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Abstract—It is now well established that many electric loads
are inherently flexible, and this flexibility can be harnessed to
provide grid services identical to those obtained today through
batteries and responsive generators. This paper concerns the
resource allocation problem associated with control of a large
collection of heterogeneous loads. This problem is posed as a
finite-horizon optimal control problem, in which the cost function
reflects both the needs of the grid and the needs of the users of
electric loads in the population. The main result is a form of state
space collapse: the marginal cost for each load class evolves in a
two-dimensional subspace, spanned by a scalar co-state process
and its derivative.

I. INTRODUCTION

The Federal Energy Regulatory Commission (FERC) Order
No. 2222, approved in September 2020, requires the devel-
opment of rules and incentives to integrate distributed energy
resources (DERs) in grid operations [15]. This development
along with policy promoted by federal and state elected
officials bring concomitant challenges associated with the
volatility and uncertainty of DERs and renewable generation.

Volatility is evident in Fig. 1, showing data from CAISO on
Mar 16, 2021: solar and wind supply nearly 15 GW of power
during the afternoon, while they supply less than 3 GW at
night. Renewable energy briefly served 90% of the electricity
demand in the Southwest Power Pool grid during the early
morning hours of March 29, 2022 [16]; market operators
indicated that over 88% of total demand was served by wind at
some point in time. Addressing these peaks and ramps through
traditional generation (e.g. coal and natural gas) is costly [25].

These challenges are one reason for interest in techniques
to better manage the grid through new battery technology, as
well as the application of tools from optimization, statistics,
and control theory to better harness flexible loads for battery
services.

The recent FERC order brings additional motivation for
focus on flexible loads: The introduction of [15] states that
FERC order 2222 enables DERs to play a wide range of roles
in organized electricity markets, including capacity, energy and
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Fig. 1. Solar and Wind in CAISO (California Independent System Operator)
on March 16, 2021. Figure generated using data from [1].

ancillary services; moreover, “multiple DERs can aggregate to
satisfy minimum size and performance requirements that they
might not meet individually.” The value of aggregation is clear
to FERC and the research community.

A. Demand Dispatch

The term demand dispatch refers to control of flexible loads
for the creation of virtual energy storage (VES) — see [4],
[7], [11], [17], [34] and the references therein. Automation is
central to the success of demand dispatch: through distributed
control, deferrable loads, such as electric water heaters, re-
frigerators, ACs, etc., provide grid balancing and regulation
service while also ensuring consumer-side quality of service
(QoS).

The grid services of interest might include ramping, re-
serves, voltage support, automatic generation control, and
peak-shaving. The definition of QoS depends on load-class.
For example, a residential refrigerator must keep its content
within temperature limits. Any control solution must respect
these bounds, along with cycling constraints [14].

Fig. 2 illustrates the communication and control architecture
considered in this paper, featuring the following entities.
(i) Balancing authority (BA): the entity responsible for the
reliable operation of the grid within a balancing authority
area (collection of generation, transmission, and loads within
a metered boundary). The BA, (also called the grid operator),
corresponds to an Independent System Operator (ISO) or a
Regional Transmission Organization (RTO) in many parts of
the U.S., or a large utility in vertically integrated regions
(e.g., FP&L and Duke in Florida). It maintains real-time
system information such as grid frequency, tie line errors, etc.,
alongside forecasts of demand and renewable generation.
(ii) Resource Aggregators: a single resource aggregator (RA)
will receive a power deviation command signal from the grid
operator based on current and forecast grid data, and will
broadcast a common signal {λ?t } to each load in its territory.

An RA periodically measures the state of charge (SoC) and
capacity of the load aggregations under their purview, and
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may share part of this information with the grid operator.
Only aggregate-level information is required from the loads
in this and prior work, which can be estimated by periodically
sampling data from the population [10], [31]. The information
is used to obtain initial conditions for optimization, as well as
to update VES models.

Examples of RAs in North America include Enbala Power
Networks, Comverge, Enel X, and CPower. Utilities can also
serve as resource aggregators: examples include Florida Power
and Light’s On Call program and Austin Energy’s Power
Partner program. The former engages air conditioning, electric
water heaters, and pool pumps of nearly 800,000 customers,
while the latter controls NEST thermostats of participating
customers during grid events such as summer peaks and
system emergencies.

(iii) Load classes: shown in Fig. 2 are M load classes. The
first load class consists of a collection of refrigerators, the
second corresponds to an aggregation of water heaters, and so
forth.

Flexible loads include both residential and commercial ther-
mostatically controlled loads (TCLs), residential pool pumps,
and water pumping for irrigation or waste management. There
may be hundreds of thousands of loads within each class.

Associated with a given load class, indexed by i ∈
{1, ...,M}, is the SoC of the load class, denoted xi ∈ R. In the
standard VES model, xi(t), which is by definition proportional
to the average QoS of the ith load aggregation at time t,
evolves as the state process of a linear system, whose input
is the power deviation −zi [21]. This paper builds upon this
model with the introduction of a cost function ci : R→ R+ that
penalizes deviation from the ideal QoS. Details are deferred
to Section II-A and Section II-B.

Fig. 2 suggests two resource allocation problems: The first
is solved by the grid operator, who engages RAs and other
entities providing grid services, and will optimally determine
the power trajectory requested from each based on available
grid data, net-load1 forecasts, and SoC for both traditional
energy storage and VES.

This paper focuses on the second resource allocation prob-
lem, which is of concern to an RA that must manage a highly
diverse population of DERs. Homogeneity of load behavior
within a class is assumed; this may be firmly justified through
the introduction of additional local control [31], [32], along
with one of the distributed control approaches advocated in
[7], [11], [17], [34], [4].

It is shown that this resource allocation problem, formulated
as an optimal control problem in Section II, belongs to a
special class known as “cheap optimal control” [42], [23]. As
a consequence, we will see that the optimal state evolves on
a low-dimensional manifold [44], [20].

B. Related research

The past decade has seen rapid development of academic
research on the real-time control of flexible loads to provide
grid services; several valuable surveys may be found in [37].

1net-load is power demand − power generation from renewables.
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Fig. 2. A distributed control architecture for RA scheduling. A topic addressed
in this paper: the interpretation and computation of λ?.

The modeling of large load aggregations was first tackled
in the 1980s: in [29], a non-linear model for a large collection
of TCLs is obtained using concepts from statistical physics.

The present work was motivated in large part by [4], in
which a frequency decomposition was proposed for resource
allocation. There is evidence that this approach will indirectly
reduce impact on loads. For example, refrigerators have a cycle
time of about one hour, so are ideally suited to regulation
near this frequency band; pool cleaning is ideal for much
lower frequencies. Unfortunately, this approach appears to be
conservative. In particular, any load can be turned off, which
is inherently “high frequency”.

