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Using transdimensional plasmonic materials (TDPM) within the framework of fluctuational electro-
dynamics, we demonstrate nonlocality in dielectric response alters near-field heat transfer at gap sizes on
the order of hundreds of nanometers. Our theoretical study reveals that, opposite to the local model
prediction, propagating waves can transport energy through the TDPM. However, energy transport by
polaritons at shorter separations is reduced due to the metallic response of TDPM stronger than that
predicted by the local model. Our experiments conducted for a configuration with a silica sphere and a
doped silicon plate coated with an ultrathin layer of platinum as the TDPM show good agreement with the
nonlocal near-field radiation theory. Our experimental work in conjunction with the nonlocal theory has
important implications in thermophotovoltaic energy conversion, thermal management applications with
metal coatings, and quantum-optical structures.
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Near-field radiative heat transfer has attracted enormous
interest for energy conversion [1,2], solid-state cooling
[3,4], and thermal management [5,6] owing to the sub-
stantial radiation enhancement beyond Planck’s law at
nanoscale gaps. Dielectric response of materials essentially
governs near-field thermal radiation due to its relationship
with absorption (and emission based on Kirchoff’s law).
Based on fluctuational electrodynamics, near-field heat
transfer theory generally relies on local dielectric properties
and predicts continuously enhancing heat flux with a
decreasing gap, d [3,7–12]. In the extreme nanometer-
sized gaps (d < 10 nm), however, necessity of a nonlocal
description arises to obtain nondivergent heat fluxes [13].
Thus, so far, theoretical attempts [14–17] to explain non-
locality have focused on the gap sizes in the extreme near
field. Also, recent experimental studies [18–20] reveal
inconclusive results for nonlocality. However, when con-
sidering thin plasmonic films there is another nonlocal
effect which may alter the heat flux even at separation gaps
of tens or hundreds of nanometers. Here, we provide an
experimental proof of this nonlocality arising from plas-
monic thin films with a thickness t of extreme nanometer-
sized dimensions (t < 10 nm).
To control near-field thermal radiation, experimental

studies [21–23] have so far mainly examined conventional
bulk materials and thin films. Recent advancements in the
fields of nanophotonics and plasmonics uncover that
atomically thin plasmonic layers [24,25], also known as
transdimensional plasmonic materials (TDPMs) [26], show
unusual tunability in optical effects [27], and light-matter
interactions [28]. In theory [29,30], out-of-plane confine-
ment in an ultrathin metal film yields strong spatial

dispersion and nonlocality [31–33] of dielectric response.
While the thickness-dependent dielectric response due to
the nonlocal effect provides a new degree of freedom for
tunability [34–37], TDPMs are largely unexplored for
controlling nanoscale thermal radiation.
Here, we examine both local and nonlocal dielectric

responses of TDPMs within the framework of fluctuational
electrodynamics. Based on a sensitive experimental
platform capable of probing near-field signals as small
as 0.1-1 nW at a gap of ∼10 nm, we measure near-field
radiative heat transfer between a silica sphere and a
p-doped silicon substrate coated with an atomically thin
layer of platinum (Pt) as TDPM, as shown in Fig. 1(a). Our
experimental results show unprecedented dependence to
nonlocal effects in the near-field heat flux at separations
over a large range from tens of nanometers to micrometer
gap sizes.
As shown in Fig. 1(a), we consider structure 1 as a bare

planar semi-infinite medium (large sphere) and structure 2
as a multilayered planar structure consisting of a semi-
infinite medium and a coated TDPM with a thickness t.
Heat flux between the structures at temperatures T1 and T2

with a separation gap d is expressed by

q ¼
Z

∞

0

dω
2π

½Θðω; T1Þ − Θðω; T2Þ�
Z

∞

0

dκ
2π

κT ðω; κÞ: ð1Þ

Here, Θðω,T) is the mean energy of oscillators with
frequency ω at temperature T and is expressed by
ℏω=ðeℏω=kBT − 1Þ, where ℏ and kB represent the reduced
Planck constant and the Boltzmann constant, respectively.
κ denotes the wave vector component parallel to the planar
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surface. T ðω,κ) represents the transmission probability of
propagating (κ < ko ¼ ω=c) and evanescent (κ > ko)
waves across the gap, and T ðω,κ) ∈ ½0; 1�. In the near
field, the probability reads [38–40] (see Sec. 5 in [41] in the
far-field)

T ðω; κÞ ¼ 4Imðr1ÞImðr2Þ
j1 − r1r2e2ikzdj2

e−2ImðkzÞd: ð2Þ

Equation (2) shows that energy carried by the evanescent
waves depends on reflection coefficient ri with the imagi-
nary component ImðriÞ, for the planar structure i (see Sec. 4
in [41]) and the separation gap. These waves can be
frustrated or surface waves. Energy of frustrated waves
decays in proportion to e−2ImðkzÞd and completely attenuates
for ImðkzÞ ≫ ð2dÞ−1. For surface waves, i.e., surface
phonon and plasmon polaritons, the coupling of resonant
waves between the interfaces across the gap, accounted by
j1 − r1r2e2ikzdj2, compensates the exponential decay in a
larger wave vector range so that T ðω,κ) can have values
even close to 1 for large κ.
Our understanding of dielectric response relies on local

and nonlocal approaches. In this study, dielectric responses
of both semi-infinite media are considered as local.
Nonlocal response is only examined for TDPMs. The local
model of TDPMs is derived based on the Drude model with
classical equations of motion, where electromagnetic force

acting on free electron clouds is uniform in the entire bulk
medium [Fig. 1(b)]. Figure 2(a) shows the real component
of the dielectric permittivity, ε00, of a Pt ultrathin film based
on the local model as a function of ω and κ (see the
Supplemental Material [41] for local dielectric properties).
Frequency dependent ε00 varies from ∼ − 1 × 103 at the
high frequencies to ∼ − 4 × 103 at the low frequencies.
Figure 2(a) also reveals that the local response is indepen-
dent of κ. Thus, dielectric response to a wave at a given
frequency is independent of wave condition (propagating
or evanescent in free space).
On the other hand, the quasiclassical approach [48]

based on the Keldysh-Rytova (KR) potential suggests a
nonlocal model, and differs from the Coulomb potential in
that the out-of-plane confinement in an atomically thin film
is considered when dielectric constants of substrate ε1 and
superstrate ε2 surrounding the film, as shown in Fig. 1(c),
are smaller than background dielectric response of the film,
εb. Then, the Coulomb potential loses the out-of-plane
dependence and becomes a purely in-plane 2D potential
with the only remnant of the out-of-plane coordinate being
the layer thickness to represent the size of the vertical
confinement [Fig. 1(c)]. Consequently, Fourier transform

FIG. 2. Dielectric functions of Pt based on the local and
nonlocal models. Real component of dielectric function ε00 for
Pt based on the local (a) ε0ðωÞ and nonlocal (b)–(c) ε0ðω; κÞ
model. The permittivity based on the nonlocal model exhibits
strong κ-dependence for a thickness of 2 (b) and 10 (c) nm. In (b)
and (c), contour lines are separated by 1 × 104 and the contour
line at the very center of each panel corresponds to ε00 ¼ 0, also
pointed in (b). The color map scales ε00. Transmission probability,
T ðω,κ), across a 100-nm gap between a silica and a bare p-doped
silicon (d), a silica and a p-doped silicon coated with a thin layer
of Pt based on the local (e)–(f) and nonlocal (g)–(h) dielectric
responses with respect to ω and κ=ko.

