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ow can you optimize a function I': R? —~ R based
on evaluations of this function without access
to its gradient? Kiefer and Wolfowitz proposed
a solution in the early 1950s based on stochastic
approximation (SA) [16], and in the 1920s, an en-
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gineer for the French railway system proposed an entirely
deterministic approach that is now known as extremum seek-
ing control (ESC) [27], [48]. Once you understand the ESC
architecture, you will find that the ideas are very similar.
A fundamental difference is that random noise is replaced
with sinusoids for exploration.

The punchline: Techniques from the SA literature can be
extended to the deterministic realm of quasi-stochastic

OCTOBER 2023 <« IEEE CONTROL SYSTEMS 111

Authorized licensed use limited to: University of Florida. Downloaded on November 30,2023 at 22:49:32 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-8558-365X

approximation (QSA), providing new techniques for algo-
rithm design. When applied to ESC, we obtain algorithms
that are globally stable and have astonishingly fast rates of
convergence (see “Summary”).

Before we can justify these claims, we require back-
ground, starting with the pioneering work of Robbins and
Monro, who in [42] launched the field of SA. A summary
can be found in “What Is Stochastic Approximation?” but a
more concise explanation is presented here in the special
case of minimization of a function I'. An SA algorithm gen-
erates a sequence of estimates {6,:1 =0} of the minimizer
0°"" based on approximate gradient descent

Oni1=0n—ans1Vul,  n=0 )

in which {a,+1:1>0} is the step-size sequence and {V,I":
n =0} is a random sequence, designed to approximate the
respective gradients {VI'(6.):n =0}. It is assumed that the
approximation holds only in an average sense; the inher-
ent filtering in (1) helps to reduce the impact of the noisy
gradient estimates.

What Is Stochastic Approximation?

he goal of stochastic approximation (SA) is to solve the

root-finding problem #(6°) = 0, in which f: %Y — R9 is ex-
pressed as the expectation

f(6) :=EIf(6, )] (S1)
with & a random vector taking values in R™. In applications to
optimization, the function f and distribution of £ are selected
so that f approximates a negative gradient. Theory has grown
tremendously in the past few decades, driven in large part by
applications to machine learning [S1], [S2], [S3] and reinforce-
ment learning [S4], [S5] (see “Root Finding and Learning” to
understand why).

The solution proposed in [42] is in essence the ODE meth-
od—a term coined by Ljung in [S6]. This consists of the fol-
lowing steps:

(i) By luck or design, ensure that the mean flow (5) is globally
asymptotically stable,

(ii) Ensure that conditions are right, so that an Euler approxi-
mation of the mean flow is also globally convergent.

(iii)The basic SA algorithm is by definition the noisy Euler
approximation

On+1=0n+an+1f(On, fn+1), n=0 (S2)

where {an+1} is the nonnegative step-size sequence, and the

sequence {&,+1} is random, with distribution converging to that

of £ as ntends to oc.

The conditions ensuring convergence of {6,} to the desired
value 6" are not restrictive [S7].
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For gradient estimates that are asymptotically unbiased,
theory establishing convergence is based on a proof of cou-
pling with solutions of the gradient flow

45— vr(9). 0
dt

See “What Is Stochastic Approximation?” to understand
why we can expect solidarity between the gradient flow
and stochastic gradient descent algorithms of the form (1).

Although there have been exciting advances in SA
theory in recent decades, in many cases, this approach is
not acceptable for the applications of interest in this article:

» Constraints from physics: Most versions of gradient-
free optimization begin with the construction of
{VuI':n>0} based on perturbed observations of the
form Y, =T (0. + &£,), in which {&,} is a vector-val-
ued probing sequence and £>0 is known as the
probing gain. Within the realm of SA, the probing
sequence is chosen to be independent and identically
distributed (i.i.d.). Such high-frequency exploration

While estimating bounds on the rate of convergence is far
more challenging, there is now a well-developed theory based
on the central limit theorem; the asymptotic covariance Zy is
the solution to a Lyapunov equation [S7], [S8]. Under stronger
conditions (see [S9] and its references), its trace coincides with
the scaled asymptotic mean square error

| LIR7
Jma—nE[H 0n— 6" |F] = trace (Zo).

Lower bounds on the right-hand side are well known, along
with algorithm design techniques to minimize this value.

REFERENCES

[S1] A. Fradkov and B. T. Polyak, “Adaptive and robust control in the
USSR,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 1373-1378, Apr. 2021,
doi: 10.1016/j.ifacol.2020.12.1882.

[S2] W. Mou, C. J. Li, M. J. Wainwright, P. L. Bartlett, and M. I. Jordan, “On
linear stochastic approximation: Fine-grained Polyak-Ruppert and non-
asymptotic concentration,”in Proc. Conf. Learn. Theory, 2020, pp. 2947-2997.
[S3] E. Moulines and F. R. Bach, “Non-asymptotic analysis of stochas-
tic approximation algorithms for machine learning,” in Proc. Adv. Neural
Inf. Process. Syst. 24, 2011, pp. 451-459.

[S4] D. P. Bertsekas, Reinforcement Learning and Optimal Control.
Belmont, MA, USA: Athena Scientific, 2019.

[S5] S. Meyn, Control Systems and Reinforcement Learning. Cam-
bridge, U.K.: Cambridge Univ. Press, 2022.

[S6] L. Ljung, “Analysis of recursive stochastic algorithms,” IEEE Trans.
Autom. Control, vol. AC-22, no. 4, pp. 551-575, Aug. 1977, doi: 10.1109/
TAC.1977.1101561.

[S7] V. S. Borkar, Stochastic Approximation: A Dynamical Systems
Viewpoint, 2nd ed. Delhi, India: Hindustan Book Agency, 2021.

[S8] H. J. Kushner and G. G. Yin, Stochastic Approximation Algorithms
and Applications. New York, NY, USA: Springer-Verlag, 1997.

[S9] V. Borkar, S. Chen, A. Devraj, |. Kontoyiannis, and S. Meyn, “The
ODE method for asymptotic statistics in stochastic approximation and
reinforcement learning,” 2021, arXiv:2110.14427.

Authorized licensed use limited to: University of Florida. Downloaded on November 30,2023 at 22:49:32 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1016/j.ifacol.2020.12.1882
http://dx.doi.org/10.1109/TAC.1977.1101561
http://dx.doi.org/10.1109/TAC.1977.1101561

may make no sense in truly online applications as the
probing may be filtered out through inertia in the
system or create stress on equipment.

» Curse of variance: In the majority of applications of SA,
the mean-square error decays no faster than O(1/n),

Root Finding and Learning

In [S1], Polyak credits Tsypkin’s 1971 monograph Adaptation
and Learning in Automatic Systems [S10] for the realization

that stochastic approximation (SA) is an invaluable ingredient

in the creation of algorithms for learning. The following two

classes of machine learning problems serve to justify Tsyp-

kin’s insight:

1) Model-free optimization: The goal is to approximate the mini-
mizer of a function T : R — R. We are free to choose the
values {x,} to observe y, =TI (xn), but we may not have an
analytical expression for the objective function or its gradient.
A close cousin is gradient-free optimization, whose theory

began with the work of Kiefer and Wolfowitz [16] roughly two

decades before [S10], with significant theoretical progress in
the decades that followed.

The work of Spall stands out because of the elegant sim-
plifications of the basic algorithms, along with analysis of con-
vergence rates. Two versions of his simultaneous perturbation
stochastic approximation (SPSA) algorithm can be expressed
as SA in the form of (S2), differing only in the definition of f

1SPSA: £(6, &) = —%H (6 + &) (S3a)

2SPSA: (6, ) :—éf[r(e +ef)-T(©O-¢ef).  (S3b)

It will be seen that 1ISPSA is a close cousin of extremum seek-

ing control.

The 1SPSA recursion may be cast as an algorithm for mod-
el-free optimization: samples of I' (6, + £,+1) may be collected
from a physical system, without an analytical expression for
the objective function I". The first-order difference approach,
2SPSA, will not be successful if there is substantial measure-
ment noise.

1) Reinforcement learning (RL). It was observed in [S11] and
[S12] that temporal difference methods (such as TD and
Q-learning) may be regarded as SA approaches to solve a
root-finding problem. Letting T denote the Bellman operator
associated with the control problem of interest, and Q° be
an approximation of the state-action value function, denote

f(6) = E(TQ" - Q"){] (S4)

in which the random vector { is a stationary realization of the
eligibility vector. The root-finding problem f(6*) = 0 coincides
with the projected Bellman equation [S4], [S5].

The definition of T depends on context. For the determinis-
tic state-space model xx.1 = F(xx, ux) and one-step cost func-
tion c, the total cost-value function is denoted as

as a consequence of the central limit theorem. This

slow convergence is often unacceptable.
These constraints and curses are addressed through the
flexibility we have in the applications of interest in this
article: it is we who design the exploration. This is true in

Q (x,u) =min Y c(Xk, Uk), Xo=X,Uo=U
k=0

where the minimum is over all admissible inputs {ui,us,...}.
The dynamic programming equation is expressed as Q" = TQ",
where for any function H, the function H* = TH is defined by

H* (x,u):= min{c (x, u) + H(F (x, u), u1)}.

Even in a fully deterministic setting, probabilistic tools are
inevitable because exploration is a component of training algo-
rithms for learning. Analysis is based on a steady-state realiza-
tion of the input-state process. In the case of linear function ap-
proximation, Q% =6"y with v (x,u) € R? for each state-input
pair, a common choice of eligibility vector is { =y, and (S5)
becomes the steady-state mean

(6) = E[([TQ®] (xk, ux) — Q°(x«, Uk)) W (Xk, Uk)].

Actor-critic methods in RL may be regarded as an ap-
proach to model-free optimization in which the objective is
average cost. The policy gradient theorem of [S13], a variant
of Schweitzer’s sensitivity formula [S14], leads to techniques
to obtain unbiased estimates of the gradient of the objective
function. One key ingredient is the approximation of a state-
action value function, made possible through geometry re-
vealed in the dissertations of Van Roy and Konda [S15], [S16],
[S17], [S18].
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applications to both optimization and reinforcement learn-
ing (RL) [S5], [47].

Probing signals can be designed so that mean-square
error bounds are far smaller than O(1/n). Without much
effort, we obtain algorithms to achieve a mean-square con-
vergence rate of order approaching O(1/n%.

However, such speedy rates of convergence are only pos-
sible through the use of a step-size sequence {a,+1:1>0}
that is vanishing. If the ultimate goal is to track the evolv-
ing optimizer of a time-varying objective function, a van-
ishing step-size is not acceptable. In much of the article, we
focus on algorithms similar to (1) in which a,+1 is indepen-
dent of n.

Physical constraints require that we consider smooth
probing. This is just one reason why we begin with a
continuous time setting for algorithm construction
and analysis.

What is QSA?

