, 6, (in degrees) for various reduced
frequency (f*) and heave amplitude (%) pairs; (b) Efficiency with respect to ar /4. Vertical lines indicate initial
grouping of vortex wake structures based on primary vortex strength analysis.

To correlate a4 with the flow structures that emanate from the foil, Ribeiro et al. [9] defined three classes labeled
A(5.3° <ars < 11.7°),B (11.7° < arys < 29.3°) and C (29.3° < @74 < 50.5°) using the maximum strength of the
primary vortex formed for each kinematics (as demonstrated in Figure[db). The wake structures that emerge from the
three classes are displayed in Figure[5|within a 7.5¢ by 7.5¢ window located downstream, and general trends based on
vortex strength are extracted from these wakes. Class A contains weak vortices as represented by a shear layer in the
majority of images in this class. In contrast, class C displays the strongest and most coherent vortices compared with the
other classes. Class B has a mix of kinematics with stronger vortices than class A but weaker than class C.

Observing the wake structures from Figure [, trends are found within and between classes. With an increase
in pitch amplitude, vortices shed from the foil increase in size and strength with frequency and heave amplitude
S =0.12; h}, = 0.50 (see kinematics highlighted in red). With an increase in reduced frequency, the wake wavelength

is smaller as displayed by the kinematics with £}, = 1.25, 6, = 75° (see kinematics in green).
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Fig. 5 Randomly selected images of wake structures from each class highlighted in Figure The colored
boxes outline wake features found when one foil parameter is varied while others remain constant.

IV. Supervised Classification
In this Section, the wake is analyzed through an image-based supervised learning algorithm, where classes are

defined based on the predetermined groupings motivated in Section

A. Data Pre-Processing

The input to the classification model are images of 2D spanwise vorticity extracted from a 7.5¢ by 7.5¢ window
located in the wake and interpolated onto a cartesian grid of 128 by 128 pixels as illustrated in Figure[6] The window size
is selected such that it contains all vortices shed from the foil in the y-direction in all kinematics from Table|l|and 7.5¢
corresponds to a typical inter-foil spacing in foil-arrays under the energy harvesting regime. For each set of kinematics,
three oscillation cycles within the steady state regime are used as input with data sampled at every tUs/c = 0.1, for a
total of 11, 846 samples. The fixed sampling rate is used in order to maintain the difference between consecutive wake
images independent of the foil’s reduced frequency, thus the number of samples differs for each frequency. Contour
levels of vorticity are chosen to display the wake structures in all kinematics, and six levels (-2, -1, -0.5,0.5, 1, 2) are
consistently drawn for each wake image as shown in Figure|[6]

Since the vortices shed from the foil may affect each other’s trajectory [9} 131} 32], the time evolution is considered
in the classification neural network through the use of LSTM units. A sequence of five images is given as the input data,
which provided higher accuracy compared with a sequence of ten images. To avoid overfitting, a data augmentation
technique is also implemented, which duplicated the number of samples from 11, 846 to 23, 692. This technique not
only took an input sequence at consecutive 0.17U/c units, but also with 0.1tUs /¢ skipped between samples, i.e.

0.1,0.3,0.5,0.7,0.9tU /¢, following a similar strategy by Chong and Tay [33]].

10
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Fig. 6 Data pre-processing for the classification model interpolates the spanwise vorticity computed with high
resolution computational data onto a 128x128 grid for a fixed region behind the foil at every 0.1 convective time
units.

B. Classification Model Architecture

Using the Python based libraries TensorFlow [34] and Keras [135]], the classification model is built from a combination
of convolutional layers, LSTM units and dense layers, as outlined in Figure[7] The 2D convolutional layers (Conv2D) are
applied on each sample to extract the most significant features of the wake. These key features are detected with filters,
which create feature maps through a convolutional operation on the preceding layer [25]. Each convolutional layer uses
a linear activation function with multiple filters of fixed kernel size, 3 X 3, that reduces the matrix dimensions while
simultaneously keeping the most pertinent features. The number of feature maps define the depth of each convolutional
layer and within each layer, a downsample operation is performed with a 2 x 2 stride, resulting in a reduction factor of 2
in each matrix dimension while the depth remains constant. Each input sequence passes through four convolutional
layers, decreasing the dimension of each sample from 128 X 128 x 1 to an 8 X 8 feature map with eight channels.

