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a b s t r a c t

Discovering the underlying dynamics of complex systems from data is an important practical topic.
Constrained optimization algorithms are widely utilized and lead to many successes. Yet, such purely
data-driven methods may bring about incorrect physics in the presence of random noise and cannot
easily handle the situation with incomplete data. In this paper, a new iterative learning algorithm for
complex turbulent systems with partial observations is developed that alternates between identifying
model structures, recovering unobserved variables, and estimating parameters. First, a causality-based
learning approach is utilized for the sparse identification of model structures, which takes into account
certain physics knowledge that is pre-learned from data. It has unique advantages in coping with
indirect coupling between features and is robust to stochastic noise. A practical algorithm is designed
to facilitate causal inference for high-dimensional systems. Next, a systematic nonlinear stochastic
parameterization is built to characterize the time evolution of the unobserved variables. Closed
analytic formula via efficient nonlinear data assimilation is exploited to sample the trajectories of the
unobserved variables, which are then treated as synthetic observations to advance a rapid parameter
estimation. Furthermore, the localization of the state variable dependence and the physics constraints
are incorporated into the learning procedure. This mitigates the curse of dimensionality and prevents
the finite time blow-up issue. Numerical experiments show that the new algorithm identifies the model
structure and provides suitable stochastic parameterizations for many complex nonlinear systems with
chaotic dynamics, spatiotemporal multiscale structures, intermittency, and extreme events.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Complex turbulent dynamical systems appear in many areas,
such as geophysics, neural science, engineering, and atmosphere
and ocean science [1–3]. These complex systems are character-
ized by strong nonlinearity, high dimensionality, and multiscale
structures. The nonlinear interactions between different scales
transfer energy throughout the system, which triggers a large
dimension of strong instabilities. As a result, many non-Gaussian
features, such as extreme and rare events, intermittency, and fat-
tailed probability density functions (PDFs), are observed in these
systems [4–9]. In addition to improving the description of the
phenomena, accurate modeling of these complex systems is the
prerequisite of state estimation, uncertainty quantification, and
prediction [10–14].

Due to the incomplete physical understanding of nature and
the inadequate model resolution resulting from the limited com-
puting power, model error is often inevitable in inferring these
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complex systems utilizing the purely knowledge-based model-
ing approaches that aim at revealing the entire model structure
based on explicit physical laws [15–19]. To this end, learning the
underlying dynamics of these complex systems with the help of
data is of practical significance. Appropriately exploiting the data
may facilitate the discovery of additional physical structures be-
yond those obtained from the available partial knowledge. It also
provides useful information for developing effective parameteri-
zations that compensate for the inadequate model resolution. The
data-driven learning methods can be divided into two categories
depending on the amount of available physical understanding of
the problem of interest. On the one hand, if there is little prior
knowledge of the underlying dynamics, then the model structure
and the model parameters have to be learned almost entirely
from the data. In such a situation, the learning algorithm typically
starts with a large library of candidate functions and then a
certain sparse identification technique, such as the least absolute
shrinkage and selection operator (LASSO) regression [20,21], or
dynamical constraints [22], is incorporated into the optimization
procedure for the function selection to obtain a parsimonious
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model [23–25]. Note that sparse identification can be combined
with other methods, such as the ensemble Kalman inversion [26],
to facilitate the learning process. Learning the underlying dy-
namics from undersampled data utilizing compressive sensing
has also been studied in [27]. On the other hand, when part
of the underlying dynamics is known, the task becomes more
straightforward as the learning algorithm is primarily utilized to
discover the residual part. In general, simple closure terms or
parameterizations are developed from data to approximate the
residual such that the complexity of the discovered model does
not increase significantly. These closure methods include using
data to fit specified ansatz motivated from fluids or other dy-
namical systems [28–31], data-driven reduced order models [32–
34], closure models with physics constraints [35,36], conditional
Gaussian nonlinear systems [37,38], non-Markovian closure mod-
els [39–41], statistical or stochastic closure models [42,43], etc.
If the available partial dynamics are inaccurate, then system-
atic learning algorithms can be developed to either correct the
model error explicitly from data [44] or introduce additional
judicious model errors to offset the existing bias [45–47]. It is
also worth mentioning that the learning output is sometimes
represented in non-parametric forms. Such an alternative is par-
ticularly useful when the primary goal is to forecast the system
instead of reaching the explicit physical formulation. This type
of learning approach includes developing non-parametric closure
models [48–51], subgrid parameterizations [52–54], and machine
learning forecast models [55–57].

These data-driven methods have led to many successes in vari-
ous contexts, especially in building approximate models and fore-
casting time series. Yet, several challenges still exist in exploiting
data-driven approaches to discover the underlying dynamics of
complex turbulent systems robustly. First, satisfying the model
parsimony is only a necessary but not sufficient condition for
identifying the true dynamics. The model identification based on
purely data-driven constrained optimization algorithms may not
be the best choice to characterize the physical or causal depen-
dence between state variables. As a result, in the presence of even
slight random noise, both the covariate selection accuracy and the
fraction of zero entries may decrease significantly [58], leading to
a significant bias in discovering the underlying dynamics. Second,
it is often the case that only the observations of a subset of
the state variables are available in practice, known as partial
observations. In such a situation, the state estimation of the
unobserved variables and the parameterization of these processes
have to be carried out simultaneously as the discovery of the
underlying dynamics of the observed variables and the parameter
estimation. This significantly increases the computational cost
since the uncertainty quantification of the estimated unobserved
states has to be incorporated into the optimization procedure.
In addition, as the dimension of the system becomes large, the
number of candidate functions in the library often shoots up. The
curse of dimensionality prevents an efficient selection of the most
relevant functions.

In this paper, a causality-based iterative learning algorithm
is developed, which aims at overcoming the above difficulties
in discovering the dynamics of complex turbulent systems from
only partial observations. The algorithm alternates between iden-
tifying model structures, recovering unobserved variables, and es-
timating parameters. First, the model identification procedure dif-
fers from the LASSO regression and many other straightforward
constrained optimizations, where data is directly utilized to com-
pute the loss function that involves a regularizer for the model
sparsity. In the proposed approach, a causality-based sparse iden-
tification of the model structure is adopted, which takes into
account certain physics knowledge that is pre-learned from data.
Specifically, in light of the observational data, an information

measurement called the causation entropy [58,59] is exploited to
detect the possible causal relationship between each candidate
function and the time evolution of the associated state variable.
The model structure is then determined by retaining those can-
didate functions demonstrated to be crucial to the underlying
dynamics based on the causal inference. Notably, using both
linear and nonlinear test models, it has been shown that the
causality-based sparse identification approach can have a higher
selection accuracy than LASSO regression or elastic net [59]. It
also indicates robust results in the presence of indirect coupling
between features and stochastic noise [60], which are crucial
features of complex turbulent systems. In addition, with the pre-
determined model structure from the causal relationship, the
parameter estimation remains a quadratic optimization prob-
lem. Closed analytic formulae are available to efficiently and
accurately solve the parameter estimation problem. This is very
different from the traditional sparse identification based on a con-
strained optimization that involves an L1 regularization, which
requires more expensive numerical solvers. Second, a system-
atic nonlinear stochastic parameterization is built to characterize
the time evolution of the unobserved state variables, aiming at
capturing their statistical feedback to the observed ones [37].
Stochastic parameterization is essential for the identified model,
as completely ignoring the contribution from the unobserved
variables may lead to a significant bias. To effectively learn the de-
tails of the stochastic parameterization, which is often a compu-
tationally expensive task utilizing direct optimization algorithms,
an efficient nonlinear data assimilation method is developed that
exploits closed analytic formulae to sample the trajectories of the
unobserved variables [61]. These sampled trajectories are then
treated as synthetic observations that allow the entire system
to be fully observed, which facilitates the parameter estimation
based on a simple maximum likelihood criterion. Finally, the
localization of the state variable dependence and the physics
constraints with energy-conserving nonlinearity are incorporated
into the learning procedure [35,62,63], which overcome the curse
of dimensionality and prevent the finite time blow-up issue of the
complex systems.

The rest of the paper is organized as follows. The new causality-
based learning algorithm with a stochastic parameterization for
complex systems with partial observations is developed in Sec-
tion 2. The quantitative measurements of assessing the learning
algorithm are presented in Section 3. Examples of learning pro-
totype complex systems are included in Section 4. The paper is
concluded in Section 5.

2. The causality-based data-driven learning approach

2.1. Overview of the method

Let us start with the general formulation of complex nonlinear
systems [8,10,64,65],

dZ

dt
= Φ(Z(t))+ σẆ(t), (1)

where Φ(Z(t)) consists of any linear and nonlinear functions of
the state variable Z ∈ R

N , σ ∈ R
N×d is the noise amplitude and

Ẇ(t) ∈ R
d×1 is a white noise. For the simplicity of presentation,

d is assumed to be the same as N and σ is assumed to be
a constant diagonal matrix, which occurs in many situations.
For complex systems in geophysics and fluids, Φ(Z(t)) usually
contains linear dispersion and dissipation, external forcing, and
energy-conserving quadratic nonlinear terms. More complicated
and higher order nonlinearity can be included in Φ(Z(t)) in other
applications.