QSA is a deterministic analog of SA. In the fixed-gain set-
ting that is the focus of this article, the QSA ordinary
differential equation (ODE) is defined by the ordinary dif-
ferential equation

4F0=of©, ). ©

The Averaging Principle

he quasi-stochastic approximation (QSA) ODE with fixed

gain (3) is not at all new to the dynamical systems commu-
nity, for which solidarity of the QSA ODE and the mean flow
is known as the averaging principle. Analysis of the larger
state process ¥ = (0, ®) may also be cast in the setting of
singular perturbation theory, in which O is regarded as the
slow variable.

The concepts are far older than SA, with heuristics applied
in the 18th century to obtain models for coupled planetary sys-
tems. Firm theory emerged approximately one century ago
[S19], which is several decades before Robbins and Monro in-
troduced SA [42]. Averaging and singular perturbation theory
grew within the control systems community beginning in the
1970s [S20] and became a foundation of adaptive control (a
close cousin of RL) in the decades that followed. Any of the
standard references will provide a fuller history, such as [S21],
[S22], and [S23].

The academic fields of SA and singular perturbation theory
are far from disjoint in terms of goals, and there has been a
history of cross fertilization. The transfer of concepts from the
deterministic to the stochastic domain includes the application
of singular perturbation techniques in the analysis of two-tim-
escale Markov chains [S22], or the more recent work [S24],
which proposes improvements to 1SPSA that are inspired by
extremum seeking control.
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The gain a >0, m-dimensional probing signal &, and
vector field f:R?xR" —RN? are design choices.

The mathematical objective is identical to SA: by
design, the solution to the QSA ODE approximates the
solution 6” to the root-finding problem f(6")=0, with f
defined by

fo) =lim [ f6, £nat. @

We cannot expect convergence of {0} to 6" when the
gain is fixed. Instead, we obtain bounds on asymptotic bias
of order O(c?) and variance of order O(a*). The theoretical
development of QSA is also similar to SA, starting with
comparison of solutions to the QSA ODE and solutions to
the mean flow

%m = f(y). ®)

Solidarity between the mean flow and the QSA ODE (3)
may be addressed by following theory for its stochastic coun-
terpart, or by recognizing that the constant-gain ODE may be
analyzed through the averaging principle (see “The Averaging
Principle” for a short history and references to a vast literature).

The main goal of this article is to transfer concepts in the re-
verse direction. Techniques from the SA literature have tremen-
dous value in advancing the theory of averaging. Obviously, the
most valuable is the disturbance decomposition introduced in
the 1980s by Métivier and Priouret [S25], which is based on
Poisson’s equation for Markov chains. Multiple applications of
this technique lead to the p-mean flow representation (7). We
are not aware of any counterpart in the averaging literature.
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Techniques from the SA literature can be extended to the deterministic
realm of quasi-stochastic approximation, providing
new techniques for algorithm design.

The present survey is concerned primarily with trans-
lating SA techniques to the deterministic setting. Our start-
ing point is the representation

%ef = o[ (@) +E] ©)

in which Z;= f(©, &) — f(©)) is called the apparent noise.
This noise is called additive if f(6, &)~ f(6) does not depend
on 6, for any value £. Otherwise, we say there is multiplica-
tive noise.

The next step in analysis is to obtain a representation of
the apparent noise through multiple applications of Pois-
son’s equation, borrowing from SA theory techniques. This
brings us to the central equation on which design guide-
lines are built upon: the perturbative mean flow (or p-mean
flow). Tts justification requires assumptions that are
explained in Theorem 1 in “Part 1: QSA.”

P-mean flow: The solution to the QSA ODE admits the
exact description

%@t = a[f(@r) —aYi+ (Wt],

W= Wi+ ol + Lyt @)
The details are as follows:

» The deterministic processes {Wi.i=0,1,2} have
explicit representations, given in (29a)—(29¢) as smooth
functions of a larger state process.

» The function Y: may be expressed as a static func-
tion of the parameter process

Zi=01+€:&;

Y=Y () ()

where Y : R? — R? is continuous, which appears only when
there is multiplicative noise. It can contribute significantly
to the estimation error |©;—6"|, resulting in a large bias
and variance. Fortunately, it can be eliminated with care-
ful design.

The implications of the p-mean flow representation to
algorithm design is a focus of this article. There is one catch:
although the representation holds in broad generality, we
cannot use it to establish stability (in the sense of ultimate
boundedness). Stability can be established through a sepa-
rate Lyapunov function argument or based on the “ODE@c”
borrowed from the literature on SA. Both approaches are
based entirely on consideration of the mean flow (5). Theo-
rem 4 contains full details.

What is ESC?
The answer begins with an explanation of the appearance
of —-MV:T" in Figure 1.

A few simplifications will clarify the discussion. Al-
though much of the recent ESC literature concerns tracking
the minimizer of a time-varying objective (I' depends on
both the parameter 6 and time t), we explain the main ideas
in the context of global optimization of the static objective
I:R? - R. Second, as will be made clear in “Part 2: ESC,” it
is often crucial to introduce a time-varying probing gain
(the € signal shown in Figure 1). Only here is it chosen
fixed: €; = ¢, independent of time.

Low-pass filters: We now explain Figure 1, subject to these
simplifications. The low-pass filter with output {0:}

€15 |

LP, LP

> V=T(Z)

N
e HP

Filter o

F Filter ] MV

)
1

Filter

I U‘L
HP
NS T B Y

&; Probing Signal

FIGURE 1 A typical architecture for ESC for gradient-free optimization. Observations of the objective I" are perturbed by sinusoids and
used as input to a combination of filters. The output © estimates 8°"' as time evolves. HP: high pass; LP: low pass.
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Prohing signals can bhe designed so that mean-square error hounds are far
smaller than 0(1/n). Without much effort, we obtain algorithms to achieve a
mean-square convergence rate of order approaching 0(1/n%).

is designed so that the derivative of ©; is small enough
in magnitude to justify a quasi-static analysis. An exam-
ple is

iGt =—0[0;—6"]+all,

& U, =-M¥%.I' )

with parameters satisfying 0 < o < a. The vector 6°' is an
a-priori estimate of 6°"'.

In tracking applications, we cannot allow « to be too
small, which means that the volatility of {0:} will remain
high. The second low-pass filter with output of is intro-
duced to further reduce volatility. The p-mean flow moti-
vates guidelines for design.

High-pass filters: For the high-pass filter, consider the two
special cases:
1) Pure differentiation: The figure is interpreted as

M¥.T =(%gt>< 1d e, +s§,)). (10)

edt
Adopting the notation from the figure, with &, the de-
rivative of £;, we obtain via the chain rule

MVT = ETVI(O; +ef) + W, (11)
where

(Wt = &[VTF(Gf + Eft)%gt

is small by design of the low-pass filter; consider (9), with
a>0 small.

This justifies the diagram, with M;=&,£] being time
varying. Its time average X; is required to be full rank.

2) All pass: The high-pass filter is removed entirely

MYT=&-1r@ +et). (12)

The analysis begins with an application of the funda-
mental theorem of calculus to obtain

MYV.T = %.m(@,) + fo £ ETVT (O + reéy)dr. (13)

This is interpreted as a “noisy” observation of Z:VI'(0y),
with Z¢ being the mean of M= £:£7. The first term in (13)
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is small in an average sense, provided the probing signal
has zero mean.

Is ESC QSA?
The answer is yes, provided we broaden our definitions as
follows:
» For all pass, yes: The pair of equations, (9) and (12), is
an example of the QSA ODE (3).
» The answer is also yes for pure differentiation, but
only for purposes of analysis. For sufficiently small
a >0, we may express the pair of equations, (9) and
(10), as

L0=af©0,£,¢)

where f inherits the smoothness properties of VI
This is an instance of QSA with a 2d-dimensional prob-
ing signal.

» For a general high-pass filter, the ESC ODE is an
example of two-timescale QSA, which, in the set-
ting of this article, is equivalently cast within the
theory of singular perturbation theory [S21].
This theory justifies an approximation by the QSA
ODE (3).

Even without approximation, the p-mean flow remains
valid and useful for purposes of insight and design. Details
are provided in “Part 2: ESC.”

A very simple special case will receive special attention:

ESC-0: The QSA ODE (9) and (12) using o =0.

It is the most similar to a standard approach in the sto-
chastic domain, known as 1SPSA [see (S4a)], and will be a
source of examples to illustrate the theory surveyed in
“Part 1: QSA.”

ESC-0 is an effective approach to gradient-free optimi-
zation if the probing signal is chosen with care, along
with careful design of the second low-pass filter shown in
Figure 1. It is highlighted here only because it is the sim-
plest version available that is potentially successful.

High volatility can be expected when using ESC-0,
based on a casual glance at (13): by design, we ensure that
& 1(0y) is small on average, but nevertheless contributes
greatly to volatility, especially when T (6] is large. The
remedy is found in the second low-pass filter shown
in Figure 1.

A simple linear QSA example is introduced next to illus-
trate the value of filtering.
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The role of filtering in QSA. A pair of scalar examples will
serve to illustrate sources of estimation error and how they
may be attenuated through a combination of filter design
and design of the probing signal. The two QSA ODEs are
linear, with multiplicative noise

%G)f:a[Af@t-i-(Ll}], U} =2sin(ot)+1 (14a)

i@t = O{[At@t + (1/{%],

i U?=2cos(wt)+1

(14b)

and A: = —(1+ sin(wt)) with @ =0.1. They share the common
mean vector field f(6)=-60+1, differing only by a phase
shift in the input. Theory predicts that the solutions to

- 1F_ e oF _ e
— 10,0 HL1 10 -0 HL1 1€y -0 Il
10°
107" - ko
. k2052

Norm of Estimation Error

10—3 7*= 0 ?*? 0
AAD = O (%) AAD = O ()
107 102 107" 10° 10 102 107" 10°
o o

(a)

either QSA ODE will eventually remain within O(a)
of 6" =1.

Results from the simulations are shown in Figure 2,

which illustrate two points:

1) Figure 2(b) shows the sample paths obtained using
a=0.01: the bias is 10% for (14b), while the bias
observed using (14a) is far smaller [theory predicts it
is O(a?)].

2) Figure 2(b) also shows that ESC-0 fails entirely with
a=0.01, for either of the two QSA ODEs. It is only
after filtering that acceptable results are obtained.

The impact of filtering is more fully illustrated in Figure 2(a),

where we see that (14a) is the clear winner: volatility is of
order O (o) for small « after filtering of parameter estimates.

——0,Y'=0 ——oehy=0
8157 | —0,Y%70 —oeLY'z0
(]
E
7 1
w
ks)
505}
5
9
o 0

10" 108  10°

(b)

FIGURE 2 The impact of multiplicative noise on average absolute deviation (AAD) (the Li-norm of estimation error) for QSA. (a) A plot for
the L1 error as a function of the gain « for different filtering techniques and (b) a plot of the impact of Y* =—Y(8") on estimation error with
o =0.01. Filtering can dramatically reduce error when multiplicative noise is absent.

