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A B S T R A C T

Predicting the process of porosity-based ductile damage in polycrystalline metallic materials
is an essential practical topic. Ductile damage and its precursors are represented by extreme
values in stress and material state quantities, the spatial probability density function (PDF)
of which are highly non-Gaussian with strong fat tails. Traditional deterministic forecasts
utilizing sophisticated continuum-based physical models generally lack in representing the
statistics of structural evolution during material deformation. Computational tools which do
represent complex structural evolution are typically expensive. The inevitable model error and
the lack of uncertainty quantification may also induce significant forecast biases, especially
in predicting the extreme events associated with ductile damage. In this paper, a data-driven
statistical reduced-order modeling framework is developed to provide a probabilistic forecast
of the deformation process of a polycrystal aggregate leading to porosity-based ductile damage
with uncertainty quantification. The framework starts with computing the time evolution of
the leading few moments of specific state variables from the spatiotemporal solution of full-
field polycrystal simulations. Then a sparse model identification algorithm based on causation
entropy, including essential physical constraints, is utilized to discover the governing equations
of these moments. An approximate solution of the time evolution of the PDF is obtained from
the predicted moments exploiting the maximum entropy principle. Numerical experiments based
on polycrystal realizations of a representative body-centered cubic (BCC) tantalum illustrate a
skillful reduced-order model in characterizing the time evolution of the non-Gaussian PDF of the
von Mises stress and quantifying the probability of extreme events. The learning process also
reveals that the mean stress is not simply an additive forcing to drive the higher-order moments
and extreme events. Instead, it interacts with the latter in a strongly nonlinear and multiplicative
fashion. In addition, the calibrated moment equations provide a reasonably accurate forecast
when applied to the realizations outside the training data set, indicating the robustness of the
model and the skill for extrapolation. Finally, an information-based measurement is employed
to quantitatively justify that the leading four moments are sufficient to characterize the crucial
highly non-Gaussian features throughout the entire deformation history considered.

1. Introduction

For high-pressure mechanical loading conditions of polycrystalline metallic materials with ready access to mobile dislocations, it
is known that material structure is a critical factor in the formation and placement of cavitated pores (Wilkerson, 2017; Nguyen et al.,
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2019; Wilkerson and Ramesh, 2016; Escobedo et al., 2011, 2013a; Bronkhorst et al., 2016). The structure of metallic materials also
evolves with deformation, so the material’s initial state and the physical processes invoked during deformation create a complex
spatially dependent structural evolution problem. Certainly, environmental and boundary conditions are essential in how these
materials resist deformation and choose physical pathways to accommodate these boundary conditions (Escobedo et al., 2013b;
Johnson et al., 1999; Jones et al., 2018). Regarding material cavitation, pores are discrete localized features that form at very small
length scales to contribute to a larger field of pores over much larger length scales. The formation of each pore is considered to be a
rare event in response to the extreme mechanical loading of an aggregate composite polycrystalline metal. This produces a spatially
varying mechanical response dependent upon the initial and evolved heterogeneous structural state of the material that then creates
a time-evolving heterogeneous stress state within the material, which drives pore formation (Escobedo et al., 2011, 2013a). The
heterogeneous structural state of the material also contributes to spatial variation of defects which create regions of mechanical
weakening that are more prone to cavitation. Although the qualitative picture which is painted is likely true and has been known
for some time, we are lacking in our understanding of the important variables. Currently, we have not adequately quantified this
statistical deformation process leading to these rare and discrete pore formation events (Lieberman et al., 2016; Marcy et al., 2020).
The same heterogeneous conditions are also prevalent as the pores grow in size and ultimately percolate into a large-scale failed
region.

The macroscale ductile damage models which currently exist to represent the formation and evolution of porosity fields under
conditions of dynamic loading are continuum theories and employ largely mean-valued (first moment) material internal state
variables to describe the evolution of stress, strain, material structure, and porosity with deformation over time (Johnson et al.,
1999; Ortiz and Molinari, 1992; Tong and Ravichandran, 1995; Molinari and Mercier, 2001; Czarnota et al., 2006, 2008; Bronkhorst
et al., 2016; Versino and Bronkhorst, 2018; Long et al., 2016; Wang, 1994b, 1997, 1994a). Within these continuum structural field
theories, the physics of finite elasticity and dislocation slip or deformation twinning mediated plasticity is most often represented
by theories that assume an average over a finite-sized representative volume much larger than the mean size of a single crystal and
certainly a nucleated pore. Although consistent with the spirit of these mean-valued continuum theories, the fundamental statistics
of the structural evolution of the material with deformation leading to the rare events of pore formation are missing or only loosely
considered. It is then perhaps of little surprise that we are still challenged in our ability to predict ductile damage in polycrystalline
metallic materials exposed to extreme states of mechanical loading. These theories are generally meant to serve as structural design
tools for components that can be large in size. Computational efficiency is often important; therefore, directly supplementing such
theories with concurrent lower-length scale physics calculations that offer statistical insight is generally prohibitively expensive.
Enriching conventional approaches to modeling ductile damage using continuum mean-valued field theories with a higher-order
statistical representation of critical state variables, which is computationally tractable, is an important goal.

Structural features of a metallic material, which are defects that alter the resistance stress of pore formation, are varied and
depend upon the type of material (Bieler et al., 2009; Liu et al., 2018; Revil-Baudard et al., 2016). Metallic alloys may have spatial
variations in chemistry and phase (Feng et al., 2003; Gu et al., 2023). Commercially pure materials may have impurity sites that form
inclusions or taint grain boundaries (Benzerga and Leblond, 2010; Gray et al., 2010; Butler et al., 2018). Each material may have
several potential defect types, which have different spatial distributions and weakening influences on the lattice for pore formation.
In principle, each defect type must be quantified for its impact on the material depending upon loading conditions. Several defect
types may contribute to pore formation, or one may be dominant. High-purity materials will generally have fewer possible defect
types and is therefore a logical choice to begin the process of quantifying influence. In the case of body-centered cubic (BCC)
high-purity tantalum, it has been demonstrated that pores form predominantly at grain boundaries (Gray et al., 2014; Bronkhorst
et al., 2021) for light to moderate shock loading conditions. Therefore, we seek to use polycrystal mechanics and physics tools to
enable the quantification of grain size scale deformation behavior and statistics.

Dislocation motion in body-centered cubic (BCC) materials is generally observed to be dominated by the behavior of screw
dislocations. These screw dislocations under conditions of zero velocity have been shown to dissociate into three partial dislocations,
which form an equidistant triad within the crystallographic lattice (Dezerald et al., 2014; Frederiksen and Jacobsen, 2003; Ismail-
Beigi and Arias, 2000; Woodward and Rao, 2002; Gröger et al., 2008; Li et al., 2004; Mrovec et al., 2004; Ravelo et al., 2013;
Vitek, 2004; Vitek et al., 2004; Xu and Moriarty, 1996). Since, at rest, this screw dislocation core is spread onto three different
crystallographic planes, there is ambiguity in that it is no longer planar so that its subsequent motion cannot accurately be
represented by a resolved shear stress based upon the classical Schmid rule (Gröger et al., 2008; Vitek et al., 2004; Vitek, 2004;
Qin and Bassani, 1992; Asaro, 1983; Asaro and Rice, 1977; Dao and Asaro, 1993; Cereceda et al., 2016; Koester et al., 2012; Patra
et al., 2014). In addition, the spreading of the screw dislocation core also significantly reduces its mobility in relation to an edge
dislocation. Therefore, the screw dislocation behavior dominates the plastic response of BCC materials. Although outside the scope
of the present work, there is much we do not yet understand about dislocation motion in BCC metallic materials. The prevailing
hypothesis that this core must be re-planarized to enable the nucleation of a kink band by one Burgers vector and the spreading
of the kink band by the relative ease of motion of the formed edge dislocations at each of the two kinks (Butler et al., 2018). The
implication for this work is that BCC tantalum is represented by a model which accounts for the phenomenology of this screw
dislocation behavior with the implication that its motion on a given slip system is directional and adds additional relevant and
interesting heterogeneity.

Computational techniques to simulate the full-field response of polycrystal aggregates to mechanical and thermal loading have
become important in the pursuit of structure–property-processing relationships for advancing our theoretical/computational tools
and to speed the time-efficient design of new materials (Ghosh et al., 2020; Dao and Asaro, 1993; Lebensohn et al., 2013; Whelan
and McDowell, 2019; Arora and Acharya, 2020; Zhang et al., 2018; Shanthraj and Zikry, 2013, 2012; Wu and Zikry, 2016). It
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has been clearly demonstrated in the literature that the conditions of stress in these polycrystal aggregates are spatially variable
with the characteristic length of the single crystal when the source of inelastic deformation is limited to dislocation motion and
deformation twinning or structural phase transformation is missing (Becker, 2004). Such is the case for moderately shock-loaded
tantalum (Bronkhorst et al., 2021). The disparity in the characteristic size of dislocations and grain size in these BCC materials
affords the opportunity to represent the dislocation mediated plasticity in the grains comprising the aggregate by a continuum
single crystal model with the appropriate deformation rate and temperature physics specific to BCC materials already discussed.
Such calculations and their implication for material damage physics are the focus of the present work.

In this paper, a new data-driven reduced-order modeling framework is developed and applied to study the process of porosity-
based ductile damage in polycrystalline metallic materials. Different from the traditional reduced-order models aiming to capture
large-scale dynamical features using reduced-order bases, the framework developed here focuses on the time evolution of critical
statistics that characterizes the intrinsic dynamical properties from a probabilistic viewpoint. In other words, the quantity of interest
in such a statistical reduced-order model is the probability density function (PDF) associated with some crucial material state
variables in the original physical system, for example, the von Mises stress. As ductile damage and its precursors appear as extreme
values, the PDF of the von Mises stress and other state variables manifests strong non-Gaussian features (Bronkhorst et al., 2021). In
particular, the PDF for the examples examined here often has a one-sided fat tail corresponding to the extreme stress values during
the ductile damage process. Therefore, an appropriate characterization of the time evolution of such a non-Gaussian fat-tailed PDF
advances the understanding of the ductile damage process of polycrystalline metallic materials in the statistical sense. It also offers
the possibility to facilitate studying the formation of extreme damage events, including discovering the statistical precursor, the
onset, and the occurrence of these damage events with proper uncertainty quantification represented by the tail probability. In
addition, modeling the statistical evolution of important material state variables advances predicting the timing and probability of
the occurrence of extreme events with a much lower computational cost than the sophisticated physical models generally used for
sub-granular physics resolution.

