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KULLBACK--LEIBLER-QUADRATIC OPTIMAL CONTROL\ast 
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Abstract. This paper presents approaches to mean-field control, motivated by distributed
control of multiagent systems. Control solutions are based on a convex optimization problem, whose
domain is a convex set of probability mass functions (pmfs). The main contributions follow: (1)
Kullback--Leibler-quadratic (KLQ) optimal control is a special case in which the objective function
is composed of a control cost in the form of Kullback--Leibler divergence between a candidate pmf and
the nominal, plus a quadratic cost on the sequence of marginals. Theory in this paper extends prior
work on deterministic control systems, establishing that the optimal solution is an exponential tilting
of the nominal pmf. Transform techniques are introduced to reduce complexity of the KLQ solution,
motivated by the need to consider time horizons that are much longer than the intersampling times
required for reliable control. (2) Infinite-horizon KLQ leads to a state feedback control solution with
attractive properties. It can be expressed as state feedback, in which the state is the sequence of
marginal pmfs, or an open loop solution is obtained that is more easily computed. (3) Numerical
experiments are surveyed in an application of distributed control of residential loads to provide
grid services, similar to utility-scale battery storage. The results show that KLQ optimal control
enables the aggregate power consumption of a collection of flexible loads to track a time-varying
reference signal, while simultaneously ensuring each individual load satisfies its own quality of service
constraints.

Key words. mean-field games, distributed control, demand dispatch
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1. Introduction. The goal of this paper is to obtain control solutions for mean-
field models. The optimization problems considered are generalizations of standard
Markov decision process (MDP) objectives, in both finite-horizon and average-cost
settings.

1.1. Mean-field control. The mean-field control problem is an approach to
distributed control of a collection of \scrN homogeneous ``agents,"" with \scrN \gg 1, modeled
as discrete-time stochastic systems, with state processes at time k denoted \{ Xi

k : 1\leq 
i\leq \scrN \} . To avoid a long detour on notation it is assumed that the common state space
\sansX is finite. For a single value k and time horizon K \geq 1, the empirical distributions
are denoted
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KULLBACK--LEIBLER-QUADRATIC OPTIMAL CONTROL 3235

p\scrN (\vec{}x) =
1

\scrN 

\scrN \sum 
i=1

I\{ (Xi
0, . . . ,X

i
K) = \vec{}x\} , \vec{}x\in \sansX K+1,(1.1a)

\nu \scrN 
k (x) =

1

\scrN 

\scrN \sum 
i=1

I\{ Xi
k = x\} , x\in \sansX ,(1.1b)

where \vec{}x= (x0, . . . , xK) denotes an arbitrary element of \sansX K+1. The set of probability
mass functions (pmfs) on \sansX K+1 is denoted by \scrS (\sansX K+1) for K \geq 1 and \scrS (\sansX ) for K = 0.

The integer \scrN is regarded as a parameter in mean-field theory, and assumptions
imply that there is convergence as \scrN \rightarrow \infty ,

lim
\scrN \rightarrow \infty 

p\scrN (\vec{}x) = p(\vec{}x) , lim
\scrN \rightarrow \infty 

\nu \scrN 
k (xk) = \nu k(x) ,

where \nu k \in \scrS (\sansX ) is the kth marginal of p\in \scrS (\sansX K+1) for 0\leq k\leq K.
In this paper this limit is achieved by assuming homogeneity of the statistics of

each agent: for each i the state evolution is consistent with p:

\sansP \{ Xi
k+1 = xk+1 | (Xi

0, . . . ,X
i
k) = \vec{}xk

0 \} = p(xk+1 | \vec{}xk
0 ),(1.2)

where the conditional pmfs are obtained from the Bayes rule.
The paper concerns design of p to balance two objectives, based on a reference

signal \{ rk\} , and function \scrY : \sansX \rightarrow R:
(i) \nu k \sim \nu 0k , where \{ \nu 0k\} models nominal behavior.
(ii) \langle \nu k,\scrY \rangle :=

\sum 
x\in \sansX \nu k(x)\scrY (x)\approx rk.

The agents considered in section 4 represent a population of residential water
heaters, and \scrY : \sansX \rightarrow R+ is chosen so that \langle \nu \scrN 

k ,\scrY \rangle is the average power consumption
over the population of loads.

Two approaches to design are developed in this paper.
Feedforward control. A sequence \{ \scrC k : 1\leq k\leq K\} of real-valued cost functions

on the marginals is specified, and p\ast is obtained as the solution to

J \star (\nu 00) =min
p

K\sum 
k=1

\scrC k(\nu k),(1.3)

where the minimum is over all pmfs with first marginal \nu 00 . The two goals motivate
the objective function

\scrC k(\nu ) =\scrD (\nu , \nu 0k) +
\kappa 

2

\bigl[ 
\langle \nu ,\scrY \rangle  - rk

\bigr] 2
, \nu \in \scrS (\sansX ) ,(1.4)

in which \kappa > 0 is a penalty parameter, and \scrD penalizes deviation from nominal
behavior. The finite-horizon optimal control problem is thus

J \star (\nu 00) =min
p

K\sum 
k=1

\biggl[ 
\scrD (\nu k, \nu 

0
k) +

\kappa 

2

\bigl[ 
\langle \nu k,\scrY \rangle  - rk

\bigr] 2\biggr] 
.(1.5)

It is envisioned that this finite horizon optimal control problem will be a component
of a model predictive control (MPC) strategy, with time horizons for computation
updates dictated by performance requirements and model accuracy.

Feedback control. If the nominal model is Markovian, then the evolution of
the marginals follows the dynamics of a controlled nonlinear state space model,

\nu k+1 = fk(\nu k,φk) , k\geq 0 , \nu 00 given,(1.6)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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3236 NEIL CAMMARDELLA, ANA BU\v SI\'C, AND SEAN P. MEYN

where \{ φk\} is the input sequence, evolving on an abstract set Φ. A feedback policy
takes the form φk =\scrK k(\nu k).

Design choices for \scrK k are proposed based on an infinite-horizon solution of (1.5).
Justification requires further assumptions, including time-homogeneous dynamics for
(1.6), which holds if the nominal model is a time-homogeneous Markov chain.

1.2. MDPs and mean-field control. The Markovian assumption for the nom-
inal model is based on the standard controlled Markov chain model used in MDPs.

The model considered here is specified by a state space denoted \sansS and input space
\sansU , and we denote \sansX :=\sansS \times \sansU (assumed finite). The joint state-input process is denoted
\bfitX = \{ Xk = (Sk,Uk) : k \geq 0\} . In finite-horizon optimal control the model includes a
sequence of controlled transition matrices \{ Tk : k \geq 0\} and cost functions \{ ck : k \geq 0\} 
with ck : \sansX \rightarrow R for each k.

The dynamics of \bfitX = (\bfitS ,\bfitU ) = \{ Sk,Uk : k \geq 0\} are determined by the transition
matrices as follows. It is assumed that \bfitX is adapted to a filtration \{ \scrF k : k \geq 0\} (so
that Xk is \scrF k-measurable for each k), and

\sansP \{ Sk+1 = s\prime | \scrF k; Sk = s , Uk = u\} = Tk(x, s
\prime ) , x= (s,u)\in \sansX , s\prime \in \sansS .(1.7)

The set of functions from \sansS to the simplex \scrS (\sansU ) is denoted Φ, and we let φ denote
a generic element of Φ. The decision rule defining the input sequence is assumed to
be Markovian: with φk \in Φ for each k,

\sansP \{ Uk = u | \scrF k - 1; Sk = s\} =φk(u | s) , x= (s,u)\in \sansX .(1.8)

The finite-horizon optimal control problem of MDP theory is a special case of
(1.3), in which \scrC k linear for each k; in this case \scrC k(\nu k) = \langle \nu k, ck\rangle =

\sum 
x\in \sansX \nu k(x)ck(x)

for each k, and the sum on the right-hand side of (1.3) may be expressed

K\sum 
k=1

\langle \nu k, ck\rangle =
K\sum 

k=1

\sansE [ck(Xk)] , Xk \sim \nu k ,

where \bfitX evolves according to the controlled Markovian dynamics. This interpretation
is the first step in the linear programming (LP) approach to MDPs introduced by
Manne [5, 34]. The second step is to recognize that the dynamics can be expressed
as a sequence of linear constraints on the marginals,\sum 

u\prime 

\nu k(s
\prime , u\prime ) =

\sum 
s,u

\nu k - 1(s,u)Tk - 1(x, s
\prime ) , s\prime \in \sansS , 1\leq k\leq K , \nu 00 given.(1.9)

Another special case of (1.3) is variance-penalized optimal control, for which
\scrC k(\nu k) = \langle \nu k, c\rangle + \kappa [\langle \nu k, c2\rangle  - \langle \nu k, c\rangle 2], with \kappa > 0 a penalty parameter. The solution
to the optimization problem (1.3) can be expressed using a randomized state feedback
policy of the form (1.8) [2, 41, 36].