Next, denote by Z = (X,Y)T a decomposition of the state
variables, where both X and Y are multivariate with X ∈ R

N1 ,

2
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Y ∈ R
N2 and N1+N2 = N . In general, X stands for the large-scale

or resolved variables while Y contains a collection of medium-
to small-scale variables or unresolved components. Assume one
realization of the time series generated from the true underlying
system is available for X serving as the observations while there
is no observational data for Y. To learn the underlying dynamics,
a library of linear and nonlinear functions that represent different
combinations of the components of X and Y is pre-developed.
Given an initial guess of the model structure of the observed state
variables (hereafter ‘‘model structure’’), the stochastic param-
eterizations of the unobserved variables (hereafter ‘‘stochastic
parameterization’’), and the model parameters, the learning al-
gorithm includes an iterative procedure that alternates between
three steps until the solution converges.

1. Conditioned on the observed time series of X, apply a
conditional sampling to obtain a time series of the un-
observed state variables Y. The conditional sampling of Y
can be achieved utilizing closed analytic formulae and is
computationally inexpensive.

2. Treating the sampled trajectory of Y as the artificial ‘‘obser-
vations’’, compute the causality-based information transfer
from each candidate function in the library to the time
evolution of the given state variable. Determine the model
structure and the form of the stochastic parameterization
based on such a causal inference.

3. Utilize a simple maximum likelihood estimation to com-
pute the coefficients of the above-selected functions.

It is worthwhile to highlight that the library of candidate
functions is often chosen subjectively based on the empirical
knowledge. The unknown true underlying dynamics may include
terms that are outside the library. To this end, it is essential
to supplement the governing equations of the observed vari-
ables with additional stochastic parameterizations. The nonlinear
interactions between the stochastic parameterizations with the
observed state variables provide additional features beyond those
characterized by candidate functions in the library.

For high-dimensional systems, the localization of the state
variable dependence is incorporated into the causal inference
such that the information transfer from only a small number
of the candidate functions needs to be computed, which can
mitigate the curse of dimensionality. On the other hand, physics
constraints with energy-conserving nonlinearity are added to the
parameter estimation step, which allows the resulting model to
capture the fundamental behavior of complex turbulent systems
and prevents finite-time blow-up of the solutions.

An overview of the proposed causality-based data-driven
learning algorithm with partial observations is summarized in
Fig. 1.

2.2. Stochastic parameterization and conditional sampling of the

unobserved state variables

The partial observations lead to one of the fundamental chal-
lenges in efficiently learning the underlying dynamics, as the
uncertainty due to the lack of observations impedes the use
of simple closed formulae for the identification of the model
structure and the estimation of the model parameters. It is worth-
while to highlight that learning the exact underlying dynamics
of these unobserved variables is intrinsically very challenging,
if not entirely infeasible, for most complex turbulent systems
since the random noise and chaotic behavior of the signal will
largely affect the observability of the system. Therefore, it is
natural to build stochastic parameterizations for characterizing
the unobserved variables that can provide crucial feedback to
the observed variables. The nonlinear interactions between the

observed variables and these stochastic parameterizations also
compensate for the effects that cannot be explicitly represented
by the library candidate functions in the governing equations of
the observed variables. To facilitate the computational efficiency
of the learning process, the following stochastic parameterization
structure Y is incorporated into the general nonlinear process of
the observed state variable X [37,66,67],

dX

dt
=

[
A0(X, t)+ A1(X, t)Y(t)

]
+ B1(X, t)Ẇ1(t), (2a)

dY

dt
=

[
a0(X, t)+ a1(X, t)Y(t)

]
+ b2(X, t)Ẇ2(t). (2b)

Recall that X ∈ R
N1 and Y ∈ R

N2 . On the right hand side of (2),
A1 ∈ R

N1×N2 and a1 ∈ R
N2×N2 are matrices, and A0 ∈ R

N1×1 and
a0 ∈ R

N2×1 are vectors. The two independent noise coefficients
B1 ∈ R

N1×d1 and b1 ∈ R
N2×d2 are also vectors while the two

white noises Ẇ1 ∈ R
d1×1 and Ẇ2 ∈ R

d2×1 are vectors. The
matrices or vectors A0, a0,A1, a1,B1 and b2 depend nonlinearly
on the observed state variable X and time t . One key feature
of the parameterization of the unobserved variable Y in (2) is
that its governing equation (2b) is overall highly nonlinear and
can produce strongly non-Gaussian statistics, but the process is
conditionally linear with respect to Y once X is given. Such a fam-
ily of stochastic parameterization is widely used in geophysics,
climate, atmosphere, and ocean science, such as the stochastic
superparameterization, dynamical super-resolution, and various
stochastic forecast models in data assimilation [68–72]. Since Y

often denotes the fast, small, and subgrid-scale components of the
system, the terms corresponding to the nonlinear self-interaction
of Y mostly involve high frequencies and rapid fluctuations [73].
Thus, these terms can often be effectively characterized by either
simple stochastic noise [74–77] or suitable approximations that
are nonlinear functions of X and conditionally linear functions
of Y [38]. The resulting stochastic parameterization in (2b) can
successfully capture the dominant dynamics and provide similar
statistics feedback to X as the true system. Another justification
of the parameterization in (2) is that many complex nonlinear
systems already fit into this coupled modeling framework [37,67],
including many physics-constrained nonlinear stochastic models
(e.g., the noisy versions of Lorenz models, Charney–DeVore flows,
and the paradigm model for topographic mean flow interactions),
a large number of stochastically coupled reaction–diffusion mod-
els in neuroscience and ecology (e.g., the FitzHugh–Nagumo mod-
els and the SIR epidemic models), and a wide class of multiscale
models in turbulence and geophysical flows (e.g., the spectrum
representations of the Boussinesq equations and the rotating
shallow water equation). Note that the feedback from Y to X can
either be through an additive function or a multiplicative one,
with the prefactor being an arbitrary nonlinear function of X.

One desirable feature of the system (2) is that its mathematical
structure facilitates an efficient conditional sampling of the tra-
jectory of Y via a closed analytic formula, which avoids sampling
errors from using the particle methods and greatly accelerates the
calculation.

Proposition 1 (Conditional Sampling [61]). For the nonlinear system
(2), conditioned on one realization of the observed variable X(s)
for s ∈ [0, T ], the optimal strategy of sampling the trajectories

associated with the unobserved variable Y within the same time

interval satisfies the following explicit formula,

←−
dY

dt
=
←−−
dµs

dt
−

(
a1 + (b2b

T

2)R
−1
f

)
(Y− µs)+ b2ẆY(t), (3)

where ẆY(t) ∈ R
d2×1 is a Gaussian random noise that is inde-

pendent from Ẇ2(t) in (2). The variables Rf ∈ R
d2×d2 and µs ∈

R
d2×1 are the filtering covariance, and smoother mean, where the

3
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Fig. 1. Schematic diagram of the learning algorithm. Here, X = (x1, x2) and Y = (y1, y2).

filtering and smoothing of Y are defined as the following conditional

distributions

p(Y(t)|X(s), s ≤ t) ∼ N (µf(t),Rf(t)),

p(Y(t)|X(s), s ∈ [0, T ]) ∼ N (µs(t),Rs(t)),
(4)

and the associated evolution equations are given explicitly by

dµf

dt
= (a0 + a1µf)+ (RfA

T

2)(B1B
T

1)
−1

(
dX

dt
− (A0 + A1µf)

)
,

(5a)

dRf

dt
= a1Rf + Rfa

T

1 + b2b
T

2 − (RfA
T

1)(B1B
T

1)
−1(A1Rf), (5b)

←−−
dµs

dt
= −a0 − a1µs + (b2b

T

2)R
−1
f (µf − µs), (5c)

←−
dRs

dt
= −(a1 + (b2b

T

2)R
−1
f )Rs − Rs(a

T

1 + (b2b
T

2)Rf)+ b2b
T

2. (5d)

The notation
←−
d·/ dt in (5c)–(5d) corresponds to the negative of the

usual derivative, which means that both the equations are solved

backward over [0, T ] with (µs(T ),Rs(T )) = (µf(T ),Rf(T )) after

(5a)–(5b) have been solved forward over [0, T ]. The starting value

of the nonlinear smoother (µs(T ),Rs(T )) is the same as the endpoint

value of the filter estimate (µf(T ),Rf(T )).

Therefore, the conditional sampling formula in (3) allows us to
recover the time series of Y, which, together with the observed
trajectory of X forms a complete set of the time series for the
entire system.

2.3. Causal inference for discovering the model dynamics via infor-

mation theory

Given the observational time series of X and the sampled
trajectories of Y from the previous step, the next task is to
determine the functions in the library that are crucial to the time
evolution of each state variable. A small subset of the functions is
preferred to be retained to guarantee the sparsity of the identi-
fied model. Meanwhile, the causal relationship between different
variables is incorporated into the identification process to make
the resulting system physically explainable. Recall the collection
of the state variables Z = (X,Y)T. Denote the components of Z by
Z = (z1, z2, . . . , zN )T. Further denote by F = (f1, f2, . . . , fM )T the
candidate functions in the pre-determined library. As a starting
point, assume all these functions are possible candidates for the

dynamics of each zi, i = 1, . . . ,N . Then, after applying a forward
Euler temporal discretization scheme, the deterministic part of
the starting model of Z has the following form:

⎡
⎢⎢⎣

z1(t +∆t)
z2(t +∆t)

...

zN (t +∆t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

ξ1,1 · · · ξ1,M
ξ2,1 · · · ξ2,M
...