FIG. 1. (a) Schematic of the heat-exchanging structures
(a large sphere medium, modeled as a plate for theoretical
consideration, and a semi-infinite medium, dark teal, coated
with an atomically thin metal film as the TDPM, light gray).
Modeling of charge interactions based on the local (b) and
nonlocal (c) approaches in a thin metal film ε0, sandwiched
between vacuum ε1, and substrate ε2. The local response assumes
potential V is inversely proportional to the charge separations,
∼1=ρ, as in a bulk whereas, based on the nonlocal model,
V ∼ ln j½2εb=ðε1 þ ε2Þ�ðt=ρÞj. Here, εb denotes background re-
sponse of the film.
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of the KR potential results in wave vector, κ, dependence.
Applying the κ-dependent KR potential to the equation of
motion of electrons returns a κ-dependent plasma fre-
quency, resulting in a confinement-induced nonlocal
Drude dielectric response. The KR potential varies with
thickness due to change in the electrostatic interaction
strength of electrons across the boundaries, and the plasma
frequency of TDPMs becomes thickness dependent [27].
(see the Supplemental Material, Sec. 1 [41] for nonlocal
dielectric properties).
To demonstrate the effect of nonlocality in dielectric

function, we select a thin Pt film as the TDPM sandwiched
between vacuum and a p-doped silicon substrate and plot
real component ε00 of the dielectric function in terms of ω
and κ for thicknesses of 2 and 10 nm in Figs. 2(b) and 2(c),
respectively (see Fig. S1 in [41] for the imaginary compo-
nent). Based on the nonlocal model, dielectric responses
exhibit both frequency and wave vector dependencies. The
major frequency dependence arises from the comparable
condition of εb, ε1, and ε2 at around ω ∼ 1.5 × 1014 where
ε00 ∼ 0. The contour lines at the center, i.e., the line pointed
in Fig. 2(b), represent ε00 ¼ 0 and divide Figs. 2(b) and 2(c)
into two regions. Across the lines, ε00 changes its sign from
negative at the high frequencies to positive at the low
frequencies, meaning that the optical response transitions
from a metallic (metallic region) to dielectric response
(dielectric region), respectively. Red dashed lines indicate
the light line (κ ¼ ko). As κ varies from propagating
(κ < ko) to evanescent (κ > ko) wave vectors for a given
thickness, the strength of the response, related to absolute
magnitude of the dielectric function, jε00j, increases. We
also recognize that with the increasing thickness, the
strength of optical response increases for a given frequency
and wave vector. Still, the responses for evanescent waves
are stronger as compared to those of propagating waves.
The comparison of Fig. 2(a) with Figs. 2(b) and 2(c) reveals
that both the local and nonlocal models predict approx-
imately the same strength of response for large wave vector
ranges (evanescent waves). Conversely, for all thicknesses,
dielectric response of atomically thin Pt over the wave
vector range of propagating waves (κ < ko) is weaker than
that for bulk Pt.
Nonlocal and local transmission probabilities demon-

strate strong contrast in energy transport capability of
propagating and evanescent waves. Figures 2(d)–2(h) show
the transmission probability as a function of ω and κ over
both propagating and evanescent ranges for p-polarized
waves at a separation gap of 100 nm between a silica
plate and a p-doped silicon plate with and without Pt
TDPM coating (see Fig. S7 in [41] for the transmission
probability of s-polarized waves). We first consider the case
without TDPM coating and plot the probability in Fig. 2(d).
Within the evanescent wave vector range (κ=ko > 1),
modes with large wave vectors (κ=ko ∼ 2) excited
at two narrow frequency bands around ω ∼ 2 × 1014 and

ω ∼ 1 × 1014 rad s−1 carry most energy. These sharp peaks
arise from SPhPs supported by silica and coupled across the
separation gap. Also, frustrated waves (κ=ko ∼ 1) contrib-
ute to energy transport over a broad frequency range.
Now, we compare the transmission probabilities when a

layer of Pt TDPM is considered on the silicon substrate.
First, the transmission probabilities are plotted based on the
local dielectric responses of TDPM with 2-, and 10-nm
thicknesses in Figs. 2(e) and 2(f), respectively. From the
comparison of Fig. 2(e) with Fig. 2(d), we point out that the
presence of 2-nm-thick Pt diminishes the energy carried by
propagating waves. Energy transport by SPhPs is mostly
preserved. Increasing the film thickness to 10 nm almost
prevents propagating and frustrated waves from contribut-
ing to energy transport. The local model predicts that, for
propagating waves, optical response of a thin Pt layer is
same with that of a perfect mirror, i.e., strong reflection
(see Fig. S3 in [41] for plots of reflection coefficients of
propagating waves). Similarly, the coupling strength of
SPhPs weakens with the presence of 10-nm Pt. With the
thickness, Imðr2Þ (see Fig. S4 in [41]) approaches zero for
the assembled structure, resulting in fast decaying T ðω, κ).
The nonlocal transmission probability differs from the

local one due to its wave condition (propagating or
evanescent) dependence. We compare the bottom panels
[Figs. 2(g) and 2(h)] with the top panels [Figs. 2(e)–2(f)]
for a given thickness. Propagating waves carry a higher
fraction of energy across the gap based on the nonlocal
model because the nonlocal dielectric permittivity is
weaker than that of the local permittivity in the correspond-
ing wave vector range [see Figs. 2(a)–2(c)]. This indicates
that based on the nonlocal response, the Pt film is more
transparent to propagating waves and has minimal inter-
ference with energy transport capability of these waves
across silica and silicon plates. In addition, we observe that
the difference in energy transported by SPhPs (two major
peaks) depends on the frequency ranges. The wave vector
range of SPhPs at ω ∼ 2 × 1014 shrinks with a greater rate
with thicker TDPM based on the nonlocal model because
the strength of the metallic response gets stronger over
broader wave vector range [see the metallic region in
Figs. 2(b) and 2(c)] and exceeds that of the local model. In
contrast, SPhPs at ω ∼ 1 × 1014 mainly preserve their
energy transport capability compared to that of the local
model. The reason is that the nonlocal TDPM film treats
as a dielectric medium in the corresponding frequency
and wave vector ranges [dielectric region as defined for
Figs. 2(b) and 2(c)], and interferes less with the coupling
of SPhP.
To examine the effect of nonlocality to near-field thermal

radiation, we compute near-field heat transfer coefficient,
h ∼ q=ΔT. Figure 3 shows the coefficient between silica
and p-doped silicon coated with 2-, 5-, 10-, and 100-nm-
thick TDPM films as a function of gap size. Both the local
and nonlocal models estimate increasing heat transfer
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coefficient with respect to separation gap due to the
evanescent wave contribution. The enhancement for a
given separation gap decreases with the increase in film
thickness based on both models. Comparison of nonlocal
estimations with local ones indicates that the nonlocal near-
field radiation predicts higher heat transfer for larger
separation gaps because of the higher transmission prob-
ability for propagating and frustrated waves as discussed
for Fig. 2. On the other hand, the nonlocal prediction is
lower at separation gaps below a certain gap distance. This
observation is consistent with the theoretical results in
literature [49]. The lower heat flux arises because at shorter
separations, waves with large κ values dominate the heat
transfer and for the corresponding κ range, the correspond-
ing dielectric response is even stronger than that of the local
model. Thus, the coupling of polaritons between silica and
p-doped silicon surfaces is weaker for large κ values. We
also plot the theoretical near-field conductance between a
silica sphere and a p-doped silicon plate based on the two
models using the Derjaguin approximation. The inset of
Fig. 3 reveals that the difference between the estimations of
the two models is prominent for the sphere-plate configu-
ration. We note that the nonlocal model is not only showing
higher conductances than the local model as expected, but it
also has the tendency of a small “saturation effect” for very
small distances. The reason is that the heat flux for small
gaps is smaller in the nonlocal model than in the local one
as observed in Fig. 3.
To demonstrate the nonlocal effect from TDPMs, we