1.3. Kullback--Leibler-quadratic control. In this approach to feedforward
control we choose a Markovian model of the form (1.7), (1.8) to define nominal be-
havior: for a collection \{ φ0

k\} \subset Φ,

p0(\vec{}x) = \nu 00(x0)P
0
0 (x0, x1)P

0
1 (x1, x2) \cdot \cdot \cdot P 0

K - 1(xK - 1, xK),(1.10a)

P 0
k (x,x

\prime ) = Tk(x, s
\prime )φ0

k+1(u
\prime | s\prime ) , x, x\prime \in \sansX .(1.10b)
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D
ow

nl
oa

de
d 

11
/3

0/
23

 to
 1

28
.2

27
.2

27
.1

77
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



KULLBACK--LEIBLER-QUADRATIC OPTIMAL CONTROL 3237

Any other \{ φk\} \subset Φ defines a Markov chain \bfitX with transition matrices,

Pk(x,x
\prime ) := \sansP \{ Xk+1 = x\prime | Xk = x\} = Tk(x, s

\prime )φk+1(u
\prime | s\prime ) .(1.11)

The marginals evolve according to linear dynamics, similar to (1.9),

\nu k = \nu k - 1Pk - 1 , 1\leq k\leq K,(1.12)

in which \nu k is interpreted as an n-dimensional row vector with n= | \sansX | .
We obtain a convex program by optimizing over \{ \nu k\} , similar to the LP approach

of [34]. Scalar variables \{ \gamma k\} are introduced to simplify the objective, in anticipation
of a Lagrangian decomposition:

J \star (\nu 00):=min
\nu ,\gamma 

\Biggl[ 
K\sum 

k=1

\scrD (\nu k, \nu 
0
k) +

\kappa 

2

K\sum 
k=1

\gamma 2
k

\Biggr] 
(1.13a)

s.t. \gamma k = \langle \nu k,\scrY \rangle  - rk ,(1.13b) \sum 
u\prime 

\nu k(s
\prime , u\prime ) =

\sum 
s,u

\nu k - 1(s,u)Tk - 1(x, s
\prime ) , 1\leq k\leq K.(1.13c)

The relative entropy rate is adopted as the cost of deviation:

\scrD (\nu k, \nu 
0
k) :=

\sum 
s,u

\nu k(s,u) log

\biggl( 
φk(u | s)
φ0

k(u | s)

\biggr) 
.(1.14)

The terminology is justified through the following steps. First, we have seen that
any randomized policy gives rise to a pmf p \in \scrS (\sansX K+1) that is Markovian: p(\vec{}x) =
\nu 00(x0)P0(x0, x1)P1(x1, x2) \cdot \cdot \cdot PK - 1(xK - 1, xK). The relative entropy (also known as
Kullback--Leibler divergence) is the mean log-likelihood:

D(p\| p0) =
\sum 

L(\vec{}x)p(\vec{}x),(1.15)

where L= log(p/p0) is an extended-real-valued function on \sansX K+1. The expression for
Pk in (1.11) and the analogous formula for P 0

k using φ0
k+1 gives

L(\vec{}x) = log

\biggl( 
p(\vec{}x)

p0(\vec{}x)

\biggr) 
=

K - 1\sum 
k=0

log

\biggl( 
Pk(xk, xk+1)

P 0
k (xk, xk+1)

\biggr) 
=

K\sum 
k=1

log

\biggl( 
φk(uk | sk)
φ0

k(uk | sk)

\biggr) 
.(1.16)

Consequently, D(p\| p0) =
\sum K

k=1\scrD (\nu k, \nu 
0
k).

The simple proof of Proposition 1.1 may be found in [13].

Proposition 1.1. With \scrD chosen as the relative entropy rate (1.14), the opti-
mization problem (1.13) is convex in \{ \nu k, \gamma k : 1 \leq k \leq K\} . Furthermore, the linear
constraints in (1.13c) are equivalent to (1.12).

1.4. Motivation from linear systems theory. The approach to feedback con-
trol proposed in section 3 begins with consideration of the infinite-horizon KLQ prob-
lem. This is tractable only subject to additional assumptions.

It is assumed that the nominal model is a time-homogeneous Markov chain and
that the reference signal is constant, rk \equiv r, k \geq 0. On optimizing for each r \in R we
obtain a continuous family of optimizers, \{ φ \star 

k(u | s; r) : (s,u) \in \sansX , k \geq 0 , r \in R\} . A
potentially useful policy for tracking is then

φk(u | s) =φ \star 
k(u | s; rk) , (s,u)\in \sansX , k\geq 0.(1.17)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/3

0/
23

 to
 1

28
.2

27
.2

27
.1

77
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



3238 NEIL CAMMARDELLA, ANA BU\v SI\'C, AND SEAN P. MEYN

Motivation for this approach may be found in the theory of optimal control for linear
systems.

Consider the linear system with n-dimensional state \bfitX , m-dimensional input \bfitU ,
and scalar output \bfitY , evolving as

Xk+1 =AXk +BUk +Nk+1 , Yk =CTXk +Wk+1,(1.18)

in which \{ Nk+1,Wk+1\} are independent and identically distributed (i.i.d.), mutually
independent, with zero mean and finite covariances. The cost is quadratic, c(x,u; r) =
(y - r)2 + uTRu with R> 0.

The goal is to solve the average-cost optimal control problem. The solution is
obtained via state-augmentation: define Xr

k = [Xk; rk], where rk+1 = rk = r defines
the dynamics. The solution is linear state feedback,

Uk = - K \star Xk +G \star r , k\geq 0 ,(1.19)

where [K \star ;G \star ] is the optimal gain. The optimal gain does not depend on r or the
distribution of Nk or Wk.

The special case in which the disturbances are zero is most closely related to the
nonlinear control problem considered in section 3. Consider the objective

J \star 
K(x) =min

\bfitU 

K\sum 
n=0

c(Xk,Uk) =min
u

\bigl\{ 
c(x,u; r) + J \star 

K - 1(Ax+Bu)\} , X0 = x\in Rn .

It is not useful to let K \rightarrow \infty without modification, since the cost c(x,u; r) is never
zero. This is why the relative value functions hK(x) = J \star 

K(x) - J \star 
K(0) are introduced,

which solve the Bellman equation in modified form,

\eta K + hK(x) =min
u

\bigl\{ 
c(x,u; r) + hK - 1(Ax+Bu)\} , X0 = x\in Rn ,

with \eta K = J \star 
K(0) - J \star 

K - 1(0). As K \rightarrow \infty , the pair (\eta K , hK) converge to a solution to
the average-cost optimality equation (ACOE),

\eta  \star + h \star (x) =min
u

\bigl\{ 
c(x,u; r) + h \star (Ax+Bu)\} , x\in Rn ,

whose minimizer is precisely (1.19). The proof is standard, though usually presented
in the purely stochastic setting. It is especially simple in this LQR setting since each
of the functions \{ hN\} is quadratic [41, 36].

When \bfitr is time varying, it is standard practice to apply the ``hack""

Uk = - K \star Xk +G \star rk , k\geq 0 .(1.20)

The most compelling motivation is found in the deterministic, continuous time setting:
under mild conditions, the return difference equation tells us that the closed loop
dynamics from reference input to output are passive [3]. Passivity is lost for discrete
time models but can be expected to hold approximately when the discrete time model
is obtained from sampling a continuous time system.

1.5. Main results. The contributions of this paper fall into three categories:
(1) Feedforward control. Consideration of the dual of the convex optimization

problem (1.13) leads to many insights. The main conclusions summarized here are a
special case of Theorem 2.1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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KULLBACK--LEIBLER-QUADRATIC OPTIMAL CONTROL 3239

Theorem 1.2. [KLQ solution]. Consider the convex program (1.13). An
optimizer \{ φ \star 

k : 1\leq k\leq K\} exists, is unique, and is of the form

φ \star 
k(u | s) =φ0

k(u | s) exp

\Biggl( \sum 
s\prime 

Tk(x, s
\prime )g \star k+1(s

\prime ) + \lambda  \star 
k\scrY (s,u) - g \star k(s)

\Biggr) 
,(1.21a)

where g \star k(s) = log

\Biggl( \sum 
u

φ0
k(u | s) exp

\Biggl( \sum 
s\prime 

Tk(x, s
\prime )g \star k+1(s

\prime ) + \lambda  \star 
k\scrY (s,u)

\Biggr) \Biggr) 
,(1.21b)

and \{ \lambda  \star 
k : 1 \leq k \leq K\} , \{ g \star k(s) : 1 \leq k \leq K\} are the Lagrange multipliers for the

constraints (1.13b) and (1.13c), respectively, and gK+1 \equiv 0.

Proposition 2.2 motivates a two-step approach in which \lambda  \star is obtained as the
solution to a convex program that maximizes the dual function \varphi  \star , and then g \star are
computed through the nonlinear recursion (1.21b). Hence the larger computational
challenge is computing \lambda  \star . Expressions for the derivatives of \varphi  \star involve means and
variances of \scrY (Xk), which invites the application of Monte Carlo techniques when the
state space is large or even uncountable---see [13] for details.

(2) Feedback. Section 3 concerns control design following steps analogous to
the approach used in linear systems theory to obtain the feedback control strategy
(1.20). Justification of the ACOE requires that we turn to a time-homogeneous model,
meaning that Tk = T and φ0

k =φ0, independent of k.
Even with rk \equiv r fixed, the solution to (1.4) is not time homogeneous, but on

letting K \rightarrow \infty the policies converge to a solution of an ACOE. This is equivalently
expressed as the solution to a deterministic optimal control problem,

System: \nu k+1 = f(\nu k,φk) , Cost: c(\nu ,φ; r) =D\infty (\^\nu ,φ) +
\kappa 

2
[\langle \nu ,\scrY \rangle  - r]2,(1.22)

where the marginals \{ \nu k\} are viewed as a state process, evolving on the simplex \scrS (\sansX ),
and φk \in Φ is regarded as an input. The system equation is of the form (1.12), but
simplified because of the time-homogeneity assumptions imposed here, giving

f(\nu ,φ)
\bigm| \bigm| 
x\prime =(s\prime ,u\prime )

=
\sum 
x\in \sansX 

\nu (x)T (x, s\prime )φ(u\prime | s\prime ).

Hence f is bilinear in the pair (\nu ,φ). Identification and justification of the term D\infty 
in (1.22) require further notation and analysis.

