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Abstract— Over the past decade, there has been significant
progress on the science of load control for the creation of virfual
energy storage. This is an alternative to demand response, and it is
termed demand dispatch. Distributed control is used to manage
millions of flexible loads to modify the power consumption of
the aggregation, which can be ramped up and down, just like
discharging and charging a battery. A challenge with distributed
control is heterogeneity of the population of loads, which com-
plicates control at the aggregate level. It is shown in this article
that additional control at each load in the population can result
in a far aggregate model. The local control is designed to
flatten resonances and produce approximately all-pass response.
Analysis is based on mean-field control for the heterogeneous
population; the mean-field model is only justified because of the
additional local control introduced in this article. Theory and
simulations indicate that the resulting input—output dynamics
of the aggregate has a nearly flat input-output response: the
behavior of an ideal, multi-GW battery system.

Index Terms— Controlled Markov processes, demand dispatch,
load frequency control, smart grids.

I. INTRODUCTION

T IS clear to any user of electricity that many loads

are flexible, and for this reason, there is consensus
that load flexibility has great potential for the creation of
virtual energy storage (VES). Consider, for example, the col-
lection of all residential refrigerators in Florida. The consumer
is usually concerned with a single quality of service (QoS)
metric: that food is kept at the right temperature. So long
as this constraint is satisfied, there is flexibility in terms of
shifting the power consumption.

There are approximately 10 million homes in Florida.
If each has a 200-W refrigerator, with 100-W average
power consumption, then the nominal power consumption is
100 x 107 W, which is 1 GW.
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As a striking, if absurd, thought experiment, suppose that a
grid operator wishes power deviation (from nominal) to track
a square wave with a 1-h time period. A control solution is
formulated to create synchronization: each refrigerator turns
off for 30 min and then on for 30 min in synchronization
with other refrigerators, and the cycle repeats. This will ensure
that the power deviation of the collection of refrigerators
tracks a £1-GW square wave with a 1-h time period. For a
homogeneous population whose nominal duty cycle matches
this signal, the internal temperature will remain within preset
bounds, and no resident will realize that their refrigerator is
providing a service to the grid.

This is one example of a simple task for one homogeneous
population of loads (ignoring the impact of usage, door
opening and closing, etc.). With the right mixture of local and
global control, it is possible to obtain battery-like services for
the grid, while respecting the QoS constraints of the loads and
taking into account model imperfections and usage.

II. WHAT IS DEMAND DISPATCH?

The term demand dispatch was first introduced by
Brooks et al. [7]. The following words are taken from the tech-
nical report written for the department of energy (DoE) [18]:
demand dispatch is “an operating model used by grid operators
to dispatch “behind-the-meter” resources in both directions—
increasing and decreasing load as viewed at the system level—
as a complement to supply (generation) dispatch to more
effectively optimize grid operations.”

This differentiates it from the traditional demand response
defined by FERC as “changes in electric use by demand-side
resources from their normal consumption patterns in response
to changes in the price of electricity, or to incentive pay-
ments designed to induce lower electricity use at times of
high wholesale market prices or when system reliability is
jeopardized” [37].

In more concrete terms, demand dispatch refers to the con-
trol of flexible loads for the creation of VES—see [14], [19],
[22] and the references therein. Automation is central to the
success of demand dispatch: through intelligent control design,
flexible loads, such as electric water heaters, refrigerators, and
air conditioners, provide grid (supply—demand) balancing and
regulation services while also ensuring consumer-side QoS.

A. Demand Dispatch Architecture

The following goals are the basis of the control architecture
considered in this article: 1) distributed control to simplify
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Fig. 1. Macro control architecture.

communication requirements and assuage consumer privacy
concerns; 2) reliable ancillary service; and 3) strict bounds on
consumer QoS. The final two goals are made possible through
appropriate control at the load.

This article is not concerned with how incentives will
be created to ensure participation, but there are plenty of
examples today. Consider, for example, the use of contractual
agreements and periodic credits, such as those proffered by
Florida power and light (FPL) in their OnCall program and
Austin Energy’s Power Partner program that successfully
incentivize customer participation.

Fig. 1 shows a macro control system diagram for regulating
the grid frequency w, (at time t), with @™ being the
ideal operating frequency of the grid (60 Hz in the U.S.),
in the presence of disturbances. The disturbances can be
due to forecast errors, high-frequency changes in renewable
generation, generator trips, transmission line failures, demand
surges, etc.

The compensation block with the associated transfer func-
tion G, represents today’s balancing authority (BA), and the
“grid” represents the aggregate dynamics of loads, generators,
transmission lines, and other grid elements. Design of G,
will be based on available resources (labeled actuation in the
figure) and the grid transfer function G,. This part of the
control architecture is essentially what is used in most regions
of the world today [27], [42].

Actuation includes flexible loads participating in demand
dispatch along with “traditional resources” such as spinning
reserves, fast-start generators, and batteries. It is argued
here and in prior work that flexible loads can provide
balancing services at a far lower cost than utility scale
batteries [2], [11], [34], [40].

We have left out regulation of tie-line error, focusing on
ramp services, balancing reserves, and frequency regulation.
Incorporation of tie-line regulation is avoided only for sim-
plicity of exposition.

B. The Heterogeneity Challenge

Returning once more to the example of residential refrig-
erators, it is unlikely that each has a duty cycle of period
precisely 1 h. Moreover, there is usage, so that some percent-
age of refrigerators will require more power than nominal at
any period in the day. It is clear from [23] that heterogeneity
presents complications in aggregate modeling and capacity
estimation. While Hao et al. [23] provide bounds on capac-
ity for a heterogenous population, the bounds are far more
accurate under homogeneity.
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Fig. 2. Linearized mean-field dynamics: with and without inverse filter.

There is no inherent reason why heterogeneity should
present major challenges for control. Consider, once more,
the tracking problem involving a population of residential
refrigerators. Suppose that the duty cycles are all 50%, but
the periods vary from 15 to 90 min. Perfect tracking of a
square wave remains possible (subject to some capacity loss
due to usage). The only cost to consumers is that cycling may
be increased or decreased from nominal. If this is a concern,
then techniques from [17] can be used to enforce constraints
on cycling, subject to a quantifiable loss in capacity.

The question then is how to formulate a model for control
when the population is heterogeneous. The approach in this
article is to design additional control at the load so that the
aggregate model looks simple from the point of view of BA.

The general idea is formulated as follows. By design, if we
did have a homogeneous population, then we can apply stan-
dard mean-field theory to obtain a dynamical system model.
A time ¢, the input is denoted ¢;, and the output y, equals
the average power consumption over the population. The goal
of the BA is to design ¢ based on available measurements
so that y tracks a desired reference signal. Examples of a
reference signal include the balancing reserves used in the
Pacific Northwest, or the area control error (ACE) signal used
in the majority of BAs.