The development of such a data-driven statistical reduced-order model here starts with the spatiotemporal solution of statistical
volume element full-field polycrystal simulations using a computationally expensive physical single-crystal model. At each fixed time
instant, the solution of the von Mises stress or other material state variables over different spatial grid points is utilized to compute
the statistics. Note that, as the PDF is a function of both time and the values of the material state variables, its governing equation is
given by a partial differential equation (PDE) (Kadanoff, 2000; Tran et al., 2022; Berdichevsky, 2023). However, simple and explicit
expressions of such a PDE are often unavailable for such extremely complicated systems. Despite the recent development of many
machine learning methods to discover this PDE (Xu et al., 2020; Zhai et al., 2022; Zhang and Yuen, 2022; Camporeale et al., 2022),
the computational cost of direct numerical methods usually remains demanding. To this end, an alternative approach that focuses
on the time evolution of only the leading few moments is adopted here. Since the underlying dynamics of each moment equation is
driven by an ordinary differential equation (ODE), the learning process becomes much more computationally affordable. Based on
the moments computed from such a low-order model, an approximate solution of the time evolution of the PDF can be found in light
of an information criterion called the maximum entropy principle (Jaynes, 1957; Karmeshu, 2003; Majda and Wang, 2006; Branicki
et al., 2013). Thus, the remaining focus is on identifying the governing equations of the moments. A simple learning algorithm via
causation entropy (Elinger, 2020; Elinger and Rogers, 2021) and an explicit parameter estimation approach containing essential
physical constraints (Chen, 2020; Chen and Zhang, 2022) are utilized to achieve this goal, which provides a sparse identification of
the model structure.

The data-driven statistical reduced-order modeling framework developed here has several unique features. First, due to the
inevitable model error and the lack of uncertainty quantification, the traditional deterministic forecast via sophisticated macroscale
continuum ductile damage models may suffer from significant forecast biases, especially in predicting the extreme events associated
with ductile damage that is often sensitive to the model uncertainty. Particularly, traditional continuum-based ductile damage
models are based upon mean-value state variables and, therefore, cannot properly capture these extreme value events. In contrast,
the statistical reduced-order model developed here provides a possible pathway to understand and represent the statistical process
of ductile damage in polycrystalline metallic materials within macroscale model frameworks. As the extreme events of damage
and its precursor depend on many unresolved or small-scale physical effects, a statistical characterization of their development
and emergence with an appropriate uncertainty quantification via the forecast probability is a preferable approach, which also
indicates the predictability of these events. Second, compared with solving the physical models, calculating the leading few
moments associated with certain critical state variables is computationally more efficient. It allows for carrying out a vast number
of statistical predictions for material damage under different loading conditions within a short allotted time. Third, information
theory can be applied to systematically quantify error and uncertainty. In addition to reconstructing an approximate PDF from
the moments utilizing the maximum entropy principle, another information criterion, called relative entropy (Kullback and Leibler,
1951; Kullback, 1959; Kleeman, 2011; Majda and Wang, 2006), is a natural choice to assess the difference between the reconstructed
PDF and the truth in an unbiased fashion. This provides a rigorous assessment of the intrinsic barrier in characterizing the statistics
under such a reduced-order approximation. Notably, the relative entropy highlights the tail probability, making it a suitable metric
to quantify the uncertainty in the statistical prediction of extreme events. Finally, the statistical reduced-order modeling framework
developed here, including the identification procedure, is simple and is generalizable to other materials physics applications with
strongly non-Gaussian features and extreme events.

The framework developed here has broad scientific and computational implications. One critical issue in studying and forecasting
the ductile damage process is understanding how low-order statistical moments affect the dynamics of high-order moments. In
general, computing the time evolution of the low-order moments, such as the mean, is straightforward in most computational
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Fig. 1. Overview of the data-driven statistical reduced-order modeling framework.

materials mechanics settings regardless of characteristic length with relatively low cost. Such statistics are also relatively easy to
measure from lab experiments since they only rely on a small number of samples or the diagnostics used naturally provide a mean
response of the material. Discovering the relationship between low- and high-order moments significantly facilitates inferring the
latter that is crucial to the uncertainty quantification of extreme damage events. Such a relationship can be used to advantage with
highly homogenized theories of material mechanics and physics. This topic will be studied here as an application of the framework.

The reminder of the paper is organized as follows. Section 2 presents the general data-driven statistical reduced-order modeling
framework. Section 3 introduces the polycrystal model, which is utilized to create the spatiotemporal data for the development
of the statistical reduced-order model. Section 4 shows the results of the statistical quantification of dynamical loading from the
reduced-order model. Conclusion and discussions are included in Section 5.

2. Data-driven statistical reduced-order modeling framework

After obtaining the spatiotemporal solution describing the process of deformation leading to porosity-based ductile damage from
a polycrystal simulation utilizing a sophisticated physical model, the data-driven statistical reduced-order modeling framework is
as follows.

1. Compute the time evolution of the PDF associated with a certain state variable from the spatiotemporal solution.
2. Compute the time evolution of the leading few moments of the state variable to reach a coarse-grained representation of the
statistics.

3. Discover the underlying dynamics of these moments.
4. Apply the identified model to forecast the moments.
5. Reconstruct the time evolution of the PDF using the predicted moments via the maximum entropy principle.

Fig. 1 provides a schematic diagram containing an overview of the above procedure. The single crystal theory and computational
polycrystal models that create the polycrystal simulation results will be presented in Section 3. The remaining section contains the
details of the statistical reduced-order modeling procedure.

Denote by 𝑢 a scalar state variable of the statistical reduced-order model, for example, the von Mises stress.

2.1. Computing the PDF and the moments

At each time instant, denote by 𝑢(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘) the value of 𝑢 at the spatial location (𝑥𝑖, 𝑦𝑗 , 𝑧𝑘) under the three-dimensional coordinate
system, where 𝑖 = 1,… , 𝐼 , 𝑗 = 1,… , 𝐽 and 𝑘 = 1,… , 𝐾. The PDF and the moments are computed based on the total 𝐼𝐽𝐾 data points.
The PDF 𝑝(𝑢) is given by a normalized histogram that satisfies the condition ∫ ∞

−∞
𝑝(𝑢) d𝑢 = 1. The 𝑛th centralized moment is defined

as Gardiner (2004) and Gupta and Kapoor (2020)

𝜇1 = ∫
∞

−∞

𝑢𝑝(𝑢) d𝑢, for 𝑛 = 1,

𝜇𝑛 = ∫
∞

−∞

(𝑢 − 𝜇1)
𝑛𝑝(𝑢) d𝑢, for 𝑛 ≥ 2.

(1)

After normalizing the moments for 𝑛 ≥ 3 by taking 𝜇̃𝑛 = 𝜇𝑛∕(𝜇2)
𝑛∕2, each of the scaled moments 𝜇̃𝑛 describes a particular aspect of the

corresponding PDF. Further define 𝜇̃1 = 𝜇1 and 𝜇̃2 = 𝜇2. The leading few scaled moments 𝜇̃𝑛 with 𝑛 = 1,… , 𝑁 are used in developing
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the statistical reduced-order model as the coarse-grained representation of the statistics. Hereafter 𝜇̃𝑛 is called the 𝑛th moment for the
conciseness of presentation. To allow the reconstruction of a non-Gaussian PDF via the maximum entropy principle, the following
two conditions need to be satisfied (Majda and Wang, 2006). First, at least 𝑁 ≥ 3 moments are required in the PDF reconstruction
to include the information beyond the Gaussian statistics. Second, 𝑁 must be an even number; otherwise the maximum entropy
principle fails to provide a well-defined PDF. Therefore, the minimum number of the scaled moments to be adopted is 𝑁 = 4. The
leading four scaled moments are mean, variance, skewness, and kurtosis. Skewness is a measure of the asymmetry of a PDF. For
a unimodal distribution, negative skew commonly indicates that the tail is on the left side of the distribution, and positive skew
indicates that the tail is on the right. Kurtosis describes the tail behavior of a PDF. Higher kurtosis corresponds to a larger probability
of extreme events or outliers. The kurtosis for a Gaussian distribution has a value of 3. When the kurtosis exceeds 3, the distribution
usually has fat tails which may correspond to the triggering of extreme events. For problems involving material damage, the shape
of the PDF and tail character becomes very important.

In the following, 𝑁 = 4, namely the leading four scaled moments, are utilized in developing the statistical reduced-order model
for the process of the ductile damage in polycrystal simulations. Such a choice of 𝑁 will be justified by computing the lack of
information in the reconstructed PDF based on these moments and the truth.

2.2. Discovery of the moment equations via a causality-based sparse identification learning algorithm

To discover the possible underlying dynamics of the leading 𝑁 moments, a causality-based learning algorithm is utilized (Kim
et al., 2017). With an iterative approach called entropic regression which is robust with noise and outliers, it has been successfully
applied to the area of cognitive neuroscience to improve the accuracy of recovery of the structure of structural and functional
connectivity between anatomical regions (AlMomani et al., 2020; Fish et al., 2021; AlMomani and Bollt, 2020). It has also been
applied to other areas including climate science and many other disciplines (Elinger, 2020; Elinger and Rogers, 2021; Chen and
Zhang, 2022). The method is summarized in Fig. 2 with the following steps.

2.2.1. Developing a function library
First, a library 𝐟 consisting of in total 𝑀 possible candidate functions to model the right-hand side of the moment equations is

proposed,

𝐟 = {𝑓1,… , 𝑓𝑚−1, 𝑓𝑚, 𝑓𝑚+1,… , 𝑓𝑀}. (2)

The development of such a library is subjective based on empirical and expert knowledge. Typically, a large number of candidate
functions is included in the library to allow for coverage over different possible dynamical features of the underlying unknown true
system. This also allows for the opportunity to learn new physical relationships from the physical information.