Consider the infinite-horizon objective,

\eta  \star (r) =min limsup
K\rightarrow \infty 

1

K

K\sum 
k=1

\biggl[ 
\scrD (\nu k, \nu 

0
k) +

\kappa 

2

\bigl[ 
\langle \nu k,\scrY \rangle  - r

\bigr] 2\biggr] 
(1.23)

in which the minimum is over all \{ φk\} \subset Φ. The following notational conventions are
required to describe the structure of its solution:

(i) Any φ \in Φ defines a transition matrix Pφ, and any pmf \pi that is invariant
for Pφ admits the decomposition

\pi (s,u) =φ(u | s)\^\nu (s),(1.24)

where \^\nu is the steady-state pmf for \bfitS under this policy.
(ii) With φ and \^\nu as above, the steady-state relative entropy rate is denoted

D\infty (\^\nu ,φ) :=
\sum 
s,u

φ(u | s)\^\nu (s) log
\biggl( 

φ(u | s)
φ0(u | s)

\biggr) 
.(1.25)
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3240 NEIL CAMMARDELLA, ANA BU\v SI\'C, AND SEAN P. MEYN

Theorem 1.3. [infinite-horizon KLQ solution]. Suppose that the nominal transi-
tion matrix P 0 has unique invariant pmf \pi 0, and fix any \kappa > 0 and r \in R. Then, there
is a solution to (1.23) in which φ \star 

k = φ \star for each k, obtained from the optimization
problem

argmin
\pi ,φ

\biggl\{ 
D\infty (\^\nu ,φ) +

\kappa 

2
[\langle \pi ,\scrY \rangle  - r]2 : \pi Pφ = \pi 

\biggr\} 
.(1.26)

This optimization problem is convex with unique solution \{ \pi  \star ,φ \star \} .
The convex program (1.26) reduces to the ``IPD"" convex program of [37, 8, 22]

as \kappa \rightarrow \infty (see discussion surrounding (1.29) in the literature review). The two
convex programs are differentiated by the introduction of a quadratic cost on the
marginals, so the policy φ \star obtained from (1.26) is henceforth called the IPD-Q
solution. Much of section 3 is devoted to obtaining approximations of this solution,
as well as computational methods to obtain the exact solution.

(a) HJB solution and LQR approximation. Viewed as a deterministic opti-
mal control problem, with system and cost given in (1.22), another solution to (1.23)
is obtained as state feedback φ \star 

k = \scrK  \star (\nu  \star k , r) for some mapping \scrK  \star : \scrS (\sansX )\times R \rightarrow Φ.
The IPD-Q solution is obtained via φ \star =\scrK  \star (\nu  \star ; r) with \nu  \star the steady-state marginal
of \bfitS under Pφ \star .

Because computation of \scrK  \star is complex if | \sansX | is large, and in anticipation of finer
analysis of the performance of this policy, much of section 3.1 is devoted to ``small
signal"" approximations.

Let \{ xi = (si, ui) : 1\leq i\leq n\} be an enumeration of the state space \sansX with n= | \sansX | .
As a corollary to Propositions 3.2 and 3.3, coefficients \{ K \star 

i,j ,G
 \star 
i \} are constructed for

which φ \star 
k(u

i | si, r) =φk(u
i | si, r) +O(r2) for each i with

φk(u
i | si, r) :=φ0(ui | si) exp

\left(  1

φ0(ui | si)

\left(   - 
\sum 
j

K \star 
i,j\widetilde \nu k(xj) +G \star 

i r

\right)   - \Gamma (si, r)

\right)  ,

(1.27)

\widetilde \nu k(xi) := \nu k(x
i) - \pi 0(xi) for each i, and \Gamma is a normalizing constant, defined so that

φk( \cdot | si, r) is a pmf on \sansU for each si, r.
(b) Lagrangian relaxation. A Lagrangian relaxation leads to a characteri-

zation of the IPD-Q solution in terms of a standard ACOE. Similar to (1.13b), we
introduce the variable \gamma = \langle \nu k,\scrY \rangle  - r, and let \lambda  \star \in R denote the Lagrange multiplier
associated with this scalar constraint; it is identified in (3.4) as \lambda  \star = \kappa [r - \langle \pi  \star ,\scrY \rangle ].

The relative value function h \star that solves the ACOE provides a representation of
the IPD-Q solution in (3.6):

φ \star (u | s) =φ0(u | s) exp
\bigl( 
\=h \star (s,u) + \lambda  \star \scrY (s,u) - \Gamma  \star (s)

\bigr) 
,

with \=h \star (x) =
\sum 

u\prime T (x, s\prime )h \star (s\prime ) and \Gamma  \star (s) a normalizing factor.
(c) ODE solution and small signal approximation. Rather than compute

\lambda  \star for each r, it is argued that it is simpler to let \lambda be the independent variable.
The family of relative value functions \{ h\lambda : \lambda \in R\} solves an ordinary differential
equation, whose vector field is identified in (3.10). In addition to offering a tool for
exact computation, this leads to approximation of the IPD-Q solution.

These conclusions lead to several approaches to feedback control for tracking a
time varying reference signal. Remember, in the following three options, the family
\{ φk : k\geq 0\} is proposed for local decision making in a mean-field control architecture:
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1. The feedback solution (1.17) using the collection \{ φ \star 
k(\cdot | \cdot ; r) : k\geq 0 , r \in R\} .

2. The open-loop strategy φk(\cdot | \cdot ) = φ \star (\cdot | \cdot ; rk), with \{ φ \star (\cdot | \cdot ; r) : r \in R\} the
IPD-Q solutions.

3. In option 2 above, it is assumed that rk is made available to each agent,
at each time k, as an external control signal. A refinement is obtained by
designing a control signal \{ \zeta k : k \geq 0\} based on filtering measurements, such
as error feedback,

\zeta k =
k\sum 

i=0

gk - iei , k\geq 0 , ei = ri  - \langle \nu i,\scrY \rangle .(1.28)

The randomized decision rule for each agent is then φk(\cdot | \cdot ) = φ \star (\cdot | \cdot ; \zeta k)
with \{ φ \star (\cdot | \cdot ; \zeta ) : \zeta \in R\} the IPD-Q solutions. The linearized dynamics
described in Proposition 3.5 can aid in the design of the filter in (1.28).

(3) Application to demand dispatch. The original motivation for the research
surveyed here is application to distributed control of power systems. The term demand
dispatch was introduced in the conceptual article [7] to describe the possibility of
distributed intelligence in electric loads, designed so that the population would help
provide supply-demand balance in the power grid.

The numerical results surveyed in section 4 illustrate the application of KLQ to
control a large population of residential loads. As expected, tracking error can be
made arbitrarily small with large \kappa > 0, provided the reference signal is feasible.

It is found in numerical experiments that the histograms defining the state of the
mean-field model rapidly ``forget"" their initial conditions---see the full arXiv version
[13] for details.

1.6. Literature review.
Mean-field control. The optimization problem (1.3) is inspired by mean-field game

theory [31, 28, 29, 10, 26] (see [16, 17, 10, 42] for recent surveys).
Mean-field control differs from mean-field game theory only because of greater

control at the microscopic layer: we do not assume that an individual in the population
is free to optimize based on its local objective function, so we avoid the fragility of
Nash equilibria. This description is similar to ensemble control in physics (see [32] for
history), and many in the power systems area opt for this term rather than mean-field
control (see [23, 22] and their references).

Demand dispatch. The goal of demand dispatch is to modify the behavior of
loads so that their aggregate power consumption tracks a reference signal \{ rk\} that is
synthesized by a balancing authority (BA). Randomized control techniques have been
proposed in [35, 43, 37, 1, 23, 4] based on various control architectures.

The following control strategy is common to the approaches described in [37, 22].
It is assumed that a family of transition matrices \{ P\zeta : \zeta \in R\} is available at each
load. A sequence \{ \zeta 0, \zeta 1, . . .\} is broadcast from the BA, based on measurements of
the grid, and at time k the ith load transitions according to this law:

\sansP \{ Xi
k+1 = x\prime | Xi

k = x, \zeta k = \zeta \} = P\zeta (x,x
\prime ).

The feedback solution (1.28) was proposed in [37] and tested in this and later research
using ei = ri  - \langle \nu \scrN 

i ,\scrY \rangle [22].
IPD. The paper [37] reinterprets the control solution of [44] as a technique to

create the family \{ P\zeta \} through the solution to the nonlinear program:

P\zeta := argmax
\bigl\{ 
\zeta \langle \pi ,\scrY \rangle  - \scrR (P\| P 0)

\bigr\} 
, \zeta \in R ,(1.29)
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3242 NEIL CAMMARDELLA, ANA BU\v SI\'C, AND SEAN P. MEYN

where \scrR denotes the rate function of Donsker and Varadhan [25, 30],

\scrR (P\| P 0) :=
\sum 
x,x\prime 

\pi (x)P (x,x\prime ) log

\biggl( 
P (x,x\prime )

P 0(x,x\prime )

\biggr) 
,(1.30)

in which \pi is the invariant pmf for P . The maximum in (1.29) is over all (\pi ,P ) subject
to the invariance constraint \pi P = \pi [37, 8]. The convex program (1.29) is called the
individual perspective design (IPD) in [8].

Hence IPD-Q may be interpreted as a new approach to designing \{ P\zeta \} .
The finite-horizon version of (1.29) is also considered in [37, 8], similar to the

KLQ formulation:

p\zeta := argmax
p

\Biggl\{ 
\zeta \sansE p

\Biggl[ 
K\sum 

k=1

\scrY (xk)

\Biggr] 
 - D(p\| p0)

\Biggr\} 
.(1.31)

Provided the entries of Tk(x, s) take on only binary values, the finite-horizon IPD
solution is obtained as a tilting of the nominal model:

p\zeta (\vec{}x) = p0(\vec{}x) exp

\Biggl( 
\zeta 

K\sum 
k=1

\scrY (xk) - \Lambda (\zeta )

\Biggr) 
with \Lambda (\zeta ) a normalizing constant.(1.32)

KLQ and optimal transport. Extensions of the KLQ objective will likely provide
useful relaxations of the classical optimal transport problem, in which the goal is to
steer p0 to a given target pmf p \star [39, 21]. Rather than match the target pmf, we might
match M generalized moments, minimizing D(p\| p0) subject to \langle p,\scrG i\rangle = \langle p \star ,\scrG i\rangle for
each i, with \scrG i : \sansX 

K+1 \rightarrow R.
A special case is the tracking problem,

min
p

\bigl\{ 
D(p\| p0) subject to \sansE p

\bigl[ 
\scrY (Xk)

\bigr] 
= rk , 1\leq k\leq K

\bigr\} 
.(1.33)

This optimization problem is proposed in [23, section 5], along with the explicit solu-
tion

p \star (\vec{}x) = p0(\vec{}x) exp

\Biggl( 
K\sum 

k=1

\beta k\scrY (xk) - \Lambda (\beta )

\Biggr) 
(1.34)

in which \beta \in RK are Lagrange multipliers corresponding to the K constraints, and
\Lambda (\beta ) a normalizing constant.