While nonlinear by design, the dynamics are assumed
smooth, and hence, they may be linearized about nominal
behavior. We opt for a transfer function description of the
linearization, denoted G,. Fig. 2 shows an example for a
homogeneous collection of TCLs (in this example, small resi-
dential air conditioners). The resonance observed at frequency
fr = 3 x 1073 rads/s is consistent with a cycling period
of approximately 30 min. See Section IV for details on the
construction of the transfer functions plotted in the figure.

The transfer function M appearing in the figure is an
approximate inverse of Gy, obtained using a robust control
technique developed in the dissertation [30]. The result is
essentially a notch filter that effectively suppresses the res-
onance. The BA broadcasts the signal U, but the load uses
the transformed signal { = MU in the Laplace domain, and
in the time domain the convolution

t
c,=/ by Updz, 10 (1
0

also written ¢ = h x U, with h the impulse response associated
with M. By design, the linearized aggregate dynamics are flat
within a large range of frequencies.
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Fig. 3. Layers of local control at an individual load of type ¢: 1) power

transitions depend on the signal {,ﬂ and the rate matrix A”; 2) ¢ locally
generated based on the grid-level signal U, and the local filter M”; and 3)
System identification at the load to tune parameters defining M.

This argument holds even for a heterogeneous population,
provided the filter M is specified at the load. It is assumed that
the essential characteristics of the load are summarized by a
vector ¢ € R™, which determines the transfer function G?
for a hypothetical linear model that would be obtained from a
homogeneous population of identical loads with this parame-
ter. Fig. 3 is introduced to highlight notation and emphasize
that the control solutions investigated in this article are largely
local: the filter M7 with impulse response h” may be unique
to a single load in the population, along with the rate matrix
A" that together with ¢” = h” % U determines local on/off
decisions. Software at an individual load estimates ¥ to create
and/or update A” and M? based on data collected locally.

Note that in practice it may be more efficient to send
different signals to different classes of resources (in Fig. 1
there are five classes). For example, PJM filters the AGC signal
to generate RegA and RegD signals, the latter being sent to
faster responding resources. Further discussion may be found
in Section V-A.

C. Contributions

The main contributions of this article are summarized in the
following.

1) Demand dispatch models are constructed for a heteroge-
neous population of loads operating in continuous time.
Proposition 1 and its corollary concern mean-field limits
and input—output response for a heterogeneous collection
of loads.

2) Approaches to filter design are proposed based on tech-
niques from the theory of robust control. This step is
facilitated by a minimum phase property that is com-
monly observed in the linearized mean-field dynamics.

3) A survey of results from numerical experiments is
provided. It is found in an ideal setting that tracking is
nearly perfect with only one-way communication from
the BA to the loads. With the introduction of unmodeled
dynamics (such as 50% swings in capacity), there is
some performance degradation, but grid-level frequency
remains within required bounds. This is possible because
of global feedback (see Fig. 1).

A striking finding in Section VI is the impact of the daily peri-
odic patterns of response from loads such as air conditioning.
In simulations, it is found that the grid frequency is maintained
within tight bounds, even though the capacity varies by £50%.

A version of the filter design was proposed without analysis
in the conference proceedings [31], and versions of the main
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technical results Propositions 1 and 2 may be found in the first
author’s dissertation [30].

We are not aware of any prior work providing mean-field
theory for a population of heterogeneous loads; prior results
were restricted to homogeneous load aggregations, or heuris-
tics. An example of a heuristic is to create a homogeneous
model for control by averaging over the population coefficients
of local ODE models [13], [34].

D. Related Research

An aggregate model for a large aggregation of flexible loads
was first proposed in [29], expressed as a stochastic differential
equation. Much later came more tractable mean-field models.
In particular, Koch et al. [26], [34] introduced randomized
algorithms and mean-field models for control.

In both [26], [34] and the later work [40], bilinearity of a
mean-field model is exploited for the purposes of feedback
linearization (this bilinearity can be anticipated from (13)
below on relaxing any structure imposed on the controlled
differential generator). These prior works also considered the
impact of heterogeneity: in [26], [34], and later [13], the linear
model parameters were simply averaged for the purposes of
control synthesis, and the resulting control solution was tested
through simulation. [40, Sec. 5] contains numerical results
that suggest that their method is well-suited to tracking even
for a heterogeneous population. Their approach amounts to a
form of dead-beat control (which raises questions regarding
robustness), but this approach is worthy of further research.

The work of [26], [34], and [40] does not fit well into the
framework of this article, since this approach requires state
estimation for the mean-field model which presents its own
challenges [13]. The control approach of [23] for TCLs also
falls out of scope, since it requires full information for each
load so that a priority approach can be used to determine which
loads the BA turns on or off at each time.

These challenges motivated the approach of [36] and [35]
based on local randomized policies. This initial work focused
on residential pool pumps, but the same control architecture
can be used for other on/off loads [8], [14]. Similar strategies
were pursued in [3] and [2], whose algorithms might benefit
from the filtering approaches proposed here. Another approach
to dealing with heterogeneity is discussed in [20]: different
command signals are generated for different load classes based
on a solution of a quadratic program. The optimization prob-
lem is solved by a centralized coordinator, which differentiates
it from the local control of this article.

Cammardella et al. [9] and Chertkov and Chernyak [15]
contain methods and history of related approaches that focus
on finite-horizon stochastic optimal control (which is likely an
ideal setting for peak shaving and ramping services).

The focus of the simulations in this article is on ramping
and AGC. We do not consider primary frequency response.
However, a discussion on the randomized control of flexible
loads for primary frequency response can be found in [4], [41],
and [43]. A study of the robustness of the control design is
required for the participation of loads in primary frequency
response [32].
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Capacity bounds for VES were introduced in [23] for TCLs
and [35], [36] for residential pool cleaning (which also applies
to similar loads such as water pumping for sanitation or
irrigation). Cycling constraints are accounted for in [17], [38],
[44], and [16].

Organization: The remainder of this article is organized as
follows. Section III provides details of the distributed control
architecture. Filter design to create approximate homogeneity
is the focus of Section IV, which concludes with analysis
based on the (infinite dimensional) mean-field model for a
heterogeneous population.

The results from numerical experiments are summarized in
two sections: Section V surveys the results from simulations of
a heterogeneous population of Markovian loads, with compar-
isons to the mean-field model and its linearization. Section VI
summarizes grid-level experiments to demonstrate the validity
and utility of demand dispatch. Conclusions and directions for
future research are contained in Section VII.

III. DISTRIBUTED CONTROL ARCHITECTURE

The following conventions are adopted for state, control, and
output variables: uppercase letters are used to denote random
variables, and boldface is used to denote functions of time; for
example, x; is a deterministic state at time ¢, X, is a random
variable, and X is a random process.

A. Grid-Level Control

The macro grid model used in this study is a linear
input—output model in continuous time in which the input is
power deviation, and the output is frequency deviation, fol-
lowing standard practice [27]. A particular example from [12]
is used in numerical experiments

2.488 s +2.057 )
524 0.3827s +0.1071° @
The impulse response of this system is in close agreement
with the response of frequency to a grid outage in the ERCOT
region—a full discussion can be found in [12].