. . .
...

ξN,1 · · · ξN,M

⎤
⎥⎥⎦

⎡
⎢⎢⎣

f1 (z1(t), . . . , zN (t), t)
f2 (z1(t), . . . , zN (t), t)

...

fM (z1(t), . . . , zN (t), t)

⎤
⎥⎥⎦∆t

+

⎡
⎢⎢⎣

z1(t)
z2(t)

...

zN (t)

⎤
⎥⎥⎦

H⇒ Z(t +∆t) = Ξ× F (Z(t), t) ∆t + Z(t),

(6)

where Ξ is the coefficient matrix to be estimated. In general, the
size of the matrix Ξ is quite large since M is often a big number.
Therefore, physics-informed sparse identification is essential to
force most of the entries to be zero.

To incorporate certain physical evidence into this identifi-
cation process, the following causal inference is utilized [58].
Denote by Cfm→zn|[F\fm] the causation entropy of fm(t) on zn(t+∆t).
It is defined as the difference between two conditional entropies.
One represents the information transfer from the entire F(t) to
zn(t+∆t), and the other one stands for that from all the functions
in F(t) excluding fm(t). Therefore, Cfm→zn|[F\fm] allows to explore
the composition of zn(t + ∆t) that comes solely from fm(t). If
such a causation entropy is zero (or practically nearly zero), then
fm(t) does not have a contribution to zn(t + ∆t) or its contri-
bution is indirect and has already been effectively characterized
by the other candidate functions. In such a case, the associated
parameter ξn,m is set to be zero. By computing such a causation
entropy for different m = 1, . . . ,M and n = 1, . . . ,N , a sparse
causation entropy matrix is reached, which indicates if each entry
of Ξ should be estimated. Note that fm is supposed to be a non-
constant function, and the constant terms are always assumed to
exist. After the function selection, a simple maximum likelihood
estimation based on a quadratic optimization can be easily ap-
plied to determine the actual values of those nonzero entries in
Ξ, which can often be solved via closed analytic formulae. This is
very different from the LASSO regression, where the sparse model
identification and parameter estimation have to be carried out
simultaneously with a suitable numerical algorithm.

4
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The causation entropy Cfm→zn|[F\fm] is defined as follows,

Cfm→zn|[F\fm] = H(zn| [F\fm])− H(zn| [F\fm] , fm)
= H(zn| [F\fm])− H(zn|F).

(7)

In (7), H(·|·) is the conditional entropy, which is related to the
Shannon’s entropy H(·) and the joint entropy H(·, ·). They are
defined as:

H(X) = −
∫

x

p(x) log(p(x)) dx,

H(Y |X) = −
∫

x

∫

y

p(x, y) log(p(y|x)) dy dx,

H(X, Y ) = −
∫

x

∫

y

p(x, y) log(p(x, y)) dy dx,

where p is the associated PDF that is typically determined by a
histogram from the given time series (assuming the ergodicity).
The difference on the right-hand side of (7) naturally represents
the contribution of fm to zn.

Note that other information measurements have also been ap-
plied for the causality detection, such as the transfer entropy [78,
79] and the directed information [80,81]. These methods, in gen-
eral, work well. Nevertheless, the causation entropy in (7) has its
advantages in identifying model structure in the presence of in-
direct coupling between features and stochastic noise [60], which
are crucial features of complex turbulent systems. The former is
detected through the conditional entropy while the use of the PDF
in the conditional entropy is a more robust measurement with the
noise.

The calculation of the causation entropy.

The direct calculation of the causation entropy in (7) is non-
trivial and computationally expensive. Reconstructing the exact
PDFs from a given time series is challenging. The kernel den-
sity estimation (KDE) [82], the box-counting algorithm [83], and
many other direct estimation methods suffer from the curse of
dimensionality. Some alternative methods have been proposed,
such as the k-nearest neighbors [84,85], which can mitigate the
issue to some extent but may remain to be complicated. Since
determining the model structure only depends on if the causation
entropy is zero or not rather than its exact value, the following
properties will facilitate the calculation of the causation entropy
in high dimensions.

Proposition 2 (Chain Rule). The conditional entropy can be rep-

resented by the Shannon’s entropy and the joint entropy via the

following chain rule:

H(Y |X) = H(X, Y )− H(X). (8)

Proposition 3 (Gaussian Approximation). If p ∼ N (µ,R) satisfies a
s-dimensional Gaussian distribution, then the Shannon’s entropy has

the following explicit form

H(p) = s

2
(1+ ln(2π ))+ 1

2
ln (det(R)) , (9)

where ‘det’ is the matrix determinant.

With these properties in hand, the practical calculation of the
causation entropy can be the following.

Proposition 4 (Practical Calculation of the Causation Entropy). By
approximating all the joint and marginal distributions as Gaussians,

the causation entropy can be computed in the following way:

CZ→X |Y = H(X |Y )− H(X |Y , Z)

= H(X, Y )− H(Y )− H(X, Y , Z)+ H(Y , Z)

= 1

2
ln(det(RXY ))−

1

2
ln(det(RY ))

− 1

2
ln(det(RXYZ ))+

1

2
ln(det(RYZ )),

(10)

where RXYZ denotes the covariance matrix of the state variables
(X, Y , Z)T and similar for other covariances.

The Gaussian approximation allows us to efficiently deter-
mine the structure of the sparse matrix of Ξ, where the exact
values of the nonzero entries will then be determined via a
simple maximum likelihood estimation. Note that the Gaussian
approximation is only applied to post-process the calculation
of the causation entropy by approximating the resulting non-
Gaussian distribution utilizing the first two moments. It does not
require linearizing the underlying dynamics to obtain the time
series that satisfies a Gaussian distribution. Thus, the results using
the Gaussian approximation still reflect the nonlinear nature of
the underlying dynamics. The Gaussian approximation has been
widely applied to compute various information measurements
and lead to reasonably accurate results [43,86–88]. The Gaussian
approximation may lead to certain inaccuracies in computing the
exact value of the causation entropy if the true distribution is
highly non-Gaussian. Nevertheless, it often suffices to detect all
the index pairs (m, n) in Ξ, associated with which the causa-
tion entropy Cfm→zn|[F\fm] is nonzero (or practically above a small
threshold value). Note that such a threshold value is an analog
to the level of the regularity in LASSO in determining the model
sparsity [23].

Similar to (1), the system by retaining only the functions
corresponding to the nonzero causation entropy entries can be
written as
dZ

dt
= Φ̃(Z(t))+ σẆ(t). (11)

Further denote by Θ the collection of the parameters to be
estimated, which correspond to the nonzero entries in Ξ.

2.4. Parameter estimation via a simple maximum likelihood estima-

tion

Consider a temporal discretization of (11) using the Euler–
Maruyama scheme [89],

Zj+1 = Zj + Φ̃(Zj)∆t + σεj
√

∆t, (12)

where j is the index in time, ∆t is a small time step, and εj is
an independent and identically distributed (i.i.d.) standard mul-
tidimensional Gaussian random number. For the convenience of
presentation, let the dimensions d = N and therefore σ ∈
R

N×N . Further assume σ is a diagonal matrix. Denote by zj the
given numerical value of Zj from observations. Further denote
by Mj

Θ + sj := zj + Φ̃(zj)∆t , namely the deterministic part on
the right hand side of (12) evaluated at zj. Here the nonlinear
candidate functions in the library are included in Mj and sj,
where the former appears as the multiplicative prefactor of the
parameters Θ while the latter appears on its own such as the first
term — Zj — on the right-hand side of (12). Due to the Euler–
Maruyama approximation, the one-step time evolution from Zj

to Zj+1 is approximated by a linear function within such a short
time interval. Therefore, the likelihood can be computed based on
a Gaussian distribution,

N (µj,Σ) = C |Σ|− 1
2 exp

(
−1

2
(zj+1 − µj)T(Σ)−1(µj+1 − µj)

)
,

(13)
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where the mean and the covariance are given by µj = Mj
Θ + sj

andΣ = σσT∆t , respectively. Note that σ has been assumed to be
a diagonal constant matrix, and therefore Σ does not depend on
j. Taking a logarithm operation to cancel the exponential function
and summing up the likelihood over the entire time period yield

L = 1

2

J∑

j=1
(zj+1−Mj

Θ−sj)T(Σ)−1(zj+1−Mj
Σ−sj)− J

2
log |Σ|, (14)

where J + 1 = ⌊T/∆t⌋ with ⌊·⌋ being the floor function that
rounds down the result to the nearest integer. To find the mini-
mum of L, it is sufficient to find the zeros of ∂L

∂Θ
= 0 and ∂L

∂Σ
= 0,

which leads to

Σ = 1

J

J∑

j=1
(zj+1 −Mj

Θ− sj)(zj+1 −Mj
Θ− sj)T, (15a)

Θ = D−1c, (15b)

where

D =
J∑

j=1
(Mj)TΣ−1Mj and c =

J∑

j=1
(Mj)TΣ−1(zj+1 − sj). (16)

The equations in (15) are solved by first setting Θ = 0 in
finding Σ in (15a) via essentially the quadratic variation, and then
plugging in the result into (16) and (15b) to obtainΘ. The analytic
solution in (15)–(16) significantly facilitates the estimation of
the parameter values compared with a numerical solver for a
non-quadratic optimization problem, for example, in the standard
LASSO regression methods. The computational cost in (15)–(16)
is proportional to the square of the number of functions in the
identified model (in computing D) and to the total number of ob-
servational points in time. Since the goal is to find a parsimonious
model, the number of the candidate functions remaining in the
model is expected to be small, which leads to a relatively low
computational cost in solving (15)–(16).