2.2.2. Computing the causation entropy
Next, a causation entropy 𝐶𝑓𝑚→ ̇̃𝜇𝑛 ∣[𝐟∖𝑓𝑚] is computed to detect if the candidate function 𝑓𝑚 contributes to the dynamics of 𝜇̃𝑛,

namely d𝜇̃𝑛∕ d𝑡 ∶= ̇̃𝜇𝑛. It reads (Elinger and Rogers, 2021):

𝐶𝑓𝑚→ ̇̃𝜇𝑛 ∣[𝐟∖𝑓𝑚] = 𝐻( ̇̃𝜇𝑛|
[
𝐟∖𝑓𝑚

]
) −𝐻( ̇̃𝜇𝑛|𝐟 ). (3)

In Eq. (3), the set 𝐟∖𝑓𝑚 represent a new set that includes all functions in 𝐟 except 𝑓𝑚. It thus contains 𝑀 − 1 candidate functions
and is defined as

𝐟∖𝑓𝑚 = {𝑓1,… , 𝑓𝑚−1, 𝑓𝑚+1,… , 𝑓𝑀}. (4)

The term 𝐻(⋅|⋅) is the conditional entropy, which is related to Shannon’s entropy 𝐻(⋅) and the joint entropy 𝐻(⋅, ⋅). For two
multi-dimensional state variables 𝐗 and 𝐘, they are defined as Cover (1999):

𝐻(𝐗) = −∫𝑥 𝑝(𝐱) log(𝑝(𝐱)) d𝐱,
𝐻(𝐘|𝐗) = −∫𝐱 ∫𝐲 𝑝(𝐱, 𝐲) log(𝑝(𝐲|𝐱)) d𝐲 d𝐱,
𝐻(𝐗,𝐘) = −∫𝐱 ∫𝐲 𝑝(𝐱, 𝐲) log(𝑝(𝐱, 𝐲)) d𝐲 d𝐱.

(5)

On the right-hand side of Eq. (3), the difference between the two conditional entropies indicates the information in ̇̃𝜇𝑛 contributed
by the specific function 𝑓𝑚 given the contributions from all the other functions. Thus, it tells if 𝑓𝑚 provides additional information
to ̇̃𝜇𝑛 conditioned on the other potential terms in the dynamics. It is worthwhile to highlight that the causation entropy in Eq. (3)
is fundamentally different from directly computing the correlation between ̇̃𝜇𝑛 and 𝑓𝑚, as the causation entropy also considers
the influence of the other library functions. If both ̇̃𝜇𝑛 and 𝑓𝑚 are caused by a common factor 𝑓𝑚′ , then ̇̃𝜇𝑛 and 𝑓𝑚 can be highly
correlated. Yet, in such a case, the causation entropy 𝐶𝑓𝑚→ ̇̃𝜇𝑛 ∣[𝐟∖𝑓𝑚] will be zero as 𝑓𝑚 is not the causation of

̇̃𝜇𝑛.
The causation entropy is computed from each of the candidate functions in 𝐟 to each ̇̃𝜇𝑛. Thus, there are in total 𝑁𝑀 causation

entropies, which can be written as a 𝑁 ×𝑀 matrix, called the causation entropy matrix.
Note that the dimension 𝐗 in Eq. (5) is 𝑀 when it is applied to compute the second term on the right-hand side of the

causation entropy in Eq. (3). This implies that the direct calculation of the entropies in Eq. (5) involves a high-dimensional numerical
integration, which is, however, a well-known computationally challenging issue (Bellman, 1961). To circumvent the direct numerical
integration, the entropy calculation is based on the following approximate method that utilizes a Gaussian fit to each distribution.
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Fig. 2. Schematic illustration of the causality-based learning algorithm of underlying dynamics.

Proposition 2.1 (Computational Approximation of the Causation Entropy). By approximating all the joint and marginal distributions as
Gaussians, the causation entropy can be computed in the following way:

𝐶𝐙→𝐗|𝐘 = 𝐻(𝐗|𝐘) −𝐻(𝐗|𝐘,𝐙)
= 𝐻(𝐗,𝐘) −𝐻(𝐘) −𝐻(𝐗,𝐘,𝐙) +𝐻(𝐘,𝐙)

=
1

2
ln(det(𝐑𝐗𝐘)) −

1

2
ln(det(𝐑𝐘)) −

1

2
ln(det(𝐑𝐗𝐘𝐙))

+
1

2
ln(det(𝐑𝐘𝐙)),

(6)

where 𝐑𝐗𝐘𝐙 denotes the covariance matrix of the state variables (𝐗,𝐘,𝐙) and similar for other covariances. The notations ln(⋅) and det(⋅)
are the logarithm of a number and determinant of a matrix, respectively.

The explicit expression in Eq. (6) based on the Gaussian approximation can efficiently compute the causation entropy. It allows
the computation of the causation entropy with a moderately large dimension, which is typically the case for a low-order system
containing the leading few moment equations. It is worth noting that the Gaussian approximation may lead to certain errors in
computing the causation entropy if the true distribution is highly non-Gaussian. Nevertheless, the primary goal here is not to obtain
the exact value of the causation entropy. Instead, it suffices to detect if the causation entropy 𝐶𝑓𝑚→ ̇̃𝜇𝑛 ∣[𝐟∖𝑓𝑚] is nonzero (or practically
above a small threshold value). In most applications, if a significant causal relationship is detected in the higher-order moments,
it is very likely in the Gaussian approximation. This allows us to efficiently determine the sparse model structure, where the exact
values of the nonzero coefficients on the right-hand side of the identified model will be calculated via a simple maximum likelihood
estimation to be discussed in the following. Note that the Gaussian approximation has been widely applied to compute various
information measurements and leads to reasonably accurate results (Majda and Chen, 2018; Tippett et al., 2004; Kleeman, 2011;
Branicki and Majda, 2012).
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2.2.3. Determining the model structure with sparse identification
With the 𝑁 ×𝑀 causation entropy matrix in hand, the next step is determining the model structure. This can be done by first

setting up a threshold value of the causation entropy and then retaining only those candidate functions that have the causation
entropies exceeding the threshold. This allows the identified system to contain only functions that have significant contributions
to the dynamics. In other words, the identified system has a sparse model structure. Sparsity is crucial to discovering the correct
underlying physics and prevents overfitting (Ying, 2019; Brunton et al., 2016). It will also guarantee the robustness of the model in
response to perturbations and allow the model to apply to certain extrapolation tests, for example, the statistical forecast of other
data sets with similar but not identical features.

Physical or statistical constraints can be added to the above model identification procedure. One important constraint is called the
physics constraint. It means the conservation of energy in the quadratic nonlinear terms are important properties in many complex
turbulent systems (Majda and Harlim, 2012; Harlim et al., 2014). The physics constraint prevents the finite-time blow-up of the
solutions and facilitates a skillful medium- to long-range forecast. To incorporate the physics constraint into the model identification,
it is essential to keep or remove the related terms simultaneously.

2.2.4. Parameter estimation
The final step is to estimate the parameters in the identified model. Denote by 𝐔 an 𝑁-dimensional column vector containing

the leading 𝑁 moments, namely 𝐔 = (𝜇̃1,… , 𝜇̃𝑁 )𝚃, where ⋅
𝚃 is the vector transpose. The identified system consisting of the moment

equations can be written in the vector form:

d𝐔

d𝑡
= 𝜱(𝐔), (7)

where 𝜱(𝐔) is an 𝑁-dimensional column vector with each entry representing the summation of the remaining nonlinear candidate
functions from the causality-based learning algorithm for each component of 𝐔. Denote by 𝜣 ∈ R𝑠 a column vector containing all
the parameters in the identified model with 𝑠 ≫ 𝑛 in a typical situation. The right-hand side of Eq. (7) can be written as

𝜱(𝐔) = 𝐌𝜣 +𝐐, (8)

where 𝐌 ∈ R𝑁×𝑠 is a matrix each entry of which is a function of 𝐔 while 𝐐 ∈ R𝑁 is a column vector that depends on 𝐔. Only 𝐌 is
multiplied by the parameters 𝜣.

Assume data comes in a sufficiently high frequency in time, which is the typical case if the data is computed from a complicated
physical model and the frequency of data dumps with time is completely controlled. Then consider a temporal discretization of
Eq. (7) using a first-order forward Euler scheme from time 𝑡𝑗 to 𝑡𝑗+1 (Gardiner, 2004). Further assign the data value to the variables
at both time instants. This leads to the following relationship from 𝑡𝑗 to 𝑡𝑗+1,

𝐔𝑗+1 = 𝐔𝑗 + 𝜱̃(𝐔𝑗 )𝛥𝑡 + 𝝈𝜺𝑗
√
𝛥𝑡, (9)

where 𝛥𝑡 is a small time step from 𝑡𝑗 to 𝑡𝑗+1, and 𝜺𝑗 is an independent and identically distributed (i.i.d.) standard multidimensional
Gaussian random number, representing the residual of the parameter fitting, and 𝝈 ∈ R𝑁×𝑁 is a diagonal matrix representing the
strength of the residual. Further assume 𝝈 is a constant matrix over time.