The resonance of this transfer function corresponds to
time-scales on the order of seconds, while control problems of
interest in this article concern disturbance rejection on much
slower time-scales. The flat dynamics at low frequencies is the
reason why BAs use PI control to synthesize AGC.

The same approach was used in the numerical experiments
surveyed below, so that G.(s) = Kp + K;/s in Fig. 1.
The following was adopted in the experiment surveyed in
Section VI, where the choice of parameters was based on
the understanding that there is significant model uncertainty
at high frequencies

G,(s) =107

0.5
Gu(s) = 516122 3)
S

Fig. 4 shows the Bode plots of G,, G, and the loop transfer
function G,G..

The timeOdomain description of this PI compensator is
expressed as

t
UtZKP&V)[“r‘K]/ 5rdr, 5t=a)desmd—a}t.
0
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Fig. 4. Bode plot of the grid G, the PI compensator G, and the
open-loop transfer function G,G.. The 0-db crossover frequency of the
open-loop transfer function is 0.06 rad/s, and the corresponding phase margin
is approximately 90deg .

The signal U, can be interpreted as the desired change in
power (MW) from all the resources. The control gains Kp
and K; are chosen to respect the uncertainty of grid dynamics
on time-scales of seconds or faster.

Remember that U, is a command signal, and physical
resources are required for actuation. Fig. 3 illustrates how U,
is received and transformed at an individual load in a demand
dispatch architecture. The details are explained next.

B. Local Control: Markovian Load Dynamics

The behavior of a TCL or residential pool pump is largely
deterministic. For example, a pool pump has a fixed duty cycle,
and a residential refrigerator is approximately periodic with a
period of about 1 h, with 50% duty cycle. Disturbances for
TCLs come in the form of external temperature variations and
usage [14].

A Markov model is adopted so that we can smoothly modify
power consumption, and in particular justify a linearization
of the corresponding mean-field model. Justification will be
clearer after we provide details.

1) Nominal Model and Perturbations: The state process
evolves in continuous time, on a finite state space with
d elements, denoted X = {x!,..., x?}. The nominal model
is a Markov process, whose dynamics are defined by a
rate matrix Ay. The transition semi-group is defined by the
exponential family: for any r > 0 and x, x" € X

P'(x,x") :==P{X, = x'|Xo = x} = exp(tAo(x,x)). (4

It is assumed that X is ergodic, i.e., the nominal model
has a unique invariant probability mass function (pmf),
denoted 7. Invariance is equivalent to the identity > o(x)
Ap(x, x") = 0 for every x’ € X.

It is assumed that the state space has the product form
X = X" x X", and we write X, = (X¥, X}) for t > 0. The
first component X“ represents a variable that can be adjusted
directly, which will be called nurture. We focus on on/off loads
in this article, so that X! = {0, 1}. The second component X"
is called nature, and it is only indirectly influenced by X* and
exogenous disturbances; for example, the nature component
may coincide with the internal temperature of a TCL.

While not essential, it is convenient to restrict to the
following structure:

Ao =r[—1 + Sol (5)
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where Sy is a Markov transition matrix, I is the identity
matrix, and r > 0 is fixed. A Markov process X with rate
matrix (5) can be realized by first constructing a Poisson
process with rate r and jump times {7; : k > 1}. The
continuous-time process X is constant on the inter-jump time
intervals [T, Ty+1), and

P{XTk+] = x/|XTk = x} = So(x, x’)

for x,x" € X and k > 0, with Ty = 0. The assumption that
X: = Xy, for t € [Ty, Ti41) reflects the fact that we are only
considering the load at the sampling times {7}}.

The construction of Sy is, of course, entirely dependent on
the characteristics of the particular load. For TCLs, this con-
struction is detailed in Section III-C. We assume throughout
that it can be factored, respecting the nature/nurture constraints

So(x,x’) = Ro(x,x;)Qo(x,x,/l), x,x' eX=X"x X" (6)
with >, Ro(x, x}) =2 . Qo(x, x,) = 1. Consequently,

PIX}, = X1 = x} = Qufx. %)
P{X% . =x,|X5, =x} = Ro(x,x,).

Tiet1

An example of the transition matrix Ry is postponed to (16).

Local control is based on the perturbation of nominal
behavior, defined by a family of rate matrices {A; : { € R}.
The following structure is imposed:

A =r[-1+ 5] (7)
in which S, is a smooth (CY) function of ¢ and also factors
Se (x,x/) = R;(x,x;)Qo(x,x;), x,x' e X=X"xX". (8)

Observe that Qg remains fixed: we cannot modify the dynam-
ics of nature.

Denote by U/ the power consumption as a function of state
for an individual load: ¢/(0,x,) = 0, and U(1,x,) =
(a positive value, independent of x, € X").

2) Mean-Field Models: We describe here the construction
of a mean-field model for a homogeneous population of
loads. Analogous results for a heterogeneous population are
summarized in Proposition 2.

The goal is to obtain a model of aggregate input—output
behavior. In this article, the input is ¢, and the output is the
aggregate power consumption

I
Y ::ﬁ;u(x,). 9)

An approximate model is obtained from a large population
limit, as N — oo. Analysis is complicated by the fact that the
input is a function of aggregate measurements.

Suppose that a continuous reference signal r is given, and
the goal is to achieve y" ~ r, (perhaps after a transient
period). These assumptions are imposed only for identification
of the mean-field limit—there is no r in Fig. 1.

A fixed dynamic compensator is assumed given, defined by
a pair of transfer functions with impulse responses denoted g
and A, so that the input is specified by

t
N :/ [gi—cyY + hy_rre]dT, t>0. (10)
0
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The fact that the reference and impulse responses are fixed
greatly simplifies analysis. For the control architecture con-
sidered in this article, we have r, = U;, h = h (the impulse
response corresponding to M), and g = 0.

Given a homogeneous collection of N loads, the empirical
distribution at time ¢ is denoted

N

S u(x =),

i=1

N (x) = xeX (11)

where I is the indicator function. Algebraic manipulations
imply the representation

=D U,

xeX

(12)

That is, the output yV is a linear function of the empirical
distribution u/ for each ¢. Most valuable is the approximate
dynamics: Proposition 1 below presents conditions under
which its evolution is approximated by the mean-field equation

d
Eﬂt = > w0 A, (x, x'),

xeX

x' e X.

In the theory of Markov processes and mean-field control,
it is customary to interpret the right-hand side as vector—matrix
multiplication, with u, interpreted as a row vector. This
motivates the compact notation

%Mz = Mt-A;,~ (13)
The output (12) can then be interpreted as a dot-product.
The squared error at time ¢ is denoted || ,uf' —wl? =
> eex I (0) = (0.

Proposition 1: Suppose that the following holds: the rate
matrices {A; : { € R} are Lipschitz continuous in ¢, for each
N > 1, the input is defined by (10), and that " — o in Lo.

Then, the empirical distributions converge uniformly in L,
on any finite interval

sup ZE[HIM —M,H ]_O T>0

lim
N—>ooo

where u, is defined in (13) with initial condition g, and input
t
o= / [8i—cye + hiere]dT,  yoi=D w(UE). O
0 X

The proof is found in the Appendix, in which the main step
is the following Martingale representation [21, Ch. 4]:

i (x) = uo(x)+2/ w( ", x)

+N72MN (x)

A;N

(14)

where M, is a Martingale whose variance is uniformly
bounded in N on any finite interval [0, T].

