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H
ow can you optimize a function :R Rd "C  based 
on evaluations of this function without access 
to its gradient? Kiefer and Wolfowitz proposed 
a solution in the early 1950s based on stochastic 
approximation (SA) [16], and in the 1920s, an en-

gineer for the French railway system proposed an entirely 
deterministic approach that is now known as extremum seek-
ing control (ESC) [27], [48]. Once you understand the ESC 
architecture, you will find that the ideas are very similar. 
A fundamental difference is that random noise is replaced 
with sinusoids for exploration.

The punchline: Techniques from the SA literature can be 
extended to the deterministic realm of quasi-stochastic 
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approximation (QSA), providing new techniques for algo-
rithm design. When applied to ESC, we obtain algorithms 
that are globally stable and have astonishingly fast rates of 
convergence (see “Summary”).

Before we can justify these claims, we require back-
ground, starting with the pioneering work of Robbins and 
Monro, who in [42] launched the field of SA. A summary 
can be found in “What Is Stochastic Approximation?” but a 
more concise explanation is presented here in the special 
case of minimization of a function .C  An SA algorithm gen-
erates a sequence of estimates : n 0n $i" , of the minimizer 

opti  based on approximate gradient descent

	 , n 0n n n n1 1d $i i a C= -+ +
u � (1)

in which : n 0n 1 $a +" , is the step-size sequence and :nd Cu"  
n 0$ , is a random sequence, designed to approximate the 
respective gradients ( ) : .n 0nd $iC" ,  It is assumed that the 
approximation holds only in an average sense; the inher-
ent filtering in (1) helps to reduce the impact of the noisy 
gradient estimates.

For gradient estimates that are asymptotically unbiased, 
theory establishing convergence is based on a proof of cou-
pling with solutions of the gradient flow

	 ( ) .dt
d dj jC=- � (2)

See “What Is Stochastic Approximation?” to understand 
why we can expect solidarity between the gradient flow 
and stochastic gradient descent algorithms of the form (1).

Although there have been exciting advances in SA 
theory in recent decades, in many cases, this approach is 
not acceptable for the applications of interest in this article:

»» Constraints from physics: Most versions of gradient-
free optimization begin with the construction of 

: n 0nd $Cu" , based on perturbed observations of the 
form ( ),Yn n ni fpC= +  in which np" , is a vector-val-
ued probing sequence and 02f  is known as the 
probing gain. Within the realm of SA, the probing 
sequence is chosen to be independent and identically 
distributed (i.i.d.). Such high-frequency exploration 

What Is Stochastic Approximation?

The goal of stochastic approximation (SA) is to solve the 

root-finding problem ( ) ,f 0i =)r  in which :f R Rd d"r  is ex-

pressed as the expectation

	 ( ) : [ ( , )]f fEi i p=r � (S1)

with p  a random vector taking values in Rm . In applications to 

optimization, the function f and distribution of p  are selected 

so that fr  approximates a negative gradient. Theory has grown 

tremendously in the past few decades, driven in large part by 

applications to machine learning [S1], [S2], [S3] and reinforce-

ment learning [S4], [S5] (see “Root Finding and Learning” to 

understand why).

The solution proposed in [42] is in essence the ODE meth-

od—a term coined by Ljung in [S6]. This consists of the fol-

lowing steps:

(i)	 By luck or design, ensure that the mean flow (5) is globally 

asymptotically stable,

(ii)	Ensure that conditions are right, so that an Euler approxi-

mation of the mean flow is also globally convergent.

(iii)	The basic SA algorithm is by definition the noisy Euler 

approximation

	 ( , ),f n 0n n n n n1 1 1 $i i a i p= ++ + + � (S2)

where { }n 1a +  is the nonnegative step-size sequence, and the 

sequence { }n 1p +  is random, with distribution converging to that 

of p  as n tends to .3

The conditions ensuring convergence of { }ni  to the desired 

value i)  are not restrictive [S7].

While estimating bounds on the rate of convergence is far 

more challenging, there is now a well-developed theory based 

on the central limit theorem; the asymptotic covariance Ri  is 

the solution to a Lyapunov equation [S7], [S8]. Under stronger 

conditions (see [S9] and its references), its trace coincides with 

the scaled asymptotic mean square error

( ).lim 1 E trace
n n

n
2

a
i i R- =

"

)

3
i6 @

Lower bounds on the right-hand side are well known, along 

with algorithm design techniques to minimize this value.

REFERENCES
[S1] A. Fradkov and B. T. Polyak, “Adaptive and robust control in the 
USSR,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 1373–1378, Apr. 2021, 
doi: 10.1016/j.ifacol.2020.12.1882.
[S2] W. Mou, C. J. Li, M. J. Wainwright, P. L. Bartlett, and M. I. Jordan, “On 
linear stochastic approximation: Fine-grained Polyak-Ruppert and non-
asymptotic concentration,” in Proc. Conf. Learn. Theory, 2020, pp. 2947–2997.
[S3] E. Moulines and F. R. Bach, “Non-asymptotic analysis of stochas-
tic approximation algorithms for machine learning,” in Proc. Adv. Neural 
Inf. Process. Syst. 24, 2011, pp. 451–459.
[S4] D. P. Bertsekas, Reinforcement Learning and Optimal Control. 
Belmont, MA, USA: Athena Scientific, 2019.
[S5] S. Meyn, Control Systems and Reinforcement Learning. Cam-
bridge, U.K.: Cambridge Univ. Press, 2022.
[S6] L. Ljung, “Analysis of recursive stochastic algorithms,” IEEE Trans. 
Autom. Control, vol. AC-22, no. 4, pp. 551–575, Aug. 1977, doi: 10.1109/
TAC.1977.1101561.
[S7] V. S. Borkar, Stochastic Approximation: A Dynamical Systems 
Viewpoint, 2nd ed. Delhi, India: Hindustan Book Agency, 2021.
[S8] H. J. Kushner and G. G. Yin, Stochastic Approximation Algorithms 
and Applications. New York, NY, USA: Springer-Verlag, 1997.
[S9] V. Borkar, S. Chen, A. Devraj, I. Kontoyiannis, and S. Meyn, “The 
ODE method for asymptotic statistics in stochastic approximation and 
reinforcement learning,” 2021, arXiv:2110.14427.

Authorized licensed use limited to: University of Florida. Downloaded on November 30,2023 at 22:49:32 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1016/j.ifacol.2020.12.1882
http://dx.doi.org/10.1109/TAC.1977.1101561
http://dx.doi.org/10.1109/TAC.1977.1101561


OCTOBER 2023 «  IEEE CONTROL SYSTEMS  113

may make no sense in truly online applications as the 
probing may be filtered out through inertia in the 
system or create stress on equipment.

»» Curse of variance: In the majority of applications of SA, 
the mean-square error decays no faster than ( / ),O n1  

as a consequence of the central limit theorem. This 
slow convergence is often unacceptable.

These constraints and curses are addressed through the 
flexibility we have in the applications of interest in this 
article: it is we who design the exploration. This is true in 

Root Finding and Learning

In [S1], Polyak credits Tsypkin’s 1971 monograph Adaptation 

and Learning in Automatic Systems [S10] for the realization 

that stochastic approximation (SA) is an invaluable ingredient 

in the creation of algorithms for learning. The following two 

classes of machine learning problems serve to justify Tsyp-

kin’s insight:

1)	 Model-free optimization: The goal is to approximate the mini-

mizer of a function : .R Rd "C  We are free to choose the 

values { }xn  to observe ( ),y xn nC=  but we may not have an 

analytical expression for the objective function or its gradient.

A close cousin is gradient-free optimization, whose theory 

began with the work of Kiefer and Wolfowitz [16] roughly two 

decades before [S10], with significant theoretical progress in 

the decades that followed.

The work of Spall stands out because of the elegant sim-

plifications of the basic algorithms, along with analysis of con-

vergence rates. Two versions of his simultaneous perturbation 

stochastic approximation (SPSA) algorithm can be expressed 

as SA in the form of (S2), differing only in the definition of f

	 : ( , ) ( )f 11SPSA i p
f
p i fpC=- + � (S3a)

	 : ( , ) [ ( ) ( )].f 2
12SPSA i p
f
p i fp i fpC C=- + - - � (S3b)

It will be seen that 1SPSA is a close cousin of extremum seek-

ing control.

The 1SPSA recursion may be cast as an algorithm for mod-

el-free optimization: samples of ( )n n 1fi pC + +  may be collected 

from a physical system, without an analytical expression for 

the objective function .C  The first-order difference approach, 

2SPSA, will not be successful if there is substantial measure-

ment noise.

1)	 Reinforcement learning (RL). It was observed in [S11] and 

[S12] that temporal difference methods (such as TD and 

Q-learning) may be regarded as SA approaches to solve a 

root-finding problem. Letting T denote the Bellman operator 

associated with the control problem of interest, and Qi  be 

an approximation of the state-action value function, denote

	 ( ) [( ) ]f TQ QEi g= -i ir � (S4)

in which the random vector g  is a stationary realization of the 

eligibility vector. The root-finding problem ( )f 0i =)r  coincides 

with the projected Bellman equation [S4], [S5].

The definition of T depends on context. For the determinis-

tic state-space model ( , )x F x uk k k1 =+  and one-step cost func-

tion c, the total cost-value function is denoted as

( , ) ( , ), ,minQ x u c x u x x u u
k

k k
0

0 0= = =)
3

=

/

where the minimum is over all admissible inputs { , , }.u u1 2 f  

The dynamic programming equation is expressed as ,Q TQ=) )  

where for any function H, the function H TH=+  is defined by

( , ) : { ( , ) ( ( , ), )}.minH x u c x u H F x u u
u

1
1

= ++

Even in a fully deterministic setting, probabilistic tools are 

inevitable because exploration is a component of training algo-

rithms for learning. Analysis is based on a steady-state realiza-

tion of the input-state process. In the case of linear function ap-

proximation, Q i }= <i  with ( , )x u Rd!}  for each state-input 

pair, a common choice of eligibility vector is ,g }=  and (S5) 

becomes the steady-state mean

( ) [([ ] ( , ) ( , )) ( , )].f TQ x u Q x u x uE k k k k k ki }= -i ir

Actor-critic methods in RL may be regarded as an ap-

proach to model-free optimization in which the objective is 

average cost. The policy gradient theorem of [S13], a variant 

of Schweitzer’s sensitivity formula [S14], leads to techniques 

to obtain unbiased estimates of the gradient of the objective 

function. One key ingredient is the approximation of a state-

action value function, made possible through geometry re-

vealed in the dissertations of Van Roy and Konda [S15], [S16], 

[S17], [S18].
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applications to both optimization and reinforcement learn-
ing (RL) [S5], [47].

Probing signals can be designed so that mean-square 
error bounds are far smaller than ( / ) .O n1  Without much 
effort, we obtain algorithms to achieve a mean-square con-
vergence rate of order approaching ( / ) .O n1 4

However, such speedy rates of convergence are only pos-
sible through the use of a step-size sequence : n 0n 1 $a +" , 
that is vanishing. If the ultimate goal is to track the evolv-
ing optimizer of a time-varying objective function, a van-
ishing step-size is not acceptable. In much of the article, we 
focus on algorithms similar to (1) in which n 1a +  is indepen-
dent of n.

Physical constraints require that we consider smooth 
probing. This is just one reason why we begin with a 
continuous time setting for algorithm construction 
and analysis.

What is QSA?
QSA is a deterministic analog of SA. In the fixed-gain set-
ting that is the focus of this article, the QSA ordinary 
differential equation (ODE) is defined by the ordinary dif-
ferential equation

	 ( , ) .dt
d ft t ta pH H= � (3)

The gain ,02a  m-dimensional probing signal ,p  and 
vector field :f R RRd m d"#  are design choices.