Due to the Euler approximation, the one-step time evolution from 𝐔𝑗 to 𝐔𝑗+1 is approximated by a linear function within such
a short time interval. Therefore, the likelihood can be computed based on a Gaussian distribution,

 (𝝁𝑗 ,𝜮) = 𝐶|𝜮|− 1
2 exp

(
−
1

2
(𝐔𝑗+1 − 𝝁𝑗 )𝚃(𝜮)−1(𝐔𝑗+1 − 𝝁𝑗 )

)
, (10)

where 𝐶 is a normalization constant. The mean and the covariance of such a Gaussian distribution are given by 𝝁𝑗 = 𝐌𝑗𝜣 +𝐐𝑗 +𝐔𝑗

and 𝜮 = 𝝈𝝈𝚃𝛥𝑡, respectively. Taking the logarithm to cancel the exponential function and summing up the likelihood over the entire
time period yield

 =
1

2

𝐽∑
𝑗=1

(𝐔𝑗+1 −𝐌𝑗𝜣 −𝐐𝑗 − 𝐔𝑗 )𝚃(𝜮)−1(𝐔𝑗+1 −𝐌𝑗𝜣 −𝐐𝑗 − 𝐔𝑗 ) −
𝐽

2
log |𝜮|, (11)

where 𝐽 + 1 = ⌊𝑇 ∕𝛥𝑡⌋ with ⌊⋅⌋ being the floor function that rounds down the result to the nearest integer. To find the minimum
of , it is sufficient to compute the zeros of 𝜕

𝜕𝜣
= 0 and 𝜕

𝜕𝜮
= 0, which leads to

𝜮 =
1

𝐽

𝐽∑
𝑗=1

(𝐔𝑗+1 −𝐌𝑗𝜣 −𝐐𝑗 − 𝐔𝑗 )(𝐔𝑗+1 −𝐌𝑗𝜣 −𝐐𝑗 − 𝐔𝑗 )𝚃, (12a)

𝜣 = 𝐃−1𝐜, (12b)

where

𝐃 =

𝐽∑
𝑗=1

(𝐌𝑗 )𝚃𝜮−1𝐌𝑗 and 𝐜 =

𝐽∑
𝑗=1

(𝐌𝑗 )𝚃𝜮−1(𝐔𝑗+1 −𝐐𝑗 − 𝐔𝑗 ). (13)

The equations in Eq. (12) are solved by first setting 𝜣 = 𝟎 to find 𝜮 in Eq. (12a) via essentially the quadratic variation, and then
plugging in the result into Eqs. (12b) and (13) to obtain 𝜣. The analytic solution in Eqs. (12)–(13) significantly facilitates the
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estimation of the parameter values compared with using a numerical solver for a non-convex optimization problem resulting from
a constrained regression based on, for example, an L1 penalty (Santosa and Symes, 1986; Tibshirani, 1996). The computational
cost in Eqs. (12)–(13) is proportional to the square of the number of functions in the identified model (in computing 𝐃) and to the
total number of observational points in time. Since the goal is to find a parsimonious model, the number of the candidate functions
remaining in the model is expected to be small, which leads to a relatively low computational cost in solving Eqs. (12)–(13).

In addition to the information provided by the data, including prior knowledge, such as the physical laws, can significantly
facilitate the learning process. Such additional knowledge often appears in the form of constraints, many of which are characterized
by imposing certain relationships in the model parameters. In such a situation, the above formulae can be slightly adjusted. Assume
the constraints are imposed to the model parameters with the following form,

𝐇𝜣 = 𝐠, (14)

where 𝐇 and 𝐠 are constant matrices. To incorporate these constraints, the Lagrangian multiplier method is applied, which modifies
the objective function in Eq. (11),

 =
1

2

𝐽∑
𝑗=1

(𝐔𝑗+1 −𝐌𝑗𝜣 −𝐐𝑗 − 𝐔𝑗 )𝚃(𝜮)−1(𝐔𝑗+1 −𝐌𝑗𝜣 −𝐐𝑗 − 𝐔𝑗 )

−
𝐽

2
log |𝜮−1| + 𝝀𝚃(𝐇𝜣 − 𝐠),

(15)

where 𝝀 is the Lagrangian multiplier. The solution to the minimization problem with the new objective function Eq. (15) is given
as follows (Boyd et al., 2004),

𝜮 =
1

𝐽

𝐽∑
𝑗=1

(𝐔𝑗+1 −𝐌𝑗𝜣 −𝐐𝑗 − 𝐔𝑗 )(𝐔𝑗+1 −𝐌𝑗𝜣 −𝐐𝑗 − 𝐔𝑗 )𝚃 (16a)

𝝀 =
(
𝐇𝐃−1𝐇𝚃

)−1
(𝐇𝐃−1𝐜 − 𝐠), (16b)

𝜣 = 𝐃−1
(
𝐜 −𝐇𝚃𝝀

)
, (16c)

where 𝐃 and 𝐜 are defined in Eq. (13).

2.3. PDF reconstruction via maximum entropy principle

The identified model from the above learning algorithm gives the value 𝑔𝑛 of the moment 𝜇̃𝑛 for 𝑛 = 1,… , 𝑁 at each time
instant. These 𝑁 moments can be utilized to reconstruct a least biased approximate PDF via the so-called maximum entropy
principle (Jaynes, 1957; Karmeshu, 2003).

Proposition 2.2. Define the set 𝑁 that contains all possible distributions, the leading 𝑁 moments 𝜇̃𝑛 of which satisfy 𝜇̃𝑛 = 𝑔𝑛 for
𝑛 = 1,… , 𝑁 :

𝑁 =
{
𝑝|𝜇̃𝑛 = 𝑔𝑛, 1 ≤ 𝑛 ≤ 𝑁

}
. (17)

The least biased probability distribution 𝑝̃ given the constraints 𝑁 is the one that maximizes the entropy,
max
𝑝∈𝑁 (𝑝) = (𝑝̃), 𝑝̃ ∈ 𝑁 , (18)

where entropy is defined as

(𝑝) = −∫ 𝑝(𝑢) ln(𝑝(𝑢)) d𝑢. (19)

Therefore, solving the least biased distribution 𝑝̃ becomes a constrained optimization problem. The cost function is the entropy
in Eq. (18). The constraints are given by the 𝑁 equalities in the set Eq. (17) together with the two additional constraints that all
the distributions need to satisfy, that is, ∫ 𝑝(𝑢) d𝑢 = 1 and 𝑝(𝑢) ≥ 0.

2.4. Quantifying the lack of information in the reconstructed PDF via relative entropy

With the reconstructed PDF in hand, it is essential to assess its difference (or the so-called lack of information) compared with
the true distribution. The comparison involves three PDFs. They are (a) the true PDF computed from the solution of the physical
model, (b) the reconstructed PDF using the leading few moments of the truth, and (c) the reconstructed PDF using the same number
of moments as (b) but from running the moment equations. The difference between (b) and (a) characterizes the lack of information
using the coarse-grained description of the statistics, namely what is lacking in the leading 𝑁 moments. Such a difference reflects
the intrinsic barrier that cannot be overcome by further optimizing the reconstructed PDF unless an additional number of moments
is included. A smaller difference is preferred as it implies a more skillful approximation using these 𝑁 moments. The difference
between (c) and (b) accesses the model error of the moment equations. Such an error is expected to be minimized by the optimization
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procedure in the model identification and parameter estimation. The difference between (c) and (a) is the total error in the results
from the moment equations compared with the truth.

The traditional path-wise measurements, such as the root-mean-square error or the standard Euclidean norms, are not appropriate
to quantify the difference between the two distributions. The main reason is that these measurements give a very low weight toward
the tails of the distributions, which are, however, the crucial part of describing the probability of extreme events. Therefore, an
information criterion is introduced here, which is called the relative entropy, that can be utilized to quantify the difference between
two PDFs 𝑝 and 𝑝̃, where 𝑝 is the truth or the one that contains more information while 𝑝̃ is the approximate PDF or the PDF which
has an error. The relative entropy is given by Majda and Gershgorin (2010) and Kleeman (2011)

(𝑝, 𝑝̃) = ∫ 𝑝(𝑢) ln

(
𝑝(𝑢)

𝑝̃(𝑢)

)
d𝑢. (20)

The relative entropy (𝑝, 𝑝̃), which is also known as Kullback–Leibler (KL) divergence or information divergence (Kullback, 1997;
Kullback and Leibler, 1951), is an objective metric for the difference between two PDFs that measures the expected increase in
ignorance, or lack of information, about the system incurred by using 𝑝𝑀 , when the outcomes are generated by 𝑝. It has two
important features. First, (𝑝, 𝑝̃) is positive unless 𝑝 = 𝑝̃. The relative entropy increases monotonically with the difference between the
two PDFs. Second, (𝑝, 𝑝̃) is invariant under general nonlinear change of variables. This is crucial in practice as different communities
often use distinct coordinates and units. It also means that relative entropy is a dimensionless measurement. Finally, it is worthwhile
to highlight that the ratio between 𝑝(𝑢) and 𝑝̃(𝑢) is utilized to characterize the difference between the two PDFs. This indicates
that even though both the PDFs can have small values at the tail, the ratio 𝑝(𝑢)∕𝑝̃(𝑢) can be large if the result from the moment
equation (namely, 𝑝̃(𝑢)) severely underestimates the probability of extreme events. In such a case, the relative entropy becomes
large, indicating the lack of skill in 𝑝̃(𝑢) in quantifying the uncertainty of extreme events.

2.5. Additional remarks

The model identification method utilized here is only one of many sparse identification approaches (Brunton et al., 2016; Liu
and Li, 2021; Ibáñez et al., 2018; Goyal and Benner, 2021; Boninsegna et al., 2018; Cortiella et al., 2021). In principle, other model
identification methods or computational algorithms can also be applied for the experiments in Section 4. The reason for using
this specific method is that it separates model identification from parameter estimation, where the latter can be efficiently solved
with closed analytic formulae. For more complicated cases, additional latent processes may become essential to advance the model
identification of the quantity of interest. In such a situation, an iterative method, which alternates between model identification,
learning the latent processes, and parameter estimation, can be developed based on the framework utilized here (Chen and Zhang,
2022).

It is also worthwhile to notice that the variance and kurtosis are non-negative. This condition is satisfied in all the results
presented in Section 4 since the values of these moments are typically far from zero, especially when extreme events are about to
occur. A model creating negative variance and kurtosis is thus very unskillful and is unlikely to be selected by the learning algorithm.
Yet, such a positivity condition is not automatically guaranteed within the current framework. A straightforward remedy to ensure
the positivity of these moments is to identify the governing equation of the square root of the even-order moments and then take
the square of the model simulation results to recover the moments.