2.5. Physics constraints

Physics constraints, meaning the conservation of energy in
the quadratic nonlinear terms, are important properties in many
complex turbulent systems and appear in most of the classi-
cal geophysics and fluid models [35,36]. The physics constraints
prevent the finite-time blow-up of the solutions and facilitate
a skillful medium- to long-range forecast. Therefore, taking into
account the physics constraints and other constraints is crucial
for the learning algorithm, especially in the parameter estimation
step. These constraints, together with other constraints, can, in
general, be represented in the following way:

HΘ = g, (17)

where H and g are constant matrices. To incorporate these con-
straints, the Lagrangian multiplier method is applied, which mod-
ifies the objective function in (14),

L = 1

2

J∑

j=1
(zj+1 −Mj

Θ− sj)T(Σ)−1(zj+1 −Mj
Θ− sj)

− J

2
log |Σ−1| + λT(HΘ− g),

(18)

where λ is the Lagrangian multiplier. The solution to the mini-
mization problem with the new objective function (18) is given
as follows,

Σ = 1

J

J∑

j=1
(zj+1 −Mj

Θ− sj)(zj+1 −Mj
Θ− sj)T (19a)

λ =
(
HD−1HT

)−1
(HD−1c− g), (19b)

Θ = D−1
(
c− HTλ

)
, (19c)

where D and c are defined in (16).

2.6. Localization of the state variable dependence

Localization of the state variable dependence is typical in
many complex turbulent systems for modeling large-scale dy-
namics and stochastic parameterizations. On the one hand, high-
dimensional stochastic ordinary differential equations (SDEs) are
usually obtained due to the spatial discretization of a stochastic
partial differential equation. The advection, diffusion, and disper-
sion are all local operators, which implies that each state variable
in the SDEs interacts with only the nearby few states [64,90]. On
the other hand, the stochastic parameterizations of the states at
the subgrid scales also depend only on the nearby corresponding
large-scale state variables [91–93]. Besides, the idea of localiza-
tion is widely utilized in data assimilation, and prediction [94–
96].

The localization of the state variables is incorporated into
the proposed learning algorithm at both the causal detection
and the conditional sampling steps. The necessity of localization
in causal detection is to mitigate the curse of dimensionality.
When the dimension of the system becomes large, the number
of functions in the library that includes different combinations
of the state variables increases exponentially. As a result, the
cost of computing the causation entropy for all these functions
also shoots up. The localization, which requires computing the
causation entropy of only those functions that involve the local
interactions of the state variables, can overcome the curse of
dimensionality. Next, the stochastic parameterizations of each
component of the subgrid variable Y in (2b), denoted by yi,j,
depend only on the associated large-scale observed state variable
of X, namely xi and xi±1, . . . , xi±s with s being a small positive
integer. This leads to a block covariance matrix of Rf in (3) when
carrying out the conditional sampling to recover the trajectory
of Y. In other words, the giant covariance matrix not only be-
comes sparse but can be divided into several low-dimensional
blocks, which are then solved in a parallel way. This significantly
facilitates the learning algorithm in applying to high-dimensional
systems, which are otherwise difficult to handle due to the heavy
computational burden of storing and solving the full covariance
matrix.

3. Quantitative assessment of the learning skill

Recall that the learning algorithm exploits stochastic param-
eterization to compensate for the contribution from the unob-
served state variables. This implies that the exact dynamics of
these variables can hardly be identified due to the lack of observa-
tions. Therefore, focusing on the skill of recovering the dynamics
of the observed variables is a natural choice for assessing the
learning algorithm. It is also worth noting that stochastic parame-
terization may affect the dynamics of the observed variables since
each parameterized process may involve the combined contri-
bution from several variables in the original system. In addition,
due to the chaotic features and the random noise, computing the
path-wise error in the identified model related to the truth is not
a suitable strategy, as the trajectory from the identified model
will diverge from the truth within a short time even starting
from the same initial conditions. Because of these reasons, the
assessment of the learning algorithm is based on evaluating the
error in reproducing the following two crucial statistical quanti-
ties of the observed variables. The first quantity is the equilibrium
PDF, which represents the long-term statistical behavior of the
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system. The second measurement is the temporal autocorrelation
function (ACF), which is the correlation of a signal with a delayed
copy of itself as a function of delay. It reflects the overall temporal
structure of the system. These two assessments are widely used
to measure the overall dynamical and statistical behavior of the
identified model. Nevertheless, it is worth noting that small errors
based on these two statistical assessments are only the necessary
conditions for validating learning skills.

3.1. The information distance between two PDFs

Denote by p(u) and pM (u) the equilibrium PDF of the truth
and that of the identified model, where u is the state variable. A
natural way to quantify the error in q compared with p is through
the relative entropy P(p, pM ), [87,97,98],

P(p, pM ) =
∫

p(u) log

(
p(u)

pM (u)

)
du, (20)

which is also known as Kullback–Leibler divergence or infor-
mation divergence [99–101]. Despite the lack of symmetry, the
relative entropy has two attractive features. First, P(p, pM ) ≥ 0
with equality if and only if p = pM . A significant value of the
relative entropy means a large difference between the two PDFs.
Second, P(p, pM ) is invariant under general nonlinear changes of
variables. These provide an attract framework for assessing model
errors in many applications [102–106].

3.2. The information distance between two ACFs

Denote by z a scalar variable. The ACF of the time series u(t)
is defined as

R(t) = lim
T→∞

1

T

∫ T

0

u(t + τ )u∗(τ )

Var(u)
dτ , (21)

where Var(u) is the variance of u. The ACF starts from 1 and
decays to 0 with possible oscillations. Directly computing the
relative error between the two ACFs may not be the best choice.
A small phase shift between two ACFs may lead to a big path-
wise error, but the associated dynamics may remain similar.
Information theory can provide a rigorous and practical way to
quantify the difference between two ACFs. The method is based
on the fact that the ACF is related to the power spectrum of the
time series. Once the ACF is mapped to the spectrum, such a
spectral representation facilitates the use of relative entropy to
compute the information distance between the two ACFs. The
detailed procedure can be found in [43,107]. A summary of the
method is included in the following.

According to Khinchin’s formula [108], if the autocorrelation
function R(t) is smooth and rapid-decay, which is the typical
property for most systems, then there exists a non-negative func-
tion E(λ) ≥ 0 such that

R(t) =
∫ ∞

−∞
eiλt dF (λ), (22)

with dF (λ) = E(λ) dλ a non-decreasing function. Therefore the
spectral representation of the stationary process of u can be
constructed as

u(t) =
∫ ∞

−∞
eiλt Ẑ(dλ). (23)

Applying the theory to the spectral representation of stationary
processes, a one-to-one correspondence between the ACF R(t)
and non-negative energy spectrum E(λ) can be found. Consider
approximating this random process with second-order statistics
by a lattice random field with spacing ∆λ. By independence, the

true increment Ẑ(∆λj) = Ẑ(λj+∆λ)− Ẑ(λj) has the second order
Gaussian probability density function approximation

Ẑ(∆λ) ∼ pG(x; λ)∆λ = N (0, E(λ)∆λ),

and the corresponding spectral representation from the identified
model also has the density function

ẐM (∆λ) ∼ pMG (x; λ)∆λ = N (0, EM (λ)∆λ),

where N (µ, σ 2) denotes a Gaussian random variable with mean
µ and variance σ 2. Since the spectral measure has an indepen-
dent increment, the truth and the approximated model Gaussian
random fields can be approximated by

pG =
∏

j

N (0, E(λj)∆λ), pMG =
∏

j

N (0, EM (λj)∆λ).

Then the normalized relative entropy between these two Gaus-
sian fields becomes

P(pG, p
M
G ) =

∑

j

P
(
pG(x; λj), p

M
G (x; λj)

)
∆λ,

→
∫ ∞

−∞
P

(
pG(x; λ), pMG (x; λ)

)
dλ, as ∆λ→ 0.

In the following, the information distance between the two
PDFs (and the two ACFs) is always computed for each one-
dimensional component of the observed variables.

4. Test examples

In this section, three nonlinear chaotic or turbulent systems
are utilized for testing the learning algorithm developed in the
previous section. The first test model is a three-dimensional low-
order system, mainly used as a proof-of-concept and to display
the detailed procedure of the method. The other two models
are spatially-extended multiscale systems, which are adopted
to understand the skill of model identification and stochastic
parameterizations.