conduct experiments for the near-field thermal radiation
between a silica sphere and a p-doped silicon uncoated or
coated with atomically thin Pt films of 2-, 5-, and 100-nm

thickness. The schematic and the picture of our exper-
imental platform are shown in Figs. 1(a) and 4(a), respec-
tively. This platform was also employed in our previous
work [50,51]. The inset and Fig. 4(b) show the real-time
and the corresponding position-dependent deflection signal
for the case with the uncoated substrate. The deflection
signal monitors the near-field induced change (see Sec. 11
in [41] for details of the experiment). The Pt thin films are
coated on the silicon substrates by sputtering. By lowering
the plasma power, the deposition rate of Pt can be adjusted
to be as low as ∼1 Å per second. We perform AFM
measurements to characterize the roughness (see Sec. 7
in [41]) and find RMS roughnesses of ∼0.1, ∼0.2, and
∼0.4 nm for silicon without coating and with ∼2 and
∼5 nm coatings, respectively. The near-field measurements
are carried out under a vacuum level of 1 × 10−6 Torr.
We plot experimental results of the near-field conduct-

ance measurements for the cases with the bare silicon plate
and the silicon plates with atomically thin layers of ∼2, ∼5,
and ∼100 nm in Fig. 4(c), showing that experimental results
agree very well with the nonlocal near-field radiation
predictions [see Fig. S9(b) in [41] for the estimation based
on the local model and Figs. S10(a) and S10(b) in [41]

FIG. 3. Theoretical predictions of near-field radiation based on
both the local and nonlocal models. Inset shows computed near-
field conductance between the silica sphere and the silicon plate
obtained using the Derjaguin approximation for the correspond-
ing configurations. For later comparison with experiment, the
numerical results are shifted such that the conductance is zero at a
distance of 2 μm.

FIG. 4. Near-field experimental results. (a) Picture of the silicon
substrate and the silica microsphere. A red laser shines on the
bimaterial cantilever. (b) Position-dependent deflection signals
converted from real-time signals acquired using the optical
measurement system and shown in the inset. (c) Measured
near-field conductance as a function of gap for the cases without
(red) and with ∼2 nm (purple), ∼5 nm (light green) and
∼100 nm (cyan) ultrathin films, compared to nonlocal theoretical
predictions obtained using the Derjaguin approximation.
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for the sensitivity analysis of the local and nonlocal models
when the film thickness is shifted by �0.5 nm]. As the
highest conductance is obtained in the silica-bare silicon
case, the conductance decreases with increasing thickness
at a given separation gap. Theoretical predictions based on
the local model consistently underestimate the experimental
results for the cases with ∼2- and ∼5-nm-thick TDPMs. We
expect with the increasing thickness, dielectric response of
thin films approaches bulk response. For ∼100-nm-thick
film, the signal is buried in noise, as predicted by both
models.
In addition to the quantum nanophotonics applications

already reported [31–37], we propose two possible meth-
ods to make use of TDPMs in near-field based applications.
First, the metallic and dielectric response over distinct
frequency ranges obtained with TDPMs can be exploited
for filtering near-field thermal radiation. This filtering may
control the emission peak frequency to match with the band
gap of the photovoltaic cells, reducing waste heat and
increasing device energy conversion efficiency. Second,
temperature variation may change thickness of TDPMs.
Relying on temperature dependent dielectric properties,
near-field thermal diodes may utilize thickness sensitivity
of dielectric response from TDPMs to temperature variation
for adjusting the contrast between reverse and forward
biases.
In summary, we have shown that the nonlocal near-field

radiative heat transfer alters thermal radiation at submicron
separation sizes. Our theoretical calculations indicate that
the thickness and wave vector dependent dielectric
response of TDPMs modifies near-field thermal radiation
between silica and doped silicon dominated by surface
phonon polariton contributions. Our experiments have
found that the local prediction underestimates the measured
results, and verified the nonlocal near-field thermal radi-
ation. We expect that our nonlocal consideration will
change the focal point of studies about the nonlocal
near-field thermal radiation from extreme near-field regions
to tens and even hundreds of nanometer gap sizes. The
nonlocal effect based on TDPMs provides a new degree
of freedom for controlling near-field radiation, which has
important implications in energy conversion and thermal
management. We also foresee that material dimensions
much smaller than the characteristic wavelength in both
lateral and normal directions will give rise to new phenom-
ena and applications on near-field thermal radiation.

This work was supported by the Defense Threat
Reduction Agency (Grant No. HDTRA1-19-1- 0028)
and the National Science Foundation (Grant No. CBET-
1931964). S.-A. B. acknowledges support from the
Heisenberg Programme of the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation),
Project No. 404073166. I. V. B. is supported by the U.S.
National Science Foundation under Condensed Matter
Theory Program Grant No. DMR-1830874. I. V. B.

acknowledges the hospitality of the Kavli Institute for
Theoretical Physics (KITP), UC Santa Barbara, during his
invited visit as a KITP Fellow 2022–23 made possible by
the Heising-Simons Foundation. I. V. B., S.-A. B., and S. S.
gratefully acknowledge support from the KITP under U.S.
National Science Foundation Grant No. PHY-1748958,
where this collaborative work was started.

*sshen1@cmu.edu
[1] A. Fiorino, L. Zhu, D. Thompson, R. Mittapally, P. Reddy,

and E. Meyhofer, Nanogap near-field thermophotovoltaics,
Nat. Nanotechnol. 13, 806 (2018).

[2] G. R. Bhatt, S. Zhao, Bo Roberts, I. Datta, A. Mohanty, T.
Lin, J.-M. Hartmann, R. St-Gelais, S. Fan, and M. Lipson,
Integrated near-field thermo-photovoltaics for heat recy-
cling, Nat. Nanotechnol. 12, 2545 (2020).

[3] J. Desutter, L. Tang, and M. Francoeur, A near-field
radiative heat transfer device, Nat. Nanotechnol. 14, 751
(2019).

[4] L. Zhu, A. Fiorino, D. Thompson, R. Mittapally, E.
Meyhofer, and P. Reddy, Near-field photonic cooling
through control of the chemical potential of photons, Nature
(London) 566, 239 (2019).

[5] A. Fiorino, D. Thompson, L. Zhu, R. Mittapally, S.-A.
Biehs, O. Bezencenet, N. El-Bondry, S. Bansropun, P. Ben-
Abdallah, E. Meyhofer et al., A thermal diode based on
nanoscale thermal radiation, ACS Nano 12, 5774 (2018).

[6] K. Ito, K. Nishikawa, A. Miura, H. Toshiyoshi, and H.
Iizuka, Dynamic modulation of radiative heat transfer
beyond the blackbody limit, Nano Lett. 17, 4347 (2017).

[7] B. Song, D. Thompson, A. Fiorino, Y. Ganjeh, P. Reddy,
and E. Meyhofer, Radiative heat conductances between
dielectric and metallic parallel plates with nanoscale gaps,
Nat. Nanotechnol. 11, 509 (2016).

[8] R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, Near-field
radiative heat transfer between parallel structures in the deep
subwavelength regime, Nat. Nanotechnol. 11, 515 (2016).

[9] E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J.
Chevrier, and J.-J. Greffet, Radiative heat transfer at the
nanoscale, Nat. Photonics 3, 514 (2009).

[10] R. S. Ottens, V. Quetschke, Stacy Wise, A. A. Alemi, R.
Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F.
Whiting, Near-Field Radiative Heat Transfer betweenMacro-
scopic Planar Surfaces, Phys. Rev. Lett. 107, 014301 (2011).