Summary

he goal of this article is twofold: survey the emerging the-

ory of quasi-stochastic approximation (QSA) and its impli-
cation to design, and explain the intimate connection between
QSA and extremum seeking control (ESC). The contributions
go in two directions: ESC algorithm design can benefit by ap-
plying concepts from QSA theory, and the broader research
community, with interest in gradient-free optimization, can
benefit from the control theoretic approach inherent to ESC.

The following are surprising modes of analysis and outcomes:

e Markovian analysis: In SA with Markovian noise, the
standard approach to variance analysis is to “whiten the
noise” through a certain Poisson equation. A similar idea
is used when the probing signal is defined as an analytic
function of sinusoids. Three applications of this technique
are required to obtain (7).

* Once stability has been established, the perturbative
mean (p-mean) flow representation for QSA (7) provides
insight into dynamic response, based on coupling with the
mean flow. This also provides justification for the linear-
ization of the QSA ODE (3)

%@, = aA'[0i— 0 —aY]+aW:i+0(@?)+o(1) (S5)

where A*=03f(0"), Y =[A1'"Y"(6") and { W} is a bound-
ed process defined in (7).

e Techniques for establishing ultimate boundedness
of the QSA ordinary differential equation (ODE) are
obtained by adapting well-worn methods from the SA
literature.

The implications to ESC are recent:

e The first are implications of the p-mean flow (see Theo-
rem 9 for a summary).

* QSA stability theory relies strongly on Lipschitz continu-
ity of all vector fields, which is typically violated for ESC.
A remedy is introduced here for the first time, where a
Lipschitz algorithm is obtained through the design of a
parameter-dependent probing gain.

Global stability of the algorithm is easily established
for the new class of ESC algorithms, under readily verifi-
able conditions. It is argued that the new design will also
result in more efficient exploration.
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Filtering cannot attenuate the estimation error for (14b): it
remains of order O () with or without filtering.

These outcomes can be anticipated from the p-mean
flow, along with Theorems 1-3 contained in “Part 1:
QSA.” This example will be revisited following exposi-
tion of QSA theory.

Design for tracking. Once we have confidence in design for
the static optimization problem, these algorithms can be
tested with an objective function that is time varying.

ESC-0 appears to be a poor choice as ¢ =0 plays the role
of a “forgetting factor,” which is usually deemed crucial for
tracking. There are, however, hidden dynamics that are par-
tially revealed through the p-mean flow, which provide some
degree of forgetting. For illustration, consider the problem of
tracking a smooth two dimensional signal {6;"} based on
the time-varying objective I';() =I'(6 — 6{*"). This may be
posed as a gradient-free optimization problem if I': RN
has global minimizer 0°P' = 0. In this case, the observations
driving the ESC-0 ODE are of the form

y?=%l“f(®f+e§f). (15)

The plots that follow show results from the ESC-0 ODE
in the following special case:

» I' is the Three-Hump Camel [46], a standard bench-
mark used for testing optimization algorithms.
» The signal 65 is an epitrochoid curve.

Aplotof —I" appears in Figure 3(a), showing two local maxima
and a single global maxima attained at 6% =0. The signal
{67} is indicated with the dashed curve shown in Figure 3.

With initialization at one of the nonoptimal extrema for
I, it is seen in Figure 3 that the estimates {©;} obtained
from ESC-0 track a ball around {6} after a transient
period, but the evolution is highly volatile. The filtered
estimates {Of} display much less variability while main-
taining good tracking.

In conclusion, the cheapest ESC design works well, sub-
ject to constraints on the probing signal and additional fil-
tering. However, it is worth repeating: we are not advocating
that the high-pass filters be abandoned, and we do not advocate
setting o =0 in (9) in application to tracking. Rather, we adopt
the simplest instance of ESC to illustrate the application of
general design principles.

The main content of the remainder of this article is
divided into two parts, with the first on QSA fundamen-
tals, and the second on implications to ESC. History and
resources are included in the “History and Resources” sec-
tion. All of the theory surveyed in parts 1 and 2 is taken
from [15], [23], and [24], following [8] and [S5, Ch. 4].

Acknowledgment to an inspirational scientist. It was a
sad day in February 2023 when Boris Polyak was taken
from us.

The reader will find references to Prof. Polyak through-
out this article. Among his wide-ranging scientific contri-
butions is one that plays center stage in this article: a simple
averaging technique to optimize the asymptotic covariance
in SA, discovered contemporaneously with David Ruppert.
Well before this breakthrough, he introduced in [36] what is
now called the heavy ball algorithm for optimization. This is
just one special case from a menu of acceleration techniques
introduced in this article. These ideas led to momentum
algorithms for accelerating gradient descent, introduced by
his student, Yurii Nesterov. More recently, his survey Adap-
tive and Robust Control in the USSR describes exciting activ-
ity that is often missed in the West [S1]. Students of learning
are advised to scour Polyak’s bibliography to find mathe-
matical gems that are not yet widely known.

PART 1: QSA

A full proof of the p-mean flow representation is provided
here, along with its implications to design: Figure 4 pro-
vides a hint on the design of low-pass filters.

Traveling Camel
—T(6-6™

ESC-0 With and Without Filtering

Transients: First 20%

Final 80%

FIGURE 3 Tracking the moving maximizer for the Three-Hump Camel through ESC-0. The process {6:} successfully tracks the
moving target {6;*'} after a transient period, but with high volatility. Filtering {O¢} to obtain {8f} results in much lower volatility

for tracking.
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“Part 1: QSA” concludes with a brief overview of conclu-
sions for QSA with vanishing gain; this is often the best option
in static optimization and machine learning applications.

Markovian Foundations
In the theory of SA, the stochastic “probing” sequence
{&n+1} appearing in (S3) is not always assumed to be i.i.d.
Convergence holds under far weaker assumptions. If the
probing sequence is a function of a Markov chain, it can be
partially “whitened” through the technique of Métivier
and Priouret [4, S25]. It is by extension of this technique to
QSA that we arrive at the p-mean flow representation.
The probing signal is assumed to be a nonlinear func-
tion of sinusoids, &; = Go(£7), with
£} =[cos (2|t + ¢1]), ..., cos(2x[wkt + px])]T (16)
and Go:RX - R" smooth. The motivation for a nonlinear-
ity may be to create rich probing signals from simple ones.
The probing signal & is a function of the K-dimensional
clock process denoted as ®, with entries
O} =exp(27jlwit + ¢i]), t=0 17)
which we regard as the underlying Markovian state
process.
The notation G(z) = Go((z +1/z) /2) is adopted through-
out, where 1/z :=(1/z3,...,1/zx) so that

Er=G(Dy). (18)

The function G is analytic on z € {C\ {01}, provided Go
is analytic on C*. Properties of the clock process are sum-
marized in “Ergodic Theory for the Clock Process.” Crucial
notation is summarized as follows:

» ® evolves on a compact set denoted Q C CK.Ithasa
unique invariant probability measure denoted as 7,
which is uniform on Q.

» Its differential generator is denoted, for smooth
h: Q-C

Dh(z)=Vh(z)- Wz, ze€Q (19)

with W = 27jdiag (w).
» The pair process ¥ =(0,®) is also Markovian. For
smooth functions h: II - C, its differential gen-

erator is
Dasah (6,z) = a[D'h](6,2) + 3:h(6,2)- [Wz] (20a)
with [D/h](6,2) = 90h(6,z) £(6,G(2)). (20b)

» A crucial takeaway is the representation for the
vector field for the mean flow: for 6 € R¢

f(6)=Ex[f(6,G(®))]:= f f6,G @)z (dz). 1)

The differential generator for ® is used to define
Poisson’s equation for a Markov process. For functions
8, 3:Q — R, this is expressed as

3(®o) = 3(P1) + /0 "g(@)dt, T=0. 22)

If a solution exists, then g is called the forcing function
and g the solution. If g is continuously differentiable, then
Poisson’s equation is written in its differential form:
Dg=-3.

Three versions will be used in the following, one of
which mirrors the use of Poisson’s equation for SA with
Markovian noise in [4] and [S25].

Functions g on the larger domain IT= R x Q are also
considered through a slight abuse of notation: for a func-
tion on the joint state space g:II — R, for each 6, the func-
tion (6, -) is the solution to

2(6,®0) = 3(6, 1) + /O "3(6,®)dt, T=0. 23)

Thatis, (6, -) solves Poisson’s equation for ® for each 6,
with forcing function g(, -).

Please note:

» The solution g to (22) is not unique. It is always nor-
malized so that E;[¢(P)]=0. A solution to (23) is
assumed normalized so that E;[¢ (6, ®)] = 0 for each 6.

» In most of the applications considered in this article,
the function g depends on ®; only through &, but
this is not generally true for g.

» Finally, on notation: we often write ¢ instead of
3(0;,®;). When g is vector valued, ¢ denotes the
vector-valued function whose ith component solves
Poisson’s equation with forcing function gi.

Assumptions

Some of the assumptions that follow are essential, and
others are imposed only because of limitations in cur-
rent theory.

The first assumption sets restrictions on frequencies.
(A0a) & =Go(&)) forall t, with &7 defined in (16). The function
Go: RX =~ R™ is assumed to be analytic, with the coefficients
in the Taylor series expansion for Go(&7) absolutely summable.

i®t= alf(©) = o+ W]

at
Wi O(?)
Band Limitedand | | 1(S)
Small Mean

[1+ O(a)T”

FIGURE 4 P-mean flow and its implications for design. Filtering
attenuates the signal {W:} to be of order O(a?). However, if
Y*#0, a term of order O() remains, hindering estimation accu-
racy for QSA, even after filtering.
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(Aob) The frequencies {ws,...,wx} are chosen of the form

wi=log(ai/b;)>0,1<i<K

{wi}, linearly independent over the rationals (24a)

and with {a;,bi} positive integers.
(A1) The functions f and fare Lipschitz continuous: for a
constant L. F<oo

I f@)—f@©) =Lsle -l
Ife.&)=f6,&)l <Lelle' —ol+[& —£I
If©.e)—f@6,6)l <Lelle'—ol+[&—¢I1  (24b)

Ergodic Theory for the Clock Process
Ergodicity of the clock process is well known to researchers

in both dynamical systems and stochastic processes. This
summary reviews notation and essential properties.

SUMMARY OF MARKOV TERMINOLOGY
The clock process evolves on a compact set, denoted as Q c C¥,
and may be represented as the state process for a linear system:

4 o, = wo, withW = 2zjdiag (@), o€ Q.

ot (S6)

Itis a stationary Markov process when @, is chosen randomly,
with @ ~ 7 (the uniform distribution on Q).

Themean g = fg(z)ﬂ(dz) is always finite when g: Q — R is
continuous. The centered function is denoted as g(z) = g(z) — g
for ze Q.

THE LAW OF LARGE NUMBERS
The law of large numbers (LLN) tells us that for each initial
condition ®o

. T .
m%fo §(®)dt = 0.

Thisiscommonly used with g (z) = h(G(z)) sothat g (®:) = h(¢)
[recall (18)]. The probing signal & falls in the broader class of
almost-periodic functions [S26], [S27].

If there is a continuous function g: Q — R solving (22), then
we have

=

T . ~
‘Tfo g(¢f)dt‘s2llgllm17, T>o0.