Recent research on the optimal allocation of load aggrega-
tions has focused on numerical methods. The paper [5] applies
Markov decision process techniques to address the AC optimal
power flow problem with participation of TCLs. In [18], the
discrete-time resource allocation problem is formulated as a
sequence of optimization problems corresponding to each time
instance. These optimization problems rely on measurements
at each time instance instead of dynamical models of the load
classes; their solution defines a command signal for each load
class. The optimization formulation presented here is far more
general, as is the goal: to reveal the structure of the optimal
solution, and use it to inform control design.

The term state space collapse in the title comes from the
literature on stochastic networks [40], [38], which may be
regarded as a special case of the model reduction obtained
using singular perturbation methods [42].

In the infinite horizon setting with quadratic cost, the main
result of [20] implies that the state space collapse is just one-
dimensional: there is a one-dimensional subspace X? such that
x?(t) ∈ X? for all t > 0. These results are extended to include
the finite-time horizon optimal control problem in [22] (see in
particular [22, Theorem 5.8]).

Portions of the theory surveyed here appeared in the con-
ference paper [33] and dissertation [30].

C. Contributions

The contributions are adumbrated below.
1) State space collapse: The main technical conclusion

is that the optimal state trajectory x? evolves on a two-
dimensional manifold. This is most conveniently described
through a change of variables: the marginal cost evolves on
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a two-dimensional subspace generated by a scalar co-state
process λ? and its derivative:

c′i (x?i (t)) = αiλ
?(t)− d

dtλ
?(t) , t > 0 , (1)

in which c′i = dci/dx. This identity justifies the simple control
architecture shown in Fig. 2, in which a common signal λ? is
broadcast to all loads, independent of class.

To the best of our knowledge, state space collapse has never
been identified in the economic dispatch literature.

Three approaches are used in analysis leading to (1) and its
extensions: Bellman’s principle of optimality quickly reveals
the emergence of state space collapse. Pontryagin’s minimum
principle is the most direct approach to construct λ?, where
it plays the role of a co-state variable. Finally, a Lagrangian
relaxation leads to an alternative interpretation of the co-state
variable, which will likely provide inspiration for efficient
numerical techniques.

The representations of the value functions in terms of
lower dimensional variables (see Prop. II.1), and the proofs
utilized to arrive at this result (see Appendix A) are a novel
contribution to the theory of singular optimal control.

2) Structure for quadratic cost: Section IV-A is devoted
to this special case. It is shown that the solution to the 2M -
dimensional control problem may be obtained via the solution
of a 2-dimensional differential Riccati equation.

3) Numerical examples: The theory is illustrated with a sur-
vey of results from numerical experiments, focusing primarily
on managing the grid in California.

D. Organization

Preliminaries required for analysis are introduced in Sec-
tion II; in particular, the dynamic control problem is introduced
in Section II-C. The main results surveyed in Section III
demonstrate state space collapse and its consequences. Sec-
tion IV provides examples: special structure in the case of
quadratic cost, and results form simulation studies to illustrate
application in realistic settings. Conclusions and directions
for future research are contained in Section V, and technical
results are contained in the Appendix

Notation

T ≥ 1 : time horizon for control.
`(t) : net-load on [0, T ].
g(t) : power from traditional generation; γ(t) = d

dtg(t).
M : number of load classes, indexed by i ∈ {1, ...,M}.
xi(t) : state of charge (SoC) of load class i.
−zi(t) : power deviation from load class i; ui(t) = d

dtzi(t).
Subscript “σ” denotes sum, e.g., xσ(t) =

∑
i xi(t).

xa := (x, z) and xaσ := (xσ, zσ) are the augmented state and
descriptor state, respectively. Consequently, evaluation of a
function f : RM ×RM → R is equivalently expressed f(x, z)
or f(xa).
A bar above a variable denotes average either over t or i, e.g.,

` =
1

T

∫ T
0

`(t) dt, ᾱ =
1

M

∑
i

αi .

Standard calculus notation is adopted for a function
K : R3 → R:

Kξ(r, s, t) :=
(
∂
∂r

)ξ1( ∂
∂s

)ξ2( ∂
∂t

)ξ3
K(r, s, t) , ξ ∈ Z3

+.

Pt(i, j) denotes the (i, j)-th entry of the time-varying matrix
Pt. The transpose of a matrix (or vector) P is denoted P ᵀ.
I is the identity matrix, E is the matrix of all 1s, 1 is the

column vector of all 1s, and 0 is the column vector or matrix
of all 0s. Consequently,[

xσ
zσ

]
= wᵀ

[
x
z

]
, w =

[
1 0
0 1

]
(2)

The dynamical system (4) is alternately represented

d
dt

[
x(t)
z(t)

]
= A

[
x(t)
z(t)

]
+Bu(t)

where, A =

[
−diag(α) −I

0 0

]
B =

[
0
I

] (3)

Parentheses are used for time indices, and subscripts are
used to enumerate resource aggregations.

II. ARCHITECTURE FOR RESOURCE ALLOCATION

The optimal control architecture for scheduling flexible
loads and other resources to meet forecast net-load.

We begin by specifying the dynamic models used for load
aggregations.

A. VES models

An aggregate model for dynamics is required for each load
class. In the case of TCLs, we adopt the model of [21], and for
residential pools or irrigation, we consider the similar model
of [9], [36]. In either case, the model for the ith load class is
the first-order ODE,

d
dtxi(t) = −αixi(t)− zi(t), i ∈ {1, ...,M} , (4)

in which xi(t) is the SoC of the ith load class, and αi is a non-
negative leakage parameter (e.g., for TCLs, this corresponds
to the thermal time constant). The power deviation at time
t is −zi(t): this is the total power consumed by the load
aggregation minus the nominal power consumption of the
loads (nominal refers to the uncontrolled behavior of the load
aggregation, i.e., the power consumption when the loads are
not participating in demand dispatch). Consequently, zi(t) is
the (virtual) power supplied by the VES to grid at time t from
load class i.

