
Algorithmica (2022) 84:482–509
https://doi.org/10.1007/s00453-021-00909-5

On the Parameterized Complexity of Reconfiguration of
Connected Dominating Sets

Daniel Lokshtanov1 · Amer E. Mouawad2 · Fahad Panolan3 ·
Sebastian Siebertz4

Received: 28 September 2020 / Accepted: 29 November 2021 / Published online: 14 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
In a reconfiguration version of a decision problemQ the input is an instance ofQ and
two feasible solutions S and T . The objective is to determine whether there exists a
step-by-step transformation between S and T such that all intermediate steps also con-
stitute feasible solutions. In this work, we study the parameterized complexity of the
Connected Dominating Set Reconfiguration problem (CDS- R). It was shown
in previous work that the Dominating Set Reconfiguration problem (DS- R)
parameterized by k, the maximum allowed size of a dominating set in a reconfigura-
tion sequence, is fixed-parameter tractable on all graphs that exclude a biclique Kd,d

as a subgraph, for some constant d ≥ 1. We show that the additional connectivity
constraint makes the problem much harder, namely, that CDS- R isW[1]-hard param-
eterized by k+�, the maximum allowed size of a dominating set plus the length of the
reconfiguration sequence, already on 5-degenerate graphs. On the positive side, we

A preliminary version of this paper was accepted for publication at the 15th International Symposium on
Parameterized and Exact Computation, IPEC 2020, December 14–18, 2020, Hong Kong, China. The
second author is supported by URB project “A theory of change through the lens of reconfiguration”.

B Amer E. Mouawad
aa368@aub.edu.lb

Daniel Lokshtanov
daniello@ucsb.edu

Fahad Panolan
fahad@cse.iith.ac.in

Sebastian Siebertz
siebertz@uni-bremen.de

1 University of California Santa Barbara, Santa Barbara, USA

2 Department of Computer Science, American University of Beirut, Beirut, Lebanon

3 Department of Computer Science and Engineering, IIT Hyderabad, Hyderabad, India

4 University of Bremen, Bremen, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-021-00909-5&domain=pdf
http://orcid.org/0000-0003-2481-4968

Algorithmica (2022) 84:482–509 483

show that CDS- R parameterized by k is fixed-parameter tractable, and in fact admits
a polynomial kernel on planar graphs.

Keywords Reconfiguration · Parameterized complexity · Connected dominating set ·
Graph structure theory

1 Introduction

In a decision problemQ, we are usually asked to determine the existence of a feasible
solution for an instance I of Q. In a reconfiguration version of Q, we are instead
given a source feasible solution S and a target feasible solution T and we are asked to
determine whether it is possible to transform S into T by a sequence of step-by-step
transformations such that after each intermediate step we also maintain feasible solu-
tions. Formally, we consider a graph, called the reconfiguration graph, that has one
vertex for each feasible solution and where two vertices are connected by an edge if
we allow the transformation between the two corresponding solutions. We are then
asked to determine whether S and T are connected in the reconfiguration graph, or
even to compute a shortest path between them. Historically, the study of reconfigu-
ration questions predates the field of computer science, as many classic one-player
games can be formulated as such reachability questions [21,23], e.g., the 15-puzzle and
Rubik’s cube. More recently, reconfiguration problems have emerged from computa-
tional problems in different areas such as graph theory [2,19,20], constraint satisfaction
[13,28] and computational geometry [6,22,26], and even quantum complexity theory
[12]. Reconfiguration problems have been receiving considerable attention in recent
literature, we refer the reader to [18,27,31] for an extensive overview.

In this work, we consider the Connected Dominating Set Reconfiguration

problem (CDS- R) in undirected graphs. A dominating set in a graph G is a set D ⊆
V (G) such that every vertex of G lies either in D or is adjacent to a vertex in D. A
dominating set D is a connected dominating set if the graph induced by D is connected.
The Dominating Set problem and its connected variant have many applications,
including the modeling of facility location problems, routing problems, and many
more [1,15,35].