Each sample is then flattened into a 1D vector with 512 elements where 90 LSTM units analyze the correlation
between each wake image within the input sequence, with the goal of detecting patterns between each wake structure and
its time evolution behind each foil configuration. The final section of the model contains a dropout layer of rate equals
to 0.1 that is placed between two dense layers in order to decrease overfitting. The dense layers classify each image
according to the predetermined classes. The first layer contains 90 neurons and the second dense layer has three neurons
corresponding to class A, B or C. Both dense layers use a sigmoid activation function to normalize the output from the
previous layer into a 0 — 1 range. To update the neural network weights, the Adam optimization algorithm [36] is
implemented in the model. To prevent overfitting, the early stopping technique [37] with 100 training epochs is utilized.

The following hyperparameters in the classification model are tuned: number of filters in the convolutional

layers, LSTM units, and number of neurons in the first dense layer. The sequences of (64,32, 16,8), (32,16,8,4),

11
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(128, 64,32, 16) filters for the convolutional layers are tested and (64, 32, 16, 8) obtained best performance. The LSTM
units and number of neurons in the first dense layer are tuned using a range from 20 — 100 units and neurons and it is

found that 90 units and 90 neurons provided a higher model accuracy.

C. Model Accuracy in Predicting Class Label of Test Data

A five-fold stratified cross-validation is performed in the data, comprised of matrices of the vorticity fields and
their respective class labels. This procedure helps decrease overfitting and it assures representative information of all
prelabeled classes in each test subset [35} 38}, 139].

Using the three classes defined in Section[II| (see Figure b)), the model is trained and an average accuracy of 92% is
obtained across the five folds. This indicates that approximately 92% of all samples processed by the algorithm are
labelled the same as their prelabels.

A confusion matrix, which is a common tool for summarizing the performance of a classification algorithm, and
the corresponding mislabeled test data distribution for the worst performance fold (fold 4) are shown in Figure |8} The
algorithm does well discerning the kinematics within the class C but higher discrepancies are found for the classes A
and B, with 11% mislabeled samples in class A and 37% in class B (29% + 8%). While the stratified cross-validation
ensures a commensurate number of samples of each class in the training and test subsets, it does not ensure that each
individual kinematics is represented in every test subset. The test data distribution in Figure [8b]highlights the kinematics
that have a label mismatch. The orange bar corresponds to the 29% mislabeled samples that are classified as class A
rather than class B, whereas red and pink bars show those mislabeled in classes B and C, respectively. Even though the
mismatch percentages are high, there is only a single kinematics in fold 4 (a4 = 13.0°) that contains more than 50%
label mismatch, and the corresponding a4 is close to the class boundary between classes A and B (a7/4 = 11.7°),

which can explain the high mismatch.

12
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Fig. 7 Classification model architecture.
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Fig. 8 (a) Confusion matrix for the worst performance (fold 4) with mislabeled class A samples colored in red;
mislabeled class B in orange and in pink. (b) Test set distribution of all foil kinematics in number of samples
among ar /4 values presented in fold 4. Only a single foil kinematics had more than 50% of images with a label
mismatch between actual and predicted. The green lines divide the foil kinematics presented in each class.

V. Unsupervised Clustering
The classification model presented in Section[[V divides the wake kinematics into three classes predetermined by the
researcher (based on prior vortex analysis). In this Section, an unsupervised algorithm is utilized to group similar wake
kinematics, and the clusters are subsequently compared with the classes from the supervised model. The unsupervised
clustering groups the vortex images, individually, without any prior knowledge or relationship between wake kinematics
and the respective wake structures. Therefore, the clusters obtained through this method will assist in verifying the

classification results and potentially modifying the class boundaries determined by the researcher.

A. Clustering Model Architecture and Convergence

The unsupervised model architecture follows closely from the CAE clustering algorithm by Calvet et al. [25]],
including the same number of convolutional layers, filter and skip connections. The architecture consists of an
autoencoder with five sequences of convolutional and max-pooling layers for the encoder portion. For the decoder
portion, five sequences of convolutional and up sampling layers are used. The only hyperparameter retuned is the batch
size, in which an online learning method (batch size equals to 1), is implemented within the autoencoder. With this
algorithm there is no prelabeling of images, but the user must determine the number of clusters, which is explained
below.

The input data is the same vorticity images described in Section[[V] except that there are no time sequences provided,
and therefore each instantaneous wake image is treated independently. This results in 11, 846 unique samples from 46
simulations. The training and validation data for the autoencoder utilize 27 of the 46 simulated kinematics. Within the
27 kinematics, approximately 30% of the samples are used for validation, corresponding to the first out of the three

oscillation cycles, as outlined in Table[I| Using samples of the same foil kinematics in the training/validation sets
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improved performance of the autoencoder while retuning. The remaining sets of foil kinematics (19) are used as test
data after the autoencoder is tuned.

