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Confinement-induced nonlocality and casimir
force in transdimensional systems

Igor V. Bondarev, *a Michael D. Pugh, a Pablo Rodriguez-Lopez, bc

Lilia M. Woods d and Mauro Antezza ce

We study within the framework of the Lifshitz theory the long-range Casimir force for in-plane isotropic

and anisotropic free-standing transdimensional material slabs. In the former case, we show that the

confinement-induced nonlocality not only weakens the attraction of ultrathin slabs but also changes the

distance dependence of the material-dependent correction to the Casimir force to go as � 1=
ffiffi
l
p

contrary to the B1/l dependence of that of the local Lifshitz force. In the latter case, we use closely

packed array of parallel aligned single-wall carbon nanotubes in a dielectric layer of finite thickness to

demonstrate strong orientational anisotropy and crossover behavior for the inter-slab attractive force in

addition to its reduction with decreasing slab thickness. We give physical insight as to why such a pair of

ultrathin slabs prefers to stick together in the perpendicularly oriented manner, rather than in the parallel

relative orientation as one would customarily expect.

I. Introduction

Modern fabrication techniques have appreciably improved the
quality of thin films, making it possible to produce ultrathin
films of precisely controlled thickness down to a few
monolayers.1–10 Such ultrathin films, often referred to as trans-
dimensional (TD) quantum materials or TD metasurfaces
(MSs),10–12 offer high tailorability of their electronic and optical
properties not only by altering their chemical and electronic
composition (stoichiometry, doping) but also by varying their
thickness (the number of monolayers).13–24 Whereas three-
dimensional (3D) bulk materials allow for higher free carrier
concentration, and their two-dimensional (2D) counterparts
such as graphene and monolayer transition metal dichalcogen-
ides provide the strong confinement of exciton–polariton and
plasmon modes,25–27 the advantages of both of these extremes
can be merged by using TD quantum systems.11 For such
systems, quite generally, the vertical quantum confinement
leads to an effective dimensionality reduction from 3D to 2D
while still retaining the thickness as a parameter to represent
the vertical size.28–30

Since the TD regime is situated in-between the 3D and 2D
dimensionalities, quantum-confined TD materials make it
possible to probe fundamental properties of light–matter inter-
actions as they evolve from a single atomic layer to a larger
number of layers approaching the bulk material properties.14,19

Ultrathin films of metals, doped semiconductors or polar
materials with thickness of only a few monolayers can support
plasmon, exciton and phonon–polariton modes.3–10 Due to
their localized plasmon modes20,24 and associated thickness-
dependent photonic density of states,13,19 they can provide
controlled light confinement and tunable light–matter cou-
pling which makes them distinctly different from conventional
thin films. Fundamental properties of the TD systems originate
from the quantum-confined electromagnetic (EM) dispersion
of their eigen excitation modes and cannot be inferred from
those of 2D systems or 3D materials with boundary conditions
imposed on their top and bottom interfaces.19 Vertical confine-
ment makes these modes nonlocal and so distinct from
those of conventional thin films. Confinement-induced nonlo-
cality is the remarkable intrinsic property of the in-plane EM
response of TD systems.24 It is this nonlocality that enables a
variety of new quantum phenomena in ultrathin films, includ-
ing thickness-controlled plasma frequency red shift,10,31 low-
temperature plasma frequency dropoff,32 plasmon mode
degeneracy lifting and spontaneous emission enhancement,19

directional negative refractivity,17 absorption-transmission
switching under controlled exciton–plasmon coupling,18 a ser-
ies of quantum-optical,14 magneto-optical22 and radiative heat
transfer effects33,34 as well as quantum electronic transitions
that are normally forbidden.35
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The confinement-induced nonlocal EM response comes from
the Keldysh–Rytova (KR) pairwise interaction potential.20,24 The
KR interaction potential takes into account the vertical electron
(and/or hole) confinement due to the presence of substrate and
superstrate with dielectric permittivities much less (e.g., air)
than the in-plane dielectric permittivity of the film itself.28,29