The convex program formulation (1.13) has many advantages. First, (1.13) is
always feasible, while feasibility of (1.33) requires conditions on p0 and \{ rk\} . Theorem
1.2 requires no assumptions on the model or reference signal. Flexibility in choice of
\kappa allows for learning the characteristics of an ``expensive"" reference signal. It is
anticipated that the penalty parameter \kappa can be used to make trade-offs between
tracking performance and robustness to modeling error: robustness and sensitivity
analysis will be a topic of future research.

Finally, as assumed to obtain the representation (1.32), the formula (1.34) is
meaningful only when Tk(x, s) take on only binary values. A goal of the research
surveyed in this paper is to remove this restriction.

The similarity between (1.32) and (1.34) is not accidental but follows from an
alternative interpretation of the IPD design (1.31). For a scalar r0 \in R, consider the
constrained optimization problem
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KULLBACK--LEIBLER-QUADRATIC OPTIMAL CONTROL 3243

max
p

\bigl\{ 
 - D(p\| p0)

\bigr\} 
subject to \sansE p

\Biggl[ 
K\sum 

k=1

\scrY (xk)

\Biggr] 
=Kr0 , 1\leq k\leq K.(1.35)

The dual function \varphi  \star : R\rightarrow R is defined by

\varphi  \star (\lambda ) =max
p

\Biggl\{ 
\lambda \sansE p

\Biggl[ 
K\sum 

k=1

\scrY (xk)

\Biggr] 
 - D(p\| p0)

\Biggr\} 
 - \lambda Kr0,

where \lambda \in R is a Lagrange multiplier. It is evident that the optimizer p\ast \lambda is an IPD
solution for each \lambda . Consequently, for each \zeta , the IPD solution (1.31) also solves
(1.35) for some scalar r0(\zeta ).

Contributions. Most of the contributions were surveyed in section 1.5. The
main contribution of this paper is the discovery of hidden convexity in the nonlinear
program (1.13), which leads to structure for the optimal solution in Theorem 1.2.
Properties of the dual surveyed in Theorem 2.1 lead to computational techniques for
this new class of optimal control formulations; see Proposition 2.2 and its corollary.
The application of these techniques to the infinite-horizon setting in section 3 is novel,
and the main results surveyed there are new.

Portions of the results reported here were summarized in the conference article
[15]. In this preliminary work, the transition matrix Tk was assumed deterministic,
so that all randomness arose from the randomized policy. All of the results in this
paper allow for general Markovian dynamics.

Extensions to resource allocation are summarized in [14]. More on these topics
may be found in the first author's Ph.D. dissertation [12].

Organization. The remainder of this paper is organized as follows. Section
2 describes a relaxation technique motivated by the desire to reduce computational
complexity, along with a full analysis of the convex program (1.13) and its dual.
Section 3 contains extensions to the infinite-horizon setting. Results from numerical
experiments are collected together in section 4. Conclusions and directions for future
research are contained in section 5.

2. Kullback--Leibler-quadratic optimal control.

2.1. Subspace relaxation. A relaxation of the convex program (1.13) is de-
scribed here. Motivation is most clear from consideration of distributed control of a
collection of residential water heaters. These loads are valuable as sources of virtual
energy storage since they in fact are energy storage devices (in the form of heat rather
than electricity) and are also highly flexible. Flexibility comes in part from their ex-
tremely nonsymmetric behavior: a typical unit may be on for just five minutes and
off continuously for more than six hours. The intersampling time at the load should
be far less than five minutes to obtain a reliable model for control.

On the other hand, it is valuable for the time horizon to be on the order of
several hours. For example, peak-shaving is more effective when water heaters have
advance warning to preheat the water tanks. To obtain a useful control solution will
thus require a very large value of K in (1.13). To reduce complexity, an approach is
proposed here based on lossy compression of \{ rk\} using transform techniques.

The transformations are based on a collection of functions \{ wn : 1\leq n\leq N\} , with
wn : \{ 0,1, . . . ,K\} \rightarrow R for each n, and N \ll K. The transformed signal is the N -
dimensional vector \^r with \^rn =

\sum 
kwn(k)rk for each n, and the transformed function

on \sansX K+1 is denoted \widehat \scrY n(\vec{}x) =
\sum K

k=1wn(k)\scrY (xk) for 1\leq n\leq N .
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3244 NEIL CAMMARDELLA, ANA BU\v SI\'C, AND SEAN P. MEYN

The goal is to achieve the approximation \langle p, \widehat \scrY n \rangle \approx \^rn for each n, while main-
taining p\approx p0. For example, a Fourier series can be used, with frequency \omega > 0, and
N is necessarily odd: wn(k) \in \{ 1, sin(\omega mk), cos(\omega mk) : 1 \leq m \leq (N  - 1)/2\} . The
degenerate family is defined using N =K and

wn(k) = I\{ n= k\} , 1\leq n,k\leq K.(2.1)

The optimal control problem with subspace relaxation is defined as

J \star (\nu 00) :=min
\nu ,\gamma 

K\sum 
k=1

\scrD (\nu k, \nu 
0
k) +

\kappa 

2

N\sum 
n=1

\gamma 2
n(2.2a)

s.t. \gamma n = \langle p, \widehat \scrY n \rangle  - \^rn , 1\leq n\leq N,(2.2b) \sum 
u\prime 

\nu k(s
\prime , u\prime ) =

\sum 
s,u

\nu k - 1(s,u)Tk - 1(x, s
\prime ) , 1\leq k\leq K , s\prime \in \sansS .(2.2c)

This reduces to (1.13) in the degenerate case (2.1).
The theory that follows is based in part on a relaxation of the dynamical con-

straints (2.2c), through the introduction of a Lagrange multiplier for each k. This
is precisely the first step in the construction of the Hamiltonian in the minimum
principle approach to optimal control [33].

2.2. Duality. Structure for the solution of (2.2) will be obtained by consider-
ation of a dual, in which \lambda \in RN and g \in RK\times J \star 

denote the vectors of Lagrange
multipliers for the first and second sets of constraints, respectively. The matrix g is
interpreted as a sequence of functions gk : \sansS \rightarrow R that are entirely analogous to the co-
state variables in the minimum principle (the Lagrange multipliers for the dynamical
constraints) [33].

The Lagrangian is denoted

\scrL (\nu , \gamma ,\lambda , g) =
K\sum 

k=1

\scrD (\nu k, \nu 
0
k) +

\kappa 

2

N\sum 
n=1

\gamma 2
n +

N\sum 
n=1

\lambda n

\Biggl( 
\gamma n +

K\sum 
k=1

wn(k)
\bigl[ 
rk  - \langle \nu k,\scrY \rangle 

\bigr] \Biggr) 

+
K\sum 

k=1

\sum 
s\prime 

\Biggl( \sum 
u\prime 

\nu k(s
\prime , u\prime ) - 

\sum 
s,u

\nu k - 1(s,u)Tk - 1(x, s
\prime )

\Biggr) 
gk(s

\prime )(2.3)

and the dual function is defined to be its minimum, \varphi  \star (\lambda , g) :=min\nu ,\gamma \scrL (\nu , \gamma ,\lambda , g).
The dual of the optimization problem (2.2) is defined as the maximum of the dual

function \varphi  \star over \lambda and g (see [33] for a complete and accessible treatment of this the-
ory). We will see that there is no duality gap, so that for a quadruple (\nu  \star , \gamma  \star , \lambda  \star , g \star ),

J \star (\nu 00) =\scrL (\nu  \star , \gamma  \star , \lambda  \star , g \star ) = \varphi  \star (\lambda  \star , g \star ) .

In the following subsections a representation of the dual function is obtained that
is suitable for optimization, which results in a valuable representation for the optimal
policy. Properties of the dual function are contained in Theorem 2.1 and Proposition
2.2 that follow. The statement of these results requires additional notation: define a
function \scrT \lambda 

k : R| \sansS | \rightarrow R| \sansS | , for f : \sansS \rightarrow R and \lambda \in RN , via

\scrT \lambda 
k (f ;s) = log

\Biggl( \sum 
u

φ0
k(u | s) exp

\Biggl( \sum 
s\prime 

Tk(x, s
\prime )f(s\prime ) + \v \lambda k\scrY (s,u)

\Biggr) \Biggr) 
, s\in \sansS ,

(2.4)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/3

0/
23

 to
 1

28
.2

27
.2

27
.1

77
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



KULLBACK--LEIBLER-QUADRATIC OPTIMAL CONTROL 3245

where \v \lambda k =
\sum N

n=1 \lambda nwn(k). The maximum of the dual function over g is denoted

\varphi  \star (\lambda ) :=max
g

φ \star (\lambda , g) = \varphi  \star (\lambda , g\lambda ),

where g\lambda is a maximizer, g\lambda \in argmaxg φ
 \star (\lambda , g). It is shown in Proposition 2.2 that

the vector valued function g\lambda satisfies the recursion

g\lambda k = \scrT \lambda 
k (g\lambda k+1) , 1\leq k\leq K , where g\lambda K+1 \equiv 0 .(2.5)

This forms part of the proof of Theorem 2.1, with complete details postponed to
Appendix B.

Theorem 2.1. There exists a maximizer \{ \lambda  \star 
n, g

 \star 
k : 1\leq n\leq N,1\leq k \leq K\} for \varphi  \star ,

and there is no duality gap: \varphi  \star (\lambda  \star , g \star ) = J \star (\nu 00). The optimal policy is obtained from
\{ g \star k\} via

φ \star 
k(u | s) =φ0

k(u | s) exp

\Biggl( \sum 
s\prime 

Tk(x, s
\prime )g \star k+1(s

\prime ) + \v \lambda  \star 
k\scrY (s,u) - g \star k(s)

\Biggr) 
,

where g \star k(s) = \scrT \lambda 
k (g \star k+1;s) for 1\leq k\leq K, and g \star K+1 \equiv 0 ,

(2.6)

and \{ \v \lambda  \star 
k\} are obtained from \{ \lambda  \star 

n\} via (2.4).