In all these experiments, physics constraints are incorporated
into the learning algorithm. Localization is adopted in the second
and third experiments, which facilitates the reduction of the
computational cost. In all the experiments, the total length of
the observation is 500 units while the numerical integration time
step is ∆t = 0.001 such that there are in total of 500,000 points
in each observational time series.

4.1. Lorenz 1984 model

The first test example is a low-dimensional chaotic system,
known as the Lorenz 1984 (L-84) model, which is a simple analog
of the global atmospheric circulation [64,65]. It has the following
form [109,110]:

dx

dt
= −(y2 + z2)− a(x− f )+ σxẆx,

dy

dt
= −bxz + xy− y+ g + σyẆy,

dz

dt
= bxy+ xz − z + σzẆz .

(24)

In (24), the zonal flow x represents the intensity of the mid-
latitude westerly wind current, and a wave component exists
with y and z representing the cosine and sine phases of a chain
of vortices superimposed on the zonal flow. Relative to the zonal
flow, the wave variables are scaled so that x2 + y2 + z2 is the
total scaled energy. These equations can be derived as a Galerkin
truncation of the two-layer quasigeostrophic potential vorticity
equations in a channel. The additional stochastic noise represents
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the interactions between these resolved scale variables and the
unresolved ones.

The following parameters are utilized for the test here:

a = 1

4
, b = 4, f = 8, g = 1, and σx = σy = σz = 0.1,

(25)

which are the standard parameters that create chaotic behav-
ior [109]. In fact, f > 1 is a necessary condition for the zonal flow
becoming unstable, forming steadily progressing vortices, while
g > 0 triggers the chaotic behavior of the entire system.

4.1.1. The experiment setup

In this experiment, y and z are taken as the observed variables,
while the observation of x is not directly available. Note that
the L-84 model (24) automatically fits into the framework (2)
with X = (y, z)T and Y = x. This fact, together with the small
system noises σx = σy = σz = 0.1 utilized here, allows the
learning algorithm to have a potential to fully recover the system,
including the unobserved process, as the contribution from the
deterministic part of the dynamics is only weakly polluted by the
system noises.

It is natural to incorporate all the linear and quadratic non-
linear functions of y and z, namely y, z, y2, z2, and yz, into the
library of the candidate functions. This mimics the general form of
the geophysical flows, the nonlinearity of which is dominated by
the quadratic terms. In addition, the linear and conditional linear
functions of x, namely x, xy, xz, as well as the constant forcing
term, are included in the library. All the quadratic nonlinear
functions of the three state variables, except x2 that breaks the
structure of (2), are contained in the library of the candidate
functions. To further increase the complexity of the library, the
cubic terms that satisfy (2) are also added, which contain the
quadratic terms of y or z multiplying x but not the quadratic or
cubic functions of x itself.

A random and complicated initial model structure is utilized
to start the iterative algorithm,

dx

dt
= y2 − z2 + 2+ (y2 − z2)x+ σxẆx,

dy

dt
= −y− 2y2 + z2 + 1+ (−y− 8z − yz)x+ σyẆy,

dz

dt
= −z + z2 − yz + (8y+ z + z2)x+ σzẆz .

(26)

The initial values of the noise coefficients in the observed pro-
cesses, namely σy and σz , are chosen to be 1. The initial values
of these two parameters will not affect the learning algorithm, as
they will converge to the truth within one iteration step based
on the quadratic variation (19a). On the other hand, σx is not
uniquely determined from the algorithm since the effect due to
the increase of σx can be completely offset by decreasing the co-
efficients in front of x in the observed processes. Therefore, if the
primary goal is to learn the dynamics of the observed variables
with a reasonable parameterization of the unobserved ones, then
an arbitrary value of σx can be used. For the simplicity of the study
here, σx = 0.1 is set to be known. It is also worthwhile to remark
that, as the quadratic variation of the unobserved variable, in
general, cannot be directly updated by the conditional sampling,
a change of variable to normalize such a diffusion coefficient is
often adopted to update such a parameter if the coefficients in
front of x in the observed processes are known [111].

Table 1

Comparison of the parameters in the true system (24) and those in the identified
model. Since the Frobenius norm of C − Ctrue converges to zero, the identified
model has exactly the same structure and the truth. They are both rewritten in
the form of (27) for the convenience of comparing the model parameters.

θ x
x θ

y
y θ z

z θ x
yy θ x

zz θ
y
xz

Truth −0.2500 −1.0000 −1.0000 −1.0000 −1.0000 −4.0000
Identified −0.2680 −0.9987 −1.0076 −0.9993 −1.0061 −3.9956

θ
y
xy θ z

xy θ z
xz θ x

1 θ
y

1 θ z
1

Truth 1.0000 4.0000 1.0000 2.0000 1.0000 0.0000
Identified 0.9993 3.9956 1.0061 2.0223 0.9939 0.0053

4.1.2. Results

Fig. 2 displays the detailed procedure of the learning algo-
rithm. Panel (a) shows the sampled trajectory of the unobserved
variable x at the 1st, the 5th, the 50th, and the 110th iterations. It
is seen that the sampled trajectory converges to the truth as the
number of iterations increases, indicating that the learning pro-
cess eventually recovers the unobserved trajectory and identifies
the model structure.

To better understand the iterative procedure, Panel (b) of Fig. 2
shows the convergence of the model structure towards the truth.
Here, a causation entropy matrix indicator C is introduced, which
is of size N × M , where N = 3 is the dimension of the system
while M is the total number of candidate functions. The matrix C

has the same structure as Ξ in (6) except that C is a logical matrix
with entries being either 0 or 1. If the causation entropy associ-
ated with a specific term exceeds the pre-determined threshold
(which is 10−3 here), then the corresponding entry in C is set to be
1, meaning that the term should be maintained in the dynamics.
Then the Frobenius norm of C − Ctrue is computed, where Ctrue

is the causation entropy matrix indicator corresponding to the
true model (24). It is seen that despite the large gap in the initial
random guess of the model structure, there are only 5 terms
(corresponding to Frobenius being 2.2361) that are mismatched
after 1 iteration (the first point in the curve) and the correct
structure is reached after merely 5 iterations. Note that, at the
5th iteration, the sampled trajectory of x (green) in Panel (a) is
still far from the truth. Although the model structure is already
perfectly identified, additional iterations are still required for the
parameters to converge. One desirable feature observed in Fig. 2
is that the model structure does not change after the 5-th iter-
ation, but only the parameters are updated that simultaneously
provide the improved sampled trajectory of x. The final parameter
values after 120 iterations are shown in Table 1, which are almost
indistinguishable from the truth. Here, the model (24) is rewritten
in the following form for the convenience of comparing the
parameters displayed in Table 1,

dx

dt
= θ x

yyy
2 + θ x

zzz
2 + θ x

x x+ θ x
1 + σxẆx,

dy

dt
= θ y

xzxz + θ y
xyxy+ θ y

y y+ θ
y

1 + σyẆy,

dz

dt
= θ z

xyxy+ θ z
xzxz + θ z

z z + θ
y

1 + σzẆz .

(27)

Fig. 3 shows the model simulations and the associated statis-
tics using the identified model together with the estimated pa-
rameters. Here, the random number generators in the true system
and the identified model are set to be the same when generating
the time series. In addition, the same initial conditions are applied
to simulate the two systems. It is seen that the trajectories from
the identified model coincide with the truth quite well up to time
t = 11, indicating a good path-wise consistency, at least for the
short-term behavior. Yet, due to the chaotic nature of the system,
the trajectories from the true and the identified models do not
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Fig. 2. Iterative procedure of learning the L-84 model with partial observations (y, z)T . Panel (a): The sampled trajectory of the unobserved variable x at the 1st,
the 5th, the 50th, and the 110th iterations, where there are in total 120 iterations. The random initial guess of the model structure is shown in (26). Panel (b): The
Frobenius norm of C − Ctrue as a function of iterations, where C is the causation entropy matrix indicator at each iteration step with entries being either 0 or 1
and Ctrue is the causation entropy matrix indicator corresponding to the true model (24). Panel (d): The updates of the parameter b. The points A and B show the
iteration at 5 and 110 steps. The model structure is identified correctly after the 5th iteration step, while the parameters converge to the truth at around the 110th
step.

Fig. 3. Comparison of the model trajectories and the associated statistics using the true model (blue) and the identified model (red). The two statistics utilized are
the PDF and the temporal ACF. Note that due to the chaotic nature of the system, the two curves do not expect to have a one-to-one point-wise match between each
other. Instead, a qualitative similarity between the trajectories from the truth and the identified model is evidence to show the accuracy of the identified model.

expect to have a one-to-one point-wise match between each
other for long-term behavior. Nevertheless, a qualitative simi-
larity between the trajectories from the truth and the identified
model is observed, which indicates the accuracy of the identified
model. This is further confirmed by the nearly perfect recovery
of the two statistics: the PDF and the temporal ACF. These facts
conclude the skill of the algorithm based on this simple chaotic
example.

Finally, a cross-validation test is carried out. Here, the iden-
tified model is utilized to generate a time series with the same
length as the training signal from the true system for the purpose
of model identification. It is found that the model learned from

such a time series is very close to the identified model. In addi-
tion, starting from the same initial conditions as this time series,
the trajectories running forward using the true model coincide
with such a time series for a short term, similar to the behavior
shown in Fig. 3.