For ultrathin films such a potential is much stronger than the
Coulomb interaction potential. It transitions into the electro-
static Coulomb potential with film thickness increase, which is
why the thickness can be treated as a parameter to control the
optical response of TD films. The nonlocal KR model of the EM
response is unique in that it covers the entire range from
atomically thin to conventional films of the order of a few
optical wavelengths in thickness.10,19 Previously,33 a compara-
tive analysis of the nonlocal and standard local (Drude) EM
response models reported significant differences in their pre-
dictions of far- and near-field heat transfer properties of the TD
film systems. Very recently, the nonlocal EM response model
was successfully tested experimentally.34 It is this nonlocal
model that we use here for theoretical studies into a closely
related phenomenon – the Casimir effect in ultrathin TD
systems. The Lifshitz theory we employ herein,36,37 conveni-
ently represents molecular attractive forces between solids in
terms of their respective linear EM response functions. We
calculate the long-range attractive force between two free-
standing ultrathin TD material slabs as functions of their
thickness and separation distance. The geometries considered
are shown in Fig. 1, where (a) is the case of two identical in-
plane isotropic slabs, while (b) and (c) sketch the two relative
orientations for in-plane anisotropic finite-thickness slabs
made of densely-packed parallel-aligned periodic single-wall
carbon nanotube (SWCN) arrays studied recently in ref. 17. We
show that the confinement-induced nonlocality of the EM
response leads to significant reduction of the attractive force.
In the in-plane anisotropic case, additionally, we predict strong
orientational anisotropy and crossover behavior for the attrac-
tive force in the (b) and (c) orientations depending on the film
thickness and SWCN diameter variation. The following sections

describe our model, present our theoretical results, and con-
clude our work by summarizing its key findings.

II. Casimir effect for a pair of parallel
TD material slabs

We start with the long-range attractive force expression of the
Lifshitz theory for molecular attractive forces between solids at
zero temperature.36,37 In this case the separation distance
between the slabs sketched in Fig. 1 is larger than the funda-
mental wavelength of their absorption spectra, whereby the
force takes the following form36

F ¼ �hc
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Here, c is the speed of light, l is the distance between the slabs
of an infinitely large in-plane size, and e1,2(o) are their respec-
tive linear EM response functions (dynamical dielectric permit-
tivities) treated as functions of the complex variable o = ix with
x = xc/(2pl).

For a pair of perfectly conducting metallic plates, in which
case e1,2 = N, eqn (1) can be integrated exactly to give the well
known Casimir force38

FC ¼
�hc

l4
p2

240
: (2)

In terms of the Lifshitz theory, however, the Casimir force is
just the zero-order expansion term of eqn (1). The next expan-
sion term can be obtained if one uses the explicit form of the
dynamical dielectric functions e1,2(o) in the frequency range
that contributes the most to the integral in eqn (1). It can be

Fig. 1 Finite-thickness parallel material slabs studied in this work. (a) Two identical in-plane isotropic slabs. (b) and (c) Two relative orientations for in-
plane anisotropic slabs made of parallel-aligned periodic SWCN arrays. Monolayers shown are just for a sketch. The actual slabs we study are composed
of a varied number of densely-packed monolayers. See text for details.
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seen that this is the domain where p B 1 and x B 1, or
o/c B 1/l B 0 since x = 2plx/c and o = ix as per the Lifshitz
theory in the large separation limit.36 For normal metals
commonly described by the standard low-frequency local
(Drude) EM response function

eðoÞ ¼ eb �
op

2

oðoþ idÞ; (3)

where eb is the constant background permittivity, d stands for
the damping constant,

op ¼ o3D
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pe2N3D

m�

s
; (4)

o3D
p is the bulk plasma frequency, and other parameters have

their usual meanings, the Casimir force in eqn (2) comes out of
the Lifshitz theory as the main (zero-order) power series expan-
sion term of the function e(o) at infinity in the integrand of
eqn (1). This term can be obtained by using the e(o - 0) = �N
limit in eqn (1). The correction to it comes from the next series
expansion term of the function e(o) at infinity in the integrand
of eqn (1). This is totally contributed by the addend of eqn (3),
De = �op

2/o2 (damping neglected for simplicity), in the first
nonvanishing order of the integrand power series expansion in

eqn (1) under the condition 1=
ffiffiffiffiffiffiffiffiffiffi
De1;2

p
� p�

ffiffiffiffiffiffiffiffiffiffi
De1;2

p
. For iden-

tical metals this gives36

FL ¼ FC 1� 16c

3opl

� �
(5)

referred to as the Lifshitz force in what follows, where the
second term in parentheses is the legitimate correction to the
first at separations greater than that at which they are compar-
able. This term cannot be derived by the method of ref. 38
where the main term (2) was first obtained.