The proof of the following is also contained in Appendix B. Denote for each k,

G\lambda 
k(x) =

\sum 
s

Tk - 1(x, s)g
\lambda 
k (s).(2.7)

Proposition 2.2. The following hold for the dual of (2.2): for each \lambda \in RN ,
(i) a maximizer g\lambda is given by (2.5);
(ii) the maximum of the dual function over g is the concave function

\varphi  \star (\lambda ) = \lambda T \^r - 1

2\kappa 
\| \lambda \| 2  - \langle \nu 00 ,G\lambda 

1 \rangle ;(2.8)

(iii) the function (2.8) is continuously differentiable, and

\partial 

\partial \lambda n
\varphi  \star (\lambda ) = \^rn  - 1

\kappa 
\lambda n  - 

K\sum 
k=1

wn(k)\langle \nu \lambda k ,\scrY \rangle , 1\leq n\leq N,(2.9)

where \{ \nu \lambda k \} is the sequence of marginals obtained from the randomized policy
defined in (2.6), substituting \{ g \star k\} by \{ g\lambda k\} defined in (i).

To conclude this section, we provide representations of the log-likelihood ratio,
L(\vec{}x), relative entropy D(p\lambda \| p0), and primal objective function for the pmf p\lambda \in 
\scrS (\sansX K+1) obtained from the randomized policy defined in (2.6), substituting \{ g \star k\} by
\{ g\lambda k\} defined in Proposition 2.2, part (i). We defer to [13] for the proof of the following.

Corollary 2.3. The following hold for all \{ \v \lambda k, g
\lambda 
k : 1\leq k\leq K\} :

(i) The log-likelihood ratio can be expressed as

L(\vec{}x) =
K\sum 

k=1

\{ \Delta k(xk - 1, sk) + \v \lambda k\scrY (xk)\}  - G\lambda 
1 (x0),(2.10)

where for each k (recalling xk = (sk, uk)),

\Delta k(xk - 1, sk) =G\lambda 
k(xk - 1) - g\lambda k (sk).(2.11)
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(ii) The relative entropy is given by

D(p\lambda \| p0) =
K\sum 

k=1

\v \lambda k\langle \nu \lambda k ,\scrY \rangle  - \langle \nu 00 ,G\lambda 
1 \rangle .(2.12)

(iii) The value of the primal is given by

J(p\lambda , \nu 00) :=D(p\lambda \| p0) + \kappa 

2

N\sum 
n=1

\gamma 2
n(2.13a)

= - \langle \nu 00 ,G\lambda 
1 \rangle +

K\sum 
k=1

\v \lambda k\langle \nu \lambda k ,\scrY \rangle + \kappa 

2

N\sum 
n=1

\gamma 2
n(2.13b)

with \gamma n = \langle p\lambda , \widehat \scrY n \rangle  - \^rn.

The stochastic process \{ \Delta k(Xk - 1, Sk)\} is a martingale difference sequence; it
vanishes when nature is deterministic, reducing to the solution obtained in [15].

3. Feedback formulations. We now turn to the IPD-Q convex program (1.26).
It is assumed throughout this section that Tk = T and φ0

k =φ0, independent of k.
The relationship between IPD-Q and (1.23) will be clear after justification of the

term D\infty (\^\nu ,φ) defined in (1.25). Consider any φ \in Φ, which gives rise to a Markov
chain with transition matrix Pφ. The relative entropy (1.15) was previously expressed
as a sum over \vec{}x \in \sansX K+1 in (1.15). The notation D(p\| p0) =DK(p\| p0) is required in
the following, since K is a variable in (1.23).

Proposition 3.1. Suppose that p is obtained using the policy φ, and initial pmf
\nu 00 common with p0. Suppose moreover that Pφ has a unique invariant pmf \pi . Then,

D\infty (\^\nu ,φ) = lim
K\rightarrow \infty 

1

K

K\sum 
k=1

\scrD (\nu k, \nu 
0
k) = lim

K\rightarrow \infty 

1

K
DK(p\| p0) =\scrR (Pφ\| P 0),

where \scrR denotes the rate function (1.30) using P = Pφ:

\scrR (Pφ\| P 0) =
\sum 
x,x\prime 

\pi (x)Pφ(x,x
\prime ) log

\biggl( 
Pφ(x,x

\prime )

P 0(x,x\prime )

\biggr) 
.

Proof. The proof of the first identity begins with

1

K

K\sum 
k=1

\scrD (\nu k, \nu 
0
k) =

1

K

K\sum 
k=1

\sansE [F (Xk))]

with F (x) = log[φk(u | s)/φ0
k(u | s)] for x = (s,u) \in \sansX . The average converges to

D\infty (\^\nu ,φ) as K \rightarrow \infty since the invariant pmf \pi is unique.

The distinct approaches to optimal control pursued in this section follow the
distinct approaches to optimal control in general, via the HJB equations and optimal
control via the minimum principle:

(i) In section 3.1 IPD-Q is interpreted as a solution to an HJB equation, which
results in a solution in state feedback form, φ \star 

k =\scrK  \star (\nu  \star k , r), for some mapping
\scrK  \star : \scrS (\sansX )\times R\rightarrow Φ. The solution to IPD-Q is φ \star (u | s) =\scrK  \star (\nu r, r), in which
\nu r is the steady-state marginal for \bfitS under the IPD-Q policy. Computation
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KULLBACK--LEIBLER-QUADRATIC OPTIMAL CONTROL 3247

of \scrK  \star may be difficult if the state space is large. An LQR approximation is
proposed, justified for small | r| , and the approximation (1.27) may also be
found at the close of section 3.1.

(ii) The approach taken in section 3.2 is in essence the infinite-K limit of the
approach taken in section 2.2 which, as noted following (2.2), is the minimum
principle approach. It is well known that this approach provides only an
open-loop solution.

3.1. HJB approach. The solution to the optimal control problem (1.22) may
be characterized using techniques from deterministic optimal control theory.

The ACOE holds for deterministic systems, precisely as reviewed in section 1.4
for the linear quadratic problem:

\eta  \star +\scrH  \star (\nu ) =min
φ

\bigl\{ 
c(\nu ,φ; r) +\scrH  \star (f(\nu ,φ))

\bigr\} 
, \nu \in \scrS (\sansX ),(3.1)

with c(\nu ,φ; r) defined in (1.22), \scrH  \star : \scrS (\sansX )\rightarrow R the relative value function, and \eta  \star the
optimal average cost. The minimizer φ \star defines φ \star 

k =\scrK  \star (\nu  \star k , r).
We are not aware of solution techniques for this instance of the ACOE, beyond

the standard value iteration algorithm or other generic approaches.
The relative value function \scrH  \star and feedback law \scrK  \star can be approximated through

a small signal linearization of the dynamics, and a quadratic approximation of the
cost. We begin with an approximation for the latter.

The proof of Proposition 3.2 follows from the definition (1.25) and a Taylor's series
approximation of the logarithm. For any φ, denote by \widetilde φ(u | s) :=φ(u | s) - φ0(u | s)
the deviation.

Proposition 3.2. Suppose that \langle \pi 0,\scrY \rangle = 0. Then, the cost function (1.22) is
nearly quadratic in deviations,

c(\nu ,φ; r) = \| \widetilde φ\| 2R +
\kappa 

2
(y - r)2 +O(\| \widetilde φ\| 3R)

in which y=
\sum 

x[\nu (x) - \pi 0(x)]\scrY (x), and \| \widetilde φ\| 2R =
\sum 

s,u
\^\nu (s)

φ0(u| s)
\widetilde φ(u | s)2.

Approximation of the dynamics by a linear system is justified when | r| is small,
and \nu 00 \approx \pi 0, the invariant pmf for P 0. The corresponding stationary pmf for \bfitS is
denoted \^\nu 0 (recall (1.24)).

Let \sansX = \{ xi : 1\leq i\leq n\} with n= | \sansX | . The LQR approximation has state denoted\widetilde \scrX k and input \widetilde \scrU k at time k, with \widetilde \scrX i
k an approximation of \widetilde \nu k(xi) := \nu k(x

i) - \pi 0(xi),

and \widetilde \scrU i
k an approximation of \widetilde φi

k(u
i | si) := φi

k(u
i | si) - φ0(ui | si). The definition of

the linearization is a system model of the form (1.18),\widetilde \scrX k+1 =A \widetilde \scrX k +B \widetilde \scrU k , \widetilde \scrY k =CT \widetilde \scrX k,

in which \widetilde \scrY k is an approximation of \langle \widetilde \nu k,\scrY \rangle . Expressions for the n\times n matrices A and
B, and the n-dimensional column vector C, are provided in the following.

Proposition 3.3. The small signal approximation holds with

Ai,j = P 0(xj , xi) , Bi,j = I\{ i= j\} \^\nu 0(sj) , Ci =\scrY (xi) , 1\leq i, j \leq n.

Proof. The expression for C is by definition of \widetilde \scrY k. The other matrices are ob-
tained through the standard first-order Taylor series approximations:

Ai,j :=
\partial 

\partial \nu j
fi(\nu ,φ)

\bigm| \bigm| \bigm| 
\nu =\pi 0,φ=φ0

= P 0(xj , xi)

with \nu j = \nu (xj).
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3248 NEIL CAMMARDELLA, ANA BU\v SI\'C, AND SEAN P. MEYN

The input \widetilde \scrU k is an n-dimensional column vector, so that B is an n\times n matrix.
It is obtained from the Taylor series approximation,

Bi,j :=
\partial 

\partial φj
fi(\nu ,φ)

\bigm| \bigm| \bigm| 
\nu =\pi 0,φ=φ0

= I\{ i= j\} 
\sum 
x\in \sansX 

\pi 0(x)T (x, sj),

where φj = φ(uj | sj). By invariance of \pi 0 it follows that B is diagonal, with ith
diagonal entry equal to \^\nu 0(si).