4.2. Two-layer Lorenz 1996 models

The two-layer Lorenz 1996 (L-96) model [112,113] is a concep-
tual representation of geophysical turbulence that is commonly
used as a testbed for data assimilation and parameterization in
numerical weather forecasting [69,114–116]. The model mimics
a coarse discretization of atmospheric flow on a latitude circle. It
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Fig. 4. Dynamical regimes of the Two-layer L-96 model (28), including the model trajectories, PDFs and ACFs of variables ui and wi at i = 1. Here wi is defined as
wi =

∑J

j=1 vi,j .

supports complex wave-like and chaotic behavior, and the two-
layer structure schematically depicts the interactions between
small-scale fluctuations and large-scale motions. The stochastic
version of the model subject to additive noise forcing reads

dui

dt
= −ui−1 (ui−2 − ui+1)− ui + f − hci

J

J∑

j=1
vi,j

+ σuiẆui , i = 1, . . . , I, (28a)

dvi,j

dt
= −bcivi,j+1

(
vi,j+2 − vi,j−1

)
− civi,j + hciui

+ σvi,jẆvi,j , j = 1, . . . , J, (28b)

where I denotes the total number of large-scale variables, and
J is the number of small-scale variables corresponding to each
large-scale variable. In (28), f , h, ci, b, σui and σvi,j are given scalar
parameters while Ẇui and Ẇvi,j are independent white noises. The
large-scale variables ui are periodic in i with ui+I = ui−I = ui.
The corresponding small-scale variables vi,js are periodic in i with
vi+I,j = vi−I,j = vi,j and satisfy the following conditions in j:
vi,j+J = vi+1,j, and vi,j−J = vi−1,j.

Two dynamical regimes are considered here as the truth. They
share most of the parameters:

I = 20, J = 4, ci = 2+ 0.7 cos(2π i/I), b = 2,

f = 4, σui = 0.05, (29)

but they are differed by h and σvi,j :

Regime I: h = 4.0 and σvi,j = 1.00

Regime II: h = 1.5 and σvi,j = 0.05.
(30)

The model trajectories and statistics of these two dynamical
regimes are shown in Fig. 4. For the convenience of discussing the
behavior of the two layers, a new single variable wi =

∑J

j=1 vi,j is
introduced, which describes the total variabilities in the second
layer. It can be seen that there is no scale separation between
ui and vi in regime I since the ACFs oscillate and decay in a
similar fashion. On the other hand, ui tends to occur in a slower
time scale compared with vi in Regime II, leading to multiscale
features. It is also worth mentioning that the coefficient ci is
spatially varying, giving an inhomogeneous spatial pattern of the
system.

4.2.1. The experiment setup
Here the ui for i = 1, 2, . . . , I are the observed variables, and

all the vi,js for different i and j are the unobserved ones. Since only
the time series of ui are provided while the structure of the true
model is unavailable, the number J is unknown to us. Therefore, a
natural way to build a suitable model is to incorporate stochastic
parameterizations into the processes of ui. Each of such a stochas-
tic parameterization wi takes into account the total contributions
of the associated vi,j to a specific ui, which is effectively wi =∑J

j=1 vi,j. Therefore, the target model has 2I dimensions, with
I state variables being the observed ones and the remaining I
variables representing the stochastic parameterizations.

Due to the high dimensionality of the problem, the size of the
library consisting of the candidate functions will become huge if
all possible linear and nonlinear functions up to a certain order
are considered. Nevertheless, since the main components of the
dynamics, such as the advection and diffusion, involve only local
interactions, it is natural to consider such localizations in building
the library of the candidate functions. To this end, for each ui, only
the terms involving its adjacent variables ui−1, ui−2, ui+1 and ui+2
are utilized to construct the candidate functions. The nonlinearity
considered here is up to the quadratic terms. In addition, the
contribution from the stochastic parameterization needs to be
included. One of the simplest choices is to augment the library
with one additive term wi and one multiplicative term uiwi,
where wi itself is driven by a hidden process representing the
stochastic parameterization. Note that other more complicated
nonlinear interactions between the state variables ui and the
stochastic parameterizations can be easily included in the library.
But for the parsimony of the model, only these two related terms
are utilized here. The set of the candidate functions for ui is then
given by a vector Fui , which includes 23 terms:

ui, ui−1, ui−2, ui+1, ui+2, u2
i , u2

i−1, u2
i−2, u2

i+1,

u2
i+2, uiui−1, uiui−2, uiui+1, uiui+2, ui−1ui−2, ui−1ui+1,

ui−1ui+2, ui−2ui+1, ui−2ui+2, ui+1ui+2, 1, wi, uiwi.

(31)

The candidate functions in the library allow rich features to
appear in the dynamics, such as the diffusion and other quadratic
nonlinear interactions that were not in the true system. On the
other hand, only 4 terms are included in the library for each wi,
given by another vector Fwi

,

ui, u2
i , 1, wi. (32)
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This allows for a simple form of stochastic parameterization.
Nevertheless, the nonlinear terms u2

i in Fwi
and uiwi in Fui satisfy

the physics constraints.
The initial guess of the model is constructed as follows:

dui

dt
= −ui−1 (ui−2 − ui+1)+

(
u2
i+1 − ui−1ui

)

+
(
uiui+1 − u2

i−1
)
− ui + f

− hci

J
wi + σuiẆui , i = 1, . . . , I, (33a)

dwi

dt
= hciui − wi + σwi

Ẇwi
, i = 1, . . . , I, (33b)

where the terms u2
i+1 − ui−1ui and uiui+1 − u2

i−1 are two pairs of
local quadratic advection added beyond those in the true system.
Both the pairs of local quadratic advection satisfy the physical
constraints.

In the following, a visualization diagram is utilized to rep-
resent the identified model structure and parameters. Fig. 5 in-
cludes an illustration of the visualization diagram for the starting
model. Panels (a)–(c) show the general representation of the
sparse coefficient matrix. Panel (d) corresponds to the starting
model (33). In the big coefficient matrix, the ith row represents
the right-hand side of the equations of ui and wi, where ui and wi

contain 23 and 4 terms, respectively. The order of these terms in
the figure is the same as that in (31) and (32). The colors indicate
the parameter values.

4.2.2. Results
Let us start with Regime I, where ui and vi lie on the same

time scale. A threshold of 0.001 is utilized in determining if each
entry in the causation entropy matrix should be retained. After
50 iterations, the results converge, where the identified model is
shown in Panel (c) of Fig. 6. It is seen that the identified model
is qualitatively similar to the truth (Panel (a)). In particular, the
inhomogeneous spatial structure in ui is recovered. In addition,
despite the chaotic behavior, the identified model captures the
weakly eastward propagation of the individual waves and the
westward propagation of the wave envelope in the spatiotem-
poral pattern of ui. Fig. 7 compares the model trajectories and
statistics. It is clear that the trajectories of ui generated from the
identified model (which uses the same random number gener-
ator as the truth) are qualitatively similar to the truth, and the
statistics are much more accurate than the initial guess.

Next, it is essential to understand the role of stochastic pa-
rameterization. To this end, the so-called bare truncation model
(BTM) is adopted for comparison, which only retains the dy-
namics of ui but completely omits the equations of wi. That is,
only (28a) is utilized, where all vi,js are set to be zero. Thus,
the BTM has a dimension of I . It is shown in Panel (d) of Fig. 6
that if the same parameters as in the true system are adopted
for the BTM, then the wave patterns become much more regular
than the truth due to the lack of perturbations from the small
scales. Even by incorporating a parameter estimation into the
BTM, the spatiotemporal pattern of the BTM is different from
the truth (Panel (e)). This indicates the critical role of wi in
the original system, especially in such a case that there is no
clear scale separation in the true system. Therefore, incorporating
stochastic parameterization is essential to characterize its effect.
One important finding is that the stochastic parameterization wi

recovers the combined contribution of all the vi,j for j = 1, . . . , J ,
according to Figs. 6–7. This is good evidence that shows the role
of the one-dimensional stochastic parameterization in replacing
the J-dimensional small-scale features in the true model. Note
that the coefficients of wiui are zero in the identified model,
which implies that the single additive term wi is sufficient to
parameterize the total contribution of the small-scale feedback.

Yet, this is one undesirable feature in the identified model.
That is, several additional terms are remaining in the identified
model (e.g., T7, T9, T11 and T13), which do not appear in the perfect
system. This is because of the specific threshold used here to de-
termine if each candidate function should be kept. The threshold
value is r = 0.001, which is relatively low. Therefore, it is natural
to repeat the learning process but increase the threshold. To this
end, a higher threshold of 0.01 is utilized, and the results are
shown in Fig. 8. It is seen that not only those additional terms
but also the advection terms disappear with this high threshold.
The reason the advection terms, rather than the damping ui, the
forcing f , and the feedback from wi, are chosen to be eliminated
by the learning algorithm is because of its relatively weak role
in the original dynamics in this special regime. In fact, according
to Panel (c) of Fig. 8, the spatiotemporal pattern of ui remains
similar to the truth by a glance. In particular, the spatial inho-
mogeneity, the strengths of the signal, and the frequency at each
fixed spatial grid point all resemble the truth. Yet, by a careful
comparison with the truth, the weakly eastward propagation of
the wave no longer exists, which is obviously due to the ignorance
of the advection. Therefore, the comparison here indicates that
the threshold value helps determine the importance of different
terms in the identified system.