Due to the stochastic nature of the model, the CAE clustering algorithm is trained for multiple iterations to check for
convergence under a developed criteria. After each independent iteration, a set of kinematics is designated to the cluster
that contains the majority of its samples (since samples are treated independently, samples from the same kinematics can
end up in different clusters). For each iteration, the cluster label at which a set of kinematics is assigned to is recorded.
Convergence is reached if a set of kinematics remains in the same cluster (same label) as the previous iteration. Figure
[9 shows the percentage of foil kinematics that converged when four clusters are considered. A total of 56 random
clusterings is performed and after 35 iterations, the algorithm consistently maintains convergence of at least 96% of all

foil kinematics being assigned to a unique cluster.
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Fig. 9 Convergence of the autoencoder and clustering model.

A combination of the elbow and the silhouette score methods are utilized to determine the optimal number clusters
for the provided samples, following the approach from Calvet et al. [25]. The elbow method [40]] computes the total
within-cluster sum of square error, known as distortion, and the number closer to the ‘elbow’ of the curve is the indicator
of the approximate number of clusters that best separates the data. The silhouette score method [41] determines how
well each image lies within its cluster by estimating cohesion (intra-class) and separation (inter-class) as Euclidean
distances. The score is a combination of both factors, and ranges from zero to one, where a higher score indicates better
clustering. The distortion and silhouette scores are averaged over all iterations with results displayed in Figure[I0} The
elbow, represented by the intersection point of the tangent dashed lines to both ends of the distortion curve in Fig. is
located between four and five clusters (see green shaded region) but a slightly higher silhouette score is found when the
data is divided into four clusters. Therefore, the optimal number of clusters is set to four. Due to the small differences

in the averaged silhouette score, an analysis is also performed using five clusters but does not provide any additional
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physical insights on wake patterns compared with four clusters.
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Fig. 10 Distortion (red solid line) and silhouette score (blue solid line) with respect to number of clusters
and averaged over all iterations. The red dashed lines are tangent to both ends of the distortion line and their
intersection point corresponds to the distortion curve’s elbow. The green shaded region displays the numbers of
clusters that are closest to the elbow.

B. Updating Class Boundaries Using the Clustering Results

The results of four clusters are displayed in Figure @. Every cluster is roughly defined within an @7 /4 range, which
is consistent with the results from the supervised model that also utilized a4 as the preferential kinematic parameter.
The clustering division of four clusters, rather than three, naturally imposes a new boundary and introduces small shifts
in the other two cluster boundaries. These new divisions are explored by utilizing the previously described classification
algorithm in the following manner.

For instance, the cluster A groups foil kinematics in the range of ar;4 < 14.8° (Figure , whereas the previous
class A included kinematics with ar4 < 11.7°. The proposed clustering division is implemented within the classification
algorithm previously described (with the five-fold cross-validation). The results were less accurate, indicating that the
classification algorithm can more reliably group images when the boundary is closer to ar/s < 11.7°.

Similar tests are performed on the remaining two cluster-informed divisions at ar;4 = 24.3° and a7/4 = 31.7°. The
results indicate that shifting both these boundaries to slightly lower a4 reveals more accurate classification of images.
These results inform the update on the class boundaries as proposed by the orange solid lines in Figure[TTb] which are
contrasted with the original classifications from Section[[V](dashed blue lines). The orange shaded regions next to each

boundary represent the mismatch between the class and cluster boundaries.
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Fig. 11 (a) Clustering results represented by each foil kinematics as a data point: two kinematics with
ar/4 = 31.7° and 6, = 75° represented by a red circle and a green diamond placed in clusters C and D,
respectively; (b) Updated class divisions (orange solid lines) compared with original groupings (blue dashed lines)
along with the mismatch between class and cluster boundaries (orange shaded regions).

To summarize, when four classes are defined, the highest classification accuracy is obtained when the class
boundaries are placed at @74 = 11.7°, ars = 23.0° and @74 = 29.3° (orange lines from Figure @). The results of
these tests reveal that the accuracy is just as good as the original three classes, with an average fold accuracy of 91%.
Furthermore, mismatched labels only occur close to the boundary divisions. For instance, 100% of the samples from
class A in Folds 1 and 2 have a label match between predicted and prelabelled, with the same occurring in Fold 4 for
classes B and C. For Fold 1, only the foil kinematics with a4 = 28.0° is mislabelled between classes C and D, which
can be explained by the proximity of this kinematics to its neighboring class. All other arrangements of class boundaries
that are tested yield an average accuracy lower than 91%.