The precise adjustments in power consumption are obtained
as the solution to an optimal control problem. A lower level
control problem is required to ensure that the population of
loads in class i collectively adjust their power consumption
to approximately track the optimal trajectory z?i . This paper
is agnostic to the precise way in which control is employed
to achieve tracking. Many approaches are described in prior
work—see recent surveys in [37].
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B. Cost formulation and state space collapse

The resource allocation problem is formulated as a finite-
horizon optimal control problem over [0, T ], with objective∫ T

0

[
cg(g(t)) + cd( ddtg(t)) + cX(x(t))

]
dt (5)

in which the cost functions cX, cg and cd are strongly convex.
The state cost is expressed as a sum:

cX(x) =
M∑
i=1

ci(xi) , x ∈ RM , (6)

where each ci : R → R+ is a strongly convex function,
designed to impose high penalty when the SoC strays outside
of desired capacity bounds Ci, as illustrated in Fig. 3.

There are good reasons to avoid hard constraints on SoC or
generation, even though there are limits in practice. We would
lose much of the elegant structure with a state constrained opti-
mization problem, and we do not see much benefit. Remember,
the optimization problems posed here will not be implemented
in real time. It is anticipated that the solution will be part
of a model predictive control (MPC) architecture. If severe
constraint violations are observed in offline computations,
then the cost functions may be modified to obtain a feasible
solution, or additional resources may be required to meet
constraints.

We could instead opt for a barrier function approach in
which the cost function shown in Fig. 3 is infinite outside of
an open interval. Theory in this paper can be extended to this
setting without significant changes. The choice of a penalty
function is to improve numerical stability in simulations.
We have found in experiments that constraint violations are
negligible for costs of the form Fig. 3 and the reference signals
scaled to ensure feasibility.

0

50

Fig. 3. Cost of QoS violation

Generation costs are translated to costs on power deviation
through the supply-demand constraint:

`(t) = g(t) + zσ(t) , 0 ≤ t ≤ T (7)

in which ` denotes forecast net-load, and the subscript denotes
summation: zσ(t) =

∑
i zi(t). Because a cost is imposed on

both g(t) and its derivative, to put the optimal control problem
in standard form requires state augmentation. The augmented
state is denoted xa = (x, z) ∈ R2M , with M -dimensional
input u(t) = d

dtz(t), t ≥ 0.

The source of collapse. The optimal control formulations
considered in this paper fall in the category of cheap optimal

control. This conclusion is reached by expressing the genera-
tion and its derivative at time t as

g(t) = `(t)− zσ(t) d
dtg(t) = d

dt`(t)− uσ(t)

It follows that the objective (5) imposes a cost on the sums
zσ(t) and uσ(t), and in particular the cost on the input
u(t) ∈ RM will not be coercive. Basic theory predicts that
there is a low-dimensional dynamical systems representation
of the optimal control solution, based on the descriptor state
[22], [42].

It is shown in the present paper that the descriptor dynamics
take the following form,

d
dtxσ(t) = −αᵀx(t)− zσ(t), (8a)
d
dtzσ(t) = uσ(t). (8b)

where again the subscripts indicate sums, and the components
of the column vector α ∈ RM are the linear system coeffi-
cients, αi, appearing in (4).

C. Optimal control
The optimal control problem over the finite time-horizon

[0, T ] is defined as follows: with x(0), z(0) ∈ RM , given,

minimize
g, γ, x, z, u

∫ T
0

[
cg(g(t)) + cd(γ(t)) + cX(x(t))

]
dt (9a)

subject to `(t) = g(t) + zσ(t) , (9b)
d
dtg(t) = γ(t) , (9c)
d
dtxi(t) = −αixi(t)− zi(t) , (9d)
d
dtzi(t) = ui(t), i ∈ {1, ...,M} (9e)

The objective (9a) is the total cost of supplying the net
load ` using traditional generation and VES from the loads
participating in demand dispatch. Consequently, there are
costs on: (i) traditional generation, modeled through cg; (ii)
generation ramping, modeled through cd; and (iii) SoC of
the load classes, modeled through cX. The constraint (9b) is
the demand-supply balancing constraint, i.e., the net load ` is
balanced using the output of the traditional generation g and
power deviation from flexible loads z. The equations (9d) and
(9e) provide the dynamical constraints on load classes.

The analysis here allows general strongly convex and twice
continuously differentiable cost on SoC and generation, but
imposes a quadratic cost on ramping.

Assumption 1. The net load ` is C1 on [0, T ], and its deriva-
tive is Lipschitz continuous. The cost functions {ci} and cg are
non-negative, class C2, and strongly convex: c′′g (x) ≥ µ and
c′′i (x) ≥ µ for some µ > 0 and all i, x. The ramping cost is
quadratic: for fixed κ > 0,

cd(x) = 1
2κx

2, x ∈ R. (10)

For notational convenience, the cost beyond the control time
horizon is taken to be zero: c(x, z, u, t) := 0 for all t > T ,
and triple (x, z, u).

The optimization variables g and γ may be eliminated by
applying the algebraic constraint (9b). The overall optimiza-
tion problem (9a) is then in the standard form used in optimal
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control textbooks, with state process is xa(t) = (x(t), z(t)) ∈
R2M and cost function

c(xa(t), u(t), t) = cX(x(t)) + cg(`(t)− zσ(t))

+ cd̃(u(t), t)
(11a)

where cd̃(u(t), t) = 1
2κ
[
uσ(t)− d

dt`(t)
]2

(11b)

The total cost in (9a) is the integral of (11a), from which
cost degeneracy is again evident: the terms involving the
control cost in (11a) are expressed purely in terms of the sum
uσ(t). Implications are described in the following, beginning
with properties of the value function.

D. Value functions

For t0 ∈ [0, T ), the cost-to-go is denoted,

J?(x, z, t0) := inf
u[t0,T ]

∫ T
t0

c(xa(t), u(t), t) dt, (12)

where the infimum is over continuous u, subject to (9d)–(9e),
and with x(t0) = x, z(t0) = z given.

Prop. II.1 asserts that the cost-to-go can be expressed purely
as a function of xaσ = (xσ, zσ). This is the first evidence of
state space collapse. Denote

K?(xσ, zσ, t0) := inf
x+,z+

J?(x+, z+, t0),

subject to x+
σ = xσ, z+

σ = zσ,
(13)

where the infimum is over x+, z+ ∈ RM .
The proof of Prop. II.1 and most of the results that follow

are contained in the Appendix.

Proposition II.1. The following hold under Assumption 1: for
each t0 ∈ [0, T ),
(i) J? is convex in xa = (x, z) and finite-valued.
(ii) J?(x, z, t0) = K?(xσ, zσ, t0) for each x, z ∈ RM .

For a given initial condition x, z, and resulting optimal state
trajectory {x?(t), z?(t) : 0 < t ≤ T }, denote

λ?(t) = K?
1,0,0(x?σ(t), z?σ(t), t),

β?(t) = K?
0,1,0(x?σ(t), z?σ(t), t) , 0 < t ≤ T .