The mathematical objective is identical to SA: by 
design, the solution to the QSA ODE approximates the 
solution i)  to the root-finding problem ( ) ,f 0i =)r  with fr  
defined by

	 ( ) ( , ) .limf T f dt1
T

T
t

0
i i p=

"3

r # � (4)

We cannot expect convergence of tH" , to i)  when the 
gain is fixed. Instead, we obtain bounds on asymptotic bias 
of order ( )O 2a  and variance of order ( ) .O 4a  The theoretical 
development of QSA is also similar to SA, starting with 
comparison of solutions to the QSA ODE and solutions to 
the mean flow

	 ( ) .dt
d ft tj j= r � (5)

Solidarity between the mean flow and the QSA ODE (3) 
may be addressed by following theory for its stochastic coun-
terpart, or by recognizing that the constant-gain ODE may be 
analyzed through the averaging principle (see “The Averaging 
Principle” for a short history and references to a vast literature). 

The Averaging Principle

The quasi-stochastic approximation (QSA) ODE with fixed 

gain (3) is not at all new to the dynamical systems commu-

nity, for which solidarity of the QSA ODE and the mean flow 

is known as the averaging principle. Analysis of the larger 

state process ( , )W H U=  may also be cast in the setting of 

singular perturbation theory, in which H  is regarded as the 

slow variable.

The concepts are far older than SA, with heuristics applied 

in the 18th century to obtain models for coupled planetary sys-

tems. Firm theory emerged approximately one century ago 

[S19], which is several decades before Robbins and Monro in-

troduced SA [42]. Averaging and singular perturbation theory 

grew within the control systems community beginning in the 

1970s [S20] and became a foundation of adaptive control (a 

close cousin of RL) in the decades that followed. Any of the 

standard references will provide a fuller history, such as [S21], 

[S22], and [S23].

The academic fields of SA and singular perturbation theory 

are far from disjoint in terms of goals, and there has been a 

history of cross fertilization. The transfer of concepts from the 

deterministic to the stochastic domain includes the application 

of singular perturbation techniques in the analysis of two-tim-

escale Markov chains [S22], or the more recent work [S24], 

which proposes improvements to 1SPSA that are inspired by 

extremum seeking control.

The main goal of this article is to transfer concepts in the re-

verse direction. Techniques from the SA literature have tremen-

dous value in advancing the theory of averaging. Obviously, the 

most valuable is the disturbance decomposition introduced in 

the 1980s by Métivier and Priouret [S25], which is based on 

Poisson’s equation for Markov chains. Multiple applications of 

this technique lead to the p-mean flow representation (7). We 

are not aware of any counterpart in the averaging literature.
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The present survey is concerned primarily with trans-
lating SA techniques to the deterministic setting. Our start-
ing point is the representation

	 ( )dt
d ft t taH H N= +r u6 @� (6)

in which ( , ) ( )f ft t t tpN H H= -u r  is called the apparent noise. 
This noise is called additive if ( , ) ( )f fi p i- r  does not depend 
on ,i  for any value .p  Otherwise, we say there is multiplica-
tive noise.

The next step in analysis is to obtain a representation of 
the apparent noise through multiple applications of Pois-
son’s equation, borrowing from SA theory techniques. This 
brings us to the central equation on which design guide-
lines are built upon: the perturbative mean flow (or p-mean 
flow). Its justification requires assumptions that are 
explained in Theorem 1 in “Part 1: QSA.”

P-mean flow: The solution to the QSA ODE admits the 
exact description

	
( )

.

,dt
d f

dt
d

dt
dW W W W

Wt t t t

t t t t
2 0 1

2

2
2

a a

a a

H H Y= - +

= + +

r6 @
�

(7)

The details are as follows:
»» The deterministic processes : , ,i 0 1 2W t

i =" ,  have 
explicit representations, given in (29a)–(29c) as smooth 
functions of a larger state process.

»» The function tY  may be expressed as a static func-
tion of the parameter process

	 ( )t tY Y H= � (8)

where :R Rd d"Y  is continuous, which appears only when 
there is multiplicative noise. It can contribute significantly 
to the estimation error ,t iH - )  resulting in a large bias 
and variance. Fortunately, it can be eliminated with care-
ful design.

The implications of the p-mean flow representation to 
algorithm design is a focus of this article. There is one catch: 
although the representation holds in broad generality, we 
cannot use it to establish stability (in the sense of ultimate 
boundedness). Stability can be established through a sepa-
rate Lyapunov function argument or based on the “ODE@∞” 
borrowed from the literature on SA. Both approaches are 
based entirely on consideration of the mean flow (5). Theo-
rem 4 contains full details.

What is ESC?
The answer begins with an explanation of the appearance 
of M td C- u  in Figure 1.

A few simplifications will clarify the discussion. Al
though much of the recent ESC literature concerns tracking 
the minimizer of a time-varying objective (C  depends on 
both the parameter i  and time t), we explain the main ideas 
in the context of global optimization of the static objective 

: .R Rd "C  Second, as will be made clear in “Part 2: ESC,” it 
is often crucial to introduce a time-varying probing gain 
(the te  signal shown in Figure 1). Only here is it chosen 
fixed: ,t /e f  independent of time.

Low-pass filters: We now explain Figure 1, subject to these 
simplifications. The low-pass filter with output tH" , 

HP
Filter

LP
Filter

×LP2
Filter

HP
Filter

× ×

Probing Signalξt

ΘtΘt −M ∇t Γ
∼

Yt

−Yt
n

F

ξt

−Yt
n

t ξt

− 1
t

t = Θt +   t ξt
Yt = Γ (   t)

FIGURE 1 A typical architecture for ESC for gradient-free optimization. Observations of the objective C  are perturbed by sinusoids and 
used as input to a combination of filters. The output H  estimates opti  as time evolves. HP: high pass; LP: low pass.

Techniques from the SA literature can be extended to the deterministic  

realm of quasi-stochastic approximation, providing  

new techniques for algorithm design. 
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is designed so that the derivative of tH  is small enough 
in magnitude to justify a quasi-static analysis. An exam-
ple is

	 ,dt
d U U Mctr

t t t t tdv i aH H C=- - + =- u6 @ � (9)

with parameters satisfying .01 1v a  The vector ctri  is an 
a-priori estimate of .opti

In tracking applications, we cannot allow a  to be too 
small, which means that the volatility of tH" , will remain 
high. The second low-pass filter with output F

tH  is intro-
duced to further reduce volatility. The p-mean flow moti-
vates guidelines for design.

High-pass filters: For the high-pass filter, consider the two 
special cases:

1)	 Pure differentiation: The figure is interpreted as

	 ( ) .M dt
d

dt
d1

t t t td p
f

fpC C H= +u c cm m � (10)

Adopting the notation from the figure, with t
ˇ
p  the de

rivative of tp , we obtain via the chain rule

	 ( )M Wtt t t t t
ˇ ˇd dp p fpC C H= + +

Ru � (11)

where

( ) dt
dWt t t t t

ˇ dp fpC H H= +R

is small by design of the low-pass filter; consider (9), with 
02a  small.

This justifies the diagram, with Mt t t
ˇ ˇ
p p=

R  being time 
varying. Its time average ˇRp  is required to be full rank.

2)	 All pass: The high-pass filter is removed entirely

	 ( ) .M 1
t t t td p

f
fpC C H= +u � (12)

The analysis begins with an application of the funda-
mental theorem of calculus to obtain

	 ( ) ( ) .M r dr1
t t t t t t t

0

1
d d

f
p p p fpC C H C H= + +Ru # � (13)

This is interpreted as a “noisy” observation of ( ),tdR C Hp  
with Rp  being the mean of .Mt t tp p= R  The first term in (13) 

is small in an average sense, provided the probing signal 
has zero mean.

Is ESC QSA?
The answer is yes, provided we broaden our definitions as 
follows:

»» For all pass, yes: The pair of equations, (9) and (12), is 
an example of the QSA ODE (3).

»» The answer is also yes for pure differentiation, but 
only for purposes of analysis. For sufficiently small 

,02a  we may express the pair of equations, (9) and 
(10), as

( , , )dt
d

t t t
ˇ

a p pH H= f

where f inherits the smoothness properties of .dC  
This is an instance of QSA with a 2d-dimensional prob-
ing signal. 

»» For a general high-pass filter, the ESC ODE is an 
example of two-timescale QSA, which, in the set-
ting of this article, is equivalently cast within the 
theory of singular perturbat ion theory [S21]. 
This theory justifies an approximation by the QSA 
ODE (3).

Even without approximation, the p-mean flow remains 
valid and useful for purposes of insight and design. Details 
are provided in “Part 2: ESC.”

A very simple special case will receive special attention: 
ESC-0: The QSA ODE (9) and (12) using .0v =  
It is the most similar to a standard approach in the sto-

chastic domain, known as 1SPSA [see (S4a)], and will be a 
source of examples to illustrate the theory surveyed in 
“Part 1: QSA.”

ESC-0 is an effective approach to gradient-free optimi-
zation if the probing signal is chosen with care, along 
with careful design of the second low-pass filter shown in 
Figure 1. It is highlighted here only because it is the sim-
plest version available that is potentially successful.

High volatility can be expected when using ESC-0, 
based on a casual glance at (13): by design, we ensure that 

( )t tp C H  is small on average, but nevertheless contributes 
greatly to volatility, especially when ( )iC )  is large. The 
remedy is found in the second low-pass filter shown 
in Figure 1.

A simple linear QSA example is introduced next to illus-
trate the value of filtering.

Probing signals can be designed so that mean-square error bounds are far 

smaller than O(1/n). Without much effort, we obtain algorithms to achieve a 

mean-square convergence rate of order approaching O(1/n 4).
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The role of filtering in QSA. A pair of scalar examples will 
serve to illustrate sources of estimation error and how they 
may be attenuated through a combination of filter design 
and design of the probing signal. The two QSA ODEs are 
linear, with multiplicative noise

	 , ( )sindt
d A t2 1U Ut t t t t

1 1a ~H H= + = +6 @ � (14a)

	 , ( )cosdt
d A t2 1UUt t t t t

2 2a ~H H= + = +6 @ � (14b)

and ( ( ))sinA t1t ~=- +  with . .0 1~ =  They share the common 
mean vector field ( ) ,f 1i i=- +r  differing only by a phase 
shift in the input. Theory predicts that the solutions to 

either QSA ODE will eventually remain within ( )O a  
of .1i =)

Results from the simulations are shown in Figure 2, 
which illustrate two points:

1)	 Figure 2(b) shows the sample paths obtained using 
. :0 01a =  the bias is 10% for (14b), while the bias 

observed using (14a) is far smaller [theory predicts it 
is ( )] .O 2a

2)	 Figure 2(b) also shows that ESC-0 fails entirely with 
. ,0 01a =  for either of the two QSA ODEs. It is only 

after filtering that acceptable results are obtained.
The impact of filtering is more fully illustrated in Figure 2(a), 

where we see that (14a) is the clear winner: volatility is of 
order ( )O 2a  for small a  after filtering of parameter estimates. 
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FIGURE 2 The impact of multiplicative noise on average absolute deviation (AAD) (the L1-norm of estimation error) for QSA. (a) A plot for 
the L1 error as a function of the gain a  for different filtering techniques and (b) a plot of the impact of ( )Y iY=-) )  on estimation error with 

. .0 01a =  Filtering can dramatically reduce error when multiplicative noise is absent.

Summary

The goal of this article is twofold: survey the emerging the-

ory of quasi-stochastic approximation (QSA) and its impli-

cation to design, and explain the intimate connection between 

QSA and extremum seeking control (ESC). The contributions 

go in two directions: ESC algorithm design can benefit by ap-

plying concepts from QSA theory, and the broader research 

community, with interest in gradient-free optimization, can 

benefit from the control theoretic approach inherent to ESC.

The following are surprising modes of analysis and outcomes:

•	 Markovian analysis: In SA with Markovian noise, the 

standard approach to variance analysis is to “whiten the 

noise” through a certain Poisson equation. A similar idea 

is used when the probing signal is defined as an analytic 

function of sinusoids. Three applications of this technique 

are required to obtain (7).

•	 Once stability has been established, the perturbative 

mean (p-mean) flow representation for QSA (7) provides 

insight into dynamic response, based on coupling with the 

mean flow. This also provides justification for the linear-

ization of the QSA ODE (3)

	 [ ] ( ) ( )dt
d A O oY 1W*

t t t
2a i a a aH H= - - + + +) ) � (S5)

where ( ),A f2 i=) )r  [ ] ( )Y A 1 iY=) ) ) )  and Wt" , is a bound-

ed process defined in (7).