In the terminology of [S21, Ch. 8], we say that the LLN holds
with convergence function k(T) = 1/T.

The assumptions on Go in assumption (AOa) are imposed
to ensure consistency of the two definitions of the mean flow
vector field f in (4) and (21). The Lipschitz conditions in (A1)
imply that convergence in the LLN is uniform in both time and
parameter: for a constant bs > 0,

1 |17 3 <p, 1
SUp1+H6||‘T./(; [f(6, &)~ F(O)at| < b+

0,z

(S7)
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forall 0,6 € R, £, & e R".
(A2) The vector fields fand f are each twice continuously
differentiable, with derivatives denoted as
A(6,2)=30f(6,2), A(6)=230f(6). (240
(A3) Solutions to Poisson’s equation exist in the form
(23) for the following three choices of g:1I— R, In
each case, the solution ¢ is assumed normalized with
E:[¢(6,®)]=0 for each 6, and §:II - R’ is assumed
continuously differentiable.

where the supremum is over 6 € R? and ®o =z € Q.

DIFFERENTIAL GENERATOR

The following two forms are required in analysis:

1) The differential generator for the clock process is defined
n (19). If h:C*— C is C' in a neighborhood of Q, then the
continuous function g = Dh may be represented as

9(@) =T h(@).

It follows that h = g is a solution to Poisson’s equation,
g =0, and the LLN holds for {g(®:):t= 0}, with conver-
gence function k(T) = 1/T.
2) The pair process ¥ = (0, ®) is itself the state process for
a time-homogeneous dynamical system on II=R9x Q.
It is also Markovian, with the differential generator de-
fined in (20a), and the function g = Dasah may be rep-
resented as

g(¥)=Grh(¥)

for any function h that is continuously differentiable.

Suppose that the pair process {¥:} is a bounded func-
tion of time from some initial condition ¥o = (6, 2). It follows
from [32, Th. 12.1.2] that there exists an invariant probability
measure for the joint process (the generalization to continu-
ous time is only a change in notation). The LLN may not
hold from each initial condition, however, for the function
g = Dasah, we have the familiar bound

‘%fng(‘I’f)dt‘Sbn%, T>0 (S8)

with bs = sup: | (%) — h (o).
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1) The solution f with forcing function f equal to
the QSA vector field. Its Jacobian with respect to 6
is denoted

A6,2) :=030f(6,2). (24d)

2) The solution } with forcing function 7

3) The solution Y with forcing function Y, where

Y (6,2) =~ [D'f1(6, 2) =— A6, 2)f(6, G(2)) (24e)

with D' defined in (20b). That is, for all 0 <ty < t1,

F(6,®1) = [ f [f(6,®)) — f(0)]dt + F(6,®1)
F6,00= [ f6,®)dt +f6,01)
T (6,®1) = ft "X (6,®) - Y(6)]dt + Y (6,®1,)

with f defined in (21), and

Y(©)=E[Y(6,D)] =- fﬂ A0,2)f(6,G(2)7(dz).  (24)

Rationale. Assumption (A0) is imposed for two reasons.
Subject to the assumption that f(6,G(z)) is an analytic
function of (6,z) on an appropriate domain, assumption
(A0) has two important consequences:

1) Assumption (A3) holds.

2) Y(6)=0.

Assumptions (A1)-(A3) and further assumptions are
required to bound bias and variance, and Lipschitz conti-
nuity is also crucial in establishing criteria for ultimate
boundedness of V.

Three Steps to the P-Mean Flow
The three steps in the derivation of (7) are based on the
three solutions to Poisson’s equation in (A3).

The differential generator Dasa defined in (20a) plays a
role, even though we never consider Poisson’s equation for
the full generator. Rather, suppose that ¢g: II-R is a
smooth function on II, and there exists a smooth function
g solving (23) for each 6 and ®o. The following identity
then follows from the chain rule, using the notation (20b):

4 5= Dasag (0, @) = a[D/ 7] (O, @) ~ [g: -] (25)
where ¢: = (01, ®1), and a similar compact notation is used
for the remaining terms on the right-hand side.

We now proceed through the three steps, starting with
representation (6). Understanding (7) is equivalent to deter-
mining the functions {W'} in the representation

~ . 2
Z=—aTit Wt a Lyt + Ly

iVt (26)

Step 1: Apply (25) with i1 = f
A 1(0,0) =0,/(0, )40, [f(6,£) ~F(©)].
This gives the first transformation of the apparent noise

g, = —%}(@hcpf) + ad6f (0, B f(O,E).

Attenuation

High pass

Recalling (24e) gives, in shorthand notation,

3:—%}5—0&&. 27)

Step 2: Theargumentsinstep 1 are repeated, using ﬁ to get
2= lipfi(0,0) L.

Step 3: Repeat with Y, to achieve
Yi=Ti+o[D/T]©O,0) - LT,

Steps 2 and 3, combined with (27), lead to the p-mean
flow representation.

Theorem 1 (P-Mean Flow)

Subject to (A3),
1) the pre-p-mean flow representation holds

Ay, alf(Ys) — a(Bifi + Y1)

dt
0:=Yi—af, Yo=0o+af (28)
with szfolA(yt—mﬁ)dr.
2) The p-mean flow representation (7) holds with
WY =W (O, ®):=—[D'Y](O, D) (29a)
WE=W'(©,®) :=—[D}(0,0)+T(©,0) (9b)
Wi =W (O, D):= (O, ). (290)

In the remainder of this part of the article, it is assumed
that f has a unique root 6" € R”. The goal is to explain
how the p-mean flow can provide insight into how to
design QSA ODEs that provide good estimates of 6" after a
short transient.

“Measuring Algorithmic Performance” summarizes met-
rics for assessing performance of an algorithm. Three
receive focus in this article: bias, variance, and average
absolute deviation (AAD) (the Li-norm of estimation error).
Bounds on these quantities will follow from absolute
bounds on the estimation error |0, —6[|, which in part
follow from bounds on the target bias (S512).

Bias, variance, and target bias may be related
through the following simple approximation. Recall the
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definition A" =A(0") following (S1). The target bias By
is defined below.

Lemma 1 (Bias and Variance)
Suppose that 6" € R is the unique solution to f6)=0. Sup-
pose moreover that assumptions (Al) and (A2) hold, and
denote § =6 —6". Then,

1) There is a function E4: R - R* satisfying

FO)=A"G+8s(6), 0N (30a)

Measuring Algorithmic Performance

How can we assess algorithmic performance? Standard per-
formance metrics from statistics are adopted here, along

with a nonstandard statistic, known as target bias.

BIAS AND VARIANCE
The usual statistical definitions of bias and covariance are

be=6-6", Xo=Eo[00T—00"

with 6 =E4[0] and @ ~ (0,®) where w is a unique invariant
measure. On denoting 6% = trace (Ze) and fe =|be|

le-6'lE. :=Eoll®@—oIF]1=ob+Bs.

The existence of an invariant measure is guaranteed for quasi-
stochastic approximation (QSA) whenever the sample path © is
bounded from at least one initial condition. This follows from the
fact that ¥ = (O, ®@) is a Feller—Markov process. We do not know
whether @ is unique, so expectations are replaced with sample-
path averages

Be= IiTsupH%fOT[Gf— 9‘]dtH

_(p 1 /7 o IR 2
= (imsup1- (706 Pt ) - Aol (59)

Lr ERROR AND AVERAGE ABSOLUTE DEVIATION
The standard Lp,norms will also be considered in their sample-
path forms:

o o l T _
le—-el, _"ngp Tfo le:—6 |at

a0 . 1 /7 'R
||®—0|\L2—\/I|r?§ngf0 6:—6[Fat.

(S10)

The Linorm is also referred to as the average absolute de-
viation (AAD). These quantities are related via

le-ol., <lle-6ll.=vos+pB3. (811)
TARGET BIAS
The goal of SA is to estimate 6" such that 7(6°)=0, so we re-

gard 0 € R as the target. The target bias is defined as another
sample-path average
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The error term is Lipschitz continuous and admits the
quadratic bound &4(6) < Lal 6"
2) If A" is invertible
0:—0"=[AT[f(©) - E+(O))]. (30b)

And provided the target bias and variance are finite

Bo <[ [AT " I-[Bf + Lac?] (300)
where the subscript F indicates the Frobenius norm.
bi:= nm1 f((~))d (S12)

provided the limit exists, and B7:=| bs|.

ESTIMATING STATISTICS
Two approaches are adopted for estimating bias and other
quantities. Given data up to time T, estimates of bias, variance,
and AAD are denoted as br, 6%, and A/A\Dr, respectively.
e Single-path estimates: Based on observations of
{©: :0<t<T} from a single initial condition, the esti-
mates are determined by

br=6r-¢", @T:T%Tof;@fdf
2 1 T _ R _1e-1R
g,_—TfToleI@, 6 [Pdr - 67|

1 T 5
e M I (S13)

where To[0,7) is introduced to reduce the impact of tran-
sients.

e Batch mean methods: The potential problem with estimates
from a single sample path is that the sample path may be
special, yielding misleading results. Consider application of
a gradient-free optimization algorithm to an objective with
multiple local extrema; how would you know whether or not
your estimates are reaching the global minimum?

The batch means method involves computation of M
solutions to the QSA ODE, distinguished by distinct initial
conditions ©F,1<m <M. These should be spaced wide-
ly apart to ensure that the impact of each initial condition
is not ignored entirely; this may also be interpreted as a
form of exploration. Based on these data, only a single
time point T is used to estimate bias, variance, and AAD
as follows:

r—0, Or=

o
S

Il
(©]]

9

I ™Mz

-1
M

2
o7

moo ,
Z lerIF 167l

a1
M :
AAD7 = Z -0 (S14)
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The representation (30a) is an instance of the mean value
theorem, and the remaining conclusions are immediate
from the definitions.

The value of (30c) comes from the fact that bounds on
target bias are easily obtained through the p-mean flow
representation. The proof of the following is obtained by
combining part 2 of Theorem 1 with (S8):

Lemma 2 (Target Bias Representation)
Suppose that the limit (S12) exists for a given initial condi-
tion. Then, for the same initial condition

bi= %l_rr;%f; [oY:— o> WPdt.

These two lemmas suggest that bias bounds of the
form Be=0O(a) can be expected. Much better bounds on
bias and variance are obtained through 1) additional fil-
tering, and 2) elimination of the function Y appearing in
the p-mean flow representation. The signal Y: is ad-
dressed next.

Source of Poor Performance and Its Elimination

The two terms, {Wi:i=1,2}, are easily attenuated via fil-
tering, and the first term, WY, is scaled by a® in (7), so
it does not contribute significantly to bias or variance.
The problem is Y:, which may contain significant dc
content, and hence cannot be filtered away. Rather, this
signal will be eliminated through design of the prob-
ing signal.

This is possible through the geometry illustrated in
Figure 5. The green region indicates all functions g: C* — C
that are analytic in a neighborhood of Q. The set S denotes
analytic functions of the form g(z)=h(G(z)), where G
appears in (18); that is, g(®:) =h (&) for each t. The second
function class S denotes all functions § that solve Poisson’s
equation for some g €S.