(14)

In addition to Assumption 1, the following assumptions are
imposed throughout the remainder of the paper:

Assumption 2. For each t0 ∈ [0, T ) and each initial condition
(x, z), the optimal control problem admits a unique solution
{x?(t), z?(t), u?(t) : t0 < t ≤ T } satisfying the following:
(a) (x?(t), z?(t)) is C1 on the semi-open interval (0, T ].
(b) There are right hand limits at t0, denoted

x?(t0+) = lim
t↓t0

x?(t) , z?(t0+) = lim
t↓t0

z?(t), (15)

satisfying x?σ(t0+) = xσ , z?σ(t0+) = zσ .

Assumption 3. The value function K? : R× R× [0, T ] → R
is C1.

Assumption 4. The functions λ?, β? are C1.

It is shown in Section IV-A that Assumptions 2 to 4 hold
for quadratic cost. We have not found a reference to justify

these assumptions for more general cost functions, but the
algorithms we have tested yield results that are consistent with
the general theory surveyed in this paper. Some examples are
described in Section IV-B.

III. STATE SPACE COLLAPSE

Thm. III.1 unveils the structure of the optimal solution. In
particular, the M -dimensional optimal state process x? evolves
on a two-dimensional manifold.

Theorem III.1. The optimal solution (x?, z?, u?, λ?, β?) is
the solution to the following system of 2M + 2 equations:

d
dtx

?
i (t) = −αix?i (t)− z?i (t), (16a)

d
dtz

?
i (t) = u?i (t), (16b)

d
dtλ

?(t) = −c′i (x?i (t)) + αiλ
?(t), (16c)

for each i ∈ {1, ...,M},
d
dtβ

?(t) = c′g(`(t)− z?σ(t)) + λ?(t), (16d)

u?σ(t) = d
dt`(t)−

1

κ
β?(t), (16e)

with boundary conditions λ?(T ) = β?(T ) = 0, and
x?(0+), z?(0+) defined in Assumption 2.

Three different interpretations of λ? are explained in the
following.

A. λ∗ as the command signal

Equation (16c) has a remarkable interpretation: the
marginal costs for the M different load classes evolve
in a two-dimensional subspace generated by the functions
{λ?(t), ddtλ

?(t) : t ∈ (0, T ]}.
Since ci is strictly convex, c′i is strictly monotone and

bijective. Consequently, the optimal SoC evolves on a two-
dimensional manifold and can be computed based on λ? and
its derivative:

x?i (t) = (c′i)
−1(αiλ

?(t)− d
dtλ

?(t)). (17)

B. λ? as co-state

The Hamiltonian with co-state variables λ, β ∈ RM corre-
sponding to system equations (9d) and (9e), respectively, is
denoted:

H(x, z, u, λ, β, t) := c(x, z, u, t)

+
∑
i

λi(−αixi − zi) +
∑
i

βiui
(18)

This notation for the co-state variables may appear to conflict
with the notation in Thm. III.1. The choice of notation is made
clear in the following:

Proposition III.2. Associated with the optimal input-state
(u?, x?, z?) are a pair of co-state variables λ?, β? evolving
in RM and satisfying for 0 < t ≤ T ,

(x?(t), z?(t)) = arg min
(x,z)

H(x, z, u?(t), λ?(t), β?(t), t)
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For each i ∈ {1, ...,M} and t ∈ (0, T ],

λ?i (t) = K?
1,0,0(x?σ(t), z?σ(t), t) = λ?(t),

β?i (t) = K?
0,1,0(x?σ(t), z?σ(t), t) = β?(t).

(19)

Proof. The left hand equalities in (19) are a familiar result: the
optimal co-state trajectory is the gradient of the value function
with respect to the state variable [13, Theorem 3.1]. The right-
hand equalities are from the definition (14). �

C. λ? and a Lagrangian decomposition

Rather than eliminate the variable g using (9b), new insight
is obtained on maintaining g, x as variables in the optimiza-
tion problem. First, construct a Lagrangian relaxation with
Lagrange multiplier % corresponding to the algebraic constraint
(9b), as follows:

φ?(%) = inf
g,x

∫ T
0

{
cg(g(t)) + cd(ġ(t)) + cX(x(t))

+ %(t)(`(t)− g(t)− zσ(t))
}
dt,

(20)

where the infimum is subject to (9d)–(9e), with given initial
conditions.

This amounts to a Lagrangian decomposition, consisting of
the following M + 1 independent optimization problems:
(i) Minimization problem over {g(t), ġ(t)}:

inf
g

∫ T
0

Lg(g(t), ġ(t), t) dt, (21)

where,

Lg(g(t), ġ(t), t) = cg(g(t)) + cd(ġ(t))− %(t)(g(t)− `(t)).

(ii) Minimization problem over {xi(t), ẋi(t)}:

inf
xi

∫ T
0

Li(xi(t), ẋi(t), t) dt, (22)

where, after accounting for the constraints (9d), (9e),

Li(xi(t), ẋi(t), t) = ci
(
xi(t)

)
+ αi%(t)xi(t) + %(t)ẋi(t).

The Euler-Lagrange equations lead to equations for the
optimizers:

Proposition III.3. For any function % that is continuously
differentiable on (0, T ], if g% and x%i are C1 optimizers for
the minimization problems in eqs. (21) and (22), then they
solve the following differential equations:

c′g (g%(t))− d
dtc
′
d(ġ%(t)) = %(t), (23)

c′i (x%i (t)) + αi%(t)− d
dt%(t) = 0, (24)

with boundary conditions c′d(ġ%(T )) = %(T ) = 0.

Proof. As % ∈ C1, it follows from Assumption 1 that
Lg,Li ∈ C1. Moreover, (g%(t), ġ%(t)) and (x%i (t), ẋ

%
i (t)) are

continuous on the half-open interval (0, T ]. Consequently,
the Euler-Lagrange equations form the necessary first-order
conditions for weak extrema [26, Section 2.3.3]. The solution

to the minimization problem in (21) and (22) at the stationary
minimum are the following Euler-Lagrange equations,

∂
∂gLg(g

%, ġ%, t)− d
dt

∂
∂ġLg(g

%, ġ%, t) = 0,

∂
∂xi
Li(x%i , ẋ

%
i , t)− d

dt
∂
∂ẋi
Li(x%i , ẋ

%
i , t) = 0,

which result in (23) and (24), respectively. The terminal-
time boundary conditions are obtained by, respectively, setting
∂
∂ġLg(g

%, ġ%, t)|t=T = 0 and ∂
∂ẋi
Li(x%i , ẋ

%
i , t)|t=T = 0 [26,

Section 2.3.5]. �

The dual functional φ? satisfies weak duality: φ?(%) ≤
J?(x(0), z(0), 0) for any %, and the dual convex program is
defined as supρ φ

?(%). The solution to the dual is obtained by
combining Prop. III.3 and Thm. III.1, and from this we obtain
strong duality:

Proposition III.4. The dual admits an optimizer given by

%?(t) = −λ?(t) , t ∈ (0, T ].