•	 Techniques for establishing ultimate boundedness 

of the QSA ordinary differential equation (ODE) are 

obtained by adapting well-worn methods from the SA 

literature.

The implications to ESC are recent:

•	 The first are implications of the p-mean flow (see Theo-

rem 9 for a summary).

•	 QSA stability theory relies strongly on Lipschitz continu-

ity of all vector fields, which is typically violated for ESC. 

A remedy is introduced here for the first time, where a 

Lipschitz algorithm is obtained through the design of a 

parameter-dependent probing gain.

Global stability of the algorithm is easily established 

for the new class of ESC algorithms, under readily verifi-

able conditions. It is argued that the new design will also 

result in more efficient exploration.
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Filtering cannot attenuate the estimation error for (14b): it 
remains of order ( )O a  with or without filtering.

These outcomes can be anticipated from the p-mean 
flow, along with Theorems 1–3 contained in “Part 1: 
QSA.” This example will be revisited following exposi-
tion of QSA theory.

Design for tracking. Once we have confidence in design for 
the static optimization problem, these algorithms can be 
tested with an objective function that is time varying.

ESC-0 appears to be a poor choice as 0v =  plays the role 
of a “forgetting factor,” which is usually deemed crucial for 
tracking. There are, however, hidden dynamics that are par-
tially revealed through the p-mean flow, which provide some 
degree of forgetting. For illustration, consider the problem of 
tracking a smooth two dimensional signal opt

ti" , based on 
the time-varying objective ( ) ( ) .opt

t ti i iC C= -  This may be 
posed as a gradient-free optimization problem if :R R2 "C  
has global minimizer .0opti =  In this case, the observations 
driving the ESC-0 ODE are of the form

	 ( ) .1Y n
t t t t

f
fpC H= + � (15)

The plots that follow show results from the ESC-0 ODE 
in the following special case:

»» C  is the Three-Hump Camel [46], a standard bench-
mark used for testing optimization algorithms.

»» The signal opt
ti  is an epitrochoid curve.

A plot of C-  appears in Figure 3(a), showing two local maxima 
and a single global maxima attained at .0opti =  The signal 

opt
ti" , is indicated with the dashed curve shown in Figure 3. 
With initialization at one of the nonoptimal extrema for 
,0C  it is seen in Figure 3 that the estimates tH" , obtained 

from ESC-0 track a ball around opt
ti" ,  after a transient 

period, but the evolution is highly volatile. The filtered 
estimates F

tH" , display much less variability while main-
taining good tracking.

In conclusion, the cheapest ESC design works well, sub-
ject to constraints on the probing signal and additional fil-
tering. However, it is worth repeating: we are not advocating 
that the high-pass filters be abandoned, and we do not advocate 
setting 0v =  in (9) in application to tracking. Rather, we adopt 
the simplest instance of ESC to illustrate the application of 
general design principles.

The main content of the remainder of this article is 
divided into two parts, with the first on QSA fundamen-
tals, and the second on implications to ESC. History and 
resources are included in the “History and Resources” sec-
tion. All of the theory surveyed in parts 1 and 2 is taken 
from [15], [23], and [24], following [8] and [S5, Ch. 4].

Acknowledgment to an inspirational scientist. It was a 
sad day in February 2023 when Boris Polyak was taken 
from us.

The reader will find references to Prof. Polyak through-
out this article. Among his wide-ranging scientific contri-
butions is one that plays center stage in this article: a simple 
averaging technique to optimize the asymptotic covariance 
in SA, discovered contemporaneously with David Ruppert. 
Well before this breakthrough, he introduced in [36] what is 
now called the heavy ball algorithm for optimization. This is 
just one special case from a menu of acceleration techniques 
introduced in this article. These ideas led to momentum 
algorithms for accelerating gradient descent, introduced by 
his student, Yurii Nesterov. More recently, his survey Adap-
tive and Robust Control in the USSR describes exciting activ-
ity that is often missed in the West [S1]. Students of learning 
are advised to scour Polyak’s bibliography to find mathe-
matical gems that are not yet widely known.

PART 1: QSA
A full proof of the p-mean flow representation is provided 
here, along with its implications to design: Figure 4 pro-
vides a hint on the design of low-pass filters.
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FIGURE 3 Tracking the moving maximizer for the Three-Hump Camel through ESC-0. The process tH" ,  successfully tracks the 
moving target opt

ti" ,  after a transient period, but with high volatility. Filtering tH" ,  to obtain F
tH" ,  results in much lower volatility 

for tracking. 
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“Part 1: QSA” concludes with a brief overview of conclu-
sions for QSA with vanishing gain; this is often the best option 
in static optimization and machine learning applications.

Markovian Foundations
In the theory of SA, the stochastic “probing” sequence 

n 1p +" , appearing in (S3) is not always assumed to be i.i.d. 
Convergence holds under far weaker assumptions. If the 
probing sequence is a function of a Markov chain, it can be 
partially “whitened” through the technique of Métivier 
and Priouret [4, S25]. It is by extension of this technique to 
QSA that we arrive at the p-mean flow representation.

The probing signal is assumed to be a nonlinear func-
tion of sinusoids, ( ),Gt t0

0p p=  with

	 , ,cos cost t2 2t K K
0

1 1 fp r ~ z r ~ z= + + R^ ^h h6 6 6@ @ @ � (16)

and :G R RK m
0 "  smooth. The motivation for a nonlinear-

ity may be to create rich probing signals from simple ones.
The probing signal p  is a function of the K-dimensional 

clock process denoted as ,U  with entries

	 ,exp j t t2 0t
i

i i $r ~ zU = +^ h6 @ � (17)

which we regard as the underlying Markovian state 
process.

The notation ( ) (( / )/ )G z G z z1 20= +  is adopted through-
out, where / : ( / , , / )z z z1 1 1 K1 f=  so that

	 ( ) .Gt tp U= � (18)

The function G is analytic on { { }} ,Cz 0 K=!  provided G0 
is analytic on .CK  Properties of the clock process are sum-
marized in “Ergodic Theory for the Clock Process.” Crucial 
notation is summarized as follows:

»» U  evolves on a compact set denoted .CK1X  It has a 
unique invariant probability measure denoted as π, 
which is uniform on Ω.

»» Its differential generator is denoted, for smooth 
: Ch "X

	 ( ) ( ) · ,h z h z Wz zD d !X= � (19)

with ( ) .W j2 diag ir ~=

»» The pair process ( , )W H U=  is also Markovian. For 
smooth functions : ,Ch "P  its differential gen-
erator is

	 ( , ) [ ] ( , ) ( , ) · [ ]h z D h z h z WzDQSA
f

z2i a i i= + � (20a)

	  [ ] ( , ) ( , ) · ( , ( )) .D h z h z f G zwith f 2i i i= i � (20b)

»» A crucial takeaway is the representation for the 
vector field for the mean flow: for d0!i

	 E( ) [ ( , ( ))] : ( , ( )) ( ) .f f G f G z dzi i i rU= =r
r # � (21)

The differential generator for U  is used to define 
Poisson’s equation for a Markov process. For functions 

, : ,g g R"Xt  this is expressed as

	 ( ) ( ) ( ) , .g g g dt T 0T
T

t0
0

$U U U= +t t u# � (22)

If a solution exists, then g is called the forcing function 
and gt  the solution. If gt  is continuously differentiable, then 
Poisson’s equation is written in its differential form: 

.g gD =-t u

Three versions will be used in the following, one of 
which mirrors the use of Poisson’s equation for SA with 
Markovian noise in [4] and [S25].

Functions g on the larger domain Rd #P X=  are also 
considered through a slight abuse of notation: for a func-
tion on the joint state space : ,g R"P  for each ,i  the func-
tion ,g $it ^ h is the solution to

	 ( , ) ( , ) ( , ) , .g g g dt T 0T
T

t0
0

$i i iU U U= +t t u# � (23)

That is, ,g $it ^ h solves Poisson’s equation for U  for each ,i
with forcing function , .g $i^ h  

Please note:
»» The solution gt  to (22) is not unique. It is always nor-
malized so that E [ ( )] .g 0U =r t  A solution to (23) is 
assumed normalized so that E [ ( , )]g 0i U =r t  for each .i

»» In most of the applications considered in this article, 
the function g depends on tU  only through ,tp  but 
this is not generally true for .gt

»» Finally, on notation: we often write gtt  instead of 
( , ) .g t tH Ut  When g is vector valued, gt  denotes the 

vector-valued function whose ith component solves 
Poisson’s equation with forcing function gi.

Assumptions
Some of the assumptions that follow are essential, and 
others are imposed only because of limitations in cur-
rent theory.

The first assumption sets restrictions on frequencies.
(A0a)  ( )Gt t0

0p p=  for all t, with t
0p  defined in (16). The function 

G K m
0 "|0 0  is assumed to be analytic, with the coefficients 

in the Taylor series expansion for ( )G t0
0p  absolutely summable. 

O (α2)
H(s)

H(s)

Band Limited and
Small Mean

Wt

[1 + O (α)]   ∗

d
dt

Θt = α [f (Θt) − α   t + Wt ]¯

  ∗

FIGURE 4 P-mean flow and its implications for design. Filtering 
attenuates the signal Wt" , to be of order ( ).O 2a  However, if 

,0!Y)r  a term of order ( )O a  remains, hindering estimation accu-
racy for QSA, even after filtering.
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(Aob)  The frequencies { , , }K1 f~ ~  are chosen of the form

	
( / ) ,

{ },
log a b i K0 1
linearly independent over the rationals

i i i

i

2 # #~

~

=

� (24a)

and with { , }a bi i  positive integers.
(A1)  The functions fr  and f are Lipschitz continuous: for a 
constant L f 31t

	
( ) ( )

( , ) ( , )
( , ) ( , )

f f
f f
f f

L
L
L

f

f

f

#

#

#

i i

i p i p

i p i p

i i

i i p p

i i p p

-

-

-

-

- + -

- + -

l

l

l

l

l l

l l

r r t

t

t
6
6

@
@� (24b)

for all , ,Rd!i il  , .Rm!p pl

(A2)  The vector fields f and fr  are each twice continuously 
differentiable, with derivatives denoted as

	 ( , ) ( , ), ( ) ( ) .A z f z A f2 2i i i i= =i i
r r � (24c)

(A3)  Solutions to Poisson’s equation exist in the form 
(23) for the following three choices of : .g Rd"P  In 
each case, the solution gt  is assumed normalized with 
E [ ( , )]g 0i U =r t  for each ,i  and :g Rd"Pt  is assumed 
continuously differentiable. 

Ergodic Theory for the Clock Process

Ergodicity of the clock process is well known to researchers 

in both dynamical systems and stochastic processes. This 

summary reviews notation and essential properties.

SUMMARY OF MARKOV TERMINOLOGY

The clock process evolves on a compact set, denoted as ,CK1X  

and may be represented as the state process for a linear system:

	 , ( ), .dt
d W W j2with diagt t i 0 !r ~U U U X= = � (S6)

It is a stationary Markov process when 0U  is chosen randomly, 

with 0 + rU  (the uniform distribution on ).X

The mean ( ) ( )g g z dz| r=r #  is always finite when :g R"X  is 

continuous. The centered function is denoted as ( ) ( )g z g z g= -u r  

for .z ! X

THE LAW OF LARGE NUMBERS

The law of large numbers (LLN) tells us that for each initial 

condition 0U

( ) .lim T g dt1 0
T

T
t

0
U =

"3
u#

This is commonly used with ( ) ( ( ))g z h G z=  so that ( ) ( )g ht tpU =  

[recall (18)]. The probing signal p  falls in the broader class of 

almost-periodic functions [S26], [S27].