The quantity y, = >, (x)U(x) is the average power
for the mean-field limit, and the steady-state average power
consumption for the nominal model is denoted 7° =
>, wo(x)U(x) [recall definition of 7y below (4)].
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The smoothness assumption on S; justifies the small-signal
linear state-space model approximation

d
—&; = ACDI + Bft,

=Co
dt Vi t

(15)
in which ®, (k) approximates j,(x*) — o(x*) for 1 <k < d,
and the output y, is an approximation of ¥, = y, — y°.

The linear system parameters are easily identified: A = AJ,
and B, CT are the column vectors of dimension d = |X]|

Bk=Zn0(x)A6(x,xk), Ckzu(xk), 1<k<d

where Aj is the derivative of 4, at { = 0, which by (7)
becomes Aj = rS),.

C. Markov Models of TCLs

The standard model of a TCL is a first-order ODE with hys-
teresis control: the temperature at time ¢ is denoted 6;, taking
values in the hysteresis interval [Oppin, Omax] (a full discussion of
the ODE can be found in Appendix C-B). A finite state-space
Markovian model can be obtained by binning temperature,
and a smooth perturbation of the hysteresis control forms the
“nurture dynamics.” An approach to the design of the nominal
model is summarized in the following.

1) Binning: Recall XY = {0, 1}. A finite state space X" is
obtained through quantization of the interval [Onin, Omax]. For
a given integer d, the interval [Opin, Omax] 1S discretized into
d /2 values as follows: X" = {Opin + kOp : 0 <k <d/2 — 1},
where Op = (Bmax —6Omin)/(d/2—1) represents the temperature
increments (step size) in the interval [Bpin, Omax]-

We next describe the construction of a Markovian model.
For consistency with (5), it is assumed that jumps occur only at
the sampling times {7} : k > 0}, with 7o = 0 and {7} : k > 1}
generated as the jump times of a Poisson process with rate r.
This will be a reasonable approximation if 6, > 0 is small.

2) Nurture: The nurture component X“ evolves on {0, 1}
with jump times restricted to {7; : k > 1} by design. The
matrix R, takes the form

_ 1-— Pe(xn)’ x = (1, x)
Ro(_x, 1) = ’ p@(x”)’ X = (O,Xn)
B p@(xn)’ X = (17 xn)
Ro(x.0) = ’ L= PG, x=Om). O

The switching probabilities {p®(x,), p®(x,)} are designed
to approximate standard hysteresis, meaning that each is
approximately zero when x, is far from the boundary of
the interval [Opmin, Omax]: additional details can be found in
Appendix C-A.

3) Nature: The matrix Qg that models the dynamics of X"
is considered next. For each x = (x,, x,,) € X, x, € X", recall
that

Qo(x. x,) = P{X}  =x,1X5 =x}.

These probabilities can be estimated based on data gathered
from physical experiments or simulation.
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One approach is to compute the empirical mean based on
K > 1 observations

=

-1
H(XTk =.X,Xn ) :x’

Tit1 n

1
K
k

mo(x, x,) =

Il
=}

and obtain an empirical model, motivated by the Bayes rule

ro(x. )

Zx;’ 7TQ ()C, xi{l/) '

IV. HOMOGENEITY BY DESIGN

o~

Qo(x, x,) = (17)

The transfer function G, in Fig. 2 was obtained from a
version of a linear state-space model of the form (15). The
resonance is found to be typical in previous studies, which is
our motivation for introducing filtering techniques to suppress
the resonance and restrict bandwidth of service for each load.

Local control design is performed in two stages.

1) The ideal case is considered, in which there is a large
population of loads with identical characteristics. This
is the setting of Proposition 1.

2) For a heterogeneous population, we take a given load
and use the filter obtained in (i) based on the (false)
assumption that the population is homogeneous. Filter
design can be performed at the load, since it is a
simple task to obtain the linear model locally based on
input—output observations.

Justification of this approach requires an extension of
Proposition 1 that incorporates heterogeneity: this is postponed
to the end of the section, in Proposition 2.

A. Heterogeneous Population

The generalization of Proposition 1 for a heterogeneous
population requires a refined model. We assume we have a
doubly parameterized family of rate matrices {.A? ¢ €
R, ¢ € R™}, where the parameter ¢ represents the particular
type of load.

It is assumed that the ith load has parameter 9%, and that
the sequence {©# : i > 1} is independent and identically
distributed (i.i.d.) with marginal density denoted fy. Filtering
is applied, with filter M? possibly different for each . To take
this into account in a mean-field analysis, we require further
notation.

An extension of (10) is defined by a family of impulse
responses {g”,h” : ©® € RY}. The input to a load with
parameter ¢ is defined by

t
é_;9,N :/ [g?iryﬁv —{—h?ﬁrrf] dt
0

where again y¥ = N71 3N u(xi).

The definition of the empirical distributions requires the
following extension: for each r+ > 0, x € X, and Borel set
SCR”

(18a)

N
AN(x, 8) = %ZH{Xﬁ =x, 9 eSS} (19
i=l1

uy (x) =AY (x,R™). (19b)
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Proposition 2 extends Proposition 1, establishing conditions
under which (19a) is convergent, as N — oo. The limit A, can
be expressed in terms of a density A,, which evolves according
to familiar dynamics

d _ _
Ek,(x,ﬁ) = Zk,(x ,ﬁ)AZ,s(x ,x)

Ai(x, ) =/19 s)»,(x,z?)fg(z?)dﬂ. (19¢)

Proposition 2 requires the following assumptions:

Assumption 1:

1) The rate matrices {A? : ¢ € R, 9 € R"} are contin-
uously differentiable in (¢, ) € R™*! and Lipschitz
continuous in ¢ with Lipschitz constant independent
of 9.

2) For each T > 0, the family of impulse responses {h” :
¥ € R™, t > 0} is uniformly bounded in both ¢ and
7 € [0, T], and continuously differentiable in ¢.

3) The initial conditions {Xf) : i > 1} are independent of
the parameters {9 : i > 1} and ) — o in L.

The proof of Proposition 2 is postponed to the Appendix.

Proposition 2: Suppose that Assumption 1 holds. Then, for

any finite interval [0, T], any x € X, and any open set S C R”
lim  sup E[|A,N(x,5) — A(x, S)|2] =0

N—oo 0<t<T

. 2
lim sup ZE[}uiv(x) - u,(x)’ ] =0
N—oo 0<t<T =
where {AN, A, u¥, u,} are defined in (19), in which the
differential equation (19c) defining A, is initialized with Xy =
Ko X fp, and

t
g’ = / [g?_fyf —i—h?_rr,]dr (20a)
0

Vo= D U, p(x) :/)‘t(xsﬁ)fO(ﬂ)dﬁ- (20b)

O

Let Glg denote the transfer function for the linearized
dynamics for the model with parameter #. The proposition
easily justifies the “optimistic” control strategy, in which each
inverse filter M? is designed based on GZZ under “the (false)
assumption that the population is homogeneous” (italics refer
to quoted text from the start of Section IV).