Proof. With t ∈ (0, T ], setting %(t) = −λ?(t) in (24) and
comparing with (16c) yields x%i (t) = x?i (t) for each i, which
is the optimal solution to the primal problem (9a). This implies
that there is no duality gap: −λ? maximizes φ?. �

IV. EXAMPLES

We conclude with two general examples: Section IV-A
describes the optimal solution for the special case of quadratic
cost, and Section IV-B provides results from numerical exper-
iments for the general, polynomial cost functions like the ones
shown in Fig. 3.

A. Quadratic cost functions and the Riccati equation

It is instructive to compute the optimal solutions for the
special case of quadratic cost functions, and constant `(t) ≡ `.

The quadratic costs are given as follows:

ci(x) = 1
2qix

2, qi > 0,

cg(`(t)− zσ(t)) = 1
2qz(zσ(t))2, qz > 0

cd̃(u(t)) = 1
2κ(uσ(t))2

(25)

The second equation in (25) implies a quadratic cost on
generation, given by cg(g(t)) = 1

2qz(g(t)− `)2.
The value function of interest is again,

J?(xa, t0) = inf
u[t0,T ]

∫ T
t0

c(xa(t), u(t), t) dt (26)

subject to xa(t0) = xa and the constraints (9d), (9e), with

c(xa(t), u(t), t) = 1
2x

a(t)ᵀQxa(t) + cd̃(u(t), t) (27)

where

Q =

[
diag(qi) 0

0 qzE

]
and E is the matrix with all entries equal to unity.

The value function K? admits a representation in terms of
the solution to a 2× 2 matrix differential Riccati equation.
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Fig. 4. Optimal solution with all costs quadratic. The optimal generation g?
is nearly constant, despite the 40 GW load surge.

Proposition IV.1. The value function (26) may be expressed,

J?(xa, t) = K?(xaσ, t) = 1
2 (xaσ)ᵀPtx

a
σ (28)

where Pt ≥ 0 is the solution to the differential Riccati
equation,

0 = Ṗt + Pt

[
−ᾱ −1
0 0

]
+

[
−ᾱ 0
−1 0

]
Pt

+

[
q̄
M 0
0 qz

]
− 1

κ
Pt

[
0 0
0 1

]
Pt

(29)

with boundary condition PT = 0.

The evolution of the “projected” optimal state trajectory
xa?σ (t) can be represented using Pt, which consequently de-
fines a map between the initial state and the optimal subspace,
as shown in the following proposition.

Proposition IV.2. (i) The evolution of xa?σ (t) is given by the
linear time-varying system:

d
dtx

a?
σ (t) = Aσt x

a?
σ (t), t ∈ [0, T ], (30)

with initial condition xa?σ (0) = [xσ(0), zσ(0)]ᵀ, and Aσt =
S−1
t Tt with,

St =

[
ξ1Pt(1, 1) ξ1Pt(1, 2)

0 1

]
Tt =

[
ξ2(Pt(1, 1)− Ṗt(1, 1)) ξ2(Pt(1, 2)− Ṗt(1, 2)− 1)
−κ−1Pt(2, 1) −κ−1Pt(2, 2)

]
ξ1 = 1−

∑
i

αi
qi

ξ2 = −
∑
i

(1− αi)
αi
qi

(ii) There exist maps G1 : R2×2 × R × R → RM and G2 :
R2×2 × R× R→ RM such that

x?(t) = G1(Pt, x
a
σ(0))

z?(t) = G2(Pt, x
a
σ(0)) , t ∈ (0, T ]

(31)

The right hand side of each equation is linear in xaσ(0).
(iii) These maps describe the jump location at time t = 0+:

x?(0+) = G1(P0, x
a
σ(0)) , z?(0+) = G2(P0, x

a
σ(0))

Descriptions of the mappings G1, G2 may be found in the
Appendix, below eq. (47).

B. Demand dispatch - numerical examples

Simulations were conducted to validate the main results of
this paper. A discrete-time approximation of the resource allo-
cation problem (9a) was solved with 5 classes of loads: ACs,
residential WHs with faster time cycles (fwh), commercial
WHs with slower time cycles (swh), refrigerators, and pool
pumps (pp), based on the model used in [8].
Load shedding. The first example illustrates the evolution
of SoC and the Lagrange multiplier in application to load
shedding, which is typically the domain of demand response
rather than demand dispatch [7].

The net-load is piecewise constant, with a 40 GW surge
for 90 minutes in the late morning hours, and the cost on
SoC was chosen quadratic for each load class. Results from
optimization are collected together in Fig. 4.

The behavior of the loads is similar to that of batteries: they
“charge” prior to the outage (i.e., they consume more energy
than nominal), which makes it possible to “discharge” (i.e.,
consume less energy than nominal) during the outage.

The SoC plots reveal that the residential air conditioners
and commercial water heaters exceed capacity bounds by a
few degrees for a few hours: a SoC violation occurs when
|SoC|/Capacity > 1. This is not surprising, given that the
solution results in a massive change in net-load.

This motivates the use of more aggressive cost in opti-
mization. In a second set of experiments, the cost functions
were chosen to be higher-order polynomials of the form
ci(x) = κ1(x/Ci)

8 + κ2(x/Ci)
2, where Ci is the energy

capacity of the load class i in GWh. The quadratic term is
maintained to ensure strong convexity. It is found that the
SoC violations are minor when compared to Fig. 4.

In practice, addressing a 40 GW surge would require more
ancillary services than used in these experiments.
Taming the duck. The experiments surveyed next use more
realistic day-ahead conditions: the net-load ` is based on
California’s net load (“duck curve”) in March 2020, obtained
from CAISO.

A common 8th order polynomial cost function was adopted
for each class of TCLs, of the form described above with κ1 =
1 and κ2 = 0.1. Because QoS violations are less important for
pool pumps, the quadratic cost was maintained for this load
class, using κ1 = 0 and κ2 = 1. Generation cost was also
taken quadratic, of the form cg(x) = κg[x− `]2, where κg is
a constant gain. Table I provides values of the SoC leakage
parameters αi for the different load classes along with the
energy capacities Ci. The numbers are based on [8], [35].