A. In-plane isotropic TD systems

For in-plane isotropic TD material films, due to the KR pairwise
interaction potential of the charge carriers in it, the in-plane
plasma oscillation frequency is given by the nonlocal expres-
sion as follows24

opðkÞ ¼
o3D

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=ð~ekd

p
Þ
: (6)

Here, ~e = eb/(e1 + e2) with e1,2 (oeb) being the film substrate and
superstrate static permittivities, eb is the in-plane dielectric
permittivity of the film (contributed by both positive ion back-
ground and interband electronic transitions), d is its thickness,
and k is the in-plane electron momentum absolute value. The
low-energy in-plane EM response function of the film is still
given by eqn (3), but now with op replaced by that of eqn (6),
which makes the in-plane dielectric response function k-
dependent and so spatially dispersive, or nonlocal. This is the
essence of the nonlocal EM response model for TD quantum
materials.19,33 With d decreasing, it can be seen that op(k) shifts

to the red and eqn (6) acquires the
ffiffiffi
k
p

-type nonlocal spatial
dispersion of 2D materials. As d increases and becomes

sufficiently large, eqn (6) can be seen to gradually approach
o3D

p , the bulk material screened plasma frequency (4), and the
EM response function (3) takes the standard local Drude form.

The procedure described above to obtain the Lifshitz force
(5) can be repeated for a pair of identical in-plane isotropic TD
material slabs, sketched in Fig. 1(a), using the nonlocal EM
response function of the slabs as given by eqn (3) and (6). After
having done the above mentioned substitution of variables and

having also used the equality op=c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðo=cÞ2 � k2

p
for the in-

plane momentum k to fulfill,36,37 eqn (1) can be simplified to
give the thickness dependent expression as follows
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In this equation the square root can be seen to tend to unity as
d -N. The remaining integral can be done analytically to give
the Lifshitz force (5). In the opposite limit where d becomes
sufficiently small (see Section IIIC for more precise definition of
this term), one has
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ffiffiffi
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:

(8)

Here, the correction term in parentheses goes with inter-slab

separation distance as 1=
ffiffi
l
p

, much slower than the 1/l depen-
dence of the correction term in the Lifshitz force (5). The ratio
of the former over the latter can be approximated asffiffiffiffiffiffiffiffiffiffiffiffiffi
l=ð~edÞ

p
4 3 for all l 4 0.5 mm with d = 10 nm and ~e = 4.5

(parameters chosen as discussed in Section III), indicating that
the attraction force is weaker due to the confinement-induced
EM response nonlocality and can also be controlled by material
optical properties and thickness.

B. In-plane anisotropic TD systems

As an example of an in-plane anisotropic TD system we focus
on a closely packed array of periodically aligned SWCNs of
radius R, with translational unit D, embedded in a dielectric
layer of thickness d as shown in Fig. 1(b) and (c). Material
systems like that are currently in the process of intensive
experimental development,39–41 with a great potential to
become the next generation advanced flexible platform for
multifunctional metasurfaces and nonlinear optical devices
with adjustable characteristics on demand.42–49

Collective EM response of a TD material slab made of
periodically aligned SWCN arrays was recently studied
theoretically.17,20 Being contributed by both plasmons and
excitons (corresponding to intra- and interband transitions in
the infrared and optical spectral regions, respectively), it was
shown to be strongly anisotropically nonlocal due to the
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cylindrical spatial anisotropy, periodic in-plane transverse inho-
mogeneity, and vertical quantum confinement of the system. In
the direction perpendicular to the SWCN alignment the in-plane
response is a constant dielectric permittivity eb effectively. In the
SWCN alignment direction it is the complex-valued momentum-
dependent (nonlocal) dynamical function given by eqn (3) in the
low-energy region of interest here,17 but now with20

opðqÞ ¼ o3D
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qRI0ðqRÞK0ðqRÞ

1þ 1=ðq~edÞ

s
(9)

representing the intraband plasma oscillation frequency for a
finite-thickness, cylindrically anisotropic, periodically aligned
(metallic or semiconducting) SWCN array. Here, o3D

p is given by
eqn (4) with N3D = N2D/d, q stands for the absolute value of the
electron momentum along the SWCN alignment direction and
makes the EM response of the slab unidirectionally nonlocal, I0

and K0 are the zeroth-order modified cylindrical Bessel func-
tions responsible for the correct normalization of the electron
density distribution over cylindrical surfaces, to give for R - N,
whereby qRI0(qR)K0(qR) - 1/2, the isotropic TD film plasma
frequency of eqn (6) studied previously in ref. 19 and 33 and tested
experimentally for TiN films of varied thickness both at room10

and at cryogenic temperatures.32 This EM response function
features no bandstructure of individual SWCNs as it is con-
tributed by intraband transitions alone, in which case their
intrinsic properties are only determined by the carbon–carbon
overlap integral (accounted for in N2D) and by the surface
curvature represented by R here.