[11] S. Shen, A. Narayanaswamy, and G. Chen, Surface phonon
polaritons mediated energy transfer between nanoscale
gaps, Nano Lett. 9, 2909 (2009).

[12] H. Salihoglu and X. Xu, Near-field thermal radiation
between two plates with sub-10 nm vacuum separation,
Nano Lett. 20, 6091 (2020).

[13] A. Kittel, W. Müller-Hirsch, J. Parisi, S.-A. Biehs, D.
Reddig, and M. Holthaus, Near-Field Heat Transfer in a
Scanning Thermal Microscope, Phys. Rev. Lett. 95, 224301
(2005).

[14] P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J.
Greffet, Effects of spatial dispersion in near-field radiative
heat transfer between two parallel metallic surfaces, Phys.
Rev. B 77, 035431 (2008).

PHYSICAL REVIEW LETTERS 131, 086901 (2023)

086901-5

https://doi.org/10.1038/s41565-018-0172-5
https://doi.org/10.1038/s41467-020-16197-6
https://doi.org/10.1038/s41565-019-0483-1
https://doi.org/10.1038/s41565-019-0483-1
https://doi.org/10.1038/s41586-019-0918-8
https://doi.org/10.1038/s41586-019-0918-8
https://doi.org/10.1021/acsnano.8b01645
https://doi.org/10.1021/acs.nanolett.7b01422
https://doi.org/10.1038/nnano.2016.17
https://doi.org/10.1038/nnano.2016.20
https://doi.org/10.1038/nphoton.2009.144
https://doi.org/10.1103/PhysRevLett.107.014301
https://doi.org/10.1021/nl901208v
https://doi.org/10.1021/acs.nanolett.0c02137
https://doi.org/10.1103/PhysRevLett.95.224301
https://doi.org/10.1103/PhysRevLett.95.224301
https://doi.org/10.1103/PhysRevB.77.035431
https://doi.org/10.1103/PhysRevB.77.035431


[15] C. Henkel and K. Joulain, Electromagnetic field correlations
near a surface with a nonlocal optical response, Appl. Phys.
B 84, 61 (2006).

[16] F. Singer, Y. Ezzahri, and K. Joulain, Near field radiative
heat transfer between two nonlocal dielectrics, J. Quant.
Spectrosc. Radiat. Transfer 154, 55 (2015).

[17] A. I. Volokitin and B. N. J. Persson, Radiative heat transfer
between nanostructures, Phys. Rev. B 63, 205404 (2001).

[18] K. Kloppstech, N. Könne, S.-A. Biehs, A. W. Rodriguez, L.
Worbes, D. Hellmann, and A. Kittel, Giant heat transfer in
the crossover regime between conduction and radiation,
Nat. Commun. 8, 14475 (2017).

[19] L. Cui, V. Jeong, Wonho Fernández-Hurtado, J. Feist,
F. J. García-Vidal, J. C. Cuevas, E. Meyhofer, and P.
Reddy, Study of radiative heat transfer in Ångström- and
nanometre-sized gaps, Nat. Commun. 8, 14479 (2017).

[20] K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong,
L. Cui, D. Thompson, J. Feist, T. Homer Reid, F. J. García-
Vidal, J. Carlos Cuevas, E. Meyhofer, and P. Reddy,
Radiative heat transfer in the extreme near field, Nature
(London) 528, 387 (2015).

[21] M. Lim, J. Song, S. S. Lee, and B. J. Lee, Tailoring near-
field thermal radiation between metallo-dielectric multi-
layers using coupled surface plasmon polaritons, Nat.
Commun. 9, 4302 (2018).

[22] D. Thompson, L. Zhu, E. Meyhofer, and P. Reddy, Nano-
scale radiative thermal switching via multi-body effects,
Nat. Nanotechnol. 15, 99 (2020).

[23] K. Shi, Z. Chen, X. Xu, J. Evans, and S. He, Optimized
colossal nearfield thermal radiation enabled by manipulat-
ing coupled plasmon polariton geometry, Adv. Mater. 33,
2106097 (2021).

[24] R. A. Maniyara, D. Rodrigo, R. Yu, J. Canet-Ferrer, D. S.
Ghosh, R. Yongsunthon, D. E. Baker, A. Rezikyan, F. J.
García de Abajo, and V. Pruneri, Tunable plasmons in
ultrathin metal films, Nat. Photonics 13, 328 (2019).

[25] Z. M. Abd El-Fattah, V. Mkhitaryan, J. Brede, L. Fernández,
C. Li, Q. Guo, A. Ghosh, A. R. Echarri, D. Naveh, F. Xia,
J. E. Ortega, and F. J. García De Abajo, Plasmonics in
atomically thin crystalline silver films, ACS Nano 13, 7771
(2019).

[26] A. Boltasseva and V. M. Shalaev, Transdimensional pho-
tonics, ACS Photonics 6, 1 (2019).

[27] D. Shah, M. Yang, Z. Kudyshev, X. Xu, V. M. Shalaev, I. V.
Bondarev, and A. Boltasseva, Thickness-dependent drude
plasma frequency in transdimensional plasmonic tin, Nano
Lett. 22, 4622 (2022).

[28] N. Rivera, I. Kaminer, B. Zhen, J. D. Joannopoulos, and M.
Soljačić, Shrinking light to allow forbidden transitions on
the atomic scale, Science 353, 263 (2016).

[29] L. V. Keldysh, Coulomb interaction in thin semiconductor
and semimetal films, Sov. Phys. JETP 29, 658 (1979).

[30] N. S. Rytova, Screened potential of a point charge in a thin
film, Moscow Univ. Phys. Bull. 3 (1967).

[31] F. H. da Jornada, L. Xian, A. Rubio, and S. G. Louie,
Universal slow plasmons and giant field enhancement in
atomically thin quasi-two-dimensional metals, Nat. Com-
mun. 11, 1 (2020).

[32] F. J. García De Abajo and A. Manjavacas, Plasmonics in
atomically thin materials, Faraday Discuss. 178, 87 (2015).

[33] H. Qian, Y. Xiao, and Z. Liu, Giant Kerr response of
ultrathin gold films from quantum size effect, Nat. Com-
mun. 7, 13153 (2016).

[34] I. V. Bondarev, Controlling single-photon emission with
ultrathin transdimensional plasmonic films, Ann. Phys.
(Amsterdam) 2200331, 1 (2022).

[35] I. V. Bondarev and C. M. Adhikari, Collective Excitations
and Optical Response of Ultrathin Carbon-Nanotube Films,
Phys. Rev. Appl. 15, 034001 (2021).

[36] I. V. Bondarev, H. Mousavi, and V. M. Shalaev, Transdimen-
sional epsilon-near-zero modes in planar plasmonic nano-
structures, Phys. Rev. Res. 2, 013070 (2020).

[37] I. V. Bondarev, H. Mousavi, and V. M. Shalaev, Optical
response of finite-thickness ultrathin plasmonic films, MRS
Commun. 8, 1092 (2018).

[38] M. Francoeur, M. P. Mengüç, and R. Vaillon, Near-field
radiative heat transfer enhancement via surface phonon
polaritons coupling in thin films, Appl. Phys. Lett. 93,
43109 (2008).

[39] P. Ben-Abdallah, K. Joulain, J. Drevillon, and G.
Domingues, Near-field heat transfer mediated by surface
wave hybridization between two films, J. Appl. Phys. 106
(2009).

[40] S. A. Biehs, Thermal heat radiation, near-field energy
density and near-field radiative heat transfer of coated
materials, Eur. Phys. J. B 58, 423 (2007).