TABLE I: LOAD PARAMETERS

Par. Unit ACs fWHs sWHs RFGs PPs
αi hours-1 0.25 0.04 0.01 0.10 0.004
Ci GWh 4 2 5 0.5 2

The top half of Fig. 5 shows the net-load `, the optimal
traditional generation g?, and the command %? (normalized to
±1 $/unit energy), while the latter half shows the optimal SoC
trajectories normalized by the respective energy capacities,
x?i /Ci. We observe that x?i /Ci remains within the desired
limits ±1 over the time horizon.
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Fig. 5. Optimal SoC trajectories remain within capacity bounds throughout
this run. The peak generation for the optimal solution is about 8 GW less than
what would be required without load control, and the generation ramping is
reduced significantly.

The optimal SoC trajectory for any load class can be
recovered based on observations of the SoC for two other
load classes by making use of state space collapse. For sake
of illustration, suppose we are given the optimal SoC of resi-
dential water heaters and ACs. The functions {λ?(t), ddtλ

?(t) :
0 < t ≤ T } are obtained via[

λ?(t)
d
dtλ

?(t)

]
=

[
αac −1
αfwh −1

]−1 [
c′i(x

?
ac(t))

c′i(x
?
fwh(t))

]
We can hence recover any load trajectories using (17).

Fig. 6 shows the SoC trajectory of pool pumps recovered
using the trajectories of ACs and residential water heaters.

V. CONCLUSIONS AND FUTURE WORK

The optimal resource allocation problem posed in this paper
can be reduced to just two dimensions, regardless of the
number of load classes under consideration. The solution can
be represented as a distributed control architecture in which
a common scalar command signal λ? is broadcast to all the
heterogeneous load classes managed by the RA.

State space collapse has valuable computational implica-
tions. In particular, Prop. II.1 provides a reduced-dimensional
representation of the value function which may be used to
inform basis selection in reinforcement learning algorithms.
In TD-learning, the basis can be chosen as a function of
xaσ ∈ R2 instead of xa ∈ R2M , thereby leading to a significant
reduction in complexity. Results from preliminary testing of
this approach in conjunction with Q-learning may be found in
the pre-print [28].

There is, of course, the question of sensitivity to load
dynamics and capacity, which will vary with time. It is
conjectured that a more robust solution will be obtained in
a stochastic control formulation in which disturbances are
included in the load dynamics as well as the load forecast.
There is a substantial literature on singular control for stochas-
tic systems (e.g., [24]), so this extension may not a great
challenge.

Model uncertainty/sensitivity is traditionally addressed us-
ing MPC: in the context of this paper, MPC amounts to
re-solving (9a) periodically to create an additional layer of
feedback.

Optimization and markets. It will be clear to many readers
that the resource allocation problem considered in this paper
is similar to the starting point of the dynamic competitive
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Fig. 6. SoC for pool pumps recovered using those of ACs and WHs.

equilibrium analysis posed in [12], [39].2 In this context, this
optimization problem may be regarded as the social planner’s
problem (SPP) of micro-economics, and the arguments in [39]
together with Prop. III.4 imply that %? is the equilibrium price
in the dynamic competitive equilibrium model. In this context,
Fig. 4 serves as a warning: the “correct” price for a load
shedding event is smooth, rather than the surge price typically
advocated in the literature on demand response [19].

However, this interpretation ignores many realities: 1) This
is a control problem, based on forecast net-load. These fore-
casts will change, perhaps hourly, inducing unpredictable price
shocks. 2) Market theory requires some mechanism for price
discovery. We cannot see how price discovery is consistent
with the control architecture proposed here. 3) Finally, there
is the subject of risk and reliability to all involved when the
grid is controlled through real time price signals [27], [3], [2].

The markets aspect of demand dispatch remains an open
area for research.

APPENDIX

A. Cheap control and value functions

Lemma A.1. Consider the dynamical system with state
(x, z) ∈ R2M and input u ∈ RM , with dynamics of specified
by (9d, 9e). For given t0 ≥ 0, suppose that (x(t0), z(t0))
and (x+, z+) are two state values satisfying xσ(t0) = x+

σ ,
zσ(t0) = z+

σ .
Then, for each δ ∈ (0, 1), there is a C∞ input u satisfying

uσ(t) = 0 for all t0 ≤ t ≤ t0 + δ, and the resulting state
trajectory from xa(t0) satisfies

z(t0 + δ) = z+, x(t0 + δ) = x+ +O(δ).

Moreover, the following bound holds for t0 ≤ t ≤ t0 +
δ, and i ∈ {1, ...,M}:

|xi(t)| ≤ |xi(t0)|+|x+
i −xi(t0)|+δmax(|zi(t0)|, |z+

i |). (32)

Proof. Without loss of generality we take t0 = 0. Let f : R→
R+ be a C∞ probability density, with support on the interval
(0, δ), and choose

ui(t) = [z+
i − zi(0)]f(t)− [x+

i − xi(0)]f ′(t)

where f ′ denotes the derivative of f . This is a “cheap control”,
since uσ(t) = 0 for all t. We then have by definition

zi(t) = zi(0) + [z+
i − zi(0)]

∫ t

0

f(τ) dτ − [x+
i − xi(0)]f(t)

2These papers, mirroring prior static analyses, began with the assumption
that electric power is the commodity of interest to the consumers, ignoring
the ultimate value of energy to the consumer as in the present work.
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This gives zi(δ) = z+
i , and

xi(t) = e−αitxi(0)−
∫ t

0

e−αi(t−τ)zi(τ) dτ

= xi(0)−
∫ t

0

zi(τ) dτ +O(δ)

= xi(0) + [x+
i − xi(0)]

∫ t

0

f(τ) dτ +O(δ)

which gives xi(δ) = x+
i +O(δ).

We have |zi(τ)| ≤ max(|zi(0)|, |z+
i |) + |x+

i − xi(0)|f(τ)
for 0 ≤ τ ≤ δ, from which the bound on xi(t) follows. �

The following standard result is need in the results that
follows—see [41, Theorem A] for a proof.

Lemma A.2. Let f : Rn → R be a convex function. Then, f
is locally Lipschitz: that is, for each x ∈ Rn, there exists
a neighborhood U containing x such that f is Lipschitz
continuous on U . Equivalently, f is Lipschitz on any compact
subset K of Rn.

The next lemma provides the proof of the first part of
Prop. II.1, and further structure on the value function.

Lemma A.3. The following hold for the value function J?

under Assumption 1: it is convex in xa = (x, z), finite-valued,
and locally Lipschitz in (xa, t).