By symmetry, there are two minimum-energy relative orien-
tations possible for a pair of identical space-separated finite-
thickness SWCN slabs. They are shown in Fig. 1(b) and (c).
Their respective attractive forces F8 and F> can be obtained
from the Lifshitz formula of eqn (1) by noticing that the two
terms under the integral sign there represent the inter-slab
virtual s- and p-polarized photon exchange, respectively. Since
(i) we only have one direction for plasmon propagation on each
of the slabs – the one defined by q-vector of eqn (9) which is
along the SWCN alignment direction, (ii) plasmons can only be
excited by p-polarized photons, and (iii) each of the slabs is a
dielectric in the direction perpendicular to the SWCN align-
ment direction, the two attractive forces in (b) and (c) orienta-
tions of identical slabs in Fig. 1 come out of eqn (1) in the form
as follows
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(10)

Here, e is given by eqn (3) with plasma frequency of eqn (9) and
the functions j and c represent the metallic-type EM response
in the SWCN alignment direction and the dielectric back-
ground response in the in-plane perpendicular direction,
respectively.

Now the procedure described above to derive eqn (7) can be
repeated for F8 and F> of eqn (10) separately. This results in the
attractive force expressions representative of the SWCN array
with parameters R, D and slab thickness d, as follows
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(12)

Taking the limit o3D
p - +N in these equations is the same as

taking the limit o - 0 in eqn (3). This leaves us with the main
expansion term alone in both equations, of which that in
eqn (12) reproduces the metal–dielectric attractive force first
reported by Lifshitz in his seminal work.36 Both terms are
shown in Fig. 2 as functions of 1/eb relative to FC, the Casimir
force, to demonstrate the role of the dielectric background in
the orientational anisotropy of the attractive force in our
system. The anisotropy increases with decreasing eb as expected
due to the relative increase of the unidirectional metallic-type

Fig. 2 Orientational anisotropy of the attractive force for free-standing
slabs sketched in Fig. 1(b) and (c), relative to the Casimir force.

Paper PCCP



This journal is © the Owner Societies 2023 Phys. Chem. Chem. Phys., 2023, 25, 29257–29265 |  29261

EM response component. Both terms become equal to FC in the
limit eb - N, an analogue of the perfect metal case.

III. Numerical results and discussion

For all three cases of space-separated finite-thickness slabs
shown in Fig. 1(a)–(c), the bulk plasma frequency is the main
parameter of the long-range nonlocal attractive force in eqn (7),
(11) and (12) we have obtained. We use a typical free-electron-
gas value o3D

p = 2 � 1016 s�1 estimated from N3D E 1023 cm�3 in
our calculations we discuss below.

A. In-plane isotropic TD systems

Fig. 3 shows our numerical results for the nonlocal attraction
force obtained from eqn (7) for the free-standing slabs of varied
thickness. The background in-plane dielectric permittivity con-
stant eb = 9 was used in these calculations, which is close to those
reported experimentally for typical ultrathin plasmonic films.10,33

Fig. 3(a) compares the force calculated for the three slab thick-
nesses, d = 10 nm, 20 nm and 200 nm (black, blue and green line,
respectively), to the Lifshitz force of eqn (5) and to the Casimir
force for perfect metals of eqn (2). It can be seen that the
confinement-induced nonlocality weakens significantly the attrac-
tion of the thinner slabs. Increasing of the slab thickness
diminishes this effect, making the force approach the local
Lifshitz limit, which in itself is significantly less than the Casimir
force at shorter inter-slab distances. This can also be seen in
Fig. 3(b), which shows the nonlocal attraction force together with
the Lifshitz force relative to the Casimir force as functions of slab
thickness and inter-slab distance. Contrary to the Lifshitz force,
the nonlocal attraction force can now be seen to quickly drop
down with decreasing slab thickness, approaching the form in

eqn (8) where the nonlocal correction term is � 1=
ffiffi
l
p

as opposed
to the 1/l dependence of the local Lifshitz force in eqn (5).