Corollary 1: Suppose that ¢ > 0 and a frequency interval
Q¢es C R, is given, and the local filters satisfy

|M”(jf)G)(jf)— 1| <&, foreach f € Qe ¥ € R™

Consider the input—output model with input ¢ and output y
defined by the pair of equations (19c) and (20b); let G, denote
its linearlization at ¢ = 0.

If, in addition, the assumptions of Proposition 2 hold,
we then have

|Ge(jf) — 1| <&, foreach f € Qe
Proof: Let y,(9) = > A(x,9)U(x), so that

Yt =/yz(19)fe(l9)dl9-
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The small-signal linearization of the input—output system with
input ¢ and output y,(¢}) has transfer function M ”GIZ by
construction. We thus obtain

Ge(jf)—1= / (MGG (f) — 1} fo() dv.

Jensen’s inequality completes the proof. O

Section V contains summaries of results from experiments
to illustrate Proposition 2 and its corollary. The experiments
surveyed in Section VI were designed in part to investigate
the impact of unmodeled dynamics in the control architec-
ture Fig. 1.

V. STOCHASTIC SIMULATIONS

The inverse filter design focused on a linearized model.
Here, we consider a heterogeneous collection of TCLs and
see whether the input—output behavior approximates what is
predicted by a linear approximation.

A. Markovian Load Models and Filter Design

We begin with the three ingredients in the specification of
a simulation model for an individual load.

1) Nurture: The matrix Ry was chosen of the form (16)
in which the switching probabilities {p®(x,), p®(x,)} differ
depending on the load. Details are found in the Appendix.

The local randomized control was chosen to be the myopic
design of [8]: for x;, € {0, 1} and x € X

R (x,x;) =

Ro(x, x,) exp(¢U(x;)) (21)

K (x)
in which «,(x) is the normalizing constant defined so that
ZX‘,‘ R;(x,x,) =1 for each x.

This policy influences the load to increase power consump-
tion at time ¢ when ¢, > 0, and less power when ¢, < 0.

2) Nature: For each load, the system was simulated using
the policy defined by Ry (an approximation of hysteresis).
Data collected from a long simulation were collected, and
the transition matrix Qo was estimated via Monte Carlo as
described in Section III-C.

3) Filter Design: Recall from the introduction and Fig. 1
that it is assumed that the BA broadcasts a common signal U,
to each load participating in demand dispatch, and recall that
this is a simplification of current practice.

Referring once more to Fig. 1, it is reasonable to assume
that the services provided from flexibility of pool pumps are
very different from those provided from a residential water
heater or refrigerator. It is argued in [6] that a formalism to
justify this assumption can be found by classifying on/off loads
according to their nominal cycling patterns. A crude summary
is obtained on consideration of tracking a square wave: a
population of pool pumps can track a symmetric square wave
of period 24 h perfectly by turning off and on in unison.
The same is approximately true for a population of residential
refrigerators, but with a period of approximately 1 h.

This motivates the introduction of bandpass filters, designed
based on the spectral characteristics of the load. It may
be that the BA performs filtering, as done today at PJM.
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Fig. 5. Open-loop tracking with 40000 heterogeneous TCLs in each class.
The bottom plots show the ON/OFF-state m for a typical load of each of the
three classes.

For consistency of notation, it is assumed in the remainder
of this article that this additional filtering is performed at the
load, so that U, remains a common command signal, broadcast
to every asset. Butterworth filters are adopted in the numerical
results that follow.

An adjustment of notation is required: Constructed at load
with parameter ¢ is a Butterworth filter M®" and approxi-
mate inverse filter M'™? designed based on the methodology
surveyed in Section IV. The transfer function M” appearing
in Fig. 3 is the product M? = M3 Mo,

B. Open-Loop Tracking

1) Summary of Load Classes and Subclasses: We present
here details regarding the diversity of loads involved. The
precise details of the simulation environment are summarized
in Appendix C; Tables I and II may be found there.

Three classes of TCLs were considered: residential air
conditioners (ac), small electric water heaters with faster cycle
times (f~-WH), and large electric water heaters with slower
cycle times (s-WH). Twenty different subgroups were obtained
for each TCL class, through uniform sampling of the values
in Table 1. Each subgroup contains 2000 loads, resulting in a
total of 40000 loads in each TCL class.

The choice of bandpass filters was based on the nominal
period of each of the load classes. The parameters of the
Butterworth filters are summarized in Table II.

2) Tracking BPA’s Balancing Reserves: The balancing
reserves deployed (BRD) from the Bonneville Power Adminis-
tration (BPA) were used as a reference signal. A single typical
windy day, 19 February 2016, was chosen.

Fig. 5 shows open-loop tracking for each of three TCL
classes (for the case of ac, the plot shows only 6 h during
the day). Capacity estimates were obtained using the approx-
imations in [10] and [23]. The ac class tracks a signal that
is approximately 20% of the power capacity of the aggregate
(see oot in Table II for power capacity). We estimate that
the ac aggregation can track a signal of 100 MW while
maintaining reasonable tracking error. The other two plots,
featuring the water heating loads, represent about 60% of the
power capacity of the collection of water heaters. We observe
clipping of the reference signal when it reaches power capacity
limits.

It was found that cycling of TCLs was increased by about
5% from nominal.

The tracking accuracy is remarkable for a one-way commu-
nication architecture from the BA to the loads. These results
might be anticipated from Proposition 2 and its corollary, but
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Fig. 6. Macro load dynamics. Hipaq is the transfer function of the sum
of linearized dynamics from a heterogeneous collection of pools, water
heaters, and ACs. It has an approximately flat gain and phase response in
the bandwidth of interest (for services from flexible loads).

remember that the filters {M”} are based on a linear model,
while the actual aggregate dynamics are far from this linear
ideal.

VI. GRID-LEVEL SIMULATIONS

The results from grid-level simulations are surveyed in this
section, based on the architecture shown in Fig. 1. Performance
of tracking and disturbance rejection was investigated, along
with a cost analysis. The impact of unmodeled dynamics was
also investigated through simulations.

A. Simulation Model

Fig. 5 not only shows good open-loop tracking but also
demonstrates that the mean-field model is a highly accu-
rate approximation of the stochastic system. For this reason,
throughout this section simulations are conducted using the
mean-field model.

The simulations were based on the grid model shown in
Fig. 1. Details are summarized as follows.

1) The grid-level transfer functions G, and G. seen in
Fig. 1 are given in (2) and (3).

2) The disturbance D entering the grid (modeled as an
additive input disturbance as shown in Fig. 1) was taken
to be the BPA BRD data from 19 to 23 February 2016.
This modeling choice reflects the fact that the grid
operator at BPA wishes the “actuators” in its domain
to track accurately the BRD.