3. Soft-coupled damage and polycrystal models

We seek a micromechanical understanding of the conditions which contribute to the formation of pores for states of high
triaxiality loading and with a particular focus on a computational database for a high-purity tantalum material. The basis for this
computational database of interest to this work is a plate impact experiment which is previously reported upon (Gray et al., 2014)
with particular interest to the tantalum on tantalum experiment and material pedigree information. We employ both free surface
velocity trace, and the cross-sectioned soft recovered sample, which is also examined in prior work (Bronkhorst et al., 2016, 2021).
In Bronkhorst et al. (2021), a macroscale continuum damage model from the pedigree (Ortiz and Molinari, 1992; Wang, 1994b,
1997, 1994a; Johnson et al., 1999; Czarnota et al., 2006, 2008; Molinari and Mercier, 2001; Tong and Ravichandran, 1995; Versino
and Bronkhorst, 2018) is developed and used to describe the experimental results described in Gray et al. (2014). The tantalum on
tantalum plate impact experimental result, in particular, was well described, and the simulation results were found to be independent
of computational element size by natural regularization of deformation rate sensitivity contained in the plasticity model and an
inertial term which is included in the equation of motion of the thick-walled sphere representation of a pore. The experiment was
material and geometry symmetric so that the center of the damage field in the shock direction was at the center of the sample. With
the experimental free surface velocity trace and the damage field well represented by the numerical results of the damage model,
these computed results were then used to quantify the principal stress history at the center of the sample to the point in time when
the damage model indicated porosity initiation. This occurred at 2.140 μs after impact, as indicated by the time of maximum shock
direction tensile stress. See Fig. 3. From this history of the principal stresses, one can see an initial period of rapid ramped increase
in compressive stress as the shock wave reached the center of the sample. This is followed by a period of relatively constant stress
over a period of 0.88 μs followed by rapid unloading and tensile reloading as the reflected tensile waves interact and lead to the
onset of damage. This principal stress profile is approximated by three linear segments as indicated by the data points in Fig. 3. This
piece-wise linear profile is then applied to a series of computational statistical volume elements (SVEs) representing the tantalum
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Fig. 3. Principal stress profile drawn from numerical simulation of a tantalum on tantalum plate impact experiment (Gray et al., 2014) using the damage model
of Bronkhorst et al. (2021). The points on the continuous stress profiles indicate end-points to a piece-wise linear approximation applied to the polycrystal
models.

Table 1
Time profile of the magnitude of principal stresses extracted from the center location of the
tantalum on tantalum plate impact simulation to the time when porosity nucleation began. Note
that the time for the shock wave to travel to the center location (0.470 μs) was subtracted from
each time value relative to the profile of Fig. 3.

Time, μs 1st principal stress, GPa 2nd and 3rd principal stresses, GPa

0.000 0.000 0.000
0.230 −7.370 −6.730
1.105 −7.420 −6.911
1.670 5.770 5.110

material used in the experimental study (Bronkhorst et al., 2021). Note that the profile used is offset in time by 0.47 μs, the time it
takes the shock wave to travel to the center of the sample. The applied profile is given in Table 1.

The loading profile derived from the computed representation of experimental data using the damage model (Versino and
Bronkhorst, 2018; Bronkhorst et al., 2021) and defined in Table 1 is applied to a series of ten SVE polycrystal models of the
experimental material. These models were constructed based upon the tools and methodology reported by Knezevic et al. (2014b).
The term SVE differs from that of representative volume element (RVE) in that the volume of sampling of the former may not be large
enough to adequately represent the statistical response of larger volumes. For example, two SVE units will provide differing stress
response to deformation and the PDF of state variables of interest, while two RVE units will provide similar measured response. The
tantalum material microstructure was characterized by electron-backscatter diffraction (EBSD) metallography of the three principal
plate directions. These EBSD data sets were then used within the open-source code Dream.3D (Groeber et al., 2008) to construct
statistically representative 3D numerical microstructure cubes with between 65 and 100 grains represented within each volume. The
methodology discussed in Knezevic et al. (2014b,a) uses STL files produced by Dream.3D to construct tetrahedral mesh tessellations
of each grain and renders grain boundary conforming polycrystal models. The crystallographic orientations assigned to each grain
in the ten SVEs were chosen by Dream3D to match the experimental EBSD crystallographic texture. This is important in our study
of damage in polycrystalline materials. With each cube face constrained to remain flat and unrotated, each of the ten polycrystal
realizations was loaded by applying the stress profile given in Table 1 to the primary faces of each cube. Cross-sectional images of six
of these polycrystal models are shown in Fig. 4. Cross-sectional images of von Mises stress contour plots in the six SVE simulations at
the maximum tensile stress state and the condition at which the damage model suggested porosity nucleation began are illustrated
in Fig. 5.

The single crystal theory used to describe the deformation behavior of the tantalum material was developed along the lines
of prior work by Asaro and Rice (1977), Acharya and Beaudoin (2000), Kothari and Anand (1998), Busso and McClintock (1996),
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Fig. 4. Cross-sectional images of six of ten statistical volume element polycrystal models used for this work showing the original geometry and crystal structure.
Realization 1 model is utilized as the training data for the statistical reduced-order model in Section 4 while the other five are utilized for the forecast
(extrapolation) experiments.

Fig. 5. Cross-sectional images of von Mises stress (MPa) in the six SVE simulations at the maximum tensile stress state and the condition at which the damage
model suggested porosity nucleation began.

Bronkhorst et al. (1992), Kalidindi et al. (1992), Anand (2004), Bronkhorst et al. (2007), Gurtin (2000), Gurtin et al. (2010), Alleman

et al. (2015), Cho et al. (2018) and Bronkhorst et al. (2021). The single crystal theory and results are to be found in Bronkhorst

et al. (2021) and so will only be briefly summarized here for completeness.

The model is written for large deformation and therefore the total deformation gradient is multiplicatively decomposed in elastic

(with crystallographic rotation) and plastic components by 𝐅 = 𝐅∗𝐅𝑝. Accordingly for crystal mechanics, the plastic velocity gradient
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is given by

𝐋𝑝 =

𝑁∑
𝛼=1

𝛾̇𝛼𝑝 𝐒
𝛼
0
, (21)

where 𝛾̇𝛼𝑝 is the plastic shear rate on slip system 𝛼 and 𝐒𝛼
0
is the Schmid projection tensor for slip system 𝛼. The second Piola–Kirchhoff

stress is given as a function of the energy conjugate Green–Lagrange elastic strain and the thermal expansion term

𝐓∗ = C(𝜃)[𝐄∗ − 𝐀
(
𝜃 − 𝜃0

)
], (22)

for temperature 𝜃, reference temperature 𝜃0, thermal expansion coefficient tensor 𝐀, and elastic stiffness tensor C(𝜃). The elastic
Green–Lagrange strain is defined by

𝐄∗ =
1

2

(
𝐅∗𝑇𝐅∗ − 𝟏

)
. (23)

For interests of this work, dislocation motion is well within the regime of thermally activated glide (Kocks et al., 1975) and therefore
the flow rule is given by

𝛾̇𝛼𝑝 = 𝛾̇0𝑝 exp

(
−

𝛥𝐺

𝑘𝐵𝜃

⟨
1 −

⟨
𝜏𝛼
𝑒𝑓𝑓

𝑠̃𝛼
𝑙

⟩𝑝⟩𝑞)
, for 𝜏𝛼 > 0, otherwise 𝛾̇𝑝 = 0, (24)

where 𝛾̇0 is the reference shear rate, 𝛥𝐺 is activation energy, 𝜏𝛼
𝑒𝑓𝑓

= 𝜏𝛼 − 𝑠̃𝛼 is the non-Schmid resolved effective shear stress for
slip system 𝛼, 𝑠̃𝛼 is the resistance to dislocation motion due to dislocation interactions, and 𝑠̃𝛼

𝑙
is the intrinsic lattice resistance.

The brackets ⟨⋅⟩ =
1

2
(| ⋅ | + (⋅)). The modified resolved shear stress including the non-glide stresses for BCC crystal systems is

𝜏𝛼 = 𝐓∗ ∶ (𝐒𝛼
0
+ 𝐒̃𝛼

0
). The Schmid tensor 𝐒𝛼

0
and the additional projection tensor involving non-glide stresses 𝐒̃𝛼

0
are given by

𝐒𝛼
0
= 𝐦𝛼

0
⊗ 𝐧𝛼

0
, (25a)

𝐒̃𝛼
0
= 𝜔1𝐦

𝛼
0
⊗ 𝐧′𝛼

0
+ 𝜔2

(
𝐧𝛼
0
×𝐦𝛼

0

)
⊗ 𝐧𝛼

0
+ 𝜔3

(
𝐧′𝛼
0
×𝐦𝛼

0

)
⊗ 𝐧′𝛼

0
, (25b)

𝜔𝑖 = 𝜔𝑖,𝑠𝑠 +
(
𝜔𝑖,0𝐾 − 𝜔𝑖,𝑠𝑠

)
exp

(
−𝜃∕𝜃𝑟

)
, (25c)

where 𝐦𝛼
0
and 𝐧𝛼

0
are slip system 𝛼 direction and plane normal respectively, 𝐧′𝛼

0
is an additional non-Schmid direction, and 𝜔𝑖 are

empirical weighting factors. The dislocation structure and intrinsic lattice resistances are given by

𝑠̃𝛼 = 𝑠𝛼
𝜇(𝜃)

𝜇0
, 𝑠̃𝛼

𝑙
= 𝑠𝛼

𝑙

𝜇(𝜃)

𝜇0
, (26)

where 𝑠𝛼 and 𝑠𝛼
𝑙
are the structural resistance and the intrinsic lattice resistance at 0 K, respectively, 𝜇0 is the anisotropic shear

modulus at 0 K and 𝜇(𝜃) is the temperature-dependent anisotropic shear modulus at current temperature. The rate and temperature
dependent saturation value of the structural resistance is given by

𝑠𝛼𝑠𝑠 = 𝑠𝛼
𝑠𝑠,0

(
𝛾̇𝛼𝑝

𝛾̇0𝑝

) 𝑘𝜃
𝐴

, (27)

where 𝑠𝛼
𝑠𝑠,0

is reference resistance and 𝐴 is reference energy. The structural resistance evolves with dislocation structure evolution

during plastic deformation and is given by

𝑠̇𝛼 =

𝑁∑
𝛽=1

ℎ𝛼𝛽
|||𝛾̇

𝛽
𝑝
||| , (28a)

ℎ𝛼𝛽 =
(
𝑞𝑖 +

(
1 + 𝑞𝑖

)
𝛿𝛼𝛽

)
ℎ𝛽 , (28b)

ℎ𝛽 = ℎ0

(
𝑠
𝛽
𝑠𝑠 − 𝑠𝛽

𝑠
𝛽
𝑠𝑠 − 𝑠

𝛽

0

)
, (28c)

with 𝑞𝑖 the latent hardening ratio, initial self-hardening rate ℎ0, and the initial slip system resistance 𝑠
𝛽

0
. The full model, values

of material parameters, the procedure by which they were evaluated, and the model performance compared against experimental
results for Eqs. (21)–(28) can be found in Bronkhorst et al. (2021).