B. In-plane anisotropic TD systems

Fig. 4 summarizes our numerical data obtained for the slab
thickness and inter-slab distance dependences of the

anisotropic nonlocal attraction forces F8 and F> (relative to
the Casimir force) as given by eqn (11) and (12) for densely
packed (D = 2R) free-standing SWCN arrays oriented as shown
in Fig. 1(b) and (c), respectively. In (a), the forces are shown for
the five-monolayer-thick slabs composed of SWCNs of increas-
ing radius. In (b), they are shown for the slabs composed of the
2 nm-radius SWCN array monolayer of increasing monolayer
number. In both cases the slab thickness increases either due
to the SWCN radius with monolayer number fixed, or due to the
monolayer number with SWCN radius fixed. Lightly colored
planes on top show the main expansion terms of eqn (11) and
(12) one obtains in the limit o3D

p - +N, or o - 0 in eqn (3),
whereby the SWCN array structural parameters disappear and
the dielectric background constant eb remains the only para-
meter to control the difference between F|| and F> as discussed
for Fig. 2. Both (a) and (b) show the graphs calculated for eb = 10
(cf. Fig. 2). In (c) and (d) the same is shown for eb = 5.

In addition to the reduction of the attractive force with
decreasing slab thickness we have seen above for the in-plane
isotropic case, there is one more remarkable non-obvious
feature that can now be seen in Fig. 4. This is the crossover
behavior of the attractive force: namely, the force F||, which is
always greater than F> for thicker slabs, weakens quickly with
slab thickness reduction and becomes less than the force F>

for sufficiently thin slabs. This means that a pair of ultrathin
slabs prefers to stick together in the perpendicularly oriented
manner sketched in Fig. 1(c), counter-intuitively, rather than in
the parallel relative orientation shown in Fig. 1(b) one would
think of customarily. Although not obvious at first glance, this
crossover behavior can still be understood as being due to the
increased transmission of the metallic-type EM response com-
ponent in our system, facilitated by the plasma frequency red
shift as the slab thickness d in eqn (9) decreases. Metals are
known to be transmissive in the frequency range above their
plasma frequency (see, e.g., ref. 50), which now shifts towards
infrared. Increased metallic transmission reduces photon
absorption necessary for inter-slab attraction to occur.36,37

Hence, it follows from eqn (10) that a pair of parallel oriented
slabs with metal–metal/dielectric–dielectric type of virtual

Fig. 3 (a) Nonlocal attraction force for a pair of free-standing in-plane isotropic slabs of 10 nm (black), 20 nm (blue) and 200 nm (green) in thickness, as
given by eqn (7). Short-dashed red line is the Lifshitz force of eqn (5). (b) Lifshitz force (dark blue) and nonlocal attraction force (yellow) as functions of the
slab thickness and inter-slab distance, relative to the Casimir force.
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photon exchange becomes less attractive than a pair of perpen-
dicularly oriented slabs with metal–dielectric/dielectric–metal
type of virtual photon exchange as the former is associated with
twice less absorption (roughly) than the latter. Decreasing of
the dielectric background constant eb leads to the relative
weight increase for the metallic type EM response, just like it
would be a pair of thicker slabs, which is why the crossover
effect in (c) and (d) can be seen to shift toward smaller slab
thicknesses as compared to those in (a) and (b).

C. Can the Lifshitz formula be applied to ultrathin films?

The Lifshitz formula we use herein was originally obtained for
two media filling space-separated half-spaces with plane-
parallel boundaries.36 In practice, however, one always deals
with finite-thickness material slabs. Hence, there are two
questions we should answer to justify the Lifshitz formula
applicability in our case: (i) is it appropriate to replace bulk
material EM response functions of the Lifshitz model by their
thickness dependent in-plane counterparts we use, and (ii)
what is the smallest thickness for a material slab to correctly
represent medium-filled half-space. Both questions are
addressed in what follows.

For question (i), we note that to obtain the attraction force
between the two space-separated material half-spaces as a
function of their out-of-plane separation distance alone, one
necessarily has to integrate over the two in-plane directions.
This is what the Lifshitz model does assuming (customarily)
the bulk-medium linear EM response to be the same in all three

directions, of which two in-plane directions are integrated over
while the out-of-plane one remains to represent the distance
dependence of interest. This is equivalent to using the
thickness-dependent in-plane EM response functions in the
integration directions we do here, whereby the Lifshitz model
consistency is preserved.