[41] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.131.086901 for dielec-
tric properties, reflection and transmission coefficients,
sample preparation, topography measurements, thickness
sensitivity analysis, and details of experimental procedure,
which includes Refs. [42–47].

[42] M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and
M. R. Querry, Optical properties of fourteen metals in the
infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd,
Pt, Ag, Ti, V, and W, Appl. Opt. 24, 4493 (1985).

[43] E. D. Palik,Handbook of Optical Constants of Solids, Vol. 3
(Academic Press, New York, 1998).

[44] C. J. Fu, Z. M. Zhang, and G.W. Woodruff, Nanoscale
radiation heat transfer for silicon at different doping levels,
Int. J. Heat Mass Transfer 49, 1703 (2006).

[45] M. Yasaka, X-ray thin-film measurement techniques v. x-ray
reflectivity measurement, Rigaku J. 26 (2010).

[46] S. Shen, A. Narayanaswamy, S. Goh, and G. Chen, Thermal
conductance of bimaterial microcantilevers, Appl. Phys.
Lett. 92, 063509 (2008).

[47] A. Narayanaswamy and N. Gu, Heat transfer from freely
suspended bimaterial microcantilevers, J. Heat Transfer 133,
042401 (2011).

[48] I. V. Bondarev and V. M. Shalaev, Universal features of the
optical properties of ultrathin plasmonic films, Opt. Mater.
Express 7, 3731 (2017).

[49] S.-A. Biehs and I. V. Bondarev, Far- and near-field heat
transfer in transdimensional plasmonic film systems, Adv.
Opt. Mater. 2202712 (2023).

[50] J. Shi, B. Liu, P. Li, L. Y. Ng, and S. Shen, Near-field energy
extraction with hyperbolic metamaterials, Nano Lett. 15,
1217 (2015).

[51] J. Shi, P. Li, B. Liu, and S. Shen, Tuning near field radiation
by doped silicon, Appl. Phys. Lett. 102, 183114 (2013).

PHYSICAL REVIEW LETTERS 131, 086901 (2023)

086901-6

https://doi.org/10.1007/s00340-006-2219-9
https://doi.org/10.1007/s00340-006-2219-9
https://doi.org/10.1016/j.jqsrt.2014.11.016
https://doi.org/10.1016/j.jqsrt.2014.11.016
https://doi.org/10.1103/PhysRevB.63.205404
https://doi.org/10.1038/ncomms14475
https://doi.org/10.1038/ncomms14479
https://doi.org/10.1038/nature16070
https://doi.org/10.1038/nature16070
https://doi.org/10.1038/s41467-018-06795-w
https://doi.org/10.1038/s41467-018-06795-w
https://doi.org/10.1038/s41565-019-0595-7
https://doi.org/10.1002/adma.202106097
https://doi.org/10.1002/adma.202106097
https://doi.org/10.1038/s41566-019-0366-x
https://doi.org/10.1021/acsnano.9b01651
https://doi.org/10.1021/acsnano.9b01651
https://doi.org/10.1021/acsphotonics.8b01570
https://doi.org/10.1021/acs.nanolett.1c04692
https://doi.org/10.1021/acs.nanolett.1c04692
https://doi.org/10.1126/science.aaf6308
https://doi.org/10.1038/s41467-019-13993-7
https://doi.org/10.1038/s41467-019-13993-7
https://doi.org/10.1039/C4FD00216D
https://doi.org/10.1038/ncomms13153
https://doi.org/10.1038/ncomms13153
https://doi.org/10.1002/andp.202200331
https://doi.org/10.1002/andp.202200331
https://doi.org/10.1103/PhysRevApplied.15.034001
https://doi.org/10.1103/PhysRevResearch.2.013070
https://doi.org/10.1557/mrc.2018.153
https://doi.org/10.1557/mrc.2018.153
https://doi.org/10.1063/1.2963195
https://doi.org/10.1063/1.2963195
https://doi.org/10.1063/1.3204481
https://doi.org/10.1063/1.3204481
https://doi.org/10.1140/epjb/e2007-00254-8
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.086901
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.086901
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.086901
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.086901
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.086901
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.086901
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.086901
https://doi.org/10.1364/AO.24.004493
https://doi.org/10.1016/j.ijheatmasstransfer.2005.09.037
https://doi.org/10.1063/1.2829999
https://doi.org/10.1063/1.2829999
https://doi.org/10.1115/1.4001126
https://doi.org/10.1115/1.4001126
https://doi.org/10.1364/OME.7.003731
https://doi.org/10.1364/OME.7.003731
https://doi.org/10.1002/adom.202202712
https://doi.org/10.1002/adom.202202712
https://doi.org/10.1021/nl504332t
https://doi.org/10.1021/nl504332t
https://doi.org/10.1063/1.4804631


1 
 

Supplemental Material  

 

Nonlocal Near-field Radiative Heat Transfer by Transdimensional Plasmonics 

 

 

Hakan Salihoglu1, Jiawei Shi1, Zhuo Li1, Zexiao Wang1, Xiao Luo1, Igor V. Bondarev2, Svend-Age Biehs3, 

Sheng Shen1,* 

 

1 Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, 

USA 

2 Mathematics & Physics Department, North Carolina Central University, Durham, North Carolina 27707, 

USA 

3 Institut für Physik, Carl von Ossietzky Universität, 26111, Oldenburg, Germany 

 

 

  



2 
 

1. Dielectric properties of TDPM based on local and nonlocal approaches 

To compute near-field thermal radiation based on the local response, we use the well-known Drude 

model for dielectric properties of the TDPM film, given by 

 𝜀(𝜔) = 1 −
𝜔𝑝,𝐵𝑢𝑙𝑘

2

𝜔(𝜔+𝑖𝛾)
. 

(S1) 

Here, 𝜔 is frequency, 𝛾 = 1.05 × 1014 rad.s-1 is damping coefficient, 𝜔𝑝,𝐵𝑢𝑙𝑘 = 7.812 × 1015 rad.s-1 is 

plasma frequency of bulk material. [1] 

To compute near-field thermal radiation based on the nonlocal response, we use the nonlocal Drude 

dielectric response for TDPMs as given by [2,3]   

 𝜀(𝜅,𝜔)

𝜀𝑏
= 1 −

𝜔𝑝
2 (𝜅)

𝜔(𝜔+𝑖𝛾)
, 

(S2) 

where 𝜔𝑝 is thickness dependent plasma frequency, 𝛾 is damping coefficient as given for bulk material 

and 𝜀𝑏 = 35 is background dielectric response of TDPM film.  For our computations, we use the thickness 

dependent plasma frequency given by 

 𝜔𝑝(𝑘) =
𝜔𝑝,𝐵𝑢𝑙𝑘

√1+(𝜀1+𝜀2)/𝜀𝑏𝜅𝑡
. 

 (S3) 

Here, 𝜔𝑝,𝐵𝑢𝑙𝑘 is plasma frequency of bulk material as given above. 𝜀1 = 1 and 𝜀2 are dielectric 

permittivity of vacuum and silicon substrate (super and substrates of the TDPM film), respectively.  

 

2. Dielectric properties of silica and p-doped silicon  

We report dielectric properties of silica and doped silicon. 

To express dielectric properties of silica, we use the values reported in Ref  [4]. 