4. Statistical quantification and prediction of the polycrystal simulations

4.1. Setup

The dynamic behavior of materials under shock loading conditions on polycrystal realizations of a representative BCC tantalum
is studied here in reference to plate impact experiments. These are conceptually simple in that a stationary circular disk (the target
sample) is impacted by another circular disk (the flyer) moving at high velocity. The flyer is accelerated through a gun barrel by
either compressed gas or in some cases, ignited gunpowder. The flyer is soft-mounted on a sabot that travels through the barrel.
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One simulation from the polycrystal model (the first one in Fig. 4; defined as simulation #1 hereafter) is utilized to determine
the moment equations. The cubic SVE has an initial dimension of 165 μm on a side. The simulation contains 69 grains with grain
shape and crystallographic orientation populations derived from electron backscatter diffraction (EBSD) results and used in SVE
construction by Dream3D. At the time 𝑡 = 0, principal stresses, as described earlier, are imposed on the faces of the cube with the
time profile defined in Fig. 3 and Table 1. The entire simulation covers the period from 𝑡 = 0 to 𝑡 = 1.67 μs, ending when the damage
model indicates that porosity initiation occurs. Computed data is written for 48 sequential times during the loading profile for each
of the six simulations considered in this work. At each time instant, there are 540,436 data points in space corresponding to the
number of integration points in the realization #1 model, sufficient to eliminate sampling error in computing the one-dimensional
statistics. Although any material state variable can be characterized within this framework, the quantity of interest for the statistical
reduced-order model studied here is the von Mises stress. The entire process can be divided into three stages. The first stage goes
from 𝑡 = 0 to 𝑡 = 0.23 μs, which is the period of compression ramp. The second stage goes from 𝑡 = 0.23 μs to 𝑡 = 1.105 μs, representing
the time of shock wave travel through the sample center with relatively constant compressive stress. The third stage is from 1.105 μs

onward, which is the period at the end of the compressive wave travel, unloading, and subsequent release wave interaction caused
tensile loading leading to porosity nucleation.

Once the moment equations are determined, they will first be applied to predict the statistics for the same polycrystal simulation
starting from 𝑡 = 0 to validate the learning results. Then, the model will be used to forecast the time evolution of the statistics
for the remaining five polycrystal simulations in Fig. 4 with the same loading condition but with different numbers of grains and
orientations. This is called an extrapolation test, which is crucial to demonstrate that the identified model is generalizable to different
scenarios.

Two statistical model experiments are carried out here. In the first experiment, the data from the polycrystal simulation is utilized
to learn a four-dimensional model that characterizes the time evolution of the leading four moments. In the second experiment, the
time evolution of the mean is treated as known, and the goal is to identify the moment equations for the variance, skewness, and
kurtosis, which is a three-dimensional system. The motivation of the second experiment is that the mean is usually computed by
continuum-based damage models or measured accurately from experiments. However, the higher-order moments are typically not
readily available. Therefore, finding a relationship between the mean and the higher-order moments has practical significance in
characterizing and predicting the information associated with the extreme damage events contained in the higher-order moments.
Discovering such a relationship also helps understand if the mean stress interacts with high-order moments and extreme events in
a simple additive way or a more complicated nonlinear and multiplicative way.

4.2. Non-Gaussian statistics and information characterized by the leading four moments

Fig. 6 shows the statistics of the von Mises stress computed from the polycrystal simulation #1. The time evolution of the statistics
(pink color) demonstrate an apparent three-stage behavior consistent with the three-stage loading process described in Section 4.1.
During the first stage (up to 𝑡 = 0.23 μs), the mean and the variance increase monotonically, which is a natural outcome due to the
loading condition causing the material compression. The skewness remains near zero; therefore, the PDFs are symmetric around
the mean. The kurtosis at the initial period is about 3.5, which results in moderate fat tails, as is expected from the compression.
At 𝑡 = 0.23 μs, the kurtosis becomes less than 3, suppressing the fat tails and leading to a sub-Gaussian distribution. Next, during
the second stage (from 𝑡 = 0.23 μs to 𝑡 = 1.105 μs), the sustained compressive stress with the shock wave traveling through the
sample center induces a slow decaying of the mean and the variance. In contrast, the skewness and the kurtosis are nearly static.
The skewness stays around a constant value of 0.2 while the kurtosis is about 2.5. The corresponding PDFs have weak bimodal
structures. Yet, no significant extreme events are observed within this period due to the low kurtosis. These statistics experience the
most significant changes during the third loading period (from 𝑡 = 1.105 μs to 𝑡 = 1.67 μs). In addition to a first decrease and then
an increase of the mean and the variance, both the skewness and the kurtosis increase dramatically. It is important to note that
even though the stress profile applied to the SVE cube becomes zero while transitioning from compressive to tensile loading, the
significant plastic deformation heterogeneity developed during the compressive loading process within the SVE maintains a value
of von Mises stress of near 200 MPa at its minimum value. As a result, the PDF at each instant within this period manifests strong
non-Gaussian features with a skewed profile and a one-sided fat tail toward the positive side that corresponds to extreme stress
conditions, which may in turn cause damage events.

One crucial feature observed from Fig. 6 is that the reconstructed PDF using the leading four moments via the maximum entropy
principle (black) successfully captures the true PDF (pink), especially the non-Gaussian characteristics. Despite small errors observed
at the first few instants, the strongly skewed PDFs with fat tails are recovered accurately at later instants. As shown in Panel (c), the
relative entropy that quantifies the gap between these two PDFs remains very low. It thus provides a quantitative justification that
using the leading four moments is sufficient to characterize the time evolution of the dynamic loading process, including representing
the statistical features of the development of extreme stress-driven events. Notably, the reconstructed PDFs accurately recover the
tail probabilities when non-Gaussian fat-tailed distributions appear, implying that the uncertainty associated with the extreme events
can be precisely characterized by the leading four moments.

Fig. 7 includes a comparison of the PDFs between simulation #1 and the other five simulations at different time instants.
According to Panel (a), these simulations have overall similar time evolution of non-Gaussian statistics, especially the fat-tailed
distributions at the final time instant. Yet, discrepancies are also seen between different realizations. Panel (b) shows the relative
entropy as a function of time, which quantifies the difference between these realizations. Such differences provide a suitable case
for the extrapolation tests. These results also clearly demonstrate the number of grains and total volume of the SVEs is not large
enough to achieve statistical steady-state pertaining to the von Mises stress.
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Fig. 6. True statistics of the von Mises stress computed from the polycrystal simulation #1. Panel (a): time evolution of the PDFs (pink) and the reconstructed
PDFs (black) using the leading four moments via the maximum entropy principle. Panel (b): time evolution of the leading four moments. Panel (c): time evolution
of the relative entropy (R.E.) that quantifies the difference between the truth and the reconstructed PDF.

Fig. 7. Comparison of the training realization (simulation #1) and the other five polycrystal realizations (simulation #3, simulation #4, simulation #7, simulation
#8, and simulation #10) that are utilized for the extrapolation tests. Panel (a): time evolution of the PDFs. Panel (b): time evolution of the relative entropy
(R.E.) that quantifies the difference between the training realization and the other five crystal realizations.

4.3. Experiment I: Learning the moment equations of the leading four moments

In the first experiment, the data from the polycrystal simulation #1 is utilized to learn the moment equations associated with the

leading four moments. The library of candidate functions includes all the linear and quadratic nonlinear interactions between mean
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Fig. 8. The identified model structure of the statistical reduced-order model in Experiment I. The four rows show the identified structure on the right-hand side
of the equation of mean (𝑚), variance (𝑣), skewness (𝑠), and kurtosis (𝑘), respectively. The terms represented by the yellow color are the ones that exist in the
identified model while those indicated by the blue color do not appear in the model. The last seven columns show the structure of the three-stage forcing.

Table 2
The parameters in the identified model based on the model structure in Fig. 13.

𝜃𝑚
𝑣

𝜃𝑚
𝑠

𝜃𝑚
𝑚𝑠

𝜃𝑚
𝑣𝑘

𝜃𝑚
𝑠𝑘

𝜃𝑚
𝑘𝑘

𝑓𝑚
1

−48.4939 7.4860 −0.1678 4.8556 3.1938 0.6583 34.8863

𝑓𝑚
2

𝑓𝑚
3

𝑓𝑚
4

𝑓𝑚
5

𝑓𝑚
6

𝑓𝑚
7

𝜃𝑣
𝑣

1.4566 34.1355 −11.8488 398.9180 −608.6578 226.6429 −16.4172

𝜃𝑣
𝑠

𝜃𝑣
𝑘

𝜃𝑣
𝑣𝑠

𝜃𝑣
𝑘𝑘

𝑓 𝑣
1

𝑓 𝑣
2

𝑓 𝑣
3

−0.8311 −21.6732 27.4578 1.9840 49.6498 52.397 63.4550

𝑓 𝑣
4

𝑓 𝑣
5

𝑓 𝑣
6

𝑓 𝑣
7

𝜃𝑠
𝑚

𝜃𝑠
𝑚𝑚

𝜃𝑠
𝑣𝑣

−3.7120 188.8415 −206.3912 78.6198 −11.7769 0.1678 −27.4578

𝑓 𝑠
1

𝑓 𝑠
2

𝑓 𝑠
3

𝑓 𝑠
4

𝑓 𝑠
5

𝑓 𝑠
6

𝑓 𝑠
7

−0.1485 405.4597 112.4508 −37.7338 1228.0147 −1750.9335 642.2245

𝜃𝑘
𝑚

𝜃𝑘
𝑣

𝜃𝑘
𝑘

𝜃𝑘
𝑚𝑣

𝜃𝑘
𝑚𝑠

𝜃𝑘
𝑚𝑘

𝜃𝑘
𝑣𝑘

−2.4556 47.0266 1.8248 −4.8556 −3.1938 −0.6583 −1.9840

𝑓 𝑘
1

𝑓 𝑘
2

𝑓 𝑘
3

𝑓 𝑘
4

𝑓 𝑘
5

𝑓 𝑘
6

𝑓 𝑘
7

−5.7400 88.5596 18.8439 −15.0779 321.0874 −516.7953 208.7485

𝜃𝑎
𝑏
means the parameter appearing in the equation of 𝑎 and is the coefficient of the 𝑏 term, and 𝑓 𝑎

𝑖
represents the 𝑖th coefficient of forcing terms

in the equation of 𝑎.