Theorem 2 (Bounds on Target Bias)
Suppose (AOa), (A1), and (A3) hold for the QSA ODE, but
with arbitrary choices of frequencies {w:}. Then,

1) The target bias admits the bound

B7 :=|byll=0O(a).

2) If, in addition, (A0) holds, then Y(6)=0 for each
6cR’, and the p-mean flow representation (7)

(31a)

reduces to
A9, = ol 7O+ WP+ a bW + Ly
ar ot t t ar aarralal

In this case, the bias bound is improved:
Br=0(a?). (31b)

Proof Overview

The proof of 1) follows from (27). For 2), the function classes
Sand § are orthogonal: for g=h+G € S and 0 € S, we must
have

[ (G @)@ 7@z = 0. (32)

In view of (24e), the ith entry of Y (6) may be expressed as
d ~
Yi=-— 21 Aijgj
iz

with ¢;(6, z) = £;(6, G (2)) so that g; € S. For each 6 € R, we
have A;;(6,") € S, so the result follows from (32).

The conclusion that the target bias is of order
O(a?) follows from Lemma 2. Theorem 1 combined with
Lemma 1 imply similar bounds for the parameter esti-
mation bias Be defined in (30c). Theorem 3 contains a
much stronger conclusion in terms of bounds on both
bias and AAD.

Filtering and Acceleration
With Y eliminated, it is time to attenuate {W):i=1,2}
using a low-pass filter.

The first requirement of a filter is that it has unity dc
gain. To reduce AAD to O(c”) then requires consideration
of (7): the bound on the input

O{%(W}
can be reduced to O(¢?) using a first-order low-pass filter
with bandwidth O(a). The second derivative term has no
scaling, so a first-order filter will not do, but a second-order
filter will suffice. The filter to be considered is expressed as
a second-order transfer function with relative degree two,
or the equivalent time domain representation

2
%9f+2y§%@f+y2®f = 1?0 (33)

This is subject to the constraint y = O(«) as the natural fre-
quency y determines the bandwidth of the filter.

Uniform stability and uniform bounds on performance.
To make precise statements regarding bias and variance
as functions of o requires consideration of a family of

S={g=hoGy: hanalytic}

S={4:geS}

FIGURE 5 Orthogonality of functions of the probing signal and cor-
responding solutions to Poisson’s equation. If the frequencies of
the probing signal respect (AO), the two function classes are
orthogonal. Orthogonality leads to the conclusion that Y = 0.
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QSA ODEs over a range of a, along with a uniform notion
of stability.

For a given o > 0, the family of QSA ODEs (3) is called
o -ultimately bounded if there is a fixed constant B such that
for each a € (0,a"] and initial condition (0o, ®o) = (6, z),
there is a finite time to = f0(6, z, @) such that the solution to
(3) satisfies

[©:|<B, t=to (34
with to continuous on its domain.

Criteria for o’-ultimate boundedness are discussed
in the next section. The strong conclusions regarding
bias and variance require this assumption and some-
thing more.

(A4) The family of QSA ODE models is ao—ultimately
bounded, and the mean flow satisfies the two conditions:

1) The ODE

%ﬂt = f(v0)

is globally asymptotically stable with unique equi-
librium 6°.
2) The matrix A" = A(0") is Hurwitz.
The filter must be designed based on the gain a. Specifi-
cations are provided in Theorem 3.

Theorem 3 (Error Attenuation)
Suppose (A1)-(A4) hold, and the second-order high-pass
filter is chosen subject to the following constraints: the
damping ratio { € (0, 1) isindependent of o, and a constant
n > 0 is also fixed to define the natural frequency, y = na
for each a.

Then, for 0 < a < oo and large ¢, the estimates admit the
following approximations:

0:=06"+0(a)+0(1) (35a)

Of =6 +aY +0(a®) +0(1) (35b)

where 0(1) =0 ast—oo, Y =Y(0") and Y =[A"]'T".

The approximations (35) imply bounds on the absolute
deviation of parameter estimates, and hence the AAD.
Bounds on bias and variance also follow as corollaries to
Theorem 3.

Corollary 1 (Bias and Variance)
Under the assumptions of Theorem 3,
1) The asymptotic bias and variance (S9) admit the
bounds

Bo=0(a), 0b=0(?
Bor=0(a), oo =0(a?).

(36a)
(36b)

124 |EEE CONTROL SYSTEMS » OCTOBER 2023

2) If, in addition, (A0) holds, then

Bo=0(?, 0b=0(?
Ber = O(c), oor = O(ah).

(360)
(36d)

Assumption (AQ) has the largest impact on bias and
variance. Equation (36¢) tells us that the variance is of order
O(a?), subject to this restriction on frequencies, which is
remarkable when compared with standard results from SA
theory [see (63) and the discussion that follows]. Filtering
brings the variance down to O(a*): a restatement of the
second bound in (36d).

Proof Overview of Theorem 3
The main ideas are surveyed here only to illustrate applica-
tion of the p-mean flow representation.

It is assumed that the initial condition is selected so that
O;e R forall t =0, with R=1{6 :| 6] < B}. This is without
loss of generality as every solution eventually remains
within this region under the assumptions of the theorem.

The mean flow is locally exponentially asymptotically
stable under the given assumptions, with a region of
exponential asymptotic stability, including the region R. It
follows that there is a function V : R¢ — R, with the Lip-
schitz gradient satisfying for some v > 0

Svllx—o F<svE <&t|x—o, xeRrR (37)

This Lyapunov function is then applied to the represen-
tation (28). This, combined with (37), implies (35a).

The proof of (35b) begins with an application of (35a) to
justify a linearization of the p-mean flow (7) around 6" so
that bounds are obtained based on the linear approximation
(S1). The approximation (35b) also follows from (S1). See
“Frequency Domain Design for Quasi-Stochastic Approxi-
mation” for further details.

QSA Theory and Practice
The examples that follow illustrate application of the theory
presented thus far.

Revisiting the Linear Example

The results obtained for the two linear models (14) are no
surprise when viewed through the lens of the p-mean flow,
along with the details provided in Theorems 1-3.

The QSA ODE (14a) respects the constraints on frequen-
cies imposed in (A0). Theorem 2 implies that Y(6) =0,
independent of 6.

Theorem 2 cannot be applied in analysis of (14b) because
assumption (AQ) is violated. An appeal to Theorem 1 leads
to a calculation of the major contribution to bias: the defi-
nition (24e) along with elementary calculations gives
Y (6) = 1/w, independent of 6. The p-mean flow tells us
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that the O(a) contribution to both bias and AAD is pre-
cisely aY :=a[A] 'Y (0") =—0/ .

These results illustrate the importance of maintaining
distinct frequencies: the inclusion of a phase shift in the
input might appear harmless. In fact, this small change
results in significant estimation bias: 10% in this example
when o = 0.01 and w = 0.1.

Filtering was performed following the assumptions of
Theorem 3 to obtain a second-order filter, and a first-order
filter was also constructed

0 (s) = Hi(s)O(s), 0% (s) = Ha(s)O(s)

where Hi(s) = 14

m, Ha(s) =

Y
s*+20ys +vy? (38)

with { =0.8 and y = na using n = 1.

As suggested by (S13), an approximation of AAD is
obtained using a sample-path average over the final 20% of
the run, denoted as

16all,, = ﬁ fT OT| 0.—6|dr, To=08T (39)
where 6, =0, —6".

This is repeated to obtain |64 [, and [ €3 |,.

Figure 2(a) shows plots of the approximate AAD as a
function of «, along with polynomials 71 () =kia, r2(a) =
kao?; the constants ki, k> were chosen to ease comparison.
Figure 2 shows what is expected: Y  dominates AAD
when Y" # 0. In this case, filtering has no improvement on
reducing AAD below O(a).

Figure 2 shows that both filtering choices reduce AAD
to O(a?) when Y" =0, and a < 0.1. The reason for the suc-
cess of a first-order filter is explained in “Frequency
Domain Design for Quasi-Stochastic Approximation.”

Control of Volatility in Tracking

The filter used to obtain the smooth tracking in Figure 3 was
chosen based on the criterion of Theorem 3, using y = no
with 7=25. The larger bandwidth was needed to avoid
excessive lag. This value of 7 was found to be useful through
trial and error: the best value depends of course on proper-
ties of the target signal {6/}

Consider a signal defined over a time horizon [0, T],
continuous on [0, T/2] with components equal to triangle
waves, and with components equal to square waves on the
following subinterval [T/2, T]. ESC-0 works well for both
first- and second-order filters of the form (38) for a range of
n, but the best filter on the first subinterval will be very dif-
ferent from the best choice for the second.

This is illustrated in Figure 6, showing the evolution of
{T'(©y), T(0/F), [ (6} as functions of time using filter H;
to obtain ©F. The first row shows results obtained using
n =15, and the second using n = 15. A first-order filter out-
performs a second-order filter on the subinterval [0, T/2], for
which the target is consistently varying. In fact, in this
case, the cost as a function of time without filtering
appears to be the most successful. The second-order filter
results in significant improvement in performance on the
second subinterval (ignoring brief transients following
each discontinuity of the target). As the theory anticipates,

Frequency Domain Design for Quasi-Stochastic Approximation

he linearization of the p-mean flow (S1) invites the ap-

plication of Laplace transform techniques for design and
analysis.

Consider the linear system approximating the quasi-sto-
chastic approximation ODE, motivated by the representa-
tion (S1)

%Xr:aA’XHrO((Wt.

The definition of ‘W: remains the same: a function of
(6, ®;). Once we establish that ||©;— x:|=0(a?) for com-
mon initial conditions ©o=Xxo within a bounded region
R, justification of (35b) can be conducted entirely in the
frequency domain. This viewpoint leads to refinements of
the second-order filter proposed in Theorem 9 and much
greater insight.

Let X(s), W(s) denote the respective Laplace transforms of
the state and input for this linear system, and W'(s) the trans-
forms of the components of ‘W: shown in Theorem 1. Taking
Laplace transforms of each side gives

X(s) = alls — aA ] W(s)
= afls — Al [a?WO(s) + asW' (s) + s2W3(s)].

Also, using a superscript “F” for the filtered signals

XF(s) = alls — aA] T WF (s)
=afls — aA"] [ W (s) + asW'F(s) + s2 W3 (s)].

The filter H is designed so that the inverse Laplace trans-
forms of s2W?(s) and sW'F(s) are each of order O(c?). The
induced operator norm of a[ls —aA’] ", viewed as a mapping
on L., is uniformly bounded over 0 <o <1. These arguments
constitute the proof of (35b).