3) Only four load classes were considered in the actuator
block: three TCLs and a collection of 1-kW pool pumps
with 12-h cleaning each day. To reduce complexity,
a single TCL model was chosen as representative of
the 20 among the subgroups considered in Section V,
so that in total only four values of ¢+ were required in
simulations. The mean-field dynamics within a group
are thus

d
=y Ay, t>0. (22)

dt

4) The mean-field model output y/ :=>" u? (x)U(x) must

be scaled to reflect the number of loads in the group.

The simulations that follow scale this quantity, based

on the following assumptions: 1 million ACs, 5 million

f-wh, 5 million s-wh, and a large number of pools (this
number was taken as a parameter in this study).

¢ =[h" = U],

Authorized licensed use limited to: University of Florida. Downloaded on November 30,2023 at 22:33:17 UTC from IEEE Xplore. Restrictions apply.



1838

Dy
1500

1000

500

Power (MW)

-500 [~

-1000

-1500

Day 1

Day 2 Day3 Day 4 Day 5

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 31, NO. 4, JULY 2023

—-—- Pool Actuation --- Generators

1500

W= MY U,

Day 1 Day 2 Day3 Day 4 Day 5

Fig. 7. Closed-loop tracking with residential air conditioners, electric water heaters, pool pumps, and ideal actuators. Actuation from loads is interpreted as
virtual energy storage. U is the output of the compensator G, while U4 is the aggregate response of all the actuators (ACs + s-WH + f-WH + Pools +

ideal resources).

The nonlinear control system was simulated in continuous time
using Simulink, requiring parallel simulation of (22) for each
value of ¥. This was implemented using four linear parameter-
varying (LPV) Simulink blocks run in parallel, with ¢ the
parameter and u? the d-dimensional state for each ¥.

The linearized mean-field model of each load class is
denoted Gac, Giwh, Gswh, and Gy, and the respective filters
(inverse x bandpass) by Mac, Mswh, Mswn, and Mp. The linear
model of the aggregate dynamics of all the loads is defined
by the sum

Hipag = MacGac + MiwnGiwh + MswhGswh + MpIGpI- (23)

The Bode plot for Hjpaq is shown in Fig. 6. The rapid decline
in the magnitude plot beyond f = 1072 rads/s is due to
the inherent bandwidth constraints of the loads. Hence, the
actuation is augmented with an ideal resource G, = 1.
A high-pass filter M"P was designed with bandwidth beyond
f = 10" 2 rads/s, so that the introduction of this resource
flattens the Bode plot. The total response is modeled by the
transfer function Higtal = Hioad + MM G4, whose Bode plot
is also shown in Fig. 6.

The actuation obtained from G, might come from batteries,
responsive generators, or fast responding loads that provide
accurate tracking. The time-scales of ancillary service from
these resources are predominately in the range of primary
control (e.g. droop).

Is this a perfect virtual battery? Of course there are
imperfections: the nonlinear dynamics have been linearized for
the sake of control design, but the system dynamics remain
nonlinear. Moreover, the Bode plot for the linearized dynamics
with transfer function Higtg is not entirely flat in magnitude
or phase.

These shortcomings are no different than what would be
expected for a generator providing balancing service [25], or a
realistic (and imperfect) battery system. Moreover, we will
see in the remainder of this section that global feedback
compensates for imperfections in actuation.

B. Closed-Loop Performance

With this mix of TCL loads, 4 million pools will be
required to accurately track the BRD signal as the disturbance
entering the grid! In the results surveyed here, we cap the
number of pools at 1 million (the approximate number of
residential pools in Florida, with even more in California). The
maximum load is thus 1 GW, and the average load is 500 MW,

1
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Fig. 8. Normalized cost as a function of capacity from ac loads.

so that the pools can at best track signals of 500 MW.
Tracking was poor when the BRD signal exceeded this
range.

Other resources such as commercial water chillers could be
added to increase capacity at low frequencies. Instead, in the
next set of simulations, the pools were augmented with a single
1-GW generator. This was modeled through the introduction
of an additional ideal actuator

1
Hiotal = Hioad + MHPGa + ZMLPGa

in which the second-order low-pass filter M'" has unity gain
at low frequencies, chosen identical to the Butterworth filter
adopted for the pool loads. The scaling of 1/4 is introduced
so that the response from the ideal low-frequency actuators is
commensurate with the pools. The resulting Bode plot is no
longer flat—its gain below 10~* rads/s is approximately half
of the gain above 1073 rads/s.

As a result of the gain variations in the linearization and the
nonlinearities inherent in mean field dynamics, the open-loop
tracking performance will suffer, especially when the BRD
signal takes on large values. While imperfect, the performance
is still better than what is received from many generation units
(for example, see [25, Fig. 10]).

The plots on the left-hand side of Fig. 7 show closed-
loop behavior over 5 days, The aggregate response from all
the actuators, U*, is approximately the negative of the BRD,
so that the frequency deviation is tightly controlled: it remains
within the range 59.993-60.007 Hz over the five-day period.

The plot on the right-hand side of Fig. 7 shows the filtered
control signal U, LP.— M'PU, along with two responses: from
the collection of pools, and from the 1-GW generator. The
response of the pools nearly matches the response from the
ideal generator.
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tracked nearly perfectly. The introduction of demand dispatch alongside generation reduces needed generation capacity by at least 5 GW.

C. Time-Varying Capacity

The time-varying nature of many commercial and residential
loads is an issue of concern. For example, the number of
air conditioners that are in operation, and hence available for
ancillary service, is low during the early morning hours and
peaks during the late afternoon [39].

The experiments were conducted in which the gain of
the response of the ACs was amplified/attenuated using a
time-varying gain function

g®)=1-=05sin(fyt), t=>0

in which f; = 727 x 1077 rads/s corresponds to a 24-h period.
All the other resources were left the same as the simulation
setting of Section VI-B. The reader is referred to [31] for
plots of the response of the aggregate of loads in similar
experiments. The time variations result in significant change in
response from ACs when compared with nominal, yet the grid
frequency remains within [59.993, 60.007] Hz due to grid-level
feedback (referring again to Fig. 1).

D. Resource Availability and Cost

Following installation of equipment to enable demand dis-
patch, the operating cost is essentially zero. Consumers may
require incentives to participate (e.g., FPL and Austin Energy
provide credits to participating residents), but they will also
receive some guarantees regarding constraints on QoS and
potential costs from additional cycling of equipment.

The benefit of demand dispatch from low-frequency services
such as residential pools is clear: 1 million pools might
serve as a substitute for a 500-MW generator. Following the
initial investment (usually in $B), a generator requires fuel,
maintenance, and staff. The loads provide accurate regulation
service without any of these operating costs.

What about higher frequency ancillary services? To investi-
gate the value of the highest frequency services from demand
dispatch, we consider a parameterized family of models in
which the contribution from air conditioners is varied accord-
ing to the fraction ¢ € [0, 1]. The remaining 1 — o of
regulation is obtained from ideal actuation from batteries or
other sources. Denote the output of the ideal actuators by {U;}.
The total ideal actuation is defined by the sum

Ut = MG, + (1 — )M G, |U,.