(𝑚), variance (𝑣), skewness (𝑠), and kurtosis (𝑘). The so-called physics constraint, introduced in Section 2.2.4, is incorporated into
the model identification process. The physics constraint is one of the most fundamental constraints in modeling nonlinear dynamical
systems (Majda and Harlim, 2012; Harlim et al., 2014; Chen and Majda, 2018), which requires the total energy of the identified
model resulting from the quadratic nonlinear terms to be conserved. This is motivated from the physical laws and energy exchange
of many physical systems. Without taking into account the physics constraint, the identified models can have finite time blowup of
solutions and pathological behavior of their statistics when they are applied for the forecast even though they match the data with
high precision. In addition to these moment quantity dynamical terms, forcing terms are also imposed on the model identification.
These forcing terms do not depend on 𝑚, 𝑣, 𝑠, or 𝑘, but they can be functions of time 𝑡. To be consistent with the physical justifications
in Section 4.1, the forcing is divided into three periods. Linear functions of 𝑡 are adopted for the first and second periods, which
are the natural choices corresponding to the linear driving stresses. On the other hand, the linear driving stress interacting with the
underlying nonlinear dynamics induces a strong nonlinear response of the time evolution of the moments associated with the von
Mises stress in the third period, which cannot be fully characterized by adopting a linear forcing. To this end, a quadratic function
of 𝑡 is utilized for this last period. Different forcing terms are imposed on each moment equation as a starting point,

𝐹 (𝑡) =

⎧⎪⎨⎪⎩

𝑓1 + 𝑓2𝑡, 𝑡0 < 𝑡 ≤ 𝑡1
𝑓3 + 𝑓4𝑡, 𝑡1 < 𝑡 ≤ 𝑡2
𝑓5 + 𝑓6𝑡 + 𝑓7𝑡

2, 𝑡2 < 𝑡 ≤ 𝑡3.

(29)

The results with various simplifications of the forcing representations will be presented at the end of this subsection. To determine
the model structure, the causation entropy is computed from each candidate function to each of the moments. The threshold value
is to be 𝑟 = 0.09. If the causation entropy is above this value, then the corresponding candidate function is retained. With these
choices of the hyper-parameters, the identified model structure is shown in Fig. 8 with the associated model parameters listed in
Table 2.

Note that this threshold must be chosen to be positive, as the numerically calculated causation entropy will never be precisely
zero. Nevertheless, this threshold should remain small to consider all essential terms in the dynamics. Changing this threshold value
will increase or decrease the number of terms in the identified model. But perturbing the threshold within a reasonable range around
𝑟 = 0.09 still leads to similar dynamical behavior as the model presented below, indicating the relative robustness of the method.
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Fig. 9. Experiment I: Comparison of the truth (pink) and the predicted statistics using the moment equations (blue) for simulation #1. Panel (a): time evolution
of the PDFs. Panel (b): time evolution of the leading four moments. Panel (c): time evolution of the relative entropy (R.E.) that quantifies the difference between
the truth (solid curve) or the reconstructed truth based on the true values of the leading four moments (dashed curve) and the predicted PDF using the moment
equations.

Fig. 9 compares the truth (pink) and the predicted statistics from the identified model (blue) starting from 𝑡 = 0 for simulation
#1. The time evolution of the moments is predicted quite accurately, especially for the first and second time periods. The details of
the complicated structures in the third time period are not entirely captured. But the overall tendency is predicted by the identified
moment equations. First, the predicted time evolution of the mean from the model is nearly identical to the truth, which indicates
that the statistical reduced-order model well captures the averaged behavior of the sophisticated physical model. Second, the model
perfectly describes the kurtosis being slightly larger than 3 (the Gaussian value) during the first compression stage and decreasing
to around 2.5 during the second stage with the compressive stress. In other words, the precursor of the extreme damage events is
appropriately characterized by the model. The model prediction also follows the rapid increase of the kurtosis in the third stage and
provides an accurate forecast of the strong positive skewness. Capturing these two significant features allows the model to precisely
predict the one-sided fat tail distribution characterizing the uncertainty resulting from extreme events. Based on the skillful recovery
of the moments, the reconstructed PDFs also illustrate similar features as the truth in most instances. The only exception to the
accurate PDF forecast occurs around 𝑡 = 1.559 μs due to a slight overestimation of the variance. The error in the forecast PDF around
that time instant mainly comes from the inaccurate estimation of probability for moderate or small stress values. Nevertheless, it
is worth highlighting that the tail behavior on the positive side for the time instants is consistently well predicted, including the
one at 𝑡 = 1.559 μs (see the panels with the 𝑦-axis showing in the logarithm scale). This is a significant feature, which indicates that
the uncertainty quantification of the extreme events using the statistical reduced-order model is entirely accurate throughout time.
In other words, the model can provide a precise probabilistic forecast of the timing of the occurrence of extreme damage events,
similar to the one computed from the much more expensive and sophisticated physical model.

Fig. 10 shows the results of the extrapolation test. Recall that the moment equations were identified using the first SVE von Mises
stress data set (simulation #1). Extrapolation means such identified moment equations are applied to predict the time evolution of
the statistics of the other SVE data sets. Skillful extrapolations indicate that the identified model is generalizable and can be used
for efficient forecast beyond the situation of the training data set. The forecast of the identified model for the second SVE data
set (simulation #10; thick pink color) is presented in Fig. 10, which results from using the same loading condition but different
numbers of grains (in total 66) and microstructure relative to simulation #1 and shown in Fig. 4. In these extrapolation tests, the
exact values of the leading four moments from simulation #10 serve as the initial conditions for the forecast using the moment
equations identified from the simulation #1. Simulation #10 is also used to measure forecast accuracy. It is seen that the forecasts
starting from different time instants covering the three stages are all reasonably accurate. Notably, the predicted kurtosis coincides
with the truth, which remains at small values below 3 over the second time period and experiences a rapid increase over the
third time period. It implies that the predictions of the tail probability that corresponds to the quantification of uncertainty in
extreme damage events and its statistical precursors are both accurate. The extrapolation tests for the other four SVE data sets are
quantitatively similar and are included in Fig. 11. The results here indicate that the identified model is skillful and robust for the
extrapolation test of predicting different polycrystal realizations.
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Fig. 10. Extrapolation test of Experiment I: Applying the identified moment equation from the training realization (simulation #1) to predict the time evolution
of the statistics associated with a different polycrystal realization (simulation #10; thick pink color). Different thin curves show the forecast starting from different
initial values at different points in time. The exact values of the leading four moments from simulation #10 serve as the initial values for the forecast using the
identified moment equations.

Fig. 11. Extrapolation tests of Experiment I: Applying the identified moment equation from the training realization (simulation #1) to predict the time evolution
of the statistics associated with four different polycrystal realizations (simulation #3, simulation #4, simulation #7, and simulation #8). Different thin curves
show the forecast starting from different initial values at different points in time. The exact values of the leading four moments from these four different
simulations serve as the initial values for the forecast using the identified moment equations.

Finally, Fig. 12 includes additional tests of the model identification. Similar to the previous setup, the model is learned from
simulation #1, while the extrapolation test is based on simulation #10. Only the time evolution of the mean and its forecast using
different identified models is shown. The qualitative results remain the same for other moments, and, in general, higher-order
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Fig. 12. Sensitivity tests of model identification in Experiment I. The forecast of the mean using the identified moment equations in different setups. Panel
(a): the model without additional forcing. Panel (b): the model with three-stage forcings but the same forcing coefficients are utilized in all the four moment
equations. Panel (c): the model with only a one-stage forcing that is a quadratic function of time. Panel (d): the model with only two-stage forcings that are a
linear and a quadratic function of time, respectively. The first stage is from 𝑡 = 0 to 𝑡 = 1.105 μs while the second stage is from 𝑡 = 1.015 μs to 1.67 μs. Panel (e):
the model without dynamics but only forcing. Panel (f): the extrapolation test to a different realization using the identified model from Panel (e).

moments have more significant errors. The result in Panel (a) reveals that the forcing terms play an important role in capturing the
time evolution of the moments. Without the forcing terms, the optimal identified model built upon the same library is insufficient in
characterizing the transitions in the time evolution of the moments. Adding more candidate functions and increasing the complexity
of the model can improve the fitting results but will make the model lose the extrapolation skill. Panel (b) shows the forecast using the
identified model, where the same forcing terms and coefficients are applied to all four moment equations. This critical test indicates
that different moments driven by the same external forcing in an additive way fail to provide a skillful model. This suggests that if
there is one common external forcing, it must interact with different moments in a complicated nonlinear way. This conjuncture will
be further validated in Section 4.4. Panel (c) illustrates that if the model is imposed with only a one-stage forcing that is a quadratic
function of time, then the model is again insufficient to characterize the time evolution of the moments. Nevertheless, Panel (d)
suggests that a model with two-stage forcings that combines the compression and the tension stages can provide good results. Here,
the two forcings are a linear and a quadratic function of time, respectively. In addition to the mean, the forecast of higher-order
moments and the extrapolation have comparable high skills. The error is slightly larger than the model with a three-stage forcing,
but the model shown in Panel (d) has a somewhat simpler form, which can be an appropriate model. Finally, Panels (e)–(f) imply
that although the identified model with only the forcing but no other dynamics can provide good fitting results, the initial error in
the extrapolation test will never be suppressed. Such an undesirable feature in the extrapolation test is due to the lack of damping
effect in the identified model, which is crucial to mitigate the initial or system biases. It also suggests that the identified model
should not be driven entirely by forcing terms.