Propositions 3.2 and 3.3 imply that for small r, the solution to the nonlinear
optimal control problem is approximated by the average-cost LQR solution using

c( \widetilde \scrX , \widetilde \scrU ; r) = \| \widetilde \scrU \| 2R +
\kappa 

2
( \widetilde \scrY  - r)2 , \widetilde \scrY =CT \widetilde \scrX ,

giving \widetilde \scrU k = - K \star \widetilde \scrX k +G \star r, with gain matrices K \star (n\times n) and G \star (n\times 1).
This leads to the policy approximation. Write \widetilde \scrU k = \scrU k  - \scrU 0

k with \scrU 0
k the vector

representation of the nominal policy. The ith entry of the input is expressed

\scrU i
k =φ0(ui | si) + [ - K \star \widetilde \scrX k +G \star r]i

=φ0(ui | si)
\biggl[ 
1 +

1

φ0(ui | si)

\Bigl( 
 - [K \star \widetilde \scrX k]i +G \star 

i r
\Bigr) \biggr] 

.

This implies the small signal approximation (1.27). It is conjectured that (1.27) is
within O(r2) of optimal (in terms of the objective in (1.26)).

3.2. Minimum principle approach. As previously observed, the optimization
problem (1.26) falls outside of traditional MDP theory:

(i) The control cost is absent and is replaced by a cost on the randomized policy.
(ii) A quadratic cost on \pi appears, rather than linear as anticipated in the LP

formulations of MDPs.
An MDP model is constructed here through a series of steps, with the first step
addressing (i). For this it is natural to view the input as an element of the simplex
\scrS (\sansU ). This is not the same setting as section 3.1: in this subsection, the notation
φ( \cdot | s) is interpreted as static state feedback from state s to input φ( \cdot | s)\in \scrS (\sansU ).

To remove the quadratic cost on \pi requires a Lagrangian relaxation, similar to
what was used in section 2. For \lambda \in R denote

[\pi \lambda ,φ\lambda , \gamma \lambda ] = argmin
\pi ,φ,\gamma 

\Bigl\{ 
\scrD (φ) +

\kappa 

2
\gamma 2 + \lambda [\gamma  - \langle \pi ,\scrY \rangle + r] : \pi Pφ = \pi 

\Bigr\} 
.(3.2)

For each \lambda this is viewed as a standard average-cost optimal control problem with
state process \bfitS . The controlled transition matrix and cost function are defined by

Tµ(s, s
\prime ) :=

\sum 
u

µ(u)T ((u, s), s\prime ) , s, s\prime \in \sansS , µ\in \scrS (\sansU ) ,

c(s,µ) :=
\sum 
u

µ(u)

\biggl[ 
log

\biggl( 
µ(u)

φ0(u | s)

\biggr) 
 - \lambda \scrY (s,u)

\biggr] 
, s\in \sansS , µ\in \scrS (\sansU ) .

Under any policy φ \in Φ the resulting process \bfitS is Markovian. With a slight
abuse of notation, its transition matrix is denoted

Tφ(s, s
\prime ) :=

\sum 
u

φ(u | s)T ((u, s), s\prime )
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KULLBACK--LEIBLER-QUADRATIC OPTIMAL CONTROL 3249

and the cost as a function of s under this policy is denoted

cφ(s) =
\sum 
u

φ(u | s)c(s,φ(u | s)) =
\sum 
u

φ(u | s)
\biggl[ 
log

\biggl( 
φ(u | s)
φ0(u | s)

\biggr) 
 - \lambda \scrY (s,u)

\biggr] 
, s\in \sansS .

The solution to (3.2) gives \gamma \lambda = - \lambda /\kappa and

[\pi \lambda ,φ\lambda ] = argmin
\^\nu ,φ

\Biggl\{ \sum 
s

\^\nu (s)cφ(s) : \^\nu Tφ = \^\nu 

\Biggr\} 
.(3.3)

This is a standard MDP formulation, in which the optimization over feedback laws φ
is explicit.

The Lagrange multiplier \lambda is treated as the independent parameter rather than r.
This is justified through the correspondence \gamma \lambda = - \lambda /\kappa , and the following definition
imposes complementary slackness:

r\lambda = - \gamma + \langle \pi \lambda ,\scrY \rangle = \langle \pi \lambda ,\scrY \rangle + \lambda /\kappa .(3.4)

As \lambda ranges from  - \infty to +\infty , so do the values of r\lambda because \langle \pi \lambda ,\scrY \rangle is bounded and
continuous in \lambda .

Continuity of \langle \pi \lambda ,\scrY \rangle and other conclusions are obtained from prior research
(in particular [9]), because the optimization problem (3.3) is identical to the IPD
optimization problem (1.29), in which \zeta is replaced by \lambda .

To match the setting of [9], denote the one-step reward as the negative of cost,
\varrho (s,φ) =  - c(s,φ). Based on the foregoing, the solution to (3.3) is characterized by
the average reward optimality equation

\xi \lambda + h\lambda (s) =max
φ

\Biggl\{ 
\varrho (s,φ) +

\sum 
s\prime 

Tφ(s, s
\prime )h\lambda (s\prime )

\Biggr\} 
.(3.5)

The maximizer provides a representation for the optimal policy similar to (1.21a):

φ\lambda (u | s) =φ0(u | s) exp
\bigl( 
\=h\lambda (s,u) + \lambda \scrY (s,u) - \Gamma \lambda (s)

\bigr) 
,(3.6)

with \=h\lambda (x) =
\sum 

u\prime T (x, s\prime )h\lambda (s\prime ) and \Gamma \lambda (s) the normalizing factor,

\Gamma \lambda (s) = log
\sum 
u

φ0(u | s) exp
\bigl( 
\=h\lambda (s,u) + \lambda \scrY (s,u)

\bigr) 
.(3.7)

ODE solution. The reader is referred to [9] for full details on this solution
technique to compute the solution to (3.5). The main ideas are recalled here, in part
because they are required in a small signal approximation.

It is shown in this prior work that the relative value functions can be constructed
so that they are continuously differentiable in \lambda . Letting H\lambda = d

d\lambda h
\lambda , we obtain

\scrY \lambda 
+H\lambda (s) =\scrY s +

\sum 
s\prime 

T\lambda (s, s
\prime )H\lambda (s\prime ) , s\in \sansS , \lambda \in R ,

in which T\lambda = Tφ\lambda ,

\scrY s :=
d

d\lambda 
\varrho (s,φ) =

\sum 
u

φ(u | s)\scrY (s,u) and \scrY \lambda 
=

d

d\lambda 
\xi \lambda .(3.8)
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3250 NEIL CAMMARDELLA, ANA BU\v SI\'C, AND SEAN P. MEYN

This fixed point equation is known as Poisson's equation, whose solution is often
expressed H\lambda =Z\lambda \scrY with Z\lambda known as the fundamental matrix (obtained as a simple
matrix inverse). Also obtained is

\scrY \lambda 
=
\sum 
x

\pi \lambda (x)\scrY (x),(3.9)

where \pi \lambda (s,u) = \^\nu \lambda (s)φ\lambda (u | s), with \^\nu \lambda the unique invariant pmf for T\lambda .
This defines the ODE solution for the family of relative value functions

d

d\lambda 
h\lambda =Z\lambda \scrY (3.10)

with boundary condition h\lambda \equiv 0 when \lambda = 0. The right-hand side depends on h\lambda 

through Z\lambda , but the dependency is smooth.
Small signal approximation. The small signal approximation here is defined in

a setting similar to Proposition 3.3: it is assumed that the reference signal is small in
magnitude, and that r\equiv 0 achieves zero cost in (1.26). This holds if

\sum 
\pi 0(x)\scrY (x) = 0,

which will be assumed henceforth.
A slight change in notation is required here, as compared to section 3.1: \widetilde Xk and\widetilde Uk are n-dimensional column vectors that denote the exact deviation, \widetilde Xi

k := \widetilde \nu k(xi)

and \widetilde U i
k = \widetilde φk(u

i | si) for each i and k. The approximation requires the following
notation:

(i) \varsigma 2\lambda = d2

d\lambda 2 \xi 
\lambda for \lambda \in R.

(ii) \=H\lambda = d
d\lambda 

\=h\lambda , \=H\lambda 
s =

\sum 
uφ

0(u | s) \=H\lambda (s,u), \scrY s =
\sum 

uφ
0(u | s)\scrY (s,u).

(iii) \Lambda (x) = \=H0(x) +\scrY (x) - ( \=H0
s +\scrY s), \Lambda \sansn (x) =

\bigl( 
\varsigma 20 + 1/\kappa 

\bigr)  - 1
\Lambda (x).

Approximation of the state dynamics begins with an approximation of the input.
The proof of Lemma 3.4 is postponed to Appendix C.

Lemma 3.4. The small-r approximation holds for the solution to IPD-Q:

\widetilde φ(u | s, r) =φ0(u | s) exp
\bigl( 
\Lambda \sansn (x)r

\bigr) 
+O(r2).(3.11)

The following linear systems approximation follows easily from Lemma 3.4. We
defer to [13] for details of the proof.

Proposition 3.5. Suppose that the input φk(u | s) = φ \star (u | s, rk) is applied to
the nonlinear system (1.22). The closed loop dynamics then admit the approximation

\widetilde Xk+1 =A \widetilde Xk +BG \star rk + \varepsilon k +O(r2k)(3.12)

in which A and B are defined in Proposition 3.3, G \star is the column vector with entries
G \star 

i =φ0(ui | si)\Lambda \sansn (x
i), and \varepsilon k is quadratic in the deviation (\widetilde \nu k, \widetilde φk):

\varepsilon ik =
\sum 
j

\widetilde \nu k(xj)T (xj , si)\widetilde φk(u
i | si) , xi = (si, ui)\in \sansX .