Recall G, = 1 in these experiments. The second component
is thus (1 — oz)MECPU,, which is intended to replace the lost
service from the ACs.

The mean-square cost of the closed-loop system is defined

as
2 1 ! al?
J =—/ \Uf|" dr.
T Jo

This is similar to the “mileage” metric used for ancillary
service resources such as batteries. Fig. 8 shows a plot of
this cost as a function of « for T corresponding to one day;
o = 1 corresponds to the simulation setting of Section VI-B.
The total cost is reduced by more than 50% when o = 1 when
compared with o = 0.

The cost is much higher for intermediate values of & when
the inverse filter is not used to construct £2°.

(24)

E. Ramp Services

The plot on the right in Fig. 9 shows a stylized “duck curve”
representing the net load (load — renewables) at CAISO; the
shape is a result of significant penetration of solar energy in
California. The plot reflects approximately 10 GW of solar
power at peak.

The 15-GW ramp observed between 3 P.M. and 6 P.M. is of
concern today. The ramp can be smoothed by first scheduling
generation to track a low-frequency component of the net
load—denoted “low pass” in the figure. The remaining two
zero-energy signals shown can be tracked using a combination
of resources—batteries, responsive generators, and demand
dispatch.

The mid-pass signal remains substantial—a range of
+5 GW. This signal could be provided using gas turbine
generators, but a total capacity of 10 GW would be required.
This value can be reduced significantly by applying the same
techniques used to address the balancing reserves signal.

Let L} denote the residual load, defined as “Net
Load”—*“Low Pass.” This is plotted on the right in Fig. 9,
where it is seen that it takes on values approaching +£4 GW.
The capacity from loads in the previous set of experiments was
insufficient to track this signal. The capacity from TCLs was
doubled, so that the simulation was based on 10 million s-WH,
10 million f~-WH, and 2 million ACs. It included 1.2 million
pools (the approximate number of pools in California), and
also +2 GW of low-frequency regulation that might come
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from generation or demand dispatch from other loads such
as water chillers and water pumping (a significant load in
California).

The plots of the power deviation from TCLs shown on
the right in Fig. 9 are significant, even though temperature
constraints at the load are not violated. The variation in
power consumption of s-WH and pools helps address the
“mid pass” signal shown on the left of Fig. 9, whereas the
“high pass” component is serviced by the f-WH and ac power
consumption. The residual load and aggregate actuation match
nearly perfectly.

VII. CONCLUSION

It is exciting to see how, through distributed control design,
heterogeneous flexible loads can coordinate to smooth out
enormous shocks to the grid. From the grid-operator’s perspec-
tive, a collection of heterogeneous loads can be as valuable as
a multi-GW battery.

The theory and simulations presented in this article show
the success of the demand dispatch architecture with minimal
measurements required from the loads; the grid operator will
require estimates of capacity from flexible load aggregations,
but does not require continuous power readings from individ-
ual loads.

The hardware requirements for smart loads (e.g. NEST
thermostats or smart fridges) should be minimal, with com-
munication based on a combination of internet and power line
communication (the original approach of FP&L [1]).

Two issues require further attention. First is the role of the
“perfect actuators” supplying regulation at time scales of tens
of seconds and faster (the timescale of today’s primary con-
trol). Can loads assist with this service and bolster synthetic
inertia? Analysis in [32] suggests that this could bring risk in
terms of stability, but this may depend on other elements of
the grid architecture (e.g., the number and size of synchronous
generators) [24], [43].

The impact of the time-varying nature of many loads
deserves further study. For example, the nominal load from
commercial and residential air conditioning is roughly periodic
over a typical week, and its magnitude changes slowly depend-
ing on the weather. The results summarized in Section VI-C
offer significant hope in terms of system stability. It is con-
jectured that periodicity is a benefit in regions with significant
solar energy, since demand is in harmony with supply.

The impact of distribution is also of interest: will voltage
constraints in the distribution network limit capacity from
virtual energy storage? Conversely, what is the potential for
application of virtual energy storage for providing voltage
support and grid support simultaneously?

APPENDIX A
MEAN FIELD MODELS

Proposition 1 and Proposition 2 are based on the versions of
the Martingale representation (14) and Gronwall’s inequality
in this simple form.

Lemma 1: Let z be a nonnegative and continuous function
on an interval [0, T']. Suppose that the following bound holds
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for constants «, 8 > 0:
t
Zr§a+,3/ zdr, 0<t<T.
0

Then z; < aef'dr for 0 <t <T.
Proof of Proposition 1: Let ,tlIN = ;Lfv — i, and ||/1§v||1 =
>l /lﬁv (x) |. We apply Gronwall’s inequality using

-N Iil-

7V = max E[”,ur

r<t

We begin with (14)
Ay (1) = fig () + Z/ iy (x7)Ag (x

3 Ae )

+ N2 (x)

~x)

A (7 x) = A (x7

x)}dr

where M, is a Martingale whose variance is uniformly
bounded in N and ¢, and ¢, = fot gr—yr dt.
Because uf’ is a pmf, we can bound the second term

Z/ w( %)
max/|A§N( L x) — A (x7,

/|§ _§r|dr

where L is a Lipschitz constant for the family of rate matrices.
We also have from the definitions

Vo= /0 8i—chly (OUX) dT

gi;/ing ENIN = ¢ 11 < lglo.nlltdlloozy, where |iglo.r =
Jo 18(@d7 and U]l = max,, [U(x,)].
It follows that there is a finite constant 8 such that

N Aex (x7, x) — Ag, (x7, x) }dr

I/\

x)|dr

| /\

N _N||2 N !
‘,ut = E[ i, :|§H,u0‘ —i—atN—i-ﬂ/ Nds
L, 1 L, 0
where eV = N=2||[M¥ | .,. Letting ¢V denote the maximum
of &V over [0, T] gives

zV := max E[

r<t

J=lal,

It follows from Lemma A.1 that z? vanishes as N — oo,
which completes the proof. |

Proof of Proposition 2: To prove the proposition, we restrict
to open sets satisfying S C {# € R" : || — 9| < &}, with
Y9 € R™ arbitrary. It is enough to establish the bound

+¢ +,3/z ds.

lim sup E[{Z{,N(x, S)}Z] —o(ep), AV =AN A, (25
N—oo
The proof begins with another Martingale representation,
this time for a single load. For each i, ¢, let 8; denote the
point mass supported at X! € X. That is, 8/ (x) = I{X! = x}
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for each x. The following may be interpreted as a special case
of (14) in which N = 1:

s =5m+ S / 8 (x7) AL (x
— 0

where, for any N > i, the stochastic process {Mti
a Martingale with respect to the filtration

x)dr + M} (x)
1t >0} is

FVN=o{X]:j<Nr<t,0":k>1}.
The special assumption on S combined with (19c) give

Ai(x, S) = A(x, Do)ve (S) + o(eo)

where vy(S) = fo(0)dv

eSS

and the ratio o(gg)/ep vanishes with gy, uniformly for ¢ €
[0, T]. On integrating the ODE defining the density

Ax, S) = Ao(x, S)—i—Z/ 30(

+o(éo).