If there is a continuous function :g R"Xt  solving (22), then 

we have

( ) , .T g dt g T T1 2 1 0
T

t
0

2#U 3
u t#

In the terminology of [S21, Ch. 8], we say that the LLN holds 

with convergence function ( ) / .T T1l =

The assumptions on G0  in assumption (A0a) are imposed 

to ensure consistency of the two definitions of the mean flow 

vector field fr  in (4) and (21). The Lipschitz conditions in (A1) 

imply that convergence in the LLN is uniform in both time and 

parameter: for a constant ,b 0f 2

	 [ ( , ) ( )]sup T f f dt b T1
1 1 1

,z

T
t f

0
#

i
i p i

+
-

i

r# � (S7)

where the supremum is over Rd!i  and .z0 !U X=

DIFFERENTIAL GENERATOR

The following two forms are required in analysis:

1)	 The differential generator for the clock process is defined 

in (19). If :h C Ck "  is C1  in a neighborhood of ,X  then the 

continuous function g hD=  may be represented as 

( )( ) .g dt
d ht tU U=

It follows that h g= t  is a solution to Poisson’s equation, 

,g 0=r  and the LLN holds for { ( ) : },g t 0t $U  with conver-

gence function ( ) / .T T1l =

2)	 The pair process ( , )W H U=  is itself the state process for 

a time-homogeneous dynamical system on .Rd #P X=  

It is also Markovian, with the differential generator de-

fined in (20a), and the function g hDQSA=  may be rep-

resented as 

( ) ( )g dt
d ht tW W=

for any function h that is continuously differentiable.

Suppose that the pair process { }tW  is a bounded func-

tion of time from some initial condition ( , ).z0 iW =  It follows 

from [32, Th. 12.1.2] that there exists an invariant probability 

measure for the joint process (the generalization to continu-

ous time is only a change in notation). The LLN may not 

hold from each initial condition, however, for the function 

,g hDQSA=  we have the familiar bound

	 ( ) ,T g dt b T T1 1 0
T

t h
0

2#W# � (S8)

with ( ) ( ) .supb h hth t 0; ;W W= -
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1)	 The solution ft  with forcing function f equal to 
the QSA vector field. Its Jacobian with respect to i  
is denoted

	 ( , ) : ( , ).A z f z2i i= i
t t � (24d)

2)	 The solution ft
t

 with forcing function .ft

3)	 The solution Yt  with forcing function ,Y  where

	 ( , ) [ ] ( , ) ( , ) ( , ( ))z D f z A z f G zfi i i iY =- =-t t � (24e)

with Df defined in (20b). That is, for all ,t t0 0 1# #

	

( , ) [ ( , ) ( )] ( , )

( , ) ( , ) ( , )

( , ) [ ( , ) ( )] ( , )

f f f dt f

f f dt f

dt

t t t
t

t

t
t

t
t t

t t t
t

t

0 1
0

1

0
0

1

1

0 1
0

1

i i i i

i i i

i i i i

U U U

U U U

Y U Y U Y Y U

= - +

= +

= - +

t r t

tt t tt

t t

#
#
#

with fr  defined in (21), and

	 E[( ) ( , )] ( , ) ( , ( )) ( ) .A z f G z dzi i i i rY Y U= =-
X

t# � (24f)

Rationale. Assumption (A0) is imposed for two reasons. 
Subject to the assumption that ( , ( ))f G zi  is an analytic 
function of ( , )zi  on an appropriate domain, assumption 
(A0) has two important consequences:

1)	 Assumption (A3) holds.
2)	 ( ) .0/iY
Assumptions (A1)–(A3) and further assumptions are 

required to bound bias and variance, and Lipschitz conti-
nuity is also crucial in establishing criteria for ultimate 
boundedness of .W

Three Steps to the P-Mean Flow
The three steps in the derivation of (7) are based on the 
three solutions to Poisson’s equation in (A3).

The differential generator DQSA  defined in (20a) plays a 
role, even though we never consider Poisson’s equation for 
the full generator. Rather, suppose that :g R"P  is a 
smooth function on ,P  and there exists a smooth function 
gt  solving (23) for each i  and .0U  The following identity 
then follows from the chain rule, using the notation (20b):

	 ( , ) [ ] ( , ) [ ]dt
d g g D h g gDQSAt t t

f
t t t taH U H U= = - -t t t r � (25)

where ( , ),g gt t t/ H Ut t  and a similar compact notation is used 
for the remaining terms on the right-hand side.

We now proceed through the three steps, starting with 
representation (6). Understanding (7) is equivalent to deter-
mining the functions { }Wi  in the representation

	 .dt
d

dt
dW W Wt t t t t

2 0 1
2

2
2a a aN Y=- + + +u � (26)

Step 1:  Apply (25) with h f= t

	 ( , ) ( , ) [ ( , ) ( )] .dt
d f f dt

d f ft t t t t t t t2 pH U H U H H H= - -i
t t r

This gives the first transformation of the apparent noise

	 ( , ) ( , ) ( , ) .dt
d f f ft t t t t t t

High pass Attenuation

2a pN H U H U H= - + i
u t t

1 2 3444 444 1 2 344444 44444

Recalling (24e) gives, in shorthand notation,

	 .dt
d ft t taN Y=- -u t � (27)

Step 2:  The arguments in step 1 are repeated, using ,ft  to get

	 [ ] ( , ) .dt
d f dt

d D f
dt
d ft

f
t t t2

2
a H U= -t tt tt

Step 3:  Repeat with ,Y  to achieve

	 ( , ) .D dt
d

t t
f

t t taY Y Y H U Y= + -t t6 @

Steps 2 and 3, combined with (27), lead to the p-mean 
flow representation.

Theorem 1 (P-Mean Flow)
Subject to (A3), 
1) the pre-p-mean flow representation holds

	
[ ( ) ( )]

,
dt
d Y f Y B f

Y f Y f

t t t t t

t t t 0 0 0

a a

a a

Y

H H

= - +

= - = +

r t

t t
�

(28)

with ( ) .B A Y r f drt t t
0

1
a= -r t#  

2) The p-mean flow representation (7) holds with

	 ( , ) : ( , )DW Wt t t
f

t t
0 0 YH U H U= =- t6 @ � (29a)

	 ( , ) : [ ] ( , ) ( , )D fW Wt t t
f

t t t t
1 1 H U H U Y H U= =- +tt t � (29b)

	 ( , ) : ( , ) .fW Wt t t t t
2 2 H U H U= = tt � (29c)

In the remainder of this part of the article, it is assumed 
that fr  has a unique root .Rd!i)  The goal is to explain 
how the p-mean flow can provide insight into how to 
design QSA ODEs that provide good estimates of i)  after a 
short transient.

“Measuring Algorithmic Performance” summarizes met-
rics for assessing performance of an algorithm. Three 
receive focus in this article: bias, variance, and average 
absolute deviation (AAD) (the L1-norm of estimation error). 
Bounds on these quantities will follow from absolute 
bounds on the estimation error ,t iH - )  which in part 
follow from bounds on the target bias (S12).

Bias, variance, and target bias may be related 
through the following simple approximation. Recall the 
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definit ion ( )A A i=) )r  following (S1). The target bias fb r  
is defined below.

Lemma 1 (Bias and Variance)
Suppose that Rd!i)  is the unique solution to ( ) .f 0i =r  Sup-
pose moreover that assumptions (A1) and (A2) hold, and 
denote .i i i= - )u  Then,

1)	 There is a function :E R RA
d d"  satisfying

	 ( ) ( ), .f A E R*
A

d!i i i i= +r u � (30a)

The error term is Lipschitz continuous and admits the 
quadratic bound ( ) .LEA A

2
#i iu

2)	 If A)  is invertible

	 [ ] [ ( ) ( )] .A f Et t A t
1iH H H- = -) ) - r � (30b)

And provided the target bias and variance are finite

	 [ ] [ ]A LF f A
1 2#b b v+)

H H
-

r � (30c)

where the subscript F indicates the Frobenius norm.

Measuring Algorithmic Performance

How can we assess algorithmic performance? Standard per-

formance metrics from statistics are adopted here, along 

with a nonstandard statistic, known as target bias.

BIAS AND VARIANCE

The usual statistical definitions of bias and covariance are

, [ ]b E*i i iiR HH= - = -R R
i sHr

with [ ]Ei H= sr  and ~ ( , )s H U  where s  is a unique invariant 

measure. On denoting ( )trace2v R=H H  and bb = iH

: .E* *
L
2 2 2 2

2i i v bH H- = - = +s i H6 @

The existence of an invariant measure is guaranteed for quasi-

stochastic approximation (QSA) whenever the sample path H  is 

bounded from at least one initial condition. This follows from the 

fact that ,W H U= ^ h is a Feller–Markov process. We do not know 

whether s  is unique, so expectations are replaced with sample-

path averages

	
.

limsup

limsup

T dt

T dt

1

1

*

*

T
t

T

T
t

T

0

2 2

0

2

b i

v i b

H

H

= -

= - -

"

"

3

3

H

H Hc m

6 @#
# � (S9)

LP ERROR AND AVERAGE ABSOLUTE DEVIATION

The standard L -normsp  will also be considered in their sample-

path forms:

	
.

limsup

limsup

T dt

T dt

1

1

* *

* *

L
T

t
T

L
T

t
T

0

2

0

1

2

i i

i i

H H

H H

- = -

- = -

"

"

3

3

#
# � (S10)

The L -norm1  is also referred to as the average absolute de-

viation (AAD). These quantities are related via

	 .* *
L L

2 2
1 2#i i v bH H- - = +i H � (S11)

TARGET BIAS

The goal of SA is to estimate i)  such that ( ) ,f 0i =)r  so we re-

gard 0 Rd!  as the target. The target bias is defined as another 

sample-path average

	 : ( )limb T f dt1
f

T

T
t

0
H=

"3

rr # � (S12)

provided the limit exists, and : .bf fb =r r

ESTIMATING STATISTICS

Two approaches are adopted for estimating bias and other 

quantities. Given data up to time T, estimates of bias, variance, 

and AAD are denoted as , ,bT T
2vt t  and AAD ,T\  respectively.

•	 Single-path estimates: Based on observations of 

{ : }t T0t # #H  from a single initial condition, the esti-

mates are determined by

	

,

AAD

b T T d

T T d

T T d

1

1

1

T T T
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T

T
T

T
T

T
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-
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-
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(S13)

where [ , )T T00 !  is introduced to reduce the impact of tran-

sients.

•	 Batch mean methods: The potential problem with estimates 

from a single sample path is that the sample path may be 

special, yielding misleading results. Consider application of 

a gradient-free optimization algorithm to an objective with 

multiple local extrema; how would you know whether or not 

your estimates are reaching the global minimum?

The batch means method involves computation of M 

solutions to the QSA ODE, distinguished by distinct initial 

conditions , .m M1m
0 # #H  These should be spaced wide-

ly apart to ensure that the impact of each initial condition 

is not ignored entirely; this may also be interpreted as a 

form of exploration. Based on these data, only a single 

time point T is used to estimate bias, variance, and AAD 

as follows:

	

,

AAD .

b M

M

1

1

T T T T
i

i

M

T T
i

i

M

T

T T
i

i

1

2 2

1

2

i

v

i

H H H

H H
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= -
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The representation (30a) is an instance of the mean value 
theorem, and the remaining conclusions are immediate 
from the definitions.

The value of (30c) comes from the fact that bounds on 
target bias are easily obtained through the p-mean flow 
representation. The proof of the following is obtained by 
combining part 2 of Theorem 1 with (S8):

Lemma 2 (Target Bias Representation)
Suppose that the limit (S12) exists for a given initial condi-
tion. Then, for the same initial condition

[ ] .limb T dt1 Wf
T

T
t t

0

2 0a aY= -
"3

r #

These two lemmas suggest that bias bounds of the 
form ( )Ob a=H  can be expected. Much better bounds on 
bias and variance are obtained through 1) additional fil-
tering, and 2) elimination of the function tY  appearing in 
the p-mean flow representation. The signal tY  is ad
dressed next. 

Source of Poor Performance and Its Elimination
The two terms, { : , },i 1 2Wt

i =  are easily attenuated via fil-
tering, and the first term, ,Wt

0  is scaled by 2a  in (7), so 
it does not contribute significantly to bias or variance. 
The problem is tY , which may contain significant dc 
content, and hence cannot be filtered away. Rather, this 
signal will be eliminated through design of the prob-
ing signal.

This is possible through the geometry illustrated in 
Figure 5. The green region indicates all functions : C Cg K "  
that are analytic in a neighborhood of Ω. The set S denotes 
analytic functions of the form ( ) ( ( )),g z h G z=  where G 
appears in (18); that is, ( ) ( )g ht tpU =  for each t. The second 
function class St  denotes all functions gt  that solve Poisson’s 
equation for some .g S!