Dielectric properties of silicon are given by the following expression, 

 𝜖𝑆𝑖(𝜔) = 𝜖𝑏𝑙 −
𝑁𝑒𝑒2/(𝜖𝑜𝑚𝑒

∗ ) 

𝜔2+𝑖𝜔/𝜏𝑒
−

𝑁ℎ𝑒2/(𝜖𝑜𝑚ℎ
∗ )

𝜔2+𝑖𝜔/𝜏ℎ
’ 

(S4) 

where 𝜔 is radial frequency,  𝜖𝑏𝑙 is dielectric function of intrinsic silicon, 𝑁𝑥  is carrier concentration of 

electrons, (𝑥 = 𝑒), and holes, (𝑥 = ℎ), 𝑚𝑖
∗ is effective mass, and 𝜏𝑖 is scattering time, 𝜖𝑜 is vacuum 

permittivity , e is elementary charge. 𝜖𝑏𝑙 is given by (𝑛𝑏𝑙 − 𝑖𝜅𝑏𝑙)2 where 𝑛𝑏𝑙 stands for refractive index, 

𝜅𝑏𝑙 denotes the extinction coefficient of intrinsic silicon, and 𝑖 is unit imaginary number. For the frequency 

range of interest, 𝑛𝑏𝑙~3.42, [4] and 𝜅𝑏𝑙 is taken from Ref  [4]. For silicon used in our experiment, 𝑁ℎ =

3.09 × 1019 cm-3, and 𝑁𝑒  is found using 𝑁𝑡ℎ
2 /𝑁ℎ  where 𝑁𝑡ℎ

2 = 𝑁𝐶𝑁𝑉 exp(−𝐸𝑔/𝑘𝐵𝑇). 𝑁𝐶(= 2.86 × 1019 

cm-3 at 300 K) and 𝑁𝑉(= 2.66 × 1019 cm-3 at 300 K) are the effective densities of states in conduction and 

valence bands, respectively. [5] Here, 𝐸𝑔 is band gap energy and depends on temperature, 𝑇,  with 𝐸𝑔 =

1.17 − 0.000437𝑇2/(𝑇 + 636).  𝑚𝑒
∗ = 0.27𝑚𝑜 and 𝑚ℎ

∗ = 0.37𝑚𝑜 where 𝑚𝑜 is free electron mass. 𝜏𝑒,ℎ 

is found from 𝜏𝑒,ℎ = 𝑚𝑒,ℎ
∗ 𝜇/𝑒 where mobility, 𝜇, is determined using Hall effect measurements as 

reported in Ref  [6]. 
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3. Imaginary components of dielectric responses based on the local and nonlocal models 

In the main text, we report the real component of dielectric responses. Here, results for the imaginary 

components of the corresponding conditions are given.  

 

FIG. S1. Imaginary component of dielectric responses based on the local and nonlocal approaches. Local 
(a) response is for bulk material and nonlocal (b)-(c) response is for t=2 and 10 nm. Red dashed lines 
represent light line, 𝜅 = 𝑘𝑜. 

 

4. Fresnel reflection coefficients 

Here, we report equations of Fresnel reflection coefficients and demonstrate Fresnel reflection 

coefficients of an assembled multilayer structure consisting of p-doped silicon with an atomically thin Pt 

layer for various thicknesses based on the local and nonlocal models. 

To demonstrate reflection coefficients of each interface in an assembled structure, i.e. p-doped silicon 

and thin Pt layer, we refer to Fig. S2.  

 

FIG. S2. Illustration of the assembly and Fresnel reflection coefficients at interfaces. The assembly consists 
of a plane substrate, s, a thin layer of metal, b, and vacuum, v. Thickness of the thin layer is denoted by t. 
rmn represents the Fresnel reflection coefficient for the left-going waves from an interface sandwiched 
between media, m and n.  

To calculate the Fresnel reflection coefficient of a multilayer(assembled) planar structure i (=1,2), we 

compute  

(a) (b) (c) 
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 𝑟𝑖 =
𝑟𝑣𝑏 + 𝑟𝑏𝑠𝑒𝑖2𝑘𝑧,𝑏𝑡

1 + 𝑟𝑣𝑏𝑟𝑏𝑠𝑒𝑖2𝑘𝑧,𝑏𝑡
 

(S5) 

where 𝑟𝑚𝑛  stands for the Fresnel reflection coefficient at an interface sandwiched between materials, m 

and n, for the left-going waves. We note that Eq. S5 reduces to the single interface reflection when t=0. 

Eq. S5 is calculated for both s- and p-polarized waves. 𝑟𝑚𝑛,𝑠 and 𝑟𝑚𝑛,𝑝, where s and p represent 

polarizations, are given as 

 𝑟𝑚𝑛,𝑠 =
𝑘𝑧,𝑚 − 𝑘𝑧,𝑛

𝑘𝑧,𝑚 + 𝑘𝑧,𝑛
 

(S6) 

 

 𝑟𝑚𝑛,𝑝 =
𝜀𝑛𝑘𝑚 − 𝜀𝑚𝑘𝑛

𝜀𝑛𝑘𝑚 + 𝜀𝑚𝑘𝑛
 

(S7) 

where m,n = b,s,v. Here,  𝑘𝑚 = √𝜀𝑚
𝜔2

𝑐2 − 𝜅2 is dispersion relation of waves in material m. 𝜀𝑚 denotes 

complex dielectric function of material m (v = 1 for vacuum).  

To better understand the observed trends in transmission probabilities as discussed in the main text, we 

plot Fresnel reflection coefficients using Eq. S5 for bare p-doped silicon and p-doped silicon with a thin Pt 

layer of 2 and 10 nm for p-polarized propagating and evanescent waves in Figs. S3 and S4, respectively. 

 

 

FIG. S3. Absolute value of Fresnel reflection coefficients from the p-doped silicon substrate for p-polarized 
propagating waves. (a) |𝑟2| for bare silicon. (b)-(e) Top (b)-(c) and bottom (d)-(e) panels show |𝑟2| of 2 and 
10-nm thick Pt TPM based on local and nonlocal models, respectively. 

(a) (b) (c) 

(d) (e) 
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FIG. S4. Imaginary component of Fresnel reflection coefficients from the p-doped silicon substrate for p-
polarized evanescent waves. (a) 𝐼𝑚(𝑟2) for bare silicon. (b)-(e) Top (b)-(c) and bottom (d)-(e) panels show 
𝐼𝑚(𝑟2) of 2 and 10-nm thick Pt TPM based on local and nonlocal models, respectively. 

For the completeness and the interpretation of s-polarized transmission probability given in the next 
section, we also include reflection coefficient results of the p-doped substrate with a thin Pt layer for s-
polarized waves.  

 

FIG. S5. Absolute value of Fresnel reflection coefficients from the p-doped silicon substrate for s-polarized 
propagating waves. (a) |𝑟2| bare silicon. (b)-(e) Top (b)-(c) and bottom (d)-(e) panels show |𝑟2| of 2 and 
10-nm thick Pt TPM based on the local and nonlocal models, respectively. 

(a) (b) (c) 

(d) (e) 

(a) (b) (c) 

(d) (e) 
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FIG. S6. Imaginary component of Fresnel reflection coefficients from the p-doped silicon substrate for s-
polarized evanescent waves. (a) 𝐼𝑚(𝑟2) bare silicon. (b)-(e) Top (b)-(c) and bottom (d)-(e) panels show 
𝐼𝑚(𝑟2) of 2 and 10-nm thick Pt TPM based on the local and nonlocal models, respectively. 

 

5. Transmission coefficients  

To compute the heat flux between structures 𝑖 (= 1 for semi-infinite silica plate, and = 2 for multilayer 

planar system, semi-infinite silicon substrate with an atomically thin metal film), we need to find 

transmission probability, 𝒯(𝜔, 𝜅) , in Eq. (1) and reflection coefficients, 𝑟1 and 𝑟2, in equation (2) in the 

main text.  