- x)dr
(26)

For N > 1, we apply the Martingale representation of &
and the definition of AV to obtain

AN (x, 5)

1 YL A
Nl;at(x)ﬂ{ﬁ e s}
A (x, )
1< r -
+NZIZ/O 8;(x7)AZN(x7
i=1 Ux—

+Mt(x7 S)

x)dr]ﬂ{l?i € S}

where the definition of {M,(x, S)} is self-evident. For fixed x
and S, it is a Martingale with respect to the filtration F.
As in the proof of Proposition 1, the next step is to replace
¢N by ¢ in the rate matrix. We do this and also replace ¥’
with its approximation ¥, to obtain with the help of (26)

AMx, $) = Ay (x. )
+Z/ AY (x™. S) A%, (x™. x) dr
+Z/ AN Aﬁo( )— Azgo(xf,x)}dr

+ M;(x, S) + o(eg)

where the final error term depends on ¢ and N, but is uniformly
bounded by a fixed constant time &g.

The remainder of the proof of (25) follows from Gronwall’s
inequality as in Proposition 1, with the new definition

2
7 = maxE (lef”(x, S)|)

X
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Fig. 10. Feedback control system for inverse filter design.

APPENDIX B
FILTER DESIGN AND ROBUST CONTROL

Here, we consider a homogeneous population. Let G,
denote the transfer function for the linearized mean-field
model, corresponding to a state-space model of the form (15)

Gy(s) =C[sI — A]"'B
To simplify notation, we suppress dependency on ¢, letting
M denote the prefilter that appears in Fig. 3, with impulse
response /.

The goal of filter design is based on a prespecified frequency
interval Q4. C Ry. The product M(jf)G,(jf) should be
approximately unity for f € Qg4 and vanish for frequencies
far from this interval.

Application of robust control techniques is made possible
through the change in variables

1
=— K
1+ KGy

where K is a transfer function to be designed. The sensitivity
function and complementary sensitivity function are denoted

S::é, T:=1-8.
1+ KG,

Motivation is provided in the feedback loop shown in
Fig. 10, for which the transfer function from u, to y, is T.
There are standard techniques to design K such that T is
nearly unity in the frequency interval 4. and small for
frequencies far from this interval.

Our criterion for choosing K includes the following three
objectives:

SGf) =0,
T(jf) =0,

f € Qdes
f ¢ Qde:57 (eqUiValentl}’, T(Jf) ~ 1)

while maintaining reasonable bounds on |M(jf)| for all f.

We use the mixed-sensitivity synthesis method to obtain
a solution [28]. This requires three transfer functions
(W7, Wy, W3) that serve as weights for the respective transfer
functions (S, M, T). For any transfer function K, we define
(01, 02, Q3) = (W S, WoM, W3T).

For any transfer function Z, denote || Z||z,,
The objective function for optimization is

= sup, 1Z(if)l.

q(K) = max 10illa., -

The mixed-sensitivity synthesis method finds the transfer func-
tion that minimizes g (K) over all proper transfer functions K.
The optimizer can be obtained numerically, using the mixsyn
command in MATLAB [5].
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TABLE I
TCL PARAMETERS FOR ACS AND WATER HEATERS
Par. AC Fast WH  Slow WH
g3t 18-22 48-52 48-52
4 0.8-1 2.95-3 3.954
o 30-34 19-21 19-21
RC 3545 30-36 67-73
0 14/2.5 51 5/
o%, 1076 106 106
TABLE II

LoAD DYNAMICS AND POWER CHARACTERISTICS. BW REFERS TO
BANDWIDTH OF BUTTERWORTH BANDPASS FILTERS; MAX AND
AVERAGE POWER 0tot, Otot IN MW FOR 40 000 LOADS

Load Period BW (cyc/hr) Otot Otot

AC 20min-1hr. [1, 1/0.2] 97 224

f-WH 24 hrs. [1/3,1/0.5]) 11 200

s-WH  8-12 hrs. [1/9, 1] 8.5 200

Pools 24 hrs. [1/24,1/3] 20 40
APPENDIX C

DETAILS OF NUMERICAL EXPERIMENTS

We first discuss how the matrix Sy was defined for any of
the on—off loads considered, and then explain how Qg was
obtained for various TCL models. Here, we opted for simu-
lation to fit a Markovian load model, since we did not have
access to data for each class of TCLs.

Given a temperature set-point 65 and a dead-band range §,
the TCL control is designed to maintain the temperature
within these bounds: ®, € [0%" — §/2,0%" + §/2] for
each ¢. In each case considered, this interval is quantized into
d/2 = 20 values. Consequently, |X| = d = 40.

The nominal transition matrix Sy in (6) involves two maps:
R() and Qo.

A. Nurture

To simplify the exposition, we restrict to heating loads. The
details of constructing the nurture map Ry are provided in
Section III-C2. Here, we discuss the missing ingredients, i.e.,
the construction of the switching probabilities.

The construction begins with the specification of two cumu-
lative density functions (CDFs), denoted F®(x,) and F®(x,).
The switching probabilities are defined by

p®(xn) = Fe)(xn) - FEB(xn—l)
pe(xn) = Fe(xn) - Fe(xn—l)

where x,,x,_1 € X" for0<n <d/2—1.

In the experiments surveyed here, the CDFs are specified
by three parameters: 009 € [Omin, Omax], v € (0, 1) and « > 1.
We then take
[ — 651,
[ — 051"

F®(x,) = 1 = F®(Omax + Omin — Xn), X, € X"

with [x]4 := max(0, x) for x € R; 65 = Opin, v = 0.8, and
Kk =4.

FO(x,) = (1 -v)

B. Nature
Construction of Q for a TCL began with the standard ODE
model
d 1

%= "&e

r (© — ©F +6%m,) + W,

27)
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in which ®; is the internal temperature, m, € {0, 1} repre-
sents the power mode, and W, models disturbances (chosen
Gaussian with zero mean and variance O"%, found in Table I).
The parameters are described as follows: ©®f is the ambient
temperature, C is the thermal capacitance, R is the thermal
resistance, o is the coefficient of performance, and 68 = Rpy,
where py is the energy transfer rate; p is positive for TCLs
providing cooling, and negative otherwise.

The ODE (27) was simulated and sampled according to a
Poisson process of rate r. At each sampling instant Ty, the
randomized policy Ry was used to determine the next power
mode. Hence, m, remains constant on each inter-sampling
interval [Ty, Ty11), and we let X} = my,_ = my,_, for each k.

The data were collected to obtain the estimate Qo defined
in (17), which were then used to define Qg in the experiments
reported in this article.

C. Details of Parameter Values

Table I displays the range of TCL parameters for
air conditioners and electric water heaters (a subset of
those surveyed in [33]). The temperature parameters are
in degree Celsius. The value of RC is in units of time
(hours). The penultimate row denotes the maximal power
consumption, ¢ (kW). The simulations in this article are based
on a heterogeneous collection of loads in which the parameters
for the TCLs take on values within these limits.
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