4. Applications to demand dispatch. An application of the control frame-
work described in the previous sections is demand dispatch, an evolving science for
automatically controlling flexible loads to help maintain supply-demand balance in
the power grid. The goal of demand dispatch is to modify the behavior of flexible
loads such that the aggregate power consumption tracks a reference signal that is
broadcast by a BA.
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KULLBACK--LEIBLER-QUADRATIC OPTIMAL CONTROL 3251

Keep in mind that in the numerical examples here we focus entirely on the mean-
field model. We know from prior work that evolution of the empirical distributions
does closely track this idealization: for reasonably large \scrN , following the notation
(1.1b), the approximation \nu \scrN 

k \approx \nu k holds and the covariance of the error grows slowly
with k (error is reduced with feedback [19, 20]). Although the control architecture in
this prior work is very different, it should not surprise the reader that the law of large
numbers and associated central limit theorem hold in the setting of this paper.

Also, the numerical results here focus entirely on the solutions surveyed in
section 2. As explained in section 3, the IPD-Q solution for real-time feedback reduces
to something similar to what has been extensively explored in prior work [19, 20].

Although these techniques can be applied to any flexible load, the experiments
in this section demonstrate distributed control of a population of residential water
heaters or refrigerators. An MDP model is constructed in which the state is the
standard used to capture hysteresis control, Sk = (\theta k,Uk - 1), in which \theta k \in R is the
temperature, and Uk \in \{ 0,1\} denotes power mode for each k. Remember the physical
system operates in continuous time, and k represents the kth sampling time. This
means that Uk - 1 represents the power mode during the sampling interval ending at
the kth sampling time.

4.1. Designing the nominal model. Construction of the nominal model with
transition matrices \{ P 0

k \} of the form (1.10b) requires specification of dynamics of
nature and the nominal policy. In the case of water heaters, the sequence of transi-
tion matrices \{ Tk\} for nature were based on input-output data obtained from Oak
Ridge National Laboratories [22]. For refrigerators, T was taken independent of k,
constructed based on simulations of the standard linear TCL model,

\theta k+1 = \theta k + \alpha [\theta a  - \theta k] - \beta Uk +Dk+1 ,(4.1)

in which \alpha ,\beta > 0, \theta a denotes the (time-invariant) ambient air temperature, and the
disturbance process \bfitD captures modeling error and usage.

In all cases the nominal policy was chosen time-homogeneous: φ0
k \equiv φ0 is a

fixed randomized policy, designed to approximate deterministic hysteresis control.
We describe the construction for water heaters, following [37, 22]. We defer to [13]
for details on the construction of the nominal policy.

4.2. Tracking. In practical applications the aggregate power is of interest, which
is approximated by \varrho \scrN yk at time k, where \varrho is the rated power of a single load. Hence
the total population size \scrN must be taken into account in any tracking problem. In
plots that follow, we choose to focus on the ``normalized"" response, defined as follows:

yrefk = rk/\varrho , \^yrefk = \^rk/\varrho , yk = \langle \nu k,\scrY \rangle /\varrho .

In this context, yk can be interpreted as the probability of a load being on.
The two sets of plots in Figure 1 are distinguished by the reference signal. In

each case the reference signal is a square wave. In (a) the signal is feasible, and in
(b) it violates the energy limits of the collection of water heaters [27]. In Figure 1(a)
it is seen that tracking is nearly perfect for sufficiently large \kappa . Tracking of the larger
reference signal would require temperature deviations to exceed the deadband of the
water heater. Instead, we observe in Figure 1(b) a graceful truncation of the reference
signal.

The next set of experiments was designed to assess sensitivity of KLQ optimal
control to modeling error. Specifically, what are the consequences of ignoring the
randomness of nature?
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(a) Tracking signal feasible (b) Tracking signal infeasible

Fig. 1. Tracking error: (a) reference signal is feasible; (b) reference signal is infeasible.
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(a) (b)θ̃a = 0.4◦C C(5 openings/day on avg.) (100 openings/day on avg.)

3 hours

0.2

0.3

0.4

0.5

0.6

0.7

P
[U

k
=

1]

θ̃a = 8.8◦

Fig. 2. Sensitivity experiments support the use of MPC with a deterministic approximation for
randomness from nature.

A particular choice of statistics for (4.1) was chosen in order to mimic the effect
of a refrigerator door opening at random times throughout the day: \bfitD is i.i.d., with

Dk+1 =

\Biggl\{ 
\=d with probability \varepsilon ,

0 with probability 1 - \varepsilon ,

where \varepsilon determines the average amount of door openings per day, and \=d was chosen
so that the temperature inside the refrigerator increases when the door is open even
when the power mode is on. A deterministic approximation of (4.1) was constructed
for comparison, in which Dk+1 is replaced by its mean:

\theta k+1 = \theta k + \alpha [\=\theta a  - \theta k] - \beta Uk(4.2)

with \=\theta a = \theta a + \~\theta a with \~\theta a = \=d\varepsilon /\alpha .
Optimal policies were calculated for each of three models: the stochastic model

(4.1), its deterministic approximation (4.2), and the cruder deterministic approxima-
tion obtained on setting Dk+1 \equiv 0 in (4.1) (equivalently, (4.2) with \=\theta a = \theta a). Each
policy was then tested on the stochastic model (4.1).

Figure 2 displays the results from these experiments, where in each plot
\bullet yrefk is the reference signal,
\bullet yk is the policy that is optimal for the stochastic model,
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\bullet \~yk is the policy that is optimal for (4.2),
\bullet \=yk is the policy that is optimal for (4.2) using \=\theta a = \theta a.

The accurate tracking yk \approx yrefk is expected because this reference signal is feasible,
and \kappa > 0 was chosen to be large.

It is seen in Figure 2(a) that all four trajectories are nearly identical for the
smaller disturbance. The deviation is far greater in (b), for which the disturbance is
greater. However, yk and \=yk are nearly identical for about the first 30 minutes. This
suggests that a deterministic approximation, combined with MPC, may be used in
place of the stochastic model.

4.3. Information architectures. The choice of information architecture is an
interesting topic for future research. Here are three possibilities:

(i) Smart BA: The BA uses the reference signal \{ rk\} and its estimate of \nu 00 to
compute \lambda  \star and broadcast it to the loads.

(ii) Smart load : The BA broadcasts \{ rk\} to the loads. Each load computes \lambda  \star 

based on its internal model and \nu 00 = \delta x0
, with x0 \in \sansX its current state.

(iii) Genius load : The BA broadcasts \{ rk\} to the loads. Each load computes \lambda  \star 

based on its internal model and its estimate of \nu 00 .
Each approach has its strengths and weaknesses. Approaches (i) and (iii) require

knowledge of the initial marginal pmf of the population, \nu 00 . If a perfect estimate
is assumed, then the total cost in cases (i) and (iii) is equal to J \star (\nu 00). But, how
can a load estimate the marginal pmf of the population? Numerical results from
[13] suggest coupling of the marginals from distinct initial conditions. If enough time
has passed since the latest MPC iteration, the pmfs \{ \nu k\} computed locally can be
used to approximate the marginal pmf of the population (perhaps smoothed using
the techniques of [19, 20]).

In contrast, the total cost for case (ii) is the sum,
\sum d

i=1 \nu 
0
0(x

i)J \star (\delta xi), since each
load optimizes according to its own initial state, xi. Even when the aggregate can
easily track \{ rk\} , the cost J \star (\delta xi) may be very large for individuals that are at odds
with the reference signal. For example, an increase in power consumption could be
requested while a water heater is near its upper temperature limit and must turn off.
So, it is possible that approach (ii) will impose greater stress on the loads as compared
to the other two options, or will lead to reduced capacity.

5. Conclusions. The paper provides a complete theory for KLQ and infinite-
horizon counterparts, without the restriction to deterministic dynamics imposed in
[15, 23]. Plans for future research include the following:

(i) Monte Carlo approaches for both KLQ and IPD-Q. The approximation (1.27)
invites actor critic methods for approximating the best coefficients \{ K \star 

i,j ,G
 \star 
i \} 

based on training data with nonconstant reference signal, rather than approx-
imation.

(ii) Evaluate robustness and sensitivity to other types of modeling error.
(iii) Investigate alternative transform techniques.
(iv) Consider other cost functions, such as the Wasserstein distance. Preliminary

results are summarized in [24].
(v) Investigate the relationship between optimality and coupling of the pmfs, and

the implications to control design.
(vi) Careful design of a terminal cost function may result in better performance

for smaller time horizons [18].
(vii) How is the relative value function \scrH appearing in (3.1) related to h\lambda appearing

in (3.5) (with \lambda = \lambda r)?
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Appendix A. Convexity. The proofs of Theorem 2.1 and Proposition 2.2 make
use of the following four lemmas. The first is based on a well-known result regard-
ing relative entropy. For any function h : \sansX K+1 \rightarrow R denote \Lambda 0(h) := supp

\bigl\{ 
\langle p,h\rangle  - 

D(p\| p0)
\bigr\} 
.

Lemma A.1 (convex dual of relative entropy). For each p0 \in \scrS (\sansX K+1) and func-
tion h : \sansX K+1 \rightarrow R, the (possibly infinite) value of \Lambda 0(h) coincides with the log moment
generating function: \Lambda 0(h) = log\langle p0, eh \rangle . Moreover, provided \Lambda 0(h) <\infty , the supre-
mum defining this quantity is uniquely attained with p \star = p0 exp(h - \Lambda 0(h)). That is,
the log-likelihood L \star = log(dp \star /dp0) is given by L \star (\vec{}x) = h(\vec{}x) - \Lambda 0(h).