Transmission probability for evanescent waves (𝜅 > 𝑘𝑜) is already given in Eq. (2) in the main text. For 

propagating waves (𝜅 < 𝑘𝑜), 𝒯(𝜔, 𝜅)  takes the following form: 

 𝒯(𝜔, 𝜅)  =
(1−|𝑟1|2)(1−|𝑟2|2)

|1−𝑟1𝑟2𝑒2𝑖𝑘𝑧𝑑|
2 , 

(S8) 

(1 − |𝑟𝑖|2) represents absorption (emission based on Kirchoff’s law) by planar structure 𝑖.  Explicit forms 

of the reflection coefficients are given in Section 4 of Supplemental Material. For the sake of clarity, we 

omit polarization dependence of 𝒯(𝜔, 𝜅)  in the main text. 

For the completeness, in addition to transmission probabilities of p-polarized waves given in the main 

text, we, here, report the probabilities of s-polarized waves for the corresponding conditions. 

 

(a) (b) (c) 

(d) (e) 
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FIG. S7. Transmission probability of s-polarized waves. (a) Transmission probability across a 100-nm 
separation between silica and bare p-doped silicon. (b)-(c) Silica and p-doped silicon with a thin Pt layer 
of t=2 (b) and 10 (c) nm modelled with local responses. (d)-(e) Silica and p-doped silicon with a thin Pt 
layer of t=2 (d) and 10 (e) nm modelled with nonlocal responses. 

 

6. Sample preparation 

Commercially available boron doped silicon wafer with a hole concentration of ~3.1 × 1019 cm-3 was 

coated with a thin film of Pt using the sputtering technique. By controlling the plasma power, the 

deposition rate can be tuned as low as ~1 Å.s-1. Before sputtering, buffered oxide etching was applied to 

remove the ~1 nm thick oxide layer. The film thicknesses were confirmed and measured using thin-film 

X-ray reflection (XRR) measurement technique. [7] 

 

7. Topography obtained with Atomic Force Microscopy (AFM) 

Here, we report topography measurements over 1 × 1-μm2 areas used to determine the roughness of the 

bare silicon and the thin film surfaces used in the experiments. Figure S8 demonstrates results of 2D height 

profiles of (a) bare silicon substrate, silicon substrate with (a) ~2-, (b) ~5- and (c) ~100-nm thick Pt layers. 

The measured RMS values for bare, ~2-and ~5-nm thick layers are 0.1, 0.2 and 0.4 nm, respectively. Also, 

peak-to-peak roughness of the surfaces is negligibly small compared to the separation gaps measured.  

These results show that the film roughness is negligibly small as compared to the measured separation 

gaps. In addition, we performed an analysis for sensitivity of the theoretical heat conductance to thickness 

(a) (b) (c) 

(d) e) 
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variations by considering the RMS values of the roughness, as shown in Section 10 of the Supplemental 

Material.  

 

FIG. S8. Topography measurement results obtained with AFM.  Roughness of center areas of surfaces for 
p-doped silicon without a coating (a), with a Pt layer coating of 2- (b), 5- (c) and 100- (d) nm thickness over 

1 x 1 m2.  

 

8. Derjaguin Approximation 

To compute the near-field conductance between a sphere with radius R (50 m in our study) and the 

multilayer plate system (substrate and TDPM), we exploit the Derjaguin approximation using the solutions 

to two parallel plates.  Based on the approximation, the sphere is discretized into finite plane surfaces 

positioned at (𝑑,r) on the sphere surface where 𝑑 is the distance between an individual finite surface and 

the multilayer plate system, and r is the lateral distance from the vertical axis through the center of the 

sphere. Accordingly, the near-field conductance, GNF, for the sphere-plate configuration reads 

 𝐺𝑁𝐹(𝑇, 𝑑) = ∫ ℎ (𝑇, 𝑑(𝑟)) 2𝜋𝑟 𝑑𝑟
𝑅

0
= ∫ ℎ(𝑇, 𝑑 + 𝑅 − √𝑅2 − 𝑟2)

𝑅

0
2𝜋𝑟 𝑑𝑟, 

(S12) 

where d is the smallest separation gap between the sphere and the multilayer plate system. h is the heat 

transfer coefficient for two parallel plates with a separation gap of 𝑑. h is calculated by ℎ~𝑞(𝑑)/∆𝑇 using 
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Eq. (1) and plotted for two parallel plates in Fig. 3. In all calculations, the temperature is assumed to be 𝑇 

~300 K. 

 

9. Comparison of experimental heat conductance results with local theoretical predictions 

In the main text, we compare experimental results with nonlocal theoretical predictions. Here, we also 

present the comparison with local theoretical predictions.  

Figures S9a and S9b show the comparison of experimental results with the nonlocal and local predictions, 

respectively. Figure S9a is the same as Fig. 4c and included for direct comparison to Fig. S9b. Figure S9b 

demonstrates that local theoretical predictions underestimate the experimental results for 2- and 5-nm 

thick Pt layers.  

           

FIG. S9. Comparison of experimental results to theoretical predictions based on the local and nonlocal 
models. (a) Comparison of experimental results to nonlocal theoretical predictions. (b) Comparison of 
experimental results to local theoretical predictions. In (a) and (b), red, purple, light green, and cyan curves 
represent the results for silicion without a coating and with 2-, 5- and 100-nm coatings, respectively. 

 

10. Thickness sensitivity of the local and nonlocal near-field heat conductances 

We conducted sensitivity analysis to see the thickness dependence of our computations for the near-field 

heat conductance. The analysis is conducted only for ~2-nm and ~5-nm cases.  For both cases, the RMS-

roughness values reported in Section 7 of Supplemental Material are less than 0.5 nm. For the 

computations, we shifted thickness by ±0.5 nm from the measured thickness values using the XRR 

technique. Figures S10a and S10b show the sensitivity of the local and nonlocal models to thickness 

variation for ~2-nm and ~5-nm cases, respectively. Shaded areas in both figures represent the sensitivity 

regions of the corresponding predictions. We also included experimental results to clearly show the 

sensitivity region of the local model mismatches with the experimental results. At no separation gaps 

considered, the local and nonlocal estimations within the thickness variations overlap or cross. 

(a) (b) 
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Additionally, the sensitivity of our predictions remains significantly less than error bars of the 

experimental results over majority of the separation gaps.   

 

            

FIG. S10. Thickness sensitivity of the local and nonlocal near-field heat conductances. Comparison of the 
local and nonlocal predictions for the ~2-nm film (a) and for the ~5-nm film (b). The theoretical values for 
the 2-nm and 5-nm films. Shaded areas in both figures represent the sensitivity regions of the 
corresponding predictions by a ±0.5-nm thickness variation. Experimental results are included for 
comparison. 

 

11. Conversion of deflection data to conductance 

In our experiment, deflection signals from the detectors are converted to near-field thermal conductance. 

This method relies on the beam approximation of cantilevers. Details of the beam theory are given in 

Section 12 of Supplemental Material. To find experimental near-field conductance, 𝐺𝑁𝐹, reported in Fig. 

4c, the temperature difference between the sphere and the substrate is needed. We assume that the 

substrate temperature is same with the base temperature, and the absorbed power, 𝑃, generates 

temperature difference, ∆𝑇, between the sphere and the base via 𝑃 = 𝐴𝑃𝑖𝑛 = 𝐺𝑐𝑎𝑛∆𝑇. Since 𝐺𝑁𝐹 =
∆𝑃𝑁𝐹

∆𝑇
 

and ∆𝑃𝑁𝐹 = −𝑅𝑝−𝑥∆𝑧,   the measured 𝐺𝑁𝐹 is  
𝐺𝑐𝑎𝑛𝑅𝑝−𝑥∆𝑧

𝐴𝑃𝑖𝑛
. Here, 𝑅𝑝−𝑥 and 𝐺𝑐𝑎𝑛 are found with calibration 

in the far-field as explained in Section 12 of Supplemental Material. ∆𝑧 is proportional to the experimental 

deflection signal, 𝑃𝑖𝑛 is laser power incident to the cantilever and A is absorptivity of the layer on the side 

of the cantilever facing to the laser. Note that the laser focal size is ~30 m and the beam length, thickness 

and width are 200, 0.5 and 40 m, respectively. 