An important conclusion from the final representation of
XF is that additional filtering comes from system dynamics.
The matrix-valued transfer function [/ls —@A*]"' may attenuate
some of these signals if o is small and the signals are band
limited. This is the case for the linear examples (14) and ex-
plains the success of the first-order filter, as illustrated in Fig-
ure 2(a). In this example, [Is — aA*] ' =1/(s + ), and the spec-
trum of W: is discrete.
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FIGURE 6 The impact of filtering on estimation error for tracking. Second-order filtering can dramatically reduce the norm of the error
when the objective moves slowly. As the rate of change of {6;"'} increases, performance of filtering is degraded.

a second-order filter is preferable when the rate of change
of {6 is small.

Stability
There are two common approaches to establishing stabil-
ity in SA that lend themselves to establishing ao—ultimately
boundedness for QSA:
1) Lyapunov criteria, similar to what was discussed in
the proof overview of Theorem 3.
2) Stability of a mean flow with a scaled vector field,
known as the ODE@co.

Lipschitz Lyapunov function. This is the standard criterion
used to establish ultimate boundedness of state-space
models [S21, Ch. 4]. The Lyapunov function V : R R, is
assumed C!, and together with a constant §o > 0, satisfies
VV(x) f(x) <=80V (x) when | x| > 8;". In the time domain

%V(ﬁt) <—80V(3), when|®:]> 85" 40)

10
o, 4x10

4 %1010

FIGURE 7 Trajectories of ESC-0 for the Rastrigin objective from
large initial conditions. The stable behavior of the five trajectories
shown is consistent with approximate coupling of solutions to QSA
and the ODE@-.
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The application of V to the QSA ODE is successful if the
function V is globally Lipschitz continuous. This fails for
the standard quadratic option Vi(x)=x'Px for a d x d,
matrix P with P > 0. However, if VVi(x)f(x) <—&1Vi(x)
for | x| = 81", then the chain rule gives the desired bound
for the Lipschitz function V=+v1+ V1 and &0 € (61/2,1).
(See [51] and [52] for recent Lyapunov theory for SA.)

Stability of the ODE@e». This criterion is motivated by con-
sidering the mean flow starting from a large initial condi-
tion and examining the dynamics following scaling.

For fixed r >0, consider the scaled vector field
F(6) = r7'f(r6), 0 € R*. If v, is a solution to the mean flow
with initial condition of magnitude r=|®o], then the
scaled process ¥} :=r"'9; is a solution to the ODE with
scaled vector field

Lor=Fon, losl=1.

It is often the case that the scaled vector field is conver-
gent as r — oo to obtain

f=(0) =limf"(6), 6N’ (1)

The ODE@co is then defined by
%a? = Fu(07).

In several applications, such as in Q-learning, the scaled
vector field ﬁ,c is much simpler than ]_‘ [6].

Figure 7 shows the evolution of the solutions to the
ESC-0 ODE from a very large initial condition, of order 10",
applied to the Rastrigin objective [46]

L©) =|6]*+20—10[cos (2761) + cos (2762)]. 42)
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See Figure 8(a) for a plot of this function. Ultimate
boundedness is apparent, and there is also coupling with
the ODE@oo.

Theorem 4 (Criteria for a’-Ultimately Boundedness)
Suppose that assumption (Al) holds, and that either of the
following conditions hold:
1) There is a pair V, 8o satisfying (40). In addition, V is
globally Lipschitz continuous, and V (x) = &o| x| for
%]l > 8o
2) The ODE@cwo is locally asymptotically stable.
Then, there is a° > 0 and positive constants b and § such
that the following bounds hold for any o € (0, a’] and any
initial condition ©, ®o:

[©:] < bl|Oollexp(—adt) fort<T:

where T1 = min{t : |0 < 57} @3)

Consequently, the family of QSA ODE models is
o -ultimately bounded.

Proof Overview
The proof of (43) under the Lyapunov criterion is similar to
the proof of (35a) in Theorem 3.
Analysis under the second criterion begins with the fol-
lowing two observations:
1) The convergence in (41) is uniform on compact sub-
sets of R

2) If f» is locally asymptotically stable, then it must be
globally exponentially asymptotically stable, with the
origin being the unique stationary point.

This leads to a string of conclusions, ending with a Lipschitz
Lyapunov function for the ODE@co, and then the mean
flow. This suffices to obtain the uniform bounds in (43).

Vanishing Gain
There is a parallel theory for QSA with vanishing gain

476 =0f(©,, €. @)

The development is similar, leading to familiar choices
in design:

» Assumption (A0) is imposed.

» Filtering is performed to obtain the final estimates

{ef).

A significant difference is the intended goal: conver-
gence of the estimates to 6" is guaranteed under mild
assumptions, which means that both probing design and
filtering are performed to improve the rate of convergence.

The vanishing gain is chosen of the form

llf:O((l“l‘t/te)_p (45)
in which a > 0 and t. > 0 are arbitrary. Theory requires

pe1/21).
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FIGURE 8 A comparison between quasi-stochastic and stochastic algorithms for minimization of the Rastrigin objective. (a) A plot of the
objective, (d) evolution of the scaled empirical variance, (b) and (c) histograms of estimation error for 1ISPSA with Polyak-Ruppert (PR)
averaging, and (e) and (f) histograms of estimation error for ESC-0 with PR averaging. The deterministic algorithm achieves conver-
gence rates arbitrarily close to O(T*), while presenting less variability in estimating 6°".
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Theorem 1 admits an exact extension to the vanishing
gain setting, beginning with the notation in terms of appar-
ent noise

do,=alf®)+E]

Ef :—ﬂtTt'i‘(Wt. (46)
Theorem 5 (P-Mean Flow)

Subject to (A3), the p-mean flow representation (46) holds
with
2

W, = Za%*f%wé
i=0

where the first term is modified
W = [D/T1,+ L DfI,
t
. d P
Wlth Tt =—Elog(at) = m

The remaining terms are unchanged: Y:= Y (0 @)
with Y defined in (24e) and

Wi =—[DFli+ T, Wi=f.

This leads to convergence of ® to 6 with rate O(a:),
which is improved to O(af) with filtering. This is an aston-
ishing conclusion: the rate can be arbitrarily close to o™
by choosing p close to unity.

The second-order filter is abandoned and replaced
by a simple time average, known as Polyak—Ruppert
averaging

PR._ 1 T
%R = T—To/ﬂ, Oudt.

47)

The interval [0, To] is known as the burn-in period; estimates
from this period are abandoned to reduce the impact of
transients in early stages of the run.

Theorem 6 (Acceleration With Vanishing Gain)

Suppose that assumptions (Al)-(A3) and assumption (A4)
hold with one modification: a’-ultimate boundedness for
the family of QSA ODEs (3) is not assumed, but the QSA
ODE (44) is assumed to have bounded solutions from each
initial condition.

Suppose that pe€(1/2,1) and f. > 0,a > 0. Suppose,
moreover, that Ty is selected to solve 1/ (T — To) = k/T with
k > 1. Then, the following approximations hold for (44)
and the averaged estimates:

6:=6"—afi + Ola:| Y

)+o0(a) (48a)

O =0 +ar[c(k, p) +0(1)]Y +O(T¥) (48b)
where c(k, p) >0, Y =[A]7'Y", and fi = f(6’, ).
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Consequently, ©FF converges to 6° with rate bounded
by O(T %) if and only if Y™ =0.

Gain Selection for Static Optimization

The focus on fixed-gain algorithms was motivated entirely
by applications to tracking. In the static root-finding prob-
lems found in optimization and RL, Theorem 6 suggests
that a vanishing gain algorithm may prove to be far more
efficient and not very sensitive to the coefficients in the
gain process (45). The results from experiments using
ESC-0 will make this point clear.

Vanishing or fixed gain? Vanishing gain algorithms provide
extra degrees of freedom: a single scalar a cannot balance
transient response and asymptotic performance. The next
set of experiments are designed to illustrate this conflict.
Recall the Rastrigin objective defined in (42), for which a
plotis shown in Figure 8. Optimization is challenging because
of the infinite number of local extrema and saddle points.
Three choices of a; in (44) are considered in the ESC-0 ODE:

1) a;=0.1(t+1)%
2) ar=a,=3x1073
3) ai=as=7%x107*.

The top row of Figure 9 shows the evolution of © for each
choice of gain and several initial conditions. The bottom row
shows the evolution of {I"(8%F), I'(©1), I'(©%F),T'(O1)} for
the single path yielding the best performance for each gain
choice across all runs.

The following takeaways are noted:

» For a; = 0.1(t+1) " (case 1), Figure 9 illustrates the
advantage of vanishing gain algorithms: the algo-
rithm explores much more in the beginning of the
run, and the objective remains very small after a
brief transient period. The parameter estimates con-
verge to 6°”' = 0 in each experiment.

» For the runs that used a; (case 2), a good amount of explo-
ration is observed, but the steady-state behavior is poor.
Case 3, using the smaller value of o, often yielded better
results in steady state, but in several cases, the trajectory
remains trapped near a nonoptimal local minimum.

» Figure 9 shows the benefit of bias reduction from a
second-order filter as opposed to a first-order filter,
based on runs that used as. As opposed to the results
in Figure 2, this example shows that a first-order filter
is not always sufficient to obtain AAD of order O(o%).

When the trajectory is not trapped near a nonopti-
mal local minima, the final estimates obtained using
the second-order filter are comparable to what is
obtained in the vanishing gain experiments, in terms
of quality of the approximation of 6°".

In conclusion, a constant gain QSA ODE can be fine-
tuned to obtain good results, but the vanishing gain algo-
rithm is far more reliable in these experiments.
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Impact of Dimension. According to Theorem 6, the convergence
rate of {©7"} to 0" is of order O(T %), so that the empirical
variance (S14) vanishes at a rate bounded by O(T~*). There is
no theory available that indicates how the constants in these
bounds are impacted by dimension, so we explore the impact
through another application of ESC-0, this time for the
Ackley objective [46].

Figure 10 shows the evolution of T*&r for d =2 and for
d =30 [see (S14) for the definition of the empirical variance
67]. Simulations confirm that the variance is bounded by
O(at) but grows with dimension.

Figure 10 also shows that performance is not unaccept-
able: the averaged sample paths {©F%} approach the opti-
mizer 6% =0.

Vanishing Gain Constant Gain
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FIGURE 9 A comparison between vanishing and constant gain ESC-0 for optimization of the Rastrigin objective. The vanishing gain
algorithm has a lot of exploration power and approaches 6°°* quickly. For the case with fixed gain, the steady state is poor when the gain
is large. As the fixed gain decreases, the algorithm loses its exploration power.
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FIGURE 10 The impact of dimension. (a) The Ackley objective for dimension d = 2. (b) The evolution of sample paths of four dimensions
of {OF*} for the objective with d = 30. The two plots on the bottom show evolution of the scaled empirical variance for (a) d = 2 and

(b) d = 30.
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Random or smooth exploration? The use of ii.d. exploration
has great appeal because of its simplicity and the many tools for
analysis. This is why it is a standard approach to exploration in
many areas of machine learning. Also, it might be assumed that
this approach to exploration is efficient in applications to gradi-
ent-free optimization due to the high-frequency content in the
probing signal. This is far from the truth (as can be seen from
theory) but is best made clear through: illustration.