Theorem 2 (Bounds on Target Bias)
Suppose (A0a), (A1), and (A3) hold for the QSA ODE, but 
with arbitrary choices of frequencies { } .i~  Then,

1)	 The target bias admits the bound

	 : ( ) .b Of fb a= =r r � (31a)

2)	 If, in addition, (A0) holds, then ( ) 0iY =  for each 
,Rd!i  and the p-mean flow representation (7) 

reduces to

	 ( ) .dt
d f dt

d
dt
dW W Wt t t t t

2 0 1
2

2
2a a aH H= + + +r; E

In this case, the bias bound is improved:

	 ( ) .Of
2b a=r � (31b)

Proof Overview

The proof of 1) follows from (27). For 2), the function classes 
S and St  are orthogonal: for g h G S% !=  and ,S, ! t  we must 
have

	 ( ( )) ( ) ( ) .h G z z dz 0, r =# � (32)

In view of (24e), the ith entry of ( )iY  may be expressed as

A g,i i j
j

d

j
1

Y =-
=

t/

with ( , ) ( , ( ))g z f G zj ji i=  so that .g Sj !  For each ,Rd!i  we 
have ( , ) ,A S,i j $ !it t  so the result follows from (32).

The conclusion that the target bias is of order 
( )O 2a  follows from Lemma 2. Theorem 1 combined with 

Lemma 1 imply similar bounds for the parameter esti-
mation bias bH  defined in (30c). Theorem 3 contains a 
much stronger conclusion in terms of bounds on both 
bias and AAD.

Filtering and Acceleration
With Y  eliminated, it is time to attenuate { : , }i 1 2Wt

i =  
using a low-pass filter.

The first requirement of a filter is that it has unity dc 
gain. To reduce AAD to ( )O 2a  then requires consideration 
of (7): the bound on the input

dt
d W t

1a

can be reduced to ( )O 2a  using a first-order low-pass filter 
with bandwidth ( ).O a  The second derivative term has no 
scaling, so a first-order filter will not do, but a second-order 
filter will suffice. The filter to be considered is expressed as 
a second-order transfer function with relative degree two, 
or the equivalent time domain representation

	 .
dt
d

dt
d2F F F

t t t t2

2
2 2cg c cH H H H+ + = � (33)

This is subject to the constraint ( )Oc a=  as the natural fre-
quency c  determines the bandwidth of the filter.

Uniform stability and uniform bounds on performance. 
To make precise statements regarding bias and variance 
as functions of a  requires consideration of a family of 

S = {g = h ° G0 : h analytic}

S = {g : g ∈S}"

FIGURE 5 Orthogonality of functions of the probing signal and cor-
responding solutions to Poisson’s equation. If the frequencies of 
the probing signal respect (A0), the two function classes are 
orthogonal. Orthogonality leads to the conclusion that .0Y =r
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QSA ODEs over a range of ,a  along with a uniform notion 
of stability. 

For a given ,00 2a  the family of QSA ODEs (3) is called  
ultimately-0a  bounded if there is a fixed constant B such that 

for each ( , ]0 0!a a  and initial condition ( , ) ( , ),z0 0 iH U =  
there is a finite time ( , , )t t z0 0 i a=  such that the solution to 
(3) satisfies

	 ,B t tt 0# $H � (34)

with t0  continuous on its domain.
Criteria for -ultimate0a  boundedness are discussed 

in the next section. The strong conclusions regarding 
bias and variance require this assumption and some-
thing more.
(A4)  The family of QSA ODE models is -ultimately0a  
bounded, and the mean flow satisfies the two conditions:

1)	 The ODE

( )dt
d ft tj j= r

	 is globally asymptotically stable with unique equi-
librium .i)

2)	 The matrix ( )A A i=) )r  is Hurwitz.
The filter must be designed based on the gain .a  Specifi-

cations are provided in Theorem 3.

Theorem 3 (Error Attenuation)
Suppose (A1)–(A4) hold, and the second-order high-pass 
filter is chosen subject to the following constraints: the 
damping ratio ( , )0 1!g  is independent of ,a  and a constant 

02h  is also fixed to define the natural frequency, c ha=  
for each .a

Then, for 0 01 #a a  and large t, the estimates admit the 
following approximations:

	 ( ) ( )O o 1t i aH = + +) � (35a)

	 ( ) ( )Y O o 1F
t

2i a aH = + + +) ) � (35b)

where ( )o 1 0"  as , ( )t " 3 iY Y=) )  and [ ] .AY 1Y=) ) )-

The approximations (35) imply bounds on the absolute 
deviation of parameter estimates, and hence the AAD. 
Bounds on bias and variance also follow as corollaries to 
Theorem 3.

Corollary 1 (Bias and Variance)
Under the assumptions of Theorem 3,

1)	 The asymptotic bias and variance (S9) admit the 
bounds

	 ( ), ( )O O2 2b a v a= =H H � (36a)

	 ( ), ( ).O O2 2F Fb a v a= =H H � (36b)

2)	 If, in addition, (A0) holds, then

	 ( ), ( )O O2 2 2b a v a= =H H � (36c)

	 ( ), ( ).O O2 2 4F Fb a v a= =H H � (36d)

Assumption (A0) has the largest impact on bias and 
variance. Equation (36c) tells us that the variance is of order 

( ),O 2a  subject to this restriction on frequencies, which is 
remarkable when compared with standard results from SA 
theory [see (63) and the discussion that follows]. Filtering 
brings the variance down to ( ):O 4a  a restatement of the 
second bound in (36d).

Proof Overview of Theorem 3
The main ideas are surveyed here only to illustrate applica-
tion of the p-mean flow representation.

It is assumed that the initial condition is selected so that 
Rt !H  for all ,t 0$  with : .BR #i i= " ,  This is without 

loss of generality as every solution eventually remains 
within this region under the assumptions of the theorem.

The mean flow is locally exponentially asymptotically 
stable under the given assumptions, with a region of 
exponential asymptotic stability, including the region .R  It 
follows that there is a function : ,V R Rd " +  with the Lip-
schitz gradient satisfying for some 0V 2d

	 ( ) , .x V x x x RV V
2 1 2# # !d i d i- -) )- � (37)

This Lyapunov function is then applied to the represen-
tation (28). This, combined with (37), implies (35a).

The proof of (35b) begins with an application of (35a) to 
justify a linearization of the p-mean flow (7) around i)  so 
that bounds are obtained based on the linear approximation 
(S1). The approximation (35b) also follows from (S1). See 
“Frequency Domain Design for Quasi-Stochastic Approxi-
mation” for further details.

QSA Theory and Practice
The examples that follow illustrate application of the theory 
presented thus far.

Revisiting the Linear Example
The results obtained for the two linear models (14) are no 
surprise when viewed through the lens of the p-mean flow, 
along with the details provided in Theorems 1–3.

The QSA ODE (14a) respects the constraints on frequen-
cies imposed in (A0). Theorem 2 implies that ( ) ,0iY =  
independent of .i

Theorem 2 cannot be applied in analysis of (14b) because 
assumption (A0) is violated. An appeal to Theorem 1 leads 
to a calculation of the major contribution to bias: the defi-
nition (24e) along with elementary calculations gives 

( ) / ,1i ~Y =  independent of .i  The p-mean flow tells us 
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that the ( )O a  contribution to both bias and AAD is pre-
cisely [ ] ( ) / .AY 1|a a i a ~Y= =-) ) )-

These results illustrate the importance of maintaining 
distinct frequencies: the inclusion of a phase shift in the 
input might appear harmless. In fact, this small change 
results in significant estimation bias: 10% in this example 
when .0 01a =  and . .0 1~ =

Filtering was performed following the assumptions of 
Theorem 3 to obtain a second-order filter, and a first-order 
filter was also constructed

	
( ) ( ) ( ), ( ) ( ) ( )

( ) , ( )

s H s s s H s s

H s s H s
s s2

where

F F1
1

2
2

1 2 2 2

2

c

c

gc c

c

H H H H= =

=
+

=
+ +

�
(38)

with .0 8g =  and c ha=  using .1h =

As suggested by (S13), an approximation of AAD is 
obtained using a sample-path average over the final 20% of 
the run, denoted as

	 , .T T d T T1 0 8L
T

T

0
01

0
| i xH H=

-
- =)

a x
u # � (39)

where .iH H= - )
a a

u

This is repeated to obtain F
L

1
1Ha

u  and .F
L

2
1Ha

u

Figure 2(a) shows plots of the approximate AAD as a 
function of ,a  along with polynomials ( ) , ( )r k r1 1 2a a a= = 

;k2
2a  the constants k1, k2 were chosen to ease comparison. 

Figure 2 shows what is expected: Ya
)  dominates AAD 

when .Y 0!)  In this case, filtering has no improvement on 
reducing AAD below ( ).O a

Figure 2 shows that both filtering choices reduce AAD 
to ( )O 2a  when ,Y 0=)  and . .0 11a  The reason for the suc-
cess of a first-order filter is explained in “Frequency 
Domain Design for Quasi-Stochastic Approximation.”

Control of Volatility in Tracking
The filter used to obtain the smooth tracking in Figure 3 was 
chosen based on the criterion of Theorem 3, using c ha=  
with .5h =  The larger bandwidth was needed to avoid 
excessive lag. This value of h  was found to be useful through 
trial and error: the best value depends of course on proper-
ties of the target signal { }.opt

ti

Consider a signal defined over a time horizon [ , ],T0  
continuous on [ , / ]T0 2  with components equal to triangle 
waves, and with components equal to square waves on the 
following subinterval [ / , ].T T2  ESC-0 works well for both 
first- and second-order filters of the form (38) for a range of 

,h  but the best filter on the first subinterval will be very dif-
ferent from the best choice for the second.

This is illustrated in Figure 6, showing the evolution of 
{ ( ), ( ), ( )}F F

t t t
1 2C H C H C H  as functions of time using filter Hi  

to obtain .F
t
iH  The first row shows results obtained using 

,5h =  and the second using .15h =  A first-order filter out-
performs a second-order filter on the subinterval [ , / ],T0 2  for 
which the target is consistently varying. In fact, in this 
case, the cost as a function of time without filtering 
appears to be the most successful. The second-order filter 
results in significant improvement in performance on the 
second subinterval (ignoring brief transients following 
each discontinuity of the target). As the theory anticipates, 

Frequency Domain Design for Quasi-Stochastic Approximation

The linearization of the p-mean flow (S1) invites the ap-

plication of Laplace transform techniques for design and 

analysis.

Consider the linear system approximating the quasi-sto-

chastic approximation ODE, motivated by the representa-

tion (S1)

.dt
d x A x Wt t ta a= +)

The definition of Wt  remains the same: a function of 

( , ) .t tH U  Once we establish that ( )x Ot t
2aH - =  for com-

mon initial conditions x0 0H =  within a bounded region 

,R  justification of (35b) can be conducted entirely in the 

frequency domain. This viewpoint leads to refinements of 

the second-order filter proposed in Theorem 9 and much 

greater insight.

Let X(s), W(s) denote the respective Laplace transforms of 

the state and input for this linear system, and ( )W si  the trans-

forms of the components of Wt  shown in Theorem 1. Taking 

Laplace transforms of each side gives

( ) [ ] ( )

[ ] [ ( ) ( ) ( )] .

X s Is A W s

Is A W s sW s s W s

1

1 2 0 1 2 2

a a

a a a a

= -

= - + +

)

)

-

-

Also, using a superscript “F” for the filtered signals

( ) [ ] ( )

[ ] [ ( ) ( ) ( )] .

X s Is A W s

Is A W s sW s s W s

F1

1 2 0 1 2 2F F F

F a a

a a a a

= -

= - + +

)

)

-

-

The filter H is designed so that the inverse Laplace trans-

forms of ( )s W s2 2F  and ( )sW s1F  are each of order ( ) .O 2a  The 

induced operator norm of [ ] ,Is A 1a a- ) -  viewed as a mapping 

on ,L3  is uniformly bounded over .0 11 #a  These arguments 

constitute the proof of (35b).

An important conclusion from the final representation of 

XF  is that additional filtering comes from system dynamics. 