Fig. 9 shows the truth and the identified model in Regime II.
Different from Regime I, where ui and wi lie in the same time
scale and the signal of ui is quite chaotic, a more precise wave
propagation pattern is observed in the spatiotemporal pattern
in Regime II. This indicates the more significant role played by
the advection, as the feedback from the small-scale variables wi

becomes less dominant. The identified model with the threshold
being r = 0.001 again reproduces most features of the underlying
dynamics. On the other hand, if a higher threshold r = 0.01 is
utilized, then the advection is again eliminated by the learning
algorithm. However, in this dynamical regime, the spatiotemporal
pattern of ui without the advection becomes quite distinct from
the truth due to its missing wave propagations. Fig. 10 shows
the model trajectories, the ACFs, and the PDFs, which confirm
the skill of the identified model in recovering the dynamical and
statistical features of the observed variables ui. Although there are
certain gaps between the truth and the stochastic parameterized
process wi, all that is important for wi in the identified model is
its feedback to ui but not its exact dynamics.

Finally, Fig. 11 provides a quantitative assessment of the errors
in the PDFs and the ACFs of the state variables ui in the two
regimes. See Section 3 for the details of these measurements. The
errors in the PDFs are almost negligible while those in the ACFs
are also overall small. The quantitative results presented here are
consistent with the qualitative ones shown above.

4.3. A stochastically coupled FitzHugh–Nagumo (FHN) model

The last test model for the learning algorithm is the following
stochastically coupled FitzHugh–Nagumo (FHN) model. The FHN
model is a prototype of an excitable system, which describes the
activation and deactivation dynamics of a spiking neuron [117].
Stochastic versions of the FHN model with noise-induced limit
cycles were widely studied and applied in the context of stochas-
tic resonance [118–121]. Its spatially extended version has also
attracted much attention as a noisy excitable medium [122–125].
By exploiting a finite difference discretization to the diffusion
term, the stochastically coupled FHN model in the lattice form
is given by

ϵ
dui

dt
=

(
du(ui+1 + ui−1 − 2ui)+ ui −

1

3
u3
i − vi

)
+
√

ϵδ1Ẇui ,

dvi

dt
=

(
ui + a

)
+ δ2Ẇvi , i = 1, . . . ,N,

(34)
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Fig. 5. Using a visualization diagram to represent the identified model structure and parameters. Panels (a)–(c): a low-dimensional ODE system as a simple example
to illustrate the visualization of the coefficient matrix. Panel (d): the coefficient matrix of the two-layer L-96 model corresponding to the starting model (33). In the
big coefficient matrix, the ith row represents the right hand side of the equations of ui and wi , where ui and wi contain 24 and 4 terms, respectively. The order of
these terms in the figure is the same as that in (31) and (32). The parameter values are indicated by the colors. The Tj under the u and w parts stands for the jth
term in (31) and (32), namely Fui and Fwi

, respectively.

Fig. 6. Identifying the two-layer L-96 model in Regime I. Different columns show the truth, the initial guess, the identified model, and the bare truncation models
(BTMs). The first row displays the spatiotemporal pattern of both ui and wi . Note that different random number seeds are utilized in different columns, and there
is no point-wise correspondence between different patterns. The focus is only on the overall structure. The second row shows the coefficient matrix in each model,
as was described in Fig. 5. The threshold value in determining the causation matrix for the identified model with stochastic parameterization is 0.001 and that for
the BTM model (Panel (e)) is 0.0001 since the same threshold as the former leads to an even worse result.
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Fig. 7. Comparison of the model trajectories, the ACFs and the PDFs of the truth, the initial guess of the model, and the identified model in Regime I, at i = 1 and
i = 10. Similar to Fig. 6, different random number seeds are utilized in different models, and there is no point-wise correspondence between the trajectories from
different models. Only the qualitative features are the useful information obtained from these trajectories. The threshold value in determining the causation matrix
is 0.001.

Fig. 8. Comparison of the identified model of the two-layer L96 model in Regime I using different threshold values for determining the causation entropy matrix.
Panel (a): the causation entropy matrix of ui corresponding to the initially guessed structure except for column T21 representing trivial constant terms. Panel (b):
the coefficient matrix for ui based on the low threshold r = 0.001 and the corresponding spatial–temporal patterns. Panel (c): The coefficient matrix for u based on
the high threshold r = 0.01 and the corresponding spatial–temporal patterns.

where the parameter a > 1 is required to guarantee that the
system has a global attractor in the absence of noise and diffusion.

The random noise can drive the system above the threshold level
of global stability and triggers limit cycles intermittently. The
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Fig. 9. Similar to Fig. 6 but for Regime II. Note that instead of repeating the column for the initial guess, the column for the high threshold case r = 0.01 is shown
instead.

Fig. 10. Similar to Fig. 7 but for Regime II. Note that instead of repeating the curves for the initial guess, the curves for the high threshold case r = 0.01 are shown
instead.

Fig. 11. The relative entropy for PDFs and relative error for ACFs of the state variable ui , i = 1, 2, . . . , I . In Regime I, the errors are computed between the truth
and the identified model in Fig. 6. In Regime II, the errors are computed between the truth and the identified model under low threshold in Fig. 7.

time scale ratio ϵ is much smaller than one, implying that the
ui are fast and the vi are the slow variables. The model in (34) is
equipped with the spatial periodic boundary conditions.

The following parameters are utilized to generate the obser-
vational time series:

ϵ = 0.01, δ1 = 0.2, δ2 = 0.1, du = 10, and a = 1.05.

(35)

The number of the spatial grid points is N = 40. With these
parameters, the structure of the solution exhibits strong spatial
coherent structures in ui. See Panel (a) of Fig. 12.

4.3.1. The experiment setup

The time series of ui for i = 1, 2, 3, . . . ,N are observed
while there is no direct observation for vi. Similar to the setup
in the L-96 model, define a vector Fui that contains 28 candidates
functions for each ui:

ui, ui−1, ui−2, ui+1, ui+2, u2
i , u2

i−1, u2
i−2, u2

i+1, u2
i+2, uiui−1,

uiui−2, uiui+1, uiui+2, ui−1ui−2, ui−1ui+1, ui−1ui+2, ui−2ui+1,

ui−2ui+2, ui+1ui+2, u3
i , u3

i−1, u3
i−2, u3

i+1, u3
i+2, 1, vi, uivi,

(36)
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Fig. 12. Identification of the FHN model (34) for the first experiment. Panel (a): the true model structure. Panel (b): the initial guess. Panel (c): the identified model.
In each panel, the first row shows the spatiotemporal patterns of the ui and the vi . The second row shows the model structure and the associated parameters, where
the 28 columns of each ui correspond to the 28 candidate functions in (36) ordered in the same way and similar for the 4 columns of each vi . The third row shows
the time series of u1 and v1 .

and another vector Fvi that includes 4 candidate functions for
each vi:

ui, u2
i , 1, vi. (37)

When these candidate functions are defined, localization has been
utilized as the process of each ui only depends on those terms
within the nearby grid points. Nevertheless, compared with the
true system, many more additional advection, diffusion and other
quadratic nonlinear terms appear in the candidate functions,
which are not in the stochastically coupled FHN system (34). The
study here contains the following two experiments.

In the first experiment, the same model structure is taken
in the initial guess as in the truth (34). However, very different
parameters du = 0.5 and δ2 = 0.4 are utilized in the initial
guess, which lead to a completely distinct spatiotemporal struc-
ture compared with the truth. In fact, as is shown in Panel (b)
of Fig. 12, the coherent structure of the model corresponding to
the initial guess only appears intermittently and happens in local
regions. In addition, the time series of ui at a fixed spatial location
i has a much higher frequency than that of the truth.

In the second experiment, two kinds of the additional terms
are added to the starting model: (i) the local quadratic advection
satisfying the physical constraints such as u2

i+1 and uiui−1, u2
i−1

and uiui+1, and (ii) −viui in the equations of ui and the quadratic
term of u2

i in the equations of vi. In addition, du = 0.5 and
δ2 = 0.1 are adopted for the initial guess of the model. The initial
model reads:

ϵ
dui

dt
= 1

2
(ui+1 + ui−1)−

1

3
u2
i − vi

+
(
u2
i+1 − ui−1ui

)
+

(
uiui+1 − u2

i−1
)

+
(
uiui+2 − u2

i−2
)
+ ϵuivi +

√
ϵδ1Ẇui , i = 1, . . . , I,

(38a)

dvi

dt
=

(
ui − u2

i + a
)
+ δ2Ẇvi , i = 1, . . . ,N, (38b)

where the terms
(
u2
i+1 − ui−1ui

)
,

(
uiui+1 − u2

i−1
)

and(
uiui+2 − u2

i−2
)
are the three pairs of local quadratic advection

added in the starting model satisfying the physics constraints.
Panel (b) of Fig. 13 shows the spatiotemporal patterns of such
a starting model. It has much faster temporal frequencies than
the truth despite the coherent structures.