To illustrate the kinematics that are commonly mislabeled by the algorithm, the confusion matrix for the worst
performance fold (fold 5) is displayed in Figure|12a| Even for this scenario, at least 79% of samples are properly
labelled. Those not accurately predicted are shown in Figure @, with only a single foil kinematics with ar;4 = 31.7°
(f* =0.15; h;, = 1.00; 6, = 75°) containing a label mismatch higher than 50%. An outlier is the kinematics with
arjs = 5.3° (f* = 0.15; h;, = 1.25;6, = 55°) which contains a label mismatch lower than 50% and is not close to a
neighbouring class. A possible explanation is the roll-up of the shear layer into multiple weak vortices generates a wake
trajectory that is confused with the wake pattern of a higher ar/4. The wake structures found in this foil kinematics are

displayed in Figure[3]
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Fig. 12 (a) Confusion matrix for the worst performance (fold 5) with mislabeled class A samples colored
in red; mislabeled class B in orange; mislabeled class C in green; mislabeled class D in pink. (b) Test set
distribution of all foil kinematics in number of samples among a7 4 values presented in fold 5. The kinematics
S* = 0.15;h; = 1.00;0, = 75° is the only foil kinematics that had more than 50% of images with a label
mismatch between actual and predicted. The green lines divide the data presented in each class.

The four updated classes offer new physical insight on wake patterns, illustrated in Figure[I3] Each row highlights
wake images at different foil positions that are randomly selected from various kinematics within each class. In
class A (5.3° < arjs < 11.7°), the foil generates a shear layer wake pattern as noticed by the absence of coherent
vortices in the wake, and as previously described in Section @ Although classes B (11.7° < a7/4 < 23.0°) and C
(23.0° < agys < 29.3°) contain stronger vortices, the wake path is considerably different, with class B showing a longer
wavelength within the selected wake window compared to class C (see yellow and red lines), which is a feature not
previously captured by the original class divisions. Class D (29.3° < ar;4 < 50.5°) contains kinematics where the foil
generates the largest number and strongest coherent vortices, as shown by the presence of a strong primary LEV in the
majority of wake images (see green circle). These differences in the wavelength among wake patterns emphasize the
criteria used in unsupervised clustering to differentiate each regime which are not captured by the initial classification

approach.
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Fig. 13 Wake structures colored by spanwise vorticity (w;) for each class displayed in Figure m The wake
images are randomly selected within each class and the foil kinematics corresponding to each wake is displayed
at top of each image. The yellow, red lines and green circle correspond to each wake pattern.

The wake patterns obtained by the classification and clustering models are significantly different from those found in
propulsive foils. Comparing with previous work by Calvet et al. [25]], they obtained six different wake patterns that
are correlated with two parameters, a4 and Strouhal number (S t= %), which varied from 0° < a7/4 < 40° and
0.2 < St < 1.2. Due to the higher reduced frequency of propulsive foils, more wake structures are found closer to the
foil and this contributes to a higher contrast of wake patterns across clusters compared with those in Figure[I3. This
contrast also contributes to the difference in the number of wake patterns between foil regimes. While the work by
Calvet et al. obtained six wake patterns behind propulsive foils, the analysis performed here identified four distinct
wakes under the energy harvesting regime.

Class D demonstrates high variation in efficiency within its kinematics. This is observed between az/4 = 40.5° and
arjs = 41.9° where efficiency drops by approximately 9% (see Figure . This could be described as a bifurcation in
the efficiency curve at ar4 > 28.0° as illustrated by an upper and lower branches. However, neither the classification
nor clustering models could discern differences in the wakes between the higher and lower branches of efficiency within
class D. To further investigate these branches, the foil parameters corresponding to each kinematics are explored and it
is noticed that all foil kinematics in the lower branch have a reduced frequency of fc/Us = 0.10 and the upper branch,