In order to answer question (ii), it is sufficient to compare
the s and p wave reflection coefficients rs,p given by the
reciprocals of the pre-exponential factors in the first and
second terms of eqn (1), respectively, with those of the free-
standing film of thickness d (see, e.g., ref. 19 and 33)

Rs;p ¼
rs;p 1� e2id

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðk;oÞðo=cÞ2�k2
ph i

1� r2s;pe
2id

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðk;oÞðo=cÞ2�k2
p

after the required substitutions of variables op=c ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðo=cÞ2 � k2

p
, o = ixc/(2pl) are done. Here, the exponential

factor is responsible for the backscattering from the second
interface that is now present in the system. Using eqn (3) with
damping neglected as before, we have

2id

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðk;oÞo

2

c2
� k2

s
¼ �2d

o3D
p

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2ðp2 þ eb � 1Þ

p2
c

2lo3D
p

 !2vuut ;

where x B 1 and p Z 1 as it follows from the structure of the
integral expression in eqn (1). We also have c/o3D

p = 3� 108 m s�1/
(2� 1016 s�1) = 15 nm, so that c/(2lo3D

p ) o 1 for all l 4 10 nm and
2do3D

p /c 4 1 for all d 4 10 nm, whereby the backscattering from

Fig. 4 Anisotropic nonlocal attraction forces F8 and F> as functions of the slab thickness and inter-slab distance, relative to the Casimir force.
(a) 5-monolayer-thick free-standing slabs composed of SWCNs of increasing radius and (b) slabs of increasing thickness composed of 2 nm-radius
SWCNs, as given by eqn (11) and (12) with eb = 10. In (c) and (d) same is shown for eb = 5. Lightly colored planes on top show the main expansion terms
given by eqn (11) and (12) in the limit o3D

p - +N, or o - 0 in eqn (3), whereby the SWCN array structural parameters are gone.
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the second interface becomes exponentially suppressed making
the coefficients Rs,p indistinguishable from rs,p for films greater
than 10 nm in thickness. The data we present in Fig. 3 and 4
above never fall out of this range.

IV. Conclusion

In this work, we use the Lifshitz theory to explore the impact of
the confinement-induced nonlocality of the material EM
response on the (Casimir) force of attraction between two
space-separated TD material slabs. The Lifshitz theory repre-
sents molecular attractive forces between solids in terms of
their respective linear EM response functions for which we use
those provided by the confinement-induced nonlocal EM
response model.20,24 Confinement-induced is a special type of
nonlocality that comes from the KR pairwise electron inter-
action potential in optically dense ultrathin films of finite
thickness.28,29 This potential is stronger than the Coulomb
interaction potential and depends on the film thickness,
which is why our EM response model covers both ultrathin
(d \ 10 nm) and conventional thin films.33 In general, the
Lindhard-Mermin nonlocality of bulk materials might also play
a role for thicker slabs;51 however, this is the k2-infinitesimal
order nonlocality, which in the most important low-momentum
domain is much less than the confinement-induced k-
infinitesimal order nonlocality of the KR model we use.24

We calculate the long-range attractive forces for in-plane
isotropic and anisotropic free-standing TD material slabs. In
the former case, we show that the confinement-induced non-
locality not only weakens the attraction of ultrathin slabs but
also changes the distance dependence of the material-

dependent correction to the Casimir force to go as � 1=
ffiffi
l
p

contrary to the B1/l dependence of that of the local Lifshitz
force. Increasing the slab thickness diminishes this effect,
making the force approach the local Lifshitz force limit which
in itself is significantly less than the material-independent
Casimir force. In the latter case, we use closely packed array
of single-diameter parallel aligned SWCNs in a dielectric layer
of finite thickness to demonstrate strong orientational aniso-
tropy and crossover behavior for the inter-slab attractive force
in addition to its reduction with decreasing slab thickness. We
show that and we explain why a pair of ultrathin slabs prefers to
stick together in the perpendicularly oriented manner, rather
than in the parallel relative orientation as one would customa-
rily expect and as it is shown to occur for thicker slabs.

Our results are obtained for optically dense closely-packed
TD films – films possessing a well-pronounced collective low-
frequency EM response (plasmons) – in the long-range low-
temperature quantum limit lkBT/(h�c) { 1 of the Lifshitz
theory.36 For l t 1 mm where the effects we discuss occur, this
becomes T { 2000 K so that high-temperature calculations in
the classical limit will hardly affect our reported results.
Another case is that of diluted quasi-2D films, where the
electron band-structure and many-body EM exchange interac-
tions are predominantly controlled by dimensionality and by

restricted geometry,52–55 and so temperature effects,52 many-
body retardation effects53–55 as well as purely quantum effects
such as electron energy-level quantization and wavefunction
spill-out,56 which are not involved in our case, can be
important.
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