The 1SPSA algorithm (S4a) is the stochastic counterpart
to ESC-0 and is implemented along with its deterministic
version here to illustrate the benefits of carefully designing
exploration signals.

Results from the application of multiple instances of
1SPSA and ESC-0 for minimization of the Rastrigin objec-
tive are shown in Figure 8. The following can be seen:

» Figure 8 shows histograms for the estimation error
OFR — 9% for each experiment. The variance of the
estimation error for the deterministic algorithm is
much smaller than for its stochastic counterpart: the
reduction is roughly two orders of magnitude. Roughly
40% of the estimates were considered outliers for the
stochastic algorithm, while none were observed for
its deterministic counterpart.

» Figure 8 shows the evolution of the scaled empirical
variance (S14) across all instances of the determinis-
tic algorithm. This process is bounded as expected
for a convergence rate of order O(T ).

Summary of Design Principles
By now, it is clear that QSA theory leads to a toolbox for
design. “Part 1: QSA” is concluded with a brief summary:

» Ensure by luck or design that f and f are globally
Lipschitz continuous, and that the mean flow is glob-
ally asymptotically stable.

» The probing signal is a smooth function of sinusoids,
but of a special form. Frequencies must be distinct
and respect (A0) to ensure that Y =0. Bias may be
significant if this constraint is ignored.

» Perform filtering: a second-order low-pass filter can
reduce estimation bias and variance dramatically.

» Test your algorithm: perform repeated trials to esti-
mate variance and outliers.

In some applications, it may not be possible to ensure
Lipschitz continuity. In such cases, a projection of estimates
is required to ensure boundedness. If it is known that if f
violates the Lipschitz bounds, then projection alone is not
sufficient: the larger the domain of projection, the smaller
the choice of « in (3).

PART 2: ESC
This second part is devoted to explaining how QSA theory
applies to ESC for the purposes of

» Stability verification

» Bounds on transient behavior

» Bounds on asymptotic bias.
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Precise statements on each point are provided for static opti-
mization, but only empirical results in the case of tracking.

Probing is assumed to be a true mixture of sinusoids,
which is obtained when G in (A0a) is linear

£= zK: v'cos 2z [wit + ¢i])

i=1

49)

with o' eR? for each i, K=d and the K frequencies are
positive and distinct. The covariance matrix is thus

2e=E:[G(D)G(D)]= %VVT (50)

with V the d XK matrix with columns equal to the v’
appearing in (49).

This structure is imposed to avoid unnecessary abstrac-
tions and because the bandwidth of the apparent noise is con-
trolled when the probing gain is small [recall Z defined in (6)].

Theorem 10 provides a QSA representation for ESC in
broad generality, not just the special case of ESC-0.

Approximations for each of the terms in the p-mean
flow representation are available, subject to assumptions
on the objective function. The following assumptions are
listed in order, paralleling assumptions (A0)-(A4). Note
that there is no assumption (E3) because (E2) will justify
both (A2) and (A3).

(E0): The probing signal is of the form (49), with frequen-
cies satisfying (A0) and Z¢ > 0.

(E1): The objective I' is C? and has a Lipschitz continu-
ous gradient.

(E2): The objective is analytic.

(E4): The objective satisfies

» | VI(6)]|= 5]l6]| for some § >0 and all [@]=>s57".

» It has a unique minimizer 6°", and it is the only solu-
tion to VI'(6) =0.

» P=V’T(6°) is positive definite.

Just as (A0) and (A1) were valuable in QSA theory, so are
(EO) and (E1) here. It will be seen that (A1) follows from (E1),
and (E4) implies (A4), subject to (A0) and (Al).

However, none of these implications are valid without a
small change in the definition of the ESC observations.

QSA Theory Requires Lipschitz Continuity
Recall the early warning in the introduction: ESC ODEs are
not Lipschitz continuous unless the observations {JY!'}
defined in (15) are Lipschitz continuous as functions of ©;.
This is rarely the case in practice, so a first step is to modify
the algorithm so that assumption (A1) is satisfied.
A state-dependent probing gain ¢; is adopted for two
important reasons:
1) Assumption (A1) will follow from (E1).
2) If the observed cost I'(Z:) is large, then it makes
sense to increase the exploration gain to move quickly
to a more desirable region of the parameter space.
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The state-dependent probhing gain ensures that the Lipschitz condition (A1)
Is satisfied, which is essential to globhal stability theory.

Two choices for €; = €(0:) are proposed here:

€®)=e/1+T(O) - T (51a)
c@=c, /171 90—}21 o (51b)

where in (51a), the constant I'™ is chosen so that I'(6) =T
for all 6. In the second option, o is interpreted as an a-
priori estimate of 6% asin (9), and o, plays the role of stan-
dard deviation around this prior.

The first is the most intuitive as it directly addresses 2):
the exploration gain €: is large when I'(0:) is far from its
optimal value. However, it does not lead to an online algo-
rithm because I'(0:) is not observed. In a discrete-time
implementation, an online version is adopted:

€1, = EV 1+ytn—1 -~

with Y '=T'(0: + €:&) for t =t,, 1 =0 (compare Figure 1).
In cases (51a) or (51b), we adopt the new definition

Y"6,6)= LT+ ct) (52)

with the understanding that € =¢€(0). The signal Yi=
Y"(©,, &) is an important part of the feedback loop in any
interpretation of Figure 1.

Theorem 7 (Lipschitz Observations for ESC)
The function Y" defined in (52) is uniformly Lipschitz con-
tinuous in 6, subject to (E1) and either of the following;:

1) € is defined by (51b).

2) € is defined by (51a), and (E4a) holds.

Moreover, under either 1) or 2), the following approxi-
mation holds:

Y, &)= %r(e) +ETVT(6) + O(e)

(53)
where the error term O(¢) is bounded by a fixed constant
times €(0).

The plots shown in Figure 7 were obtained using ESC-0
with probing gain (51b) and normalized “observations”
(52). The state-dependent probing gain ensures that the
Lipschitz condition (A1) is satisfied, which is essential to
global stability theory. An example of divergence using a
fixed probing gain is contained in “Finite Escape Time for
Extremum Seeking Control.”

Finite Escape Time for Extremum Seeking Control

The Lipschitz conditions in (A1) cannot be relaxed in the glob-
al stability theory for quasi-stochastic approximation. This
is why establishing global stability of extremum seeking control
(ESC) is challenging when T' is not Lipschitz continuous.

The ESC-0 ODE is recalled here:

®t=—a%§,F(Yf), Yt = 61+ 6‘6(.

Consider the scalar ODE with quadratic objective I"(6) = 62
and probing signal &;=cos(wot). For this simple example,
we obtain

%Yt Z*%frr(Yr) +£%fr

= —%cos (wot) Y2 — ewosin (wot).

This ODE has finite escape time when Yo <0 and | Yo| is
sufficiently large.
To justify this claim, we bound {Y: : 0 <t < to} with

1

1
to=2e—
AT

Assume that & Yo|' is sufficiently small so that

cos(wot) = (1/2) for 0 <t < t,. This implies the lower bound

_d Yi
af V1= %%
and hence
a1 __1/(d a
GV " Y,z(dtyt>226" fort <ts.

Integrating both sides from zero to any value T <t; gives

1 1. «a 1, o4\

In conclusion, for a value t.€(0,t;), the solution
{Y::0 <t <t} is continuous and decreasing, with

limY7=—occ.
Tite

Global stability is ensured if the probing gain is state de-
pendent; either of the choices in (51) ensure success.
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P-Mean Flow for ESC-0

We begin with ESC-0 because of the simple approximations
for both the mean flow and the p-mean flow representa-
tion, starting with the ESC-0 vector field

f6,6)=-Y"6,8)¢.

The following approximations hold under (E0) and (E2),
through an application of Theorem 7:

£16,6) == <oy TO = £679T(0) +0(9 4
f(6) ==XV (0) + O(€) (54b)
F6,®)=——L_T(6)G(®@)— £(@)VI'(6)+ O(e). (540)

€(0)

In (54a) and (54b), the error terms O(€) and O(€”) repre-
sent a uniform bound over R”. In (54c), the approximation
is uniform on compact subsets of R?. The function G is the
solution to Poisson’s equation with forcing function G
defined in (18), so that G(®;) = &:. The function £(®), is a
matrix-valued solution to Poisson’s equation: the forcing
function for entry (i, j) is G:iG;.

The term f; = f(©, ®;) appears in the pre-p-mean flow
equation (28). Although zero mean, we can expect the divi-
sion by €(0) to induce high volatility.

Only the approximation (54b) is required for verifying sta-
bility, which means that (E2) may be relaxed in the following.

Theorem 8 (Stability Criteria for ESC-0)
If (E0), (E1), and (E4a) hold, then ESC-0 is o’-ultimately
bounded.

All of the approximations in (54) are imposed to approx-
imate the terms in the p-mean flow.

Theorem 9 (QSA Theory for ESC-0)

The p-mean flow representation holds under (E2):
%@( = a[f(@)f) - O!Tt + (W[]

If, in addition, (E0) holds, then Y;=0.

If (E0)—(E4) hold, then there is £° >0 such that the fol-
lowing uniform bounds hold for 0 <a <a’, 0<e<¢’, and
t=10(6, z, @):

» Approximate gradient descent:

4.0, =—a[Z: VT (@) + W, +O0(e)].
» Approximate linear dynamics:

%@), =a[-Z: P[0 — 0P+ Wi+ O+ &%) +0(1)]. (55a)
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» Approximate consistency:
1) 0: — 6% < O(a+e*)+0(1).
2) [ OF =6 <O(a®+ £*) + 0(1), with a filtered estimate
obtained using the criteria of Theorem 3.

The proof of Theorem 9 follows from Theorem 4 using
V=yI'(6) =T, where I'" is chosen so that V takes on pos-
itive values [recall (51a)].

Models and Approximations for General ESC
To simplify the discussion, it is best to maintain the first-
order low-pass filter

%G‘)t :_O-G')f — a@tl“,

VIl =&Y, (56)
If the high-pass filter is taken to be all pass (a scalar
gain), then it is a simple task to generalize Theorems 8 and
9 to ¢ > 0. Modeling for genuine high-pass filters within
the framework of QSA requires more effort.
Consider a high-pass filter with state-space realization

of dimension g =1

itzt =FZi+ Gus (57a)

d

Y= H'Z: + Jus (57b)
with (F, G, H, J) of compatible dimension. In this equation,
u; is the scalar input, y; the scalar output, and Z; the
g-dimensional state process.

The (d + g)-dimensional state process for ESC has the
form X; = (0 Z)), in which Z; is (57a) with input u; = YI.
Its evolution is described by the controlled nonlinear state-
space model

d . _%I _érHT _Iét n
EX[ = l Xi+a lG yt (58)
0 LF o

driven by the 2d-dimensional input (&1, £,).

To match the architecture shown in Figure 1, the high-
pass filter is used for d +1 different choices of input: in
addition to u; = YT, giving y: = Y ?, the input u: = I3 gives
Y= 5‘, for each i.