4.4. Experiment II: Learning the moment equations of variance, skewness and kurtosis driven by the mean forcing

Recall that many existing macroscale ductile damage models representing the formation and evolution of porosity fields under
dynamic loading employ mean-valued (first moment) material internal state variables to characterize the evolution of stress, strain,
material structure, and porosity with deformation over time. Similarly, the time evolution of the mean state variables can also be
measured relatively accurately from lab experiments based on a small number of sample points. Therefore, it is natural to treat the
mean as a known component and use such information to identify the high-order moments. This subsection aims to learn a three-
dimensional moment equation for the time evolution of variance, skewness, and kurtosis, where the mean is treated to be known.
In addition to this practical reasoning, another crucial motivation for this experiment is to investigate the relationship between the
mean and the high-order moments via the learning process. Particularly, it is essential to reveal how the mean interacts with the
high-order moments in determining the moment equation of the latter. As the information of extreme events lies in these high-order
moments, the contribution from the mean to quantifying uncertainty in extreme events is essential to understand.

Fig. 13 shows the identified model structure using simulation # 1 results as in Experiment I, where the model parameters are
listed in Table Table 3. To balance model sparsity and essential dynamics, the threshold values for the three moments (variance,
skewness and kurtosis) are set to be 𝑟𝑣 = 0.01, 𝑟𝑠 = 0.04, and 𝑟𝑘 = 0.12, respectively. Different from experiment I, the model here
does not require to have additional time-dependent forcing. This leads to the first conclusion that the high-order moments are driven
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Table 3
The parameters in the identified model based on the model structure in Figure 13.

𝜃𝑣
𝑣

𝜃𝑣
𝑠

𝜃𝑣
𝑘

𝜃𝑣
𝑚𝑣

𝜃𝑣
𝑚𝑠

𝜃𝑣
𝑚𝑘

𝜃𝑣
𝑣𝑠

𝜃𝑣
𝑣𝑘

𝜃𝑣
𝑠𝑘

𝜃𝑣
𝑠𝑠

135.5376 −16.237 −51.894 −22.5021 16.4371 3.4971 96.6142 −48.5493 2.1524 −26.3572

𝜃𝑣
𝑘𝑘

𝜃𝑣
𝑚𝑣𝑠

𝜃𝑣
𝑚𝑣𝑘

𝜃𝑣
𝑚𝑠𝑘

𝜃𝑣
𝑚𝑠𝑠

𝜃𝑣
𝑚𝑘𝑘

𝜃𝑣
1

𝜃𝑠
𝑚

𝜃𝑠
𝑣

𝜃𝑠
𝑘

9.0825 −15.7718 7.1996 −3.9981 8.7155 −0.8878 70.0347 2.6882 64.5419 3.5754

𝜃𝑠
𝑚𝑣

𝜃𝑠
𝑚𝑠

𝜃𝑠
𝑚𝑘

𝜃𝑠
𝑣𝑠

𝜃𝑠
𝑣𝑘

𝜃𝑠
𝑣𝑣

𝜃𝑠
𝑘𝑘

𝜃𝑠
𝑚𝑣𝑠

𝜃𝑠
𝑚𝑣𝑘

𝜃𝑠
𝑚𝑣𝑣

−23.6133 1.7053 −0.309 26.3572 −2.1524 −96.6142 −1.6809 −8.7155 3.9981 15.7718

𝜃𝑠
1

𝜃𝑘
𝑚

𝜃𝑘
𝑚𝑣

𝜃𝑘
𝑚𝑘

𝜃𝑘
𝑣𝑘

𝜃𝑘
𝑠𝑘

𝜃𝑘
𝑣𝑣

𝜃𝑘
𝑚𝑣𝑘

𝜃𝑘
𝑚𝑣𝑣

𝜃𝑘
1

4.8621 −3.4606 3.4666 −0.2942 −9.0825 1.6809 48.5493 0.8878 −7.1996 15.3728

𝜃𝑎
𝑏
means the parameter appearing in the equation of 𝑎 and is the coefficient of the 𝑏 term.

Fig. 13. The identified model structure of the statistical reduced-order model in Experiment II. The three rows show the identified structure on the right-hand
side of the equation of variance (𝑣), skewness (𝑠), and kurtosis (𝑘), respectively. Note that the mean (𝑢) is known in this model. The terms represented by the
yellow color are the ones that exist in the identified model while those indicated by the blue color do not appear in the model.

Fig. 14. Experiment II: Comparison of the truth (pink) and the predicted statistics using the moment equations (blue). Panel (a): time evolution of the PDFs.
Panel (b): time evolution of the leading four moments. The first moment (mean) is known in the identified model. Panel (c): time evolution of the relative
entropy (R.E.) that quantifies the difference between the truth (solid curve) or the reconstructed truth based on the true values of the leading four moments
(dashed curve) and the predicted PDF using the moment equations.

by the mean. Next, it is worthwhile to highlight that the mean does not play a role as a simple additive forcing. Instead, the mean
interacts with all the other moments in a highly nonlinear way through multiplicative terms, for example, 𝑚𝑣 and 𝑚𝑘. In other
words, knowing the time evolution of the mean significantly facilitates the forecast uncertainty of extreme events. This is consistent
with the conclusion from Panel (b) of Fig. 12 that indicates the strong nonlinear nature of the moment equations that reflect the
complicated nonlinear dynamics throughout the SVE deformation process.

Fig. 14 includes the time evolution of the statistics from the model identification. The results are similar to those in Fig. 9. The
identified model is overall accurate except at the time instants around 𝑡 = 1.559 μs, where the variance is slightly overestimated.
Nevertheless, the probability of the extreme events corresponding to the fat tail on the positive side is overall captured reasonably
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Fig. 15. Extrapolation tests of Experiment II: Applying the identified moment equation from the training realization (simulation #1) to predict the time evolution
of the statistics associated with five different polycrystal realizations (simulation #3, simulation #4, simulation #7, simulation #8, and simulation #10). Different
thin curves show the forecast starting from different initial values. The exact values of the leading three moments from these five simulations serve as the initial
values for the forecast using the identified moment equations.

accurate over time, especially given the fact that in the absence of time-dependent forcing the identified model structure here is
simpler than that in Experiment I. This implies an overall accurate uncertainty quantification of extreme events. This means the
identification model can be applied to the statistical forecast of extreme damage events that provide the timing and the probability
of the possible occurrence of the ductile damage. Fig. 15 shows the extrapolation results by applying the identified model to the
other five polycrystal realizations. The predicted moments starting from different time instants follow the truth reasonably well,
which indicates the skillful generalization of the model.

5. Discussion and conclusion

In this paper, a new data-driven reduced-order modeling framework is developed and applied to study the early-stage process
of porosity-based ductile damage in polycrystalline metallic materials. The framework starts with computing the time evolution of
the leading few moments of specific state variables from the spatiotemporal solution of the polycrystal simulation. Then a simple
causality-based sparse model identification algorithm, including essential physical constraints, is utilized to discover the governing
equations of these moments. An approximate solution of the time evolution of the PDF is obtained from the predicted moments
and the maximum entropy principle. Numerical experiments based on polycrystal realizations of a representative BCC tantalum
illustrate a skillful reduced-order model in characterizing the time evolution of the non-Gaussian PDF of the von Mises stress and
quantifying the probability of extreme events. The learning process also reveals that the mean stress is not simply an additive forcing
to drive the higher-order moments and extreme events. Instead, it interacts with the higher-order moments in a strongly nonlinear
and multiplicative fashion. Finally, the calibrated moment equations provide a reasonably accurate forecast when applied to the
realizations outside the training data set, indicating the robustness of the model and the skill for extrapolation.

These results also demonstrate the importance of including measures of material statistics of the higher moments into probabilistic
descriptions of porosity-based ductile damage. The polycrystal simulations indicate noticeable structural evolution taking place
during the shock compression loading as indicated by significant magnitude of von Mises stress during the stage of unloading
after passage of the shock wave through the center of the sample. This is followed by high tensile reverse loading during which
significantly high values of skewness and kurtosis were observed. In particular, kurtosis values reach magnitudes of 5 in this region of
tensile loading which indicates fat tails of the stress distribution which deviate far from the mean stress state and large magnitudes.
It is expected that the regions of the body experiencing such particularly high stress states to also be more probable to nucleate
damage events. Such fat tails as quantified by large values of kurtosis are important as this segment of loading also immediately
precedes damage events observed experimentally and computationally via the macroscale damage model. Although small in volume,
the SVEs are statistically related to the material used experimentally and are therefore quantitatively relevant. This recommends
the possibility of adopted use of reduced-order statistical models as described here to accurately represent the complex structural
evolution of materials in a tractable fashion.
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One central subject in practice is efficiently forecasting extreme stress/damage events under different loading conditions. Instead
of repeatedly running the expensive polycrystal models with different conditions, the statistical reduced-order model allows an
alternative way to rapidly reach the associated statistical forecast with appropriate uncertainty quantification. Here, a small number
of the statistical reduced-order models can be trained by considering several fundamental loading conditions, such as imposing
compression stress, shearing stress, and tension stress. A combination of these fundamental loading states is usually sufficient to
represent more complex and arbitrary loading conditions. This means a large number of the statistical forecast of the damage
events with various loading conditions can be easily carried out by running these calibrated statistical low-order models, which
are computationally much more efficient than running the physical model multiple times. This remains a natural immediate future
work.

It is also worth noticing that the highly efficient statistical reduced-order model developed here does not directly tell the exact
location of the high-stress events in polycrystalline metallic materials. Nevertheless, the time evolution of the probability of extreme
stress values computed from the statistical reduced-order model provides a valuable indicator to predict the timing and the associated
uncertainty of the occurrence of extreme damage events with an almost negligible computational cost. The result can be combined
with specific spatial distribution maps from other approaches to infer more detailed information about ductile damage.

Finally, the statistical reduced-order model can also be developed based on experimental data. The resulting model is then quite
useful for dynamically correcting the error in forecasting the ductile damage from more complicated physical models. This can be
achieved by running the statistical reduced-order model and the physical model simultaneously. At each time instant, compute the
leading few moments from the spatial solution of the physical model. Correct the error in the distribution associated with these data
in light of the output from the statistical reduced-order model. Then redistribute the solution values of the physical model and run
it forward up to the next instant. This process exploits the statistical reduced-order model as a bridge to connect experimental data
with the physical model to perform efficient data assimilation for model error correction in a dynamic fashion.
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