Lemma A.2. The dual function can be expressed

\varphi  \star (\lambda , g) = \lambda T \^r - 1

2\kappa 
\| \lambda \| 2  - \langle \nu 00 ,G\lambda 

1 \rangle +
K\sum 

k=1

min
s

\Bigl[ 
gk(s) - \scrT \lambda 

k (gk+1;s)
\Bigr] 
.(A.1)

Proof. First, make the substitution \nu k(s,u) = \^\nu k(s)φk(u | s), so that the
Lagrangian (2.3) can be written

\scrL (\nu , \gamma ,\lambda , g) =
N\sum 

n=1

\Bigl( \kappa 
2
\gamma 2
n + \lambda n\gamma n + \lambda n\^rn

\Bigr) 
 - 
\sum 
s,u

\nu 00(s,u)
\sum 
s\prime 

T0(x, s
\prime )g1(s

\prime )

+
K\sum 

k=1

\sum 
s

\^\nu k(s)
\sum 
u

φk(u | s)

\Biggl( 
Lk(s,u) - 

\sum 
s\prime 

Tk(x, s
\prime )gk+1(s

\prime ) - \v \lambda k\scrY (s,u)

\Biggr) 

+
K\sum 

k=1

\sum 
s

\^\nu k(s)gk(s)

(A.2)

with gK+1 \equiv 0, and Lk(s,u) = log φk(u| s)
φ0

k(u| s)
. This amounts to a Lagrangian decompo-

sition since the minimization of the Lagrangian is equivalent to solving K separate
convex programs to obtain each of the minimizers \{ \nu \lambda ,gk : \nu \lambda ,gk (s,u) = \^\nu \lambda ,gk (s)φ\lambda ,g

k (u | 
s), (s,u)\in \sansX , 1\leq k\leq K\} . That is, argminφ\scrL =\biggl\{ 

argmin
φk:1\leq k\leq K

\sum 
u

φk(u | s)
\biggl[ 
Lk(s,u) - 

\sum 
s\prime 

Tk(x, s
\prime )gk+1(s

\prime ) - \v \lambda k\scrY (s,u)

\biggr] \biggr\} 
.(A.3)

Lemma A.1 implies that the minimizer is obtained with \Lambda k(s) = \scrT \lambda 
k (gk+1;s) and

φ\lambda ,g
k (u | s) =φ0

k(u | s) exp

\Biggl( \sum 
s\prime 

Tk(x, s
\prime )gk+1(s

\prime ) + \v \lambda k\scrY (s,u) - \Lambda k(s)

\Biggr) 
.(A.4)

Lemma A.1 also gives the value

min
φk

\sum 
u

φk(u | s)

\Biggl[ 
Lk(s,u) - 

\sum 
s\prime 

Tk(x, s
\prime )gk+1(s

\prime ) - \v \lambda k\scrY (s,u)

\Biggr] 
= - \scrT \lambda 

k (gk+1;s)

resulting in

min
\nu 

\scrL (\nu , \gamma ,\lambda , g) =
N\sum 

n=1

\Bigl( \kappa 
2
\gamma 2
n + \lambda n\gamma n + \lambda n\^rn

\Bigr) 
 - 
\sum 
s,u

\nu 00(s,u)
\sum 
s\prime 

T0(x, s
\prime )g1(s

\prime )

+
K\sum 

k=1

min
\^\nu k

\langle \^\nu k, gk  - \scrT \lambda 
k (gk+1) \rangle .

(A.5)
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Next, observe that the minimizer \^\nu \lambda ,gk is obtained when the support of each \^\nu k satisfies

supp
\bigl( 
\^\nu k(s)

\bigr) 
\subseteq argmin

s

\Bigl[ 
gk(s) - \scrT \lambda 

k (gk+1;s)
\Bigr] 

so that min
s

\Bigl[ 
gk(s) - \scrT \lambda 

k (gk+1;s)
\Bigr] 
= \langle \^\nu \lambda ,gk , gk  - \scrT \lambda 

k (gk+1) \rangle .

We also have \gamma \lambda 
n =  - 1

\kappa \lambda n Substituting the minimizers \{ \nu \lambda ,gk , \gamma \lambda 
n\} into (A.5), and

applying (2.7), results in (A.1).

Appendix B. Duality.

Lemma B.1. The maximum of the dual function over g is

\varphi  \star (\lambda ) :=max
g

\varphi  \star (\lambda , g) = \lambda T \^r - 1

2\kappa 
\| \lambda \| 2  - \langle \nu 00 ,G\lambda 

1 \rangle (B.1)

with G\lambda 
1 (x) =

\sum 
s\prime T0(x, s

\prime )g\lambda 1 (s
\prime ). A maximizer g\lambda is given by the recursive formula:

g\lambda k = \scrT \lambda 
k (g\lambda k+1) , 1\leq k\leq K , where g\lambda K+1 \equiv 0.(B.2)

Proof. Adding a constant to any of the (g1, g2, . . . , gK) does not change the value
of \scrL (2.3) or \varphi  \star (2.8), so without loss of generality we assume

min
s

\Bigl[ 
gk(s) - \scrT \lambda 

k (gk+1;s)
\Bigr] 
= 0 for each k,(B.3)

and consequently

gk \geq \scrT \lambda 
k (gk+1) for each k .(B.4)

Thus, in view of (A.1),

\varphi  \star (\lambda ) = \lambda T \^r - 1

2\kappa 
\| \lambda \| 2  - min

g1

\sum 
s,u

\nu 00(s,u)
\sum 
s\prime 

T0(x, s
\prime )g1(s

\prime ) ,(B.5)

where the minimum is subject to the constraint (B.4). Next, observe that \scrT \lambda 
k is a

monotone operator, so that for each k\leq K,

gk \geq \scrT \lambda 
k \circ \scrT \lambda 

k+1 \circ \cdot \cdot \cdot \circ \scrT \lambda 
K(gK+1)

.
= g\lambda k , where gK+1 \equiv 0.

Based on the expression (B.5), we now show that the maximum argmaxg φ
 \star (\lambda , g) is

obtained by choosing each gk to reach this lower bound, giving (B.2). Indeed, g\lambda 1
achieves the minimum in (B.5), since g\lambda 1 \leq g1 for any g1 for which (B.4) holds. This
result along with (B.3) yields (B.1).

For an inductive proof of the following see [13].

Lemma B.2. The maximizers \{ g\lambda k\} have at most linear growth in \| \lambda \| :

| g\lambda k (s)| \leq Ck\| \lambda \| , 1\leq k\leq K,(B.6)

where Ck = \| \scrY \| \infty 
\sum K

i=k \| w(i)\| and w(i) is the vector \{ w1(i),w2(i), . . . ,wN (i)\} .
Proof of Theorem 2.1. We prove the existence of a maximizer \lambda  \star by showing that

φ \star (\lambda ) is an anticoercive function, i.e., φ \star (\lambda ) \rightarrow  - \infty as \| \lambda \| \rightarrow \infty . By Lemma B.2,
there exists C1 <\infty such that

\varphi  \star (\lambda ) = \lambda T \^r - 1

2\kappa 
\| \lambda \| 2  - 

\sum 
s,u

\nu 00(s,u)
\sum 
s\prime 

T0(x, s
\prime )g\lambda 1 (s

\prime )

\leq \| \lambda \| \| \^r\|  - 1

2\kappa 
\| \lambda \| 2 +max

s\prime 
| g\lambda 1 (s\prime )| \leq \| \lambda \| \| \^r\|  - 1

2\kappa 
\| \lambda \| 2 +C1\| \lambda \| .
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3256 NEIL CAMMARDELLA, ANA BU\v SI\'C, AND SEAN P. MEYN

Since φ \star (\lambda ) is upper-bounded by an anticoercive function, φ \star (\lambda ) itself is an antico-
ercive function. Thus a maximizer \lambda  \star exists, and (\lambda  \star , g \star ) = (\lambda  \star , g\lambda 

 \star 

) by (B.2).
The primal is a convex program, as established in Proposition 1.1. To show

that there is no duality gap it is sufficient that Slater's condition holds [6, section
5.3.2]. This condition holds: the relative interior of the constraint set for the primal
is nonempty since it contains \{ \nu 0k\} . Optimality of (2.6) is established by substituting
g \star k+1 into (A.4) and by making the substitution g \star k = \scrT \lambda 

k (g \star k+1) implied by (B.2).

Proof of Proposition 2.2. This proof has three parts:
(i) Equation (2.5) is proven by Lemma B.1.
(ii) Equation (2.8) is proven by Lemma B.1.
(iii) The representation of the derivative in part (iii) is standard (e.g., section 5.6

of [6], or [13]).

Appendix C. IPD-Q.

Proof of Lemma 3.4. An application of the implicit function theorem tells us that
\{ r\lambda ,φ\lambda : \lambda \in R\} are smooth as functions of \lambda , whose derivatives may be expressed

d

d\lambda 
r\lambda =

d

d\lambda 
\langle \pi \lambda ,\scrY \rangle + 1/\kappa = \varsigma 2\lambda + 1/\kappa ,

d

d\lambda 
log
\bigl( 
φ\lambda (u | s)

\bigr) 
= \=H\lambda (x) +\scrY (x) - d

d\lambda 
\Gamma \lambda (s).

The first identities follow from (3.4) and then (3.8). The formula for the derivative of
log(φ\lambda ) is immediate from (3.6).

The proof of (3.11) requires approximations for r\lambda and φ\lambda in a neighborhood of
zero. The first approximation is given by r\lambda =

\bigl( 
\varsigma 20 + 1/\kappa 

\bigr) 
\lambda +O(\lambda 2). The definition

(3.7) implies that

d

d\lambda 
\Gamma \lambda (s)

\bigm| \bigm| 
\lambda =0

= \=H0
s +\scrY s,

which gives log
\bigl( 
φ\lambda (u | s)

\bigr) 
= log

\bigl( 
φ0(u | s)

\bigr) 
+\Lambda (x)\lambda +O(\lambda 2).

An inversion is applied to express \lambda as a function of r, giving

φ(u | s, r) =φ0(u | s) exp
\bigl( 
\Lambda (x)\lambda r

\bigr) 
+O(r2)

with \lambda r =
\bigl( 
\varsigma 20 +1/\kappa 

\bigr)  - 1
r+O(r2). Hence (3.11) follows from a first-order Taylor series

approximation of the exponential.
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