P-mean flow representation. We can freely apply Theorem
1 to the state-space representation (58) because the theorem
makes no assumptions on the magnitude of «, or even the
stability of the QSA ODE.

Remember that o is a fixed constant, so the fact that f
depends on this gain is irrelevant in the definition for the
QSA vector field

V ol —¢H'|  [-J¢
f(xlflf) = 1 x+ l kyn (6/5) (59)
0 -—F G
o o

where x = (6;5) € R**7 denotes an arbitrary value for X;.
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Three solutions to Poisson’s equation are required to
write down the p-mean flow:

3) The solution Y" with forcing function Y".

4) £ with forcing function £ [similar to G in (540)].

5) Q with forcing function Q(6,®) =—JEY"(6,£).

Theorem 10 (P-Mean Flow for ESC)
The p-mean flow representation holds under (E2)

X, = o[ (X) — oTs + W] (60a)
in which for any x = (6;s) and z € Q
| Tat O [TEE@Y 6] o

with expectations in steady state. The functions fand Y
admit the representations

AT -1Q(,2)
, _|0 —é@H <
f(xlz) - 0 0 + %Gy"(e,z) (60C)
Yoo =1 2(z>HT{Fx+Ocy"<e,f<z))}], ©0d)

Proof
The expression (60c) follows directly from (59). There is
simplification because terms not involving & or £ vanish.
The formula (60d) then follows from the definition
7 (6,2) == 3:f (x,2)f(x,2). O
Interpretation of the p-mean flow representation is
entirely different here, because Y is no longer a nuisance
term but a critical part of the dynamics. Application to
design remains a topic for future research.

ESC as two time-scale QSA. The state-space model (58) is
an instance of two-timescale QSA, provided the low-pass
filter gain scales with «, so that o = O(a). The pair (Z;, @)
represents the fast state variables, and as always, O: is the
slow variable. See [S7, Ch. 8] for a survey of the rich theory
of two-timescale SA.

In this deterministic setting, with constant gain «,
theory of two-timescale QSA is a subset of singular pertur-
bation theory. The objective is model reduction, which in
this case amounts to approximating (58) by the d-dimen-
sional instance of QSA

d g

g = —G@)?-erVF(@?)—aft%(ho+])l“(®}’)+0(a6)

with Mi=¢§[&+]&]T, O =60 (61a)

where hy=—H'F'G is the dc gain of the high-pass filter.
Its mean flow is easily identified:

A5 = — 607 — aMVT (9) + O (ae)

o (61b)

with M = E;[M:]. An analysis of this ODE is far more trac-
table than the original ESC ODE. In particular, the mean
flow (61b) is stable, provided the high-pass filter is passive,
such as a lead compensator. Passivity combined with posi-
tivity of Z¢ implies that M +M" > 0.

The approximation is based on freezing the slow variable
O: in the fast dynamics to obtain an approximation for Z.
For a given time ¢, let (Z,:r >t} denote the solution to
the state-space model defining Z with ©,=6 for all
—oo <1 < oo

Z, = [" e IGY" (0, dr.

On substituting &: = G(exp ([t — r] W®,), it follows that
Z,=7(0,®,) for some function Z and each r and 6. The
next step is to substitute the solution to obtain the approxi-
mate dynamics

%@t ~—00,—a[£,H Z(0,®) +]E,Y7]. 62)
Defining Y°(6,£) = %r(e)jugwr(e) and applying

Theorem 7 gives

Y= Y (0,£)+0(e)
H'Z(6,0) =H' [ &Gy (6,£)dr+0(e)

=h L)+ & VI (0)

1
30
and substitution into (62) justifies the claim that (61a) is an
approximation of (58):

4.0,~-00, —aMT'(©) - a;f,elt(ho +DI(O) + O (ce).

CONCLUSIONS AND OUTLOOK
The perturbative mean flow (p-mean flow) representation
opens many doors for analysis of algorithms and provides
a clear path to obtain both transient and steady-state per-
formance bounds.

There remains much more to unveil:

A The use of filtering for acceleration of algorithms is
not at all new. It will be exciting to investigate the impli-
cations of the acceleration techniques pioneered by
Polyak and Nesterov for nonlinear optimization, partic-
ularly in their modern form (see [26] and [33] and the
references therein).

The integration of these two disciplines may provide
insight into how to design the high-pass filters shown in
Figure 1 or suggest entirely new architectures.

A The introduction of normalization into the observa-
tions in the general form (52) was crucial to obtain global

stability of ESC ODEs. There are many improvements to
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The perturbative mean flow (p-mean flow) representation opens
many doors for analysis of algorithms and provides a clear path to
obtain hoth transient and steady-state performance hounds.

consider. First, on considering the Taylor series approxima-
tion (53), performance is most likely improved via a second
normalization

Y= elt[r(eﬁefgt) -1y

in which {I'i} are estimates of the minimum of the objec-
tive. These mightbe obtained by passing {V, =T (0, + €,£,)}
through a low-pass filter.

A Far better performance might be obtained through an
observation process inspired by 2SPSA. Consider first a
potential improvement of 25PSA: a state-dependent explo-
ration gain is introduced so that (S4b) becomes

0n+1 = 0n— an+1 %57!1’1[1—‘(6” + Eilfﬂ+1) - F(en - €n§n+l)]

with €, = €(6,). The division by 2¢ (independent of state)
remains as 25PSA in its original form satisfies the required
Lipschitz conditions for SA, provided VI is Lipschitz
continuous.

There are surely many ways to obtain an online version
based on QSA. One approach is through sampling: denote
T. = nT for a given sampling interval T > 0 and take Y7
constant on each interval [T}, T.+1), designed to mimic
2SPSA. One option is the simple average

N Tyt T/2
Y = %% fT PEID @+ @g) - T 00— eildt

with 6, = ©r,. This can be computed in real time, based on
two sets of observations:

l"(e,,—i-etft), T,,StSTn-i-T/Z
r(en _Ené:th/Z), Tn + T/2 <t< Tn+1.

A The implications for RL deserve much greater attention.
The applications of QSA and ESC in [17], [30], and [S5] are
only the beginning.

A Tt may be straightforward to extend the p-mean flow
representation (7) to tracking problems. This requires
theory for time-inhomogeneous QSA of the form

%Ot = O(f(@t,ét;t) .
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Analysis would require consideration of solutions to
Poisson’s equation, such as jf(e, -;t) for each 6 € R and
t € N. The representation will be more complex than (7)
but will likely lead to sharper bounds than are pres-
ently available.

HISTORY AND RESOURCES

Sources for Main Results

Many of the main results presented here are taken from
recent publications. The p-mean flow representation (7)
first appeared in the preprint [24], along with the general
QSA theory contained in Theorems 1-4, and implications
to ESC contained in Theorems 7-10. These results are based
on a parallel theory for QSA with vanishing gain [8], [15],
[23], [S5]; the convergence rates in Theorem 6 for QSA with
vanishing gain are taken from [15] and [23].

QSA

Recall from “The Averaging Principle” that the QSA ODE
(3) with fixed gain a > 0 has a long history within the
theory of averaging theory. The discussion that follows
concerns QSA with vanishing gain, which is the typical
setting of SA theory.

QSA was proposed in [19] and [21] for applications to
finance and applied in [30] for application to Q-learning
(one approach to RL). QSA and ESC are also applied to
actor-only RL in [S5, Ch. 4] and [17]. Something similar
to QSA appears in [5], with applications to gradient-free
optimization.

The first convergence rate results for QSA were obtained
for quasi-periodic linear systems in [44], which was extended
to the nonlinear setting in [7], [8], and [S5]. The appearance
of Y and its implication to rates of convergence in QSA is
one topic of [S5, Sec. 4.9]. In all of this previous work, it was
assumed that a convergence rate of O(1/T) would be the
best possible. Theorem 6, taken from [15], demonstrates
that this assumption is a fallacy.

Gradient-Free Optimization

The field is far too vast to survey in this article. Instead, we
provide a few leads for the reader, beginning with a warn-
ing regarding terminology: the terms zeroth order and gradi-
ent-free optimization refer to identical goals and similar
approaches. The goal of ESC is not exactly the same, but the
methodology is closely related.
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Kiefer and Wolfowitz introduced gradient-free meth-
ods for optimization in [16], shortly after SA was intro-
duced in [42]. “What Is Stochastic Approximation?”
describes a simplification of the original approach due to
Spall, and his monograph [45] contains further history and
many more insights on algorithm design.

Much of this literature focuses on design for conver-
gence of the estimates {6} to the global optimizer %,
which in general requires a vanishing probing gain. For
example, for 1SPSA, this amounts to

0n+1=0n— Qn+1 Lgiﬂrlr(en + gn+l§n+l)
En+1

in which both {a.} and {e.} are vanishing nonnegative
sequences, and {£,} is assumed to be i.i.d.

Polyak was a major contributor to the theory of con-
vergence rates for algorithms that are asymptotically
unbiased: it was established in [39] that the best possible
convergence rate for the mean square error is O(n")
with = (p—1)/2p, provided the objective function is
p-fold differentiable at 6°. Upper bounds on convergence
rates appeared much earlier in the work of Fabian [14].
See [10], [11], [20], and [35], along with [45] for more
recent history.

Extremum seeking control is said to be the oldest
approach to gradient-free optimization, with a 1922 patent
the alleged starting point [25], [48]. Success stories on the
application of ESC to various problems have been shared
over the 20th century, for example, in [12], [29], [34], [40], and
[41]. Theory has lagged behind practice: the first Lyapunov
stability analysis for ESC algorithms appeared in the 1970s
for a very special case [28].

Bounds on bias and variance for ESC were estab-
lished 30 years later in [1] and [18]. Global stability
results were not obtained due to the absence of Lipschitz
continuity, although parameters can be chosen to achieve
an arbitrarily large region of initial conditions for which
the solution is bounded [49], [50]. See [2] and [27] for fur-
ther history.

Convergence Rates for SA

Theory has largely focused on the vanishing gain setting.
Most relevant to the current article are the remarkable
averaging techniques of Polyak and Ruppert [37], [38], [43]
(see [9], [S7], [S8], and [S9] for recent theory and a more
complete history).

Poisson’s equation appears in many domains in stochas-
tic processes. In addition to SA, versions of this equation
appear in the theory of simulation of Markov processes and
average-cost optimal control [3], [4], [31], [32], [S5].

There is an equally long history of analysis for algorithms
with constant step-size. The most recent literature on con-
stant gain SA for applications to tracking is contained in [S7,
Sec. 9.3].

It was first shown in [6] that stability of the ODE@oo
implies a strong form of geometric ergodicity when the
probing signal is ii.d., and based on this, bounds were
obtained on the L, error of the form

Ell6.—6'[F1=E:ll6— 6" P1+ O(l60— 6" [l0")

E.llox—0 '1=0(a) (63)

where p <1, and a > 0 denotes the (fixed) step-size.

In recent work, it is shown that averaging can eliminate
variance [13], [S2], provided the apparent noise is a martin-
gale difference sequence. These optimistic conclusions
cannot be expected in general [22].
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