Proof. It is obvious that J? is finite valued. To see that it is
convex, let {(xi, zi) : i = 0, 1} denote two initial conditions
(starting at time t0), fix θ ∈ (0, 1), and denote (xθ, zθ) = (1−
θ)(x0, z0)+θ(x1, z1). It remains to show that J?(xθ, zθ, t0) ≤
(1 − θ)J?(x0, z0, t0) + θJ?(x1, z1, t0) for each t0. Consider
any continuous input-state trajectories:

{(ui[t0,T ], x
i
[t0,T ], z

i
[t0,T ]) : i = 0, 1}

with given initial conditions xi(t0) = xi, zi(t0) = zi. Because
the system is linear, it follows that the convex combination
is feasible from (xθ, zθ): with uθ[t0,T ] defined as the convex
combination of the inputs, the resulting state trajectory is the
convex combination (xθ[t0,T ], z

θ
[t0,T ]). Consequently,

J?(xθ, zθ, t0) ≤
∫ T
t0

c(xθ(t), zθ(t), uθ(t), t) dt

≤ (1− θ)
∫ T
t0

c(x0(t), z0(t), u0(t), t) dt

+ θ

∫ T
t0

c(x1(t), z1(t), u1(t), t) dt,

where the first inequality is the definition of J? as an infimum,
and the second follows from convexity of the cost function.
The proof of convexity is completed on taking the infimum
over ui[t0,T ] for each i = 0, 1.

Since J? is convex in xa, it follows from Lemma A.2 that
J? is locally Lipschitz in xa. That is, for each xa ∈ R2M ,
there exists a neighborhood U containing xa and an L ≥ 0
such that, for any t ∈ [0, T ]:

|J?(xa1 , t)− J?(xa2 , t)| ≤ L‖xa1 − xa2‖, xa1 , x
a
2 ∈ U.

Next, we show that J? is locally Lipschitz in t, which is
equivalent to demonstrating that, for each xa, t0, and each
δ ∈ (0, 1),

J?(xa, t0 + δ)− J?(xa, t0) = O(δ)

As a consequence of Bellman’s principle of optimality, for
any input u, we have,

J?(xa, t0) ≤
∫ t0+δ

t0

c(xa(t), u(t), t) dt

+ J?(xa(t0 + δ), t0 + δ)

(33)

For any initial state (xa(t0)), it follows from Lemma A.1 that
there is a C∞ input u such that for all t ∈ [t0, t0+δ], the input
is cheap, i.e., uσ(t) = 0, and the state (xa(t)) satisfies the
uniform bound (32), with x(t0 +δ) = x+O(δ), z(t0 +δ) = z.
For this input u, the integral term in (33) is of order O(δ),
and since J? is locally Lipschitz in x, we obtain the bound
J?(xa, t0) ≤ J?(xa, t0 + δ) + O(δ). It remains to establish
the reverse inequality:

J?(xa, t0 + δ) ≤ J?(xa, t0) +O(δ). (34)

First, recall the time-dependency in the cost comes from `(t):

c(xa, u, t) = cX(x) + cg(`(t)− zσ) + 1
2κ(uσ − `′(t))2

Let {(x◦(t), z◦(t), u◦(t)) : t0 ≤ t ≤ T } denote the optimal
solution that minimizes the value function, so that

J?(xa, t0) =

∫ T
t0

c(x◦(t), z◦(t), u◦(t), t) dt (35a)

=

∫ T
t0

c(x◦(t), z◦(t), u◦(t), t+ δ) dt+O(δ) (35b)

Equation (35b) follows from Lipschitz continuity of ` and `′

(and recall that c(xa, u, t) := 0 for t > T by Assumption 1).
For any feasible state-input trajectory {(xa(t), u(t)) : t0 +

δ ≤ t ≤ T } such that x(t0 + δ) = x, z(t0 + δ) = z, it follows
from the definition of J? that:

J?(xa, t0 + δ) ≤
∫ T
t0+δ

c(xa(t), u(t), t) dt. (36)

For t0 + δ ≤ t ≤ T , set

(x(t), z(t), u(t)) := (x◦(t− δ), z◦(t− δ), u◦(t− δ)) ,

where the right hand side is based on the optimal solution in
(35a). This trajectory satisfies x(t0+δ) = x and z(t0+δ) = z,
and consequently,

J?(xa, t0 + δ) ≤
∫ T
t0+δ

c(x◦(t− δ), z◦(t− δ), u◦(t− δ), t)dt

(37a)

=

∫ T −δ
t0

c(x◦(t), z◦(t), u◦(t), t+ δ) dt (37b)

≤
∫ T
t0

c(x◦(t), z◦(t), u◦(t), t+ δ) dt (37c)

= J?(xa, t0) +O(δ). (37d)
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The first inequality (37a) follows from (36); a change of
variables leads to (37b); the fact that the cost function is non-
negative results in (37c); and (37d) is a consequence of (35b).

Equation (37) gives the desired inequality (34). �

Proof of Prop. II.1. Part (i) of Prop. II.1 is contained in
Lemma A.3, so it remains to prove. It is clear from the
definitions that K?(xaσ, t0) ≤ J?(xa, t0) for each xa, t0;
we establish next the reverse inequality. For this we apply
Lemma A.1: take any pair (x+, z+) satisfying xσ(t0) = x+

σ ,
zσ(t0) = z+

σ , and let u denote the input described in
Lemma A.1, so that in particular xδ(t0 + δ) = x+ + O(δ)
and zδ(t0 + δ) = z+. We obtain via Bellman’s principle of
optimality,

J?(xa, t0) ≤
∫ t0+δ

t0

c(xδ(t), zδ(t), uδ(t)) dt

+ J?(xδ(t0 + δ), zδ(t0 + δ), t0 + δ)

=

∫ t0+δ

t0

c(xδ(t), zδ(t), uδ(t)) dt

+ J?(x+ +O(δ), z+, t0 + δ)

≤
∫ t0+δ

t0

c(xδ(t), zδ(t), uδ(t)) dt

+ J?(x+, z+, t0) +O(δ)

(38)

where the final inequality follows from Lemma A.3, i.e., the
fact that J? is locally Lipschitz in all its variables.

Based on the form of the cost function (11a) and the uniform
bound on xδ and zδ (independent of δ) as a consequence of
Lemma A.1, we may let δ ↓ 0 to obtain

J?(xa, t0) ≤ J?(x+, z+, t0)

Taking the infimum over all (x+, z+) leads to J?(xa, t0) ≤
K?(xaσ, t0) as claimed. �

B. Co-state dynamics and state space collapse

The dynamics of the dual variables appearing in Prop. III.2
are given in the following lemma.