fe/Us =0.12 = 0.15.
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The new updated classes also provide patterns in power extraction, as displayed in Figure[I4] Each curve corresponds
to the phase-averaged total power extracted in a half-cycle from a representative foil kinematics in each class. All classes
display a power peak close to the mid-stroke position (¢/T = 0.25), which corresponds to the foil’s maximum heave
velocity and thus typically is where maximum power is reached. Class A shows a smooth power profile with a lower
amplitude compared to the other classes as expected due to the absence of coherent vortices generated by the foil. With
the formation of LEVs as a7 /4 increases, class B still highlights a smooth profile and class C indicates a higher power
magnitude and higher unsteadiness on ¢/7 = 0.3 — 0.5. This unsteady behavior is most likely caused by secondary
vortices formed on the foil due to a higher a7/4 in class C compared to class B. This unsteadiness is more apparent in
the lower branch of class D where large and strong vortices are formed and shed from the foil. The power profile in the
representative kinematics of the upper branch is similar to the lower branch in the region ¢/T = 0 — 0.3 but it displays a
second power peak in the remaining portion of the half-cycle. This peak is caused by the higher reduced frequency of

the kinematics in the upper branch, which contributes to a delay in the vortex shedding and thus more power is extracted.
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Fig. 14 Phase-averaged total power extracted in a half-cycle from a representative foil kinematics within each
class.

To visualize those vortex structures, the wakes from both upper and lower branches are illustrated in Figure As
observed in Section[[ITland by Ribeiro et al. [8], a lower reduced frequency is correlated with vortex structures spending
less time on foil surface, which decreases the pressure gradient around the foil. The wake structures between upper and
lower branches are different with more vortices located within the wake window in the upper branch due to higher foil’s
reduced frequency but still no pattern can be visualized. Although neither the classification nor clustering models could
discern the differences just described in these branches, a possible solution would be to provide additional information
about the kinematics of each wake image to the convolutional neural network like the reduced frequency, similar to the
method implemented by Morimoto et al. [[13], but it is not explored in this investigation. Another potential solution

would be to have more foil kinematics and hence more data in class D.
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Fig. 15 Wake structures colored by spanwise vorticity (w;) that emerge from foil kinematics within each
branch in class D highlighted in Figure [IIb] The wake images are randomly selected and the foil kinematics
corresponding to each wake is displayed at top of each image.

The wake patterns obtained from the updated classes can also be used to predict the power extraction of foil-arrays.
For instance, the wake pattern generated from a class with low a4 values (5.3° < @74 < 11.7°) does not significantly
impact energy extraction from foils placed downstream due to the absence of coherent vortices that disturbs the oncoming

flow of trailing foils. The opposite is true for a class with high a7/4 values (29.3° < a4 < 50.5°).

VI. Conclusion

A machine learning model is developed to classify wake structures behind an oscillating foil in the energy harvesting
regime of flapping foil kinematics. The goal of the paper is to utilize the machine learning algorithm to sort and classify
wake modes using the vorticity fields downstream of the oscillating foil and correlate the kinematics with associated
wake patterns. This model gives insight on wake similarity among various foil kinematics, which is important to build
predictive models of oscillating foil arrays for energy harvesting.

Data is obtained through simulations of oscillating foils at 46 unique kinematics, and time-dependent vorticity flow
fields are extracted at equal times across three simulation cycles to form a total of 23, 692 samples. Based on previous
work [9], three initial classes are defined based on values of the relative angle of attack, ar,4. The classification model
consists of four convolutional layers and 90 LSTM units applied on multiple input sequences of five samples each. The
model’s output consist of three neurons corresponding to the classes A, B, C. After the model is trained and tuned, the
average test accuracy among all folds is 92% with the majority of foil kinematics showing a label mismatch percentage
less than 50% between actual and predicted, demonstrating the model’s ability to discern wakes among classes.

Although the classification model is successful in finding wake patterns the class divisions are predetermined by the
researcher, and assumed to correlate with only one parameter, ar/4, thus biasing the relationship between wake structure
and flapping kinematics. Therefore, an unsupervised approach is performed through a CAE clustering algorithm, which

does not require any prelabelling or bias. The results indicate that there is still a strong correlation with a4, and that
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clusters naturally align with this kinematic parameter. Furthermore, analysis shows that four clusters are optimal instead
of three that were originally proposed.

In summary, the clustering model provided validation that ar/4 was a predictive kinematic parameter for wake
structure, and outlined an additional grouping previously undetected by the researcher. A final configuration of four new
classes is proposed which results in an average fold accuracy of 91% using the classification algorithm. The four classes
offer new physical insight on wake patterns within each range of foil kinematics based on vortex strength and oscillatory
wake structure. Further analysis is performed in the class with the highest a7/4 values and additional wake patterns are
obtained that could not be captured by either the classification or clustering algorithms. This research builds upon the
knowledge of how wake patterns and kinematics are correlated, which is instrumental in developing predictive models

of oscillating foil arrays in which vortex wakes directly impact the energy harvesting of downstream foils.
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