4.3.2. Results

The results of the two experiments are shown in Fig. 12 and
Fig. 13, respectively, where Panel (c) in each figure displays the
identified model. In both experiments, the algorithm converges
after 10 iterations. The second row depicts the structures and
the associated parameter values of the perfect model, the initial
guess, and the identified model, where the 28 columns of each ui

correspond to the 28 candidate functions in (36) ordered in the
same way and similar for the 4 columns of each vi.

From Fig. 12, it is seen that although the noise coefficient
δ2 = 0.4 in the unobserved process is fixed and is chosen to
be different from the truth δ2 = 0.1 that leads to a distinct
spatiotemporal pattern of the vi, the spatiotemporal pattern of
the ui generated from the identified model is almost the same
as the truth. Specifically, the identified model recovers the strong
coherent spatiotemporal structure, which is completely missed in
the initial guess of the model. The parameters in the identified
model also have similar values to the truth. In particular, the
large error in the initial guess of the diffusion coefficient du,
corresponding to coefficients #1, #2, and #4 in the figure (see
also (36)), is almost eliminated in the identified model. This is the
crucial mechanism that leads to a strong coherent structure. Note
that, as the vi are not observed, they are treated as the stochastic
parameterizations in the identified model. Therefore, the vi in the
identified model is not necessarily the same as the truth. Still,
their statistical feedback to each ui is the crucial component that
leads to the correct pattern of the latter, which the identified
model is captured.

Fig. 13 illustrates similar results. Despite the significant dif-
ference in the model structure and the model parameters in the
initial guess, the identified model recovers the truth accurately.
Note that, as the true noise coefficient δ2 is utilized in the identi-
fied model, the pattern of vi is also clearly identified in addition
to the recovery of the strong coherent structure of the ui.

Finally, Fig. 14 shows the quantitative comparison of errors in
PDFs and the ACFs of state variable ui in the two experiments.
Overall, the errors remain low, confirmed by the qualitative re-
sults shown in Figs. 12–13.
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Fig. 13. Similar to Fig. 12 but for the second experiment.

Fig. 14. The relative entropy for PDFs and relative error for ACFs of the state variable ui , i = 1, 2, . . . , I . The errors are computed between the truth and the identified
model of two experiments in Figs. 12 and 13.

5. Conclusions and discussion

5.1. Summary of the work

In this paper, a causality-based learning algorithm is devel-
oped that alternatives between model structure identification,
conditional sampling of unobserved state variables, and param-
eter estimation to learn the underlying dynamics of the resolved
scale variables and help develop suitable stochastic parameteri-
zation for the unresolved variables. Unlike constrained optimiza-
tion with an L1 regularizer, the method developed here exploits
the causation entropy to pre-determine the candidate functions
that have potential contributions to the dynamics, which re-
tains a quadratic optimization problem for parameter estimation
via maximum likelihood estimates. The closed analytic formula
of conditional sampling allows efficient recovery of the unob-
served trajectories that facilitates the calculation of the causation
entropy for the time evolutions of both the observed and the
unobserved state variables. Physics constraints and localization
techniques are further incorporated into the learning algorithm
to include the basic physical properties in the data-driven models
and reduce the computational cost.

A hierarchy of chaotic and turbulent systems is adopted as test
models. It is shown that the new learning algorithm effectively
reproduces the dynamical and statistical features of the observed
variables and provides suitable stochastic parameterizations with
parsimonious structures. Many related topics are studied when
implementing the numerical tests, including showing the neces-
sity of stochastic parameterization, understanding the effect of

choosing different thresholds of the causation matrix selection,
and detecting the importance of various terms in the original
systems.

Although all the examples in this paper involve stochasticity,
the algorithm applies to situations where the observed turbulent
signal is generated from a nonlinear deterministic model. Nev-
ertheless, stochasticity plays an essential role in the identified
model. The stochastic parameterization Y is utilized to com-
pensate for the small-scale or unresolved-scale features induced
by the nonlinearity that may not be explicitly included in the
governing equation of X. It also accounts for the uncertainty and
model error. Note that the conditional sampling formulas (3)–
(5) require the noise coefficients B1 in the observed process X to
be nonzero otherwise the sampled trajectories of the additional
parameterizations Y become deterministic.

5.2. Comparison with other methods

Adding stochastic parameterization into the identified model
is one of the fundamental differences in the method developed
here compared with many traditional data-driven learning al-
gorithms. It has been shown in Fig. 6 that stochastic parame-
terization facilitates model identification, where a much more
significant barrier is found between the truth and the optimal
model without stochastic parameterization. As the library of can-
didate functions is chosen objectively and the true dynamics of
many complex systems in practice are very complicated, the true
dynamics may not be fully characterized by the functions from
the library. Therefore, the additional stochastic parameterization
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plays a vital role in compensating for the effect of the missing
dynamics.

Another main feature of the proposed method is that the
sparse identification is based on causation entropy instead of a
direct L1 regularization via LASSO regression. The motivation to
adopt the causation entropy is that it can have a higher selection
accuracy than LASSO regression or elastic net [59]. Thus, the iden-
tified more is more physically explainable. The causality-based
learning algorithm also shows robust results in the presence of
indirect coupling between features and stochastic noise [60].

The proposed framework also benefits the parameter esti-
mation procedure. With the pre-determined model structure
from the causal relationship, the parameter estimation remains
a quadratic optimization problem. Closed analytic formulae are
available to efficiently and accurately solve the parameter estima-
tion problem, even in the presence of constraints (19). This differs
from the LASSO regression, which often requires more expensive
numerical solvers than simple closed analytic expressions.

5.3. Potential improvement of the proposed method and future work

5.3.1. Building model closures

In addition to the library of the candidate functions, the work
here does not assume any known model structure based on prior
knowledge. One natural extension of the current study is to learn
the statistical closure of a turbulent system, where part of the
model information is given. In such a situation, causation entropy
can play an essential role in justifying the given prior model and
then identifying the structure of the closure. Another potential
extension of the current framework is to combine the parametric
form of the dynamics with non-parametric (or machine learning)
structures to further improve the results. As was seen in Figs. 6–7,
the stochastic parameterization improves the outcomes to a large
extent. Yet, the results from the identified model with stochastic
parameterization still differ from the truth. Imposing additional
machine learning closure is expected to build such a gap.

5.3.2. Optimal solution

The iterative algorithm designed here only aims at finding a
local optimum. This is sufficient for many applications. Yet, if the
initial guess is very far from the truth or suitable local optimums,
then the identified model may not fully capture the dynamical
and statistical features of nature. Therefore, additional criteria
can be incorporated into the learning procedure to facilitate the
convergence of the algorithm, at least towards an appropriate
local optimum. For example, the learning algorithm can start
with multiple initial guesses. After a few iterations, the associated
results are compared to decide the suitable ones for carrying out
further iterations.

5.3.3. Extension to discrete-in-time observations

All the numerical test results here assumed continuous-in-
time observations. In other words, the observational time step
is set to be the same as the numerical integration time step in
the numerical implementation. This assumption facilitates using
the conditional sampling algorithm in Proposition 1, which was
derived for a given continuous time series of X.

The model identification framework developed here also ap-
plies to discrete-in-time observations. But additional procedure
is needed. There are two possible approaches. One is to adopt
a set of difference equations as the governing equations. Then
closed analytic formulae for the conditional sampling, the causal
inference, and the parameters are all available as analogs to
the continuous-in-time case. In particular, the conditional lin-
ear difference equations can be utilized for the stochastic pa-
rameterizations, which lead to analytically solvable difference

equations for the conditionally sampled trajectories [66]. Another
potential method for handling discrete-in-time observations is
to implement conditional sampling for not only recovering the
unobserved variables but also filling in the gap between the two
nearby observations, also known as data augmentation [126].
This allows the identified underlying dynamics to be differential
equations instead of difference equations. The ensemble Kalman
smoother [127] can be adopted to achieve this goal. Note that
a large observational time step may deteriorate the skill of the
identified model as a significant amount of information can be
missed. Typically, the observational time step is expected to be
smaller than the decorrelation time of the underlying dynamics.

5.3.4. Sequential model identification

A fixed observed trajectory of X is utilized when the learning
algorithm was applied to the above test examples. Nevertheless,
the algorithm can be carried out sequentially when new observa-
tions of X become available. One advantage of sequential learning
is that it can naturally be combined with data assimilation to han-
dle noisy observations. Such a sequential learning idea has been
developed and applied to several geophysical systems [128,129].
When sequential learning is applied to the current framework,
the identified model serves as the forecast model in data assim-
ilation to reduce the noise in observations. The resulting time
series up to the current observational time instant is then uti-
lized to compute the causation entropy. Another topic related to
sequential model identification is to detect of regime-switching
and the change of model structure. The proposed framework here
may have the potential to efficiently recognize these changes.
Recall that the model structure identification here is separated
from parameter estimation. Therefore, only the causation en-
tropies need to be repeatedly calculated sequentially each time
when a small batch of new observations arrives. In contrast, the
parameter estimation only requires to be carried out once the
regime-switching is confirmed.
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