Lemma A.4. Let t0 ∈ (0, T ). The optimal input-state
(u?, x?, z?) and dual variables {λ?, β?} satisfy the following
co-state equations:

d
dtλ

?
i (t) = αiλ

?
i (t)− c′i(x?(t)), (39a)

d
dtβ

?
i (t) = λ?i (t) + c′g(`(t)− z?σ(t)), t ∈ [t0, T ], (39b)

with boundary condition λ?i (T ) = 0, β?i (T ) = 0 for each i.

Proof. The state (x?(t), z?(t)) is continuously differentiable
and the control u?(t) is continuous on [t0, T ] as a consequence
of Assumption 2. In addition, the dynamics, eqs. (9d) and (9e),
are linear and hence continuously differentiable with respect
to each of the variables. Further, Assumption 1 implies that
the cost function c in (11a) is continuously differentiable with
respect to all the variables. Consequently, the optimal input-
state pair u?, (x?, z?) satisfies Pontryagin’s minimum principle
on the closed interval [t0, T ] [26, Section 4.2]. The rest of

the proof follows from this result. In particular, the minimum
principle implies

d
dtλ

?
i (t) = − ∂

∂xH
(
x?(t), z?(t), u?(t), λ?(t), β?(t), t)

)
,

d
dtβ

?
i (t) = − ∂

∂zH
(
x?(t), z?(t), u?(t), λ?(t), β?(t), t)

)
which yields (39a). The boundary conditions λ?i (T ) =
β?i (T ) = 0 hold because there is no terminal cost [43,
Theorem 1]. �

The optimal input is considered next.

Lemma A.5. Let t0 ∈ (0, T ). The optimal input on [t0, T ] is

u?σ(t) = d
dt`(t)−

1

κ
β?i (t), t ∈ [t0, T ] (40)

Moreover, β?(t) :=β?i (t), λ?(t) :=λ?i (t) are independent of i.

Proof. Similar to the proof of Lemma A.4, the conclusion (40)
is a consequence of Pontryagin’s minimum principle, and the
first-order condition for minimality:

0 = ∂
∂uH

(
x?(t), z?(t), u?(t), λ?(t), β?(t), t)

)
This establishes (40), which then implies that β?i (t) is inde-
pendent of i for each t. The conclusion that λ?i (t) is also
independent of i follows from eq. (39b). �

The lemma reinforces the co-state collapse identified in
Prop. III.2. Proof of the main result is provided next.
Proof of Thm. III.1. Equations (16a) and (16b) are the
state equations. Equations (16c) and (16d) and the final time
boundary conditions on the co-state variables follow from
Lemmas A.4 and A.5. The optimal feedback policy (16e) is
obtained from Lemma A.5.

As a consequence of Assumption 2 and the fact that the
cost functional is convex with respect to the control and
that the dynamics are linear, the solution (x?, z?, λ?, β?, u?)
satisfying Pontryagin’s minimum principle is both necessary
and sufficient for optimality [6, Chapter 7]. �

C. Quadratic cost functions:

Representations of the value function, and the optimal co-
state/input are provided next, in the setting of Section IV-A:

Lemma A.6. Consider the cost function c(x(t), z(t), u(t), t)
provided in (27) and the value function J∗ defined in (26) with
`(t) = ` for all t ∈ [0, T ]. Then, for t ∈ (0, T ], we have the
following:
(i) The value function has the form:

J?(xa, t) = K?(xaσ, t) = 1
2

[
xσ
zσ

]ᵀ
Pt

[
xσ
zσ

]
where Pt is a symmetric, positive semi-definite matrix.
(ii) The optimal co-state (λ?(t), β?(t)) can be represented
in terms of the optimal state trajectories:[

λ?(t)
β?(t)

]
= Pt

[
x?σ(t)
z?σ(t)

]
= Ptw

ᵀ

[
x?(t)
z?(t)

]
(41)

(iii) The optimal input u?σ(t) is

u?σ(t) = − 1

κM
1ᵀBᵀwPtw

ᵀ

[
x?(t)
z?(t)

]
(42)
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Proof. Statement (i) follows from the fact that for a linear
system with quadratic costs, the value function has a quadratic
form [26, Section 6.1.3]. Then, in the second result (41), the
first equality follows from the definitions of λ? and β? in (14),
and the second equality follows from (2).

From basic matrix algebra and (41), it follows that the right-
hand side of (42) equals −β?(t)/κ. Since d

dt`(t) = 0 by
assumption, (16e) leads to the third result (42). �

Proof of Prop. IV.1. Statement (i) of Lemma A.6 yields (28).
From (16c) and (41), we can write:

w d
dt

[
λ?(t)
β?(t)

]
=
[
−Q−AᵀwPtw

ᵀ
] [x?(t)
z?(t)

]
(43)

Differentiating (41) with respect to time, it follows from
(3), (42), and matrix algebra that,

w d
dt

[
λ?(t)
β?(t)

]
=
[
wṖtw

ᵀ + wPtw
ᵀA

− 1

κ
wPt

[
0 0
0 1

]
Ptw

ᵀ
] [x?(t)
z?(t)

] (44)

Denote W := wᵀw (an invertible matrix). The differential
Riccati equation (29) follows from (43) and (44) after multi-
plication by W−1wᵀ on the left and wW−1 on the right.

The boundary condition PT = 0 follows from the fact that
K?(xaσ, T ) = 0 for any x, z �

Proof of Prop. IV.2. From (17) and (41),

x?(t) =
[
−Q−1

x Ax[1 0]Pt −Q−1
x [1 0]Ṗt

] [x?σ(t)
z?σ(t)

]
−Q−1

x [1 0]Pt
d
dt

[
x?σ(t)
z?σ(t)

]
,

(45)

where Qx = diag(qi) and Ax = −diag(αi). Rewriting (8a)
and (8b) in matrix-vector form gives

d
dt

[
x?σ(t)
z?σ(t)

]
=

[
1ᵀAxx

?(t)− z?σ(t)
u?σ(t)

]
(46)

Substituting x?(t) from (45) and u?σ(t) from (42) in (46)
yields the first result (30) after simplification. Since (30)
is a linear time-varying system, there exists a unique state-
transition matrix φ(t, 0) such that,[

x?σ(t)
z?σ(t)

]
= φ(t, 0)

[
x?σ(0)
z?σ(0)

]
(47)

The map G1 in (31) follows from (45), and G2 follows from
(16a). �
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Balancing California’s grid without batteries. In Proc. of the Conf. on
Dec. and Control, pages 7314–7321, Dec 2018.
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