 

 

 

 

(a) (b) 
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12. Beam Theory 

Here, we explain details of the beam theory. 

Any axial temperature gradient in the bi-material cantilever results in temperature induced deflection. 

Based on beam theory, the relation between the cantilever deflection and the temperature distribution 

is governed by [8]  

 𝑑2𝑧

𝑑𝑥2 = 6(𝛼𝑎 − 𝛼𝑏)
𝑡𝑎+𝑡𝑏

𝑡𝑎𝑡𝑏𝐾
(𝑇(𝑥) − 𝑇𝑜). 

(S10) 

Here, 𝑧(𝑥) denotes the deflection at the location 𝑥 of the cantilever, where 𝑥 measures the distance from 

the tip of the cantilever. 𝛼𝑖 stands for thermal expansion coefficient of material 𝑖 constituting the 

cantilever, and 𝑡𝑖 is thickness of the corresponding material. 𝑇𝑜 is neutral temperature of the cantilever 

and 𝑇(𝑥) is temperature along the cantilever. 𝐾 is a constant depending on the bi-material of the 

cantilever and calculation of the constant is given in Ref [9]. To solve the beam equation for 𝑧(𝑥), the used 

boundary conditions at the base of the cantilever: 𝑧|𝑥=𝑙 = 0, and 
𝑑𝑧

𝑑𝑥
|𝑥=𝑙 = 0, with 𝑙 representing the 

length of the cantilever. The temperature profile in steady state for an input power, P, is found by solving 

a 1D steady state heat conduction equation as 

 𝑇(𝑥) − 𝑇𝑜 = (1 −
𝑥

𝑙
)

𝑃

𝐺𝑐𝑎𝑛
, 

(S11) 

where Gcan stands for thermal conductance of the cantilever. P is idealized to be a point source located at 

𝑥 =  0. Then, with the temperature profile, we can get the boundary condition of the cantilever 

deflection with respect to position at the tip as 

 𝑑𝑧

𝑑𝑥
|𝑥=0 = 𝜑 = −

3𝑙𝑃𝐻

𝐺𝑐𝑎𝑛
, 

(S12) 

 where H is a constant determined by cantilever properties and given as (𝛼𝑎 − 𝛼𝑏)(𝑡𝑎 + 𝑡𝑏)/𝑡𝑎𝑡𝑏𝐾. [9] 

Using this equation and following the derivation in Ref  [9], we find a relation  

 𝛿𝜑/𝛿𝑇𝑜

𝛿𝜑/𝛿𝑃
=

𝜑𝑇𝑜

𝜑𝑃
= 2𝐺𝑐𝑎𝑛. 

(S13) 

𝜑 is the slope of the cantilever deflection, 𝑑𝑧/𝑑𝑥, the quantity measured in conventional AFM 

experiment. 𝜑𝑇𝑜
 is found by measuring the base temperature with a K-type thermocouple at the closest 

location to the base after varying 𝑇𝑜 using an external heater. 𝜑𝑃 is found by measuring the change in 

deflection signal with respect to power input. With this procedure, 𝐺𝑐𝑎𝑛 is calibrated as ~0.0234 mW.K-1. 

The absorbed portion of the incident laser power is 𝑃, and 𝑃 =  𝑃𝑐𝑎𝑛  + 𝑃𝑁𝐹. In near-field regime, any 

change in the separation gap induces changes in  𝑃𝑁𝐹, ∆𝑃𝑁𝐹. Since P is constant for the near-field 

conductance measurement, ∆𝑃𝑁𝐹 = −∆𝑃𝑐𝑎𝑛. Here, ∆𝑃𝑐𝑎𝑛 is linearly dependent to the signal, ∆𝑧, 

measured by the position sensing detector (PSD) through ∆𝑃𝑐𝑎𝑛 = 𝑅𝑝−𝑥∆𝑧. To find 𝑅𝑝−𝑥, a calibration 

process is performed in the far-field. For the calibration, we vary incident laser power 𝑃𝑖𝑛, ∆𝑃𝑖𝑛, and 

measure ∆𝑃𝑟𝑒𝑓. Then,  ∆𝑃𝑐𝑎𝑛 is derived as ∆𝑃𝑐𝑎𝑛 = ∆𝑃 = 𝐴∆𝑃𝑖𝑛 =
𝐴

1−𝐴
∆𝑃𝑟𝑒𝑓. Here, A represents 

absorptivity of top layer of the cantilever at the wavelength of incident laser light, which is 0.21 for gold 
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in our case. By equaling 𝑅𝑝−𝑥∆𝑧 =
𝐴

1−𝐴
∆𝑃𝑟𝑒𝑓, we find 𝑅𝑝−𝑥 =

𝐴

1−𝐴

∆𝑃𝑟𝑒𝑓

∆𝑧
. As a result of the calibration at 

the far-field, we found 𝑅𝑝−𝑥 as 0.0507. Then, for the near-field thermal conductance measurement, 𝐺𝑁𝐹, 

we can write ∆𝑃𝑁𝐹 = −𝑅𝑝−𝑥∆𝑧. 𝐺𝑁𝐹 is related with ∆𝑃𝑁𝐹 via  𝐺𝑁𝐹 = ∆𝑃𝑁𝐹/∆𝑇. Therefore, to find the 

measured near-field thermal conductance from the measured signal, ∆𝑧, we use the relation, 𝐺𝑁𝐹 =
𝐺𝑐𝑎𝑛𝑅𝑝−𝑥∆𝑧

𝐴𝑃𝑖𝑛
.  

 

References: 

[1] M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, Optical Properties of 
Fourteen Metals in the Infrared and Far Infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, 
and W, Appl. Opt. 24, 4493 (1985). 

[2] I. V. Bondarev and V. M. Shalaev, Universal Features of the Optical Properties of Ultrathin 
Plasmonic Films, Opt. Mater. Express 7, 3731 (2017). 

[3] D. Shah, M. Yang, Z. Kudyshev, X. Xu, V. M. Shalaev, I. V. Bondarev, and A. Boltasseva, Thickness-
Dependent Drude Plasma Frequency in Transdimensional Plasmonic TiN, Nano Lett. 22, 4622 
(2022). 

[4] E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998). 

[5] C. J. Fu, Z. M. Zhang, and G. W. Woodruff, Nanoscale Radiation Heat Transfer for Silicon at 
Different Doping Levels, (2005). 

[6] J. Shi, P. Li, B. Liu, and S. Shen, Tuning near Field Radiation by Doped Silicon, Appl. Phys. Lett. 102, 
(2013). 

[7] M. Yasaka, X-Ray Thin-Film Measurement Techniques V. X-Ray Reflectivity Measurement, Rigaku 
J. 26, (2010). 

[8] S. Shen, A. Narayanaswamy, S. Goh, and G. Chen, Thermal Conductance of Bimaterial 
Microcantilevers, Appl. Phys. Lett. 92, (2008). 

[9] A. Narayanaswamy and N. Gu, Heat Transfer from Freely Suspended Bimaterial Microcantilevers, 
J. Heat Transfer 133, 1 (2011). 

 