The matrix-valued transfer function [ ]Is A 1a- ) -  may attenuate 

some of these signals if a  is small and the signals are band 

limited. This is the case for the linear examples (14) and ex-

plains the success of the first-order filter, as illustrated in Fig-

ure 2(a). In this example, [ ] / ( ),Is A s11a a- = +) -  and the spec-

trum of Wt  is discrete.
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a second-order filter is preferable when the rate of change 
of { }opt

ti  is small.

Stability
There are two common approaches to establishing stabil-
ity in SA that lend themselves to establishing -ultimately0a  
boundedness for QSA: 

1)	 Lyapunov criteria, similar to what was discussed in 
the proof overview of Theorem 3.

2)	 Stability of a mean flow with a scaled vector field, 
known as the @ .ODE 3

Lipschitz Lyapunov function. This is the standard criterion 
used to establish ultimate boundedness of state-space 
models [S21, Ch. 4]. The Lyapunov function :V R Rd " +  is 
assumed ,C1  and together with a constant ,00 2d  satisfies 

( ) ( ) ( )V x f x V x0$d # d-r  when .x 0
1$ d-  In the time domain

	 ( ) ( ), .dt
d V V whent t t0 0

12#j d j j d- - � (40)

The application of V to the QSA ODE is successful if the 
function V is globally Lipschitz continuous. This fails for 
the standard quadratic option ( )V x x Px1 = <  for a d × d, 
matrix P with .P 02  However, if ( ) ( ) ( )V x f x V x1 1 1$d # d-r  
for ,x 1

1$ d-  then the chain rule gives the desired bound 
for the Lipschitz function V V1 1= +  and ( / , ).2 10 1!d d  
(See [51] and [52] for recent Lyapunov theory for SA.)

Stability of the ODE@∞. This criterion is motivated by con-
sidering the mean flow starting from a large initial condi-
tion and examining the dynamics following scaling.

For fixed ,r 02  consider the scaled vector field 
( ) ( ), .f r f r Rr d1 !i i i= -r r  If tj  is a solution to the mean flow 

with initial condition of magnitude ,r 0j=  then the 
scaled process rt

r
t

1|j j= -  is a solution to the ODE with 
scaled vector field

( ), .dt
d f 1t

r r
t
r r

0j j j= =r

It is often the case that the scaled vector field is conver-
gent as r " 3  to obtain

	 ( ) ( ), .limf f R
r

r d| !i i i=
"

3
3

r r � (41)

The ODE@3  is then defined by

( ).dt fd
t tj j=3

3
3r

In several applications, such as in Q-learning, the scaled 
vector field f3r  is much simpler than fr  [6].

Figure 7 shows the evolution of the solutions to the 
ESC-0 ODE from a very large initial condition, of order 1010, 
applied to the Rastrigin objective [46]

	 ( ) [ ( ) ( )].cos cos20 10 2 22
1 2i i ri riC = + - + � (42)

Θt
4 × 1010

4 × 1010

FIGURE 7 Trajectories of ESC-0 for the Rastrigin objective from 
large initial conditions. The stable behavior of the five trajectories 
shown is consistent with approximate coupling of solutions to QSA 
and the ODE@∞.
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FIGURE 6 The impact of filtering on estimation error for tracking. Second-order filtering can dramatically reduce the norm of the error 
when the objective moves slowly. As the rate of change of opt

ti" , increases, performance of filtering is degraded.
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See Figure 8(a) for a plot of this function. Ultimate 
boundedness is apparent, and there is also coupling with 
the ODE@ .3

Theorem 4 (Criteria for a0-Ultimately Boundedness)
Suppose that assumption (A1) holds, and that either of the 
following conditions hold:

1)	 There is a pair V, 0d  satisfying (40). In addition, V is 
globally Lipschitz continuous, and ( )V x x0$ d  for 

.x 0
12 d-

2)	 The ODE@3  is locally asymptotically stable. 
Then, there is 00 2a  and positive constants b and d  such 
that the following bounds hold for any ( , ]0 0!a a  and any 
initial condition , :0 0H U

	
( )

{ : }.
exp

min
b t t T

T t
for

where
t

t

0 1

1
1

# #

#

ad

d

H H

H

-

= - � (43)

Consequently, the family of QSA ODE models is 
-ultimately0a  bounded.

Proof Overview
The proof of (43) under the Lyapunov criterion is similar to 
the proof of (35a) in Theorem 3.

Analysis under the second criterion begins with the fol-
lowing two observations:

1)	 The convergence in (41) is uniform on compact sub-
sets of .Rd

2)	 If f3r  is locally asymptotically stable, then it must be 
globally exponentially asymptotically stable, with the 
origin being the unique stationary point.

This leads to a string of conclusions, ending with a Lipschitz 
Lyapunov function for the ODE@ ,3  and then the mean 
flow. This suffices to obtain the uniform bounds in (43).

Vanishing Gain
There is a parallel theory for QSA with vanishing gain

	 ( , ).dt
d a ft t t tpH H= � (44)

The development is similar, leading to familiar choices 
in design:

»» Assumption (A0) is imposed.
»» Filtering is performed to obtain the final estimates 
{ }.F

tH
A significant difference is the intended goal: conver-

gence of the estimates to i)  is guaranteed under mild 
assumptions, which means that both probing design and 
filtering are performed to improve the rate of convergence.

The vanishing gain is chosen of the form

	 ( / )a t t1t ea= + t- � (45)

in which 02a  and t 0e 2  are arbitrary. Theory requires 
( / , ).1 2 1!t

1
a 2
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FIGURE 8 A comparison between quasi-stochastic and stochastic algorithms for minimization of the Rastrigin objective. (a) A plot of the 
objective, (d) evolution of the scaled empirical variance, (b) and (c) histograms of estimation error for 1SPSA with Polyak-Ruppert (PR) 
averaging, and (e) and (f) histograms of estimation error for ESC-0 with PR averaging. The deterministic algorithm achieves conver-
gence rates arbitrarily close to ( ),O T 4-  while presenting less variability in estimating .opti  
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Theorem 1 admits an exact extension to the vanishing 
gain setting, beginning with the notation in terms of appar-
ent noise

	
[ ( ) ]

.
dt
d a f

a W

t t t t

t t t t

H H N

N Y

= +

=- +

r u

u
�

(46)

Theorem 5 (P-Mean Flow)
Subject to (A3), the p-mean flow representation (46) holds 
with

a
dt
d WWt t

i

i
i

i

t
i2

0

2

= -

=

/

where the first term is modified

( ) .

[ ] [ ]

log

D a
r D f

r dt
d a t twith

Wt
f

t
t

t f
t

t t
e

0

t

Y

=- =
+

=- +t tt

The remaining terms are unchanged: ( , )t t tY Y H U=  
with Y  defined in (24e) and

	 [ ] , .D f fW Wt
f

t t t t
1 2Y=- + =ttt tt

This leads to convergence of H  to i)  with rate ( ),O at  
which is improved to ( )O at

2  with filtering. This is an aston-
ishing conclusion: the rate can be arbitrarily close to ( )O t 2-  
by choosing t  close to unity.

The second-order filter is abandoned and replaced 
by a simple time average, known as Polyak–Ruppert  
averaging

	 .T T dt1PR
T t

T

T

0 0
|H H=

-
# � (47)

The interval [ , ]T0 0  is known as the burn-in period; estimates 
from this period are abandoned to reduce the impact of 
transients in early stages of the run.

Theorem 6 (Acceleration With Vanishing Gain)
Suppose that assumptions (A1)–(A3) and assumption (A4) 
hold with one modification: -ultimate0a  boundedness for 
the family of QSA ODEs (3) is not assumed, but the QSA 
ODE (44) is assumed to have bounded solutions from each 
initial condition.

Suppose that ( / , )1 2 1!t  and , .t 0 0e 2 2a  Suppose, 
moreover, that T0  is selected to solve /( ) /T T T1 0 l- =  with 

.12l  Then, the following approximations hold for (44) 
and the averaged estimates:

	 ( )a f O a o aYt t t t tiH = - + +) ) )t ^ h � (48a)

	 [ ( , ) ( )] ( )a c o O TY1PR
T T

2i l tH = + + +) ) t- � (48b)

where ( , ) ,c 02l t  [ ] ,AY 1Y=) ) )-  and ( , ).f ft ti U=) )t t

Consequently, PR
TH  converges to i)  with rate bounded 

by ( )O T 2t-  if and only if .Y 0=)

Gain Selection for Static Optimization
The focus on fixed-gain algorithms was motivated entirely 
by applications to tracking. In the static root-finding prob-
lems found in optimization and RL, Theorem 6 suggests 
that a vanishing gain algorithm may prove to be far more 
efficient and not very sensitive to the coefficients in the 
gain process (45). The results from experiments using 
ESC-0 will make this point clear. 

Vanishing or fixed gain? Vanishing gain algorithms provide 
extra degrees of freedom: a single scalar a  cannot balance 
transient response and asymptotic performance. The next 
set of experiments are designed to illustrate this conflict.

Recall the Rastrigin objective defined in (42), for which a 
plot is shown in Figure 8. Optimization is challenging because 
of the infinite number of local extrema and saddle points. 
Three choices of at  in (44) are considered in the ESC-0 ODE:

) . ( )

.
)
)

a t

a

a

1 0 1 1
3 10
7 10

2
3

.
t

t b

t s

0 65

3

4

#

#

/

/

a

a

= +

=

=

-

-
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The top row of Figure 9 shows the evolution of H  for each 
choice of gain and several initial conditions. The bottom row 
shows the evolution of { ( ), ( ), ( ), ( )}F FPR

T T T T
1 2C H C H C H C H  for 

the single path yielding the best performance for each gain 
choice across all runs.

The following takeaways are noted:
»» For . ( )a t0 1 1 .

t
0 65= + -  (case 1), Figure 9 illustrates the 

advantage of vanishing gain algorithms: the algo-
rithm explores much more in the beginning of the 
run, and the objective remains very small after a 
brief transient period. The parameter estimates con-
verge to 0opti =  in each experiment.

»» For the runs that used ba  (case 2), a good amount of explo-
ration is observed, but the steady-state behavior is poor. 
Case 3, using the smaller value of ,a  often yielded better 
results in steady state, but in several cases, the trajectory 
remains trapped near a nonoptimal local minimum.

»» Figure 9 shows the benefit of bias reduction from a 
second-order filter as opposed to a first-order filter, 
based on runs that used .sa  As opposed to the results 
in Figure 2, this example shows that a first-order filter 
is not always sufficient to obtain AAD of order ( ).O 2a

When the trajectory is not trapped near a nonopti-
mal local minima, the final estimates obtained using 
the second-order filter are comparable to what is 
obtained in the vanishing gain experiments, in terms 
of quality of the approximation of .opti

In conclusion, a constant gain QSA ODE can be fine-
tuned to obtain good results, but the vanishing gain algo-
rithm is far more reliable in these experiments.
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Impact of Dimension. According to Theorem 6, the convergence 
rate of PR

TH" , to i)  is of order ( ),O T 2t-  so that the empirical 
variance (S14) vanishes at a rate bounded by ( ) .O T 4t-  There is 
no theory available that indicates how the constants in these 
bounds are impacted by dimension, so we explore the impact 
through another application of ESC-0, this time for the 
Ackley objective [46].

Figure 10 shows the evolution of T T
2 vt t  for d 2=  and for 

d 30=  [see (S14) for the definition of the empirical variance 
] .T

2vt  Simulations confirm that the variance is bounded by 
( )O aT

4  but grows with dimension.
Figure 10 also shows that performance is not unaccept-

able: the averaged sample paths PR
TH" , approach the opti-
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Random or smooth exploration? The use of i.i.d. exploration 
has great appeal because of its simplicity and the many tools for 
analysis. This is why it is a standard approach to exploration in 
many areas of machine learning. Also, it might be assumed that 
this approach to exploration is efficient in applications to gradi-
ent-free optimization due to the high-frequency content in the 
probing signal. This is far from the truth (as can be seen from 
theory) but is best made clear through illustration.

The 1SPSA algorithm (S4a) is the stochastic counterpart 
to ESC-0 and is implemented along with its deterministic 
version here to illustrate the benefits of carefully designing 
exploration signals.

Results from the application of multiple instances of 
1SPSA and ESC-0 for minimization of the Rastrigin objec-
tive are shown in Figure 8. The following can be seen:

»» Figure 8 shows histograms for the estimation error 
optPR

T iH -  for each experiment. The variance of the 
estimation error for the deterministic algorithm is 
much smaller than for its stochastic counterpart: the 
reduction is roughly two orders of magnitude. Roughly 
40% of the estimates were considered outliers for the 
stochastic algorithm, while none were observed for 
its deterministic counterpart.

»» Figure 8 shows the evolution of the scaled empirical 
variance (S14) across all instances of the determinis-
tic algorithm. This process is bounded as expected 
for a convergence rate of order ( ) .O T 2t-

Summary of Design Principles
By now, it is clear that QSA theory leads to a toolbox for 
design. “Part 1: QSA” is concluded with a brief summary:

»» Ensure by luck or design that fr  and f are globally 
Lipschitz continuous, and that the mean flow is glob-
ally asymptotically stable.

»» The probing signal is a smooth function of sinusoids, 
but of a special form. Frequencies must be distinct 
and respect (A0) to ensure that .0Y =  Bias may be 
significant if this constraint is ignored.

»» Perform filtering: a second-order low-pass filter can 
reduce estimation bias and variance dramatically.

»» Test your algorithm: perform repeated trials to esti-
mate variance and outliers.

In some applications, it may not be possible to ensure 
Lipschitz continuity. In such cases, a projection of estimates 
is required to ensure boundedness. If it is known that if f 
violates the Lipschitz bounds, then projection alone is not 
sufficient: the larger the domain of projection, the smaller 
the choice of a  in (3).

PART 2: ESC
This second part is devoted to explaining how QSA theory 
applies to ESC for the purposes of

»» Stability verification
»» Bounds on transient behavior
»» Bounds on asymptotic bias.

Precise statements on each point are provided for static opti-
mization, but only empirical results in the case of tracking.

Probing is assumed to be a true mixture of sinusoids, 
which is obtained when G0 in (A0a) is linear

	 ( [ ])cosv t2t
i

i

K

i i
1

p r ~ z= +
=

/ � (49)

with v Ri d!  for each i, K d$  and the K frequencies are 
positive and distinct. The covariance matrix is thus

	 E [ ( ) ( ) ]G G VV2
1R U U= =R R

p r � (50)

with V the d K#  matrix with columns equal to the vi  
appearing in (49).

This structure is imposed to avoid unnecessary abstrac-
tions and because the bandwidth of the apparent noise is con-
trolled when the probing gain is small [recall Nu  defined in (6)].

Theorem 10 provides a QSA representation for ESC in 
broad generality, not just the special case of ESC-0.

Approximations for each of the terms in the p-mean 
flow representation are available, subject to assumptions 
on the objective function. The following assumptions are 
listed in order, paralleling assumptions (A0)–(A4). Note 
that there is no assumption (E3) because (E2) will justify 
both (A2) and (A3).

(E0): The probing signal is of the form (49), with frequen-
cies satisfying (A0) and .02Rp

(E1): The objective C  is C2 and has a Lipschitz continu-
ous gradient.

(E2): The objective is analytic.
(E4): The objective satisfies

»» ( )d $i d iC  for some 02d  and all .1$i d-

»» It has a unique minimizer ,opti  and it is the only solu-
tion to ( ) .0d iC =

»» ( )P opt2d iC=  is positive definite.
Just as (A0) and (A1) were valuable in QSA theory, so are 

(E0) and (E1) here. It will be seen that (A1) follows from (E1), 
and (E4) implies (A4), subject to (A0) and (A1).

However, none of these implications are valid without a 
small change in the definition of the ESC observations.

QSA Theory Requires Lipschitz Continuity
Recall the early warning in the introduction: ESC ODEs are 
not Lipschitz continuous unless the observations Y n

t" , 
defined in (15) are Lipschitz continuous as functions of .tH  
This is rarely the case in practice, so a first step is to modify 
the algorithm so that assumption (A1) is satisfied.

A state-dependent probing gain te  is adopted for two 
important reasons:

1)	 Assumption (A1) will follow from (E1).
2)	 If the observed cost ( )ZtC  is large, then it makes 

sense to increase the exploration gain to move quickly 
to a more desirable region of the parameter space.
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Two choices for ( )t t/e e H  are proposed here:

	 ( ) ( )1e i f iC C= + - - � (51a)

	 ( ) 1 ctr

p
2

2

e i f
v

i i
=

+ - � (51b)

where in (51a), the constant C-  is chosen so that ( ) $iC C-  
for all .i  In the second option, ctri  is interpreted as an a- 
priori estimate of opti  as in (9), and pv  plays the role of stan-
dard deviation around this prior.

The first is the most intuitive as it directly addresses 2): 
the exploration gain te  is large when ( )tC H  is far from its 
optimal value. However, it does not lead to an online algo-
rithm because ( )tC H  is not observed. In a discrete-time 
implementation, an online version is adopted:

1 Yt tn n 1e f C= + - -
-

with ( )Yt t t t| e pC H= +  for ,t tn=  n 0$  (compare Figure 1).
In cases (51a) or (51b), we adopt the new definition

	 ( , ) ( )1Y n i p
e

i epC= + � (52)

with the understanding that ( ) .e e i=  The signal Y n
t = 

( , )Yn
t tpH  is an important part of the feedback loop in any 

interpretation of Figure 1.

Theorem 7 (Lipschitz Observations for ESC)
The function Y n  defined in (52) is uniformly Lipschitz con-
tinuous in ,i  subject to (E1) and either of the following:

1)	 e  is defined by (51b).
2)	 e  is defined by (51a), and (E4a) holds.
Moreover, under either 1) or 2), the following approxi-

mation holds:

	 ( , ) ( ) ( ) ( ) ( )O1Y n di p
e i

i p i eC C= + +R � (53)

where the error term ( )O e  is bounded by a fixed constant 
times ( ) .e i  

The plots shown in Figure 7 were obtained using ESC-0 
with probing gain (51b) and normalized “observations” 
(52). The state-dependent probing gain ensures that the 
Lipschitz condition (A1) is satisfied, which is essential to 
global stability theory. An example of divergence using a 
fixed probing gain is contained in “Finite Escape Time for 
Extremum Seeking Control.”

Finite Escape Time for Extremum Seeking Control

The Lipschitz conditions in (A1) cannot be relaxed in the glob-

al stability theory for quasi-stochastic approximation. This 

is why establishing global stability of extremum seeking control 

(ESC) is challenging when C  is not Lipschitz continuous.

The ESC-0 ODE is recalled here:

( ), .Y Y1
t t t t t ta

f
p fpH C H=- = +o

Consider the scalar ODE with quadratic objective ( ) 2i iC =  

and probing signal ( ) .cos tt 0p ~=  For this simple example, 

we obtain

( )

( ) ( ) .cos sin

dt
d Y Y dt

d

t Y t

t t t t

t0
2

0 0

f
a p f p

f
a ~ f~ ~

C=- +

=- -

This ODE has finite escape time when Y 00 1  and Y0  is 

sufficiently large.

To justify this claim, we bound { : }Y t t0t 1# G  with

.t
Y

2 1 1
0

f
a

=G

Assume that Y0
1

f
-  i s  suf f i c ient ly smal l  so that 

( ) ( / )cos t 1 20 $~  for .t t0 # # G  This implies the lower bound 

dt
d Y Y

2t
t
2

$ a
f

-

and hence

, .dt
d

Y Y dt
d Y t t1 1

2 for
t t

t2 1$
f
a=- Gc m

Integrating both sides from zero to any value T t1 G  gives

.Y Y T Y Y T1 1
2

1
2T

T
0 0

1
&$ #

f
a

f
a- +

-

c m

In conclusion, for a value ( , ),t t0• ! G  the solution 

{ : }Y t t0t •1#  is continuous and decreasing, with

.limY
T t

T
•

3=-
-

Global stability is ensured if the probing gain is state de-

pendent; either of the choices in (51) ensure success.

The state-dependent probing gain ensures that the Lipschitz condition (A1)  

is satisfied, which is essential to global stability theory.
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P-Mean Flow for ESC-0
We begin with ESC-0 because of the simple approximations 
for both the mean flow and the p-mean flow representa-
tion, starting with the ESC-0 vector field

( , ) ( , ) .f Yni p i p p=-

The following approximations hold under (E0) and (E2), 
through an application of Theorem 7:

	 ( , ) ( ) ( ) ( ) ( )Of 1 di p
e i

i p pp i eC C=- - +R � (54a)

	 ( ) ( ) ( )f O 2di i eR C=- +p
r � (54b)

	     ( , ) ( ) ( ) ( ) ( ) ( ) ( )f OG1 di
e i

i i eU C U R U C=- - +t t t .� (54c)

In (54a) and (54b), the error terms ( )O e  and ( )O 2e  repre-
sent a uniform bound over .Rd  In (54c), the approximation 
is uniform on compact subsets of .Rd  The function Gt  is the 
solution to Poisson’s equation with forcing function G 
defined in (18), so that ( ) .G t tpU =  The function ( ),R Ut  is a 
matrix-valued solution to Poisson’s equation: the forcing 
function for entry (i, j) is .G Gi j

The term ( , )f ft t tH U=t t  appears in the pre-p-mean flow 
equation (28). Although zero mean, we can expect the divi-
sion by ( )te H  to induce high volatility.

Only the approximation (54b) is required for verifying sta-
bility, which means that (E2) may be relaxed in the following.

Theorem 8 (Stability Criteria for ESC-0)
If (E0), (E1), and (E4a) hold, then ESC-0 is -0a ultimately 
bounded.

All of the approximations in (54) are imposed to approx-
imate the terms in the p-mean flow.

Theorem 9 (QSA Theory for ESC-0)
The p-mean flow representation holds under (E2):

( ) .dt
d f Wt t t ta aH H Y= - +r6 @

If, in addition, (E0) holds, then .0t /Y
If (E0)–(E4) hold, then there is 00 2f  such that the fol-

lowing uniform bounds hold for ,0 01 #a a  ,0 01 #f f  and 
( , , ):t t z0$ i a

»» Approximate gradient descent:

[ ( ) ( )] .dt
d OWt t t

2da fH R C H=- + +p

»» Approximate linear dynamics:

  [ [ ] ( ) ( )] .dt
d P O o 1Wopt

t t t
2 2a i a fH R H= - - + + + +p � (55a)

»» Approximate consistency: 
1) ( ) ( ) .O o 1opt

t
2< < #i a fH - + +  

2) ( ) ( ),O o 1optF
t

2 2#i a fH - + +  with a filtered estimate 
obtained using the criteria of Theorem 3.

The proof of Theorem 9 follows from Theorem 4 using 
( ) ,V iC C= - -  where C-  is chosen so that V takes on pos-

itive values [recall (51a)].

Models and Approximations for General ESC
To simplify the discussion, it is best to maintain the first-
order low-pass filter

	 , .dt
d Y

n
t t t t t t

ˇ ˇ
d dv a pH H C C=- - =u u � (56)

If the high-pass filter is taken to be all pass (a scalar 
gain), then it is a simple task to generalize Theorems 8 and 
9 to .02v  Modeling for genuine high-pass filters within 
the framework of QSA requires more effort.

Consider a high-pass filter with state-space realization 
of dimension q 1$

	 dt
d Z Z uF Gt t t= + � (57a)

	 y Z uH Jt t t= +< � (57b)

with ( )F, G, H, J  of compatible dimension. In this equation, 
ut is the scalar input, yt the scalar output, and Zt the 
q-dimensional state process.

The ( )d q+ -dimensional state process for ESC has the 
form ( ; ),X Zt t tH=  in which Zt is (57a) with input .u Yn

t t=  
Its evolution is described by the controlled nonlinear state-
space model

	 dt
d X

I
X

0 1 1
H

F

J

G
Yn

t
t

t
t

t

ˇ ˇ

a
a
v

p

a

a
p

a

=
- -

+
-<

> >H H � (58)

driven by the 2d-dimensional input ( , ) .t t
ˇ

p p

To match the architecture shown in Figure 1, the high-
pass filter is used for d 1+  different choices of input: in 
addition to ,u Yn

t t=  giving ,y Y
n

t t=
ˇ  the input ut t

ip=  gives 
yt t

i
p= ˇ  for each i.

P-mean flow representation. We can freely apply Theorem 
1 to the state-space representation (58) because the theorem 
makes no assumptions on the magnitude of ,a  or even the 
stability of the QSA ODE.

Remember that a  is a fixed constant, so the fact that f 
depends on this gain is irrelevant in the definition for the 
QSA vector field

	 ( , , ) ( , )f x
I

x
0 1 1

H

F

J

G
Ynˇ

p p
a
v

p

a

p

a

i p=
- -

+
-<ˇ ˇ

> >H H � (59)

where ( ; )x Rd q!i w= +  denotes an arbitrary value for Xt.
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Three solutions to Poisson’s equation are required to 
write down the p-mean flow:

3)	 The solution Ynt  with forcing function .Yn

4)	 ˇ
pV  with forcing function pˇ  [similar to Gt  in (54c)].

5)	 Qt  with forcing function ( , ) ( , ) .Q J Ynˇ
i p i pU =-

Theorem 10 (P-Mean Flow for ESC)
The p-mean flow representation holds under (E2)

	 t[ ( ) ]dt
d X f X Wt t ta aY= - +r � (60a)

in which for any ( ; )x wi=  and z ! X

	
E

E
( )

[ ( , )]

[ ( ) ( , )]
f x

I
x

0

0

1 1
F

J

G Y

Yn

n

ˇ

a
v

a a
i p

p i pU
=

-
+

-
r > >H H� (60b)

with expectations in steady state. The functions ft  and Y  
admit the representations

	 ( , )  ( ) ( , )

( , )

Q
f x z z x

z

z
0
0 0 1

H J

GYn

ˇ
p

i

a
i

=
-

+
-<

t

t
t = >G HV

� (60c)

	 ( , )  ( ) { ( , ( ))} .x z z x z1
0

H F GYnˇ

a
p i p

Y =
+<

= GV
� (60d)

Proof
The expression (60c) follows directly from (59). There is 
simplification because terms not involving p  or pˇ  vanish. 
The formula (60d) then follows from the definition 

( , ) ( , ) ( , ) .x z f x z f x zx2c =- t � o
Interpretation of the p-mean flow representation is 

entirely different here, because Y  is no longer a nuisance 
term but a critical part of the dynamics. Application to 
design remains a topic for future research.

ESC as two time-scale QSA. The state-space model (58) is 
an instance of two-timescale QSA, provided the low-pass 
filter gain scales with ,a  so that ( ) .Ov a=  The pair ( , )Zt tU  
represents the fast state variables, and as always, tH  is the 
slow variable. See [S7, Ch. 8] for a survey of the rich theory 
of two-timescale SA.

In this deterministic setting, with constant gain ,a  
theory of two-timescale QSA is a subset of singular pertur-
bation theory. The objective is model reduction, which in 
this case amounts to approximating (58) by the d-dimen-
sional instance of QSA

	
t t t

( ) ( ) ( )

[ ] ,

( )

J
dt
d M h O

M

1 J

with

t t tt t
t

t

t 0

00
ˇ ˇ

dv a ap ae

p p p

e
H H C H C H

H H

= - - - + +

= + =<

ˇc c c c

c� (61a)

where h H F G0
1=- < -  is the dc gain of the high-pass filter. 

Its mean flow is easily identified:

	 ( ) ( )dt
d M Ot t tdj vj a j aeC=- - +c c c � (61b)

with E [ ] .M Mt= r  An analysis of this ODE is far more trac-
table than the original ESC ODE. In particular, the mean 
flow (61b) is stable, provided the high-pass filter is passive, 
such as a lead compensator. Passivity combined with posi-
tivity of Rp  implies that .M M 02+ <

The approximation is based on freezing the slow variable 
tH  in the fast dynamics to obtain an approximation for Z. 

For a given time t, let { : }r tZr $  denote the solution to 
the state-space model defining Z with r / iH  for all 

:r3 31 1-

( , ) .Ge dZ Yn( )
r

rr F i p x=
3

x
x

-

-
#

On substituting ( ([ ] ),expG r W rp x U= -x  it follows that 
( , )ZZr ri U=  for some function Z  and each r and .i  The 

next step is to substitute the solution to obtain the approxi-
mate dynamics

	 [ ( , ) ] .Hdt
d Z J Yn

t t t t t t t
ˇ ˇ. v a p pH H H U- - +< � (62)

Defining ( , ) : ( ) ( ) ( )1Y di p
e i

i p iC C+ <=c  and applying 
Theorem 7 gives
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and substitution into (62) justifies the claim that (61a) is an 
approximation of (58):

( ) ( ) ( ) ( ) .dt
d M h O1 Jt t t t t

t
t0

ˇd. v a ap ae
e

H H C H C H- - - + +

CONCLUSIONS AND OUTLOOK
The perturbative mean flow (p-mean flow) representation 
opens many doors for analysis of algorithms and provides 
a clear path to obtain both transient and steady-state per-
formance bounds.

There remains much more to unveil: 

D  The use of filtering for acceleration of algorithms is 
not at all new. It will be exciting to investigate the impli-
cations of the acceleration techniques pioneered by 
Polyak and Nesterov for nonlinear optimization, partic-
ularly in their modern form (see [26] and [33] and the 
references therein).

The integration of these two disciplines may provide 
insight into how to design the high-pass filters shown in 
Figure 1 or suggest entirely new architectures.

D  The introduction of normalization into the observa-
tions in the general form (52) was crucial to obtain global 
stability of ESC ODEs. There are many improvements to 
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consider. First, on considering the Taylor series approxima-
tion (53), performance is most likely improved via a second 
normalization

[ ( ) ]1Yn
t

t
t t t t

e
e pC H C= + - *

in which { }tC*  are estimates of the minimum of the objec-
tive. These might be obtained by passing { : ( )}Yr r r re pC H +=  
through a low-pass filter. 

D  Far better performance might be obtained through an 
observation process inspired by 2SPSA. Consider first a 
potential improvement of 2SPSA: a state-dependent explo-
ration gain is introduced so that (S4b) becomes

[ ( ) ( )]2
1

n n n n n n n n n n1 1 1 1 1i i a
f
p i e p i e pC C= - + - -+ + + + +

with ( ) .n ne e i=  The division by 2f  (independent of state) 
remains as 2SPSA in its original form satisfies the required 
Lipschitz conditions for SA, provided dC  is Lipschitz 
continuous.

There are surely many ways to obtain an online version 
based on QSA. One approach is through sampling: denote 
T nTn =  for a given sampling interval T 0>  and take Yn

t  
constant on each interval [ , ),T Tn n 1+  designed to mimic 
2SPSA. One option is the simple average
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with .n Tni H=  This can be computed in real time, based on 
two sets of observations:
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D  The implications for RL deserve much greater attention. 
The applications of QSA and ESC in [17], [30], and [S5] are 
only the beginning.

D  It may be straightforward to extend the p-mean flow 
representation (7) to tracking problems. This requires 
theory for time-inhomogeneous QSA of the form

( , ; ) .dt
d f tt t ta pH H=

Analysis would require consideration of solutions to 
Poisson’s equation, such as ( , · ; )f tit  for each Rd!i  and 

.t R!  The representation will be more complex than (7) 
but will likely lead to sharper bounds than are pres-
ently available.

HISTORY AND RESOURCES

Sources for Main Results
Many of the main results presented here are taken from 
recent publications. The p-mean flow representation (7) 
first appeared in the preprint [24], along with the general 
QSA theory contained in Theorems 1–4, and implications 
to ESC contained in Theorems 7–10. These results are based 
on a parallel theory for QSA with vanishing gain [8], [15], 
[23], [S5]; the convergence rates in Theorem 6 for QSA with 
vanishing gain are taken from [15] and [23].

QSA
Recall from “The Averaging Principle” that the QSA ODE 
(3) with fixed gain 02a  has a long history within the 
theory of averaging theory. The discussion that follows 
concerns QSA with vanishing gain, which is the typical 
setting of SA theory.

QSA was proposed in [19] and [21] for applications to 
finance and applied in [30] for application to Q-learning 
(one approach to RL). QSA and ESC are also applied to 
actor-only RL in [S5, Ch. 4] and [17]. Something similar 
to QSA appears in [5], with applications to gradient-free 
optimization.

The first convergence rate results for QSA were obtained 
for quasi-periodic linear systems in [44], which was extended 
to the nonlinear setting in [7], [8], and [S5]. The appearance 
of Y  and its implication to rates of convergence in QSA is 
one topic of [S5, Sec. 4.9]. In all of this previous work, it was 
assumed that a convergence rate of ( / )O T1  would be the 
best possible. Theorem 6, taken from [15], demonstrates 
that this assumption is a fallacy.

Gradient-Free Optimization
The field is far too vast to survey in this article. Instead, we 
provide a few leads for the reader, beginning with a warn-
ing regarding terminology: the terms zeroth order and gradi-
ent-free optimization refer to identical goals and similar 
approaches. The goal of ESC is not exactly the same, but the 
methodology is closely related.

The perturbative mean flow (p-mean flow) representation opens  

many doors for analysis of algorithms and provides a clear path to  

obtain both transient and steady-state performance bounds.
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Kiefer and Wolfowitz introduced gradient-free meth-
ods for optimization in [16], shortly after SA was intro-
duced in [42]. “What Is Stochastic Approximation?” 
describes a simplification of the original approach due to 
Spall, and his monograph [45] contains further history and 
many more insights on algorithm design.

Much of this literature focuses on design for conver-
gence of the estimates { }ni  to the global optimizer ,opti  
which in general requires a vanishing probing gain. For 
example, for 1SPSA, this amounts to

( )1
n n n

n
n n n n1 1

1
1 1 1i i a

f
p i f pC= - ++ +

+
+ + +; E

in which both { }na  and { }nf  are vanishing nonnegative 
sequences, and { }np  is assumed to be i.i.d.

Polyak was a major contributor to the theory of con-
vergence rates for algorithms that are asymptotically 
unbiased: it was established in [39] that the best possible 
convergence rate for the mean square error is ( )O n b-  
with ( )/ ,p p1 2b = -  provided the objective function is 
p-fold differentiable at .i)  Upper bounds on convergence 
rates appeared much earlier in the work of Fabian [14]. 
See [10], [11], [20], and [35], along with [45] for more 
recent history.

Extremum seeking control is said to be the oldest 
approach to gradient-free optimization, with a 1922 patent 
the alleged starting point [25], [48]. Success stories on the 
application of ESC to various problems have been shared 
over the 20th century, for example, in [12], [29], [34], [40], and 
[41]. Theory has lagged behind practice: the first Lyapunov 
stability analysis for ESC algorithms appeared in the 1970s 
for a very special case [28].

Bounds on bias and variance for ESC were estab-
lished 30 years later in [1] and [18]. Global stability 
results were not obtained due to the absence of Lipschitz 
continuity, although parameters can be chosen to achieve 
an arbitrarily large region of initial conditions for which 
the solution is bounded [49], [50]. See [2] and [27] for fur-
ther history.

Convergence Rates for SA
Theory has largely focused on the vanishing gain setting. 
Most relevant to the current article are the remarkable 
averaging techniques of Polyak and Ruppert [37], [38], [43] 
(see [9], [S7], [S8], and [S9] for recent theory and a more 
complete history).

Poisson’s equation appears in many domains in stochas-
tic processes. In addition to SA, versions of this equation 
appear in the theory of simulation of Markov processes and 
average-cost optimal control [3], [4], [31], [32], [S5].

There is an equally long history of analysis for algorithms 
with constant step-size. The most recent literature on con-
stant gain SA for applications to tracking is contained in [S7, 
Sec. 9.3].

It was first shown in [6] that stability of the ODE@3  
implies a strong form of geometric ergodicity when the 
probing signal is i.i.d., and based on this, bounds were 
obtained on the L2 error of the form
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(63)

where _ ,11  and 02a  denotes the (fixed) step-size.
In recent work, it is shown that averaging can eliminate 

variance [13], [S2], provided the apparent noise is a martin-
gale difference sequence. These optimistic conclusions 
cannot be expected in general [22].
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