We study CDS- R under the Token Addition/Removal model (TARmodel). Suppose
we are given a connected dominating set D of a graph G, and imagine that a token
is placed on each vertex in D. The TAR rule allows either the addition or removal of
a single token at a time from D, if this results in a connected dominating set of size
at most a given bound k ≥ 1. A sequence D1, . . . , D� of connected dominating sets
of a graph G is called a reconfiguration sequence between D1 and D� under TAR if
the change from Di to Di+1 respects the TAR rule, for 1 ≤ i < �. The length of the
reconfiguration sequence is � − 1.

The (Connected) Dominating Set Reconfiguration problem for TAR gets
as input a graph G, two (connected) dominating sets S and T and an integer k ≥ 1,
and the task is to decide whether there exists a reconfiguration sequence between S
and T under TAR using at most k tokens.

123

484 Algorithmica (2022) 84:482–509

G

G V (G)

V (G)

k + 1
H

Fig. 1 A graph G with a minimum dominating set of size k = 2 marked in dark blue and the graph H
obtained in the standard reduction from Dominating Set to Connected Dominating Set. G has a
dominating set of size k if and only if H has a connected dominating set of size k + 1. If p is equal to the
pathwidth of G then the pathwidth of H is bounded by 2p + 1

Structural properties of the reconfiguration graph for k-dominating setswere studied
in [16,34]. The Dominating Set Reconfiguration problem was shown to be
PSPACE-complete in [17], even on split graphs, bipartite graphs, planar graphs and
graphs of bounded bandwidth. Both the pathwidth and the treewidth of a graph are
bounded by its bandwidth, hence the Dominating Set Reconfiguration problem
is PSPACE-complete on graphs of bounded pathwidth and treewidth. These hardness
results motivated the study of the parameterized complexity of the problem. It was
shown in [29] that the Dominating Set Reconfiguration problem is W[2]-hard
when parameterized by k + �, where k is the bound on the number of tokens and �

is the length of the reconfiguration sequence. However, the problem becomes fixed-
parameter tractable (when parameterized by k) on graphs that exclude a fixed complete
bipartite graph Kd,d as a subgraph, as shown in [25]. Such so-called biclique-free
classes are very general sparse graph classes, including in particular the planar graphs,
which are K3,3-free.

In this work we study the complexity of CDS- R. The standard reduction from
Dominating Set to Connected Dominating Set shows that CDS- R is also
PSPACE-complete, even on graphs of bounded pathwidth (Fig. 1). We hence turn our
attention to the parameterized complexity of the problem.1 We first show that the addi-
tional connectivity constraint makes the problem much harder, namely, that CDS- R
parameterized by k+� isW[1]-hard already on 5-degenerate graphs. As 5-degenerate
graphs exclude the biclique K6,6 as a subgraph,Dominating Set Reconfiguration

is fixed-parameter tractable on much more general graph classes than its connected
variant. To prove hardness we first introduce an auxiliary problem that we believe is of
independent interest. In the Colored Connected Subgraph problem we are given
a graph G, an integer k, and a (not necessarily proper) coloring c : V (G) → C , for
some color set C with |C | ≤ k. The question is whether G contains a vertex subset H
on at most k vertices such thatG[H] is connected and H contains at least one vertex of
every color inC (i.e., c(H) = C). The reconfiguration variant Colored Connected

Subgraph Reconfiguration (CCS- R) is defined as expected. We first prove that
CCS- R reduces to CDS- R by a parameter preserving reduction (where k + � is the
parameter) and the degeneracy of the reduced to graph is at most the degeneracy of
the input graph plus one. We then prove that the known W[1]-hard problem Multi-

colored Clique (see [4] for definitions) reduces to CCS- R on 4-degenerate graphs.
The last reduction has the additional property that for an input (G, c, k) of Multi-

1 We note that the problem is easily shown to be slicewise polynomial parameterized for parameter k + �

as one can guess each set in the reconfiguration sequence.

123

Algorithmica (2022) 84:482–509 485

colored Clique the resulting instance of CCS- R admits either a reconfiguration
sequence of lengthO(k3), or no reconfiguration sequence at all. Hence, we derive that
both CDS- R and CCS- R areW[1]-hard parameterized by k + � on 5-degenerate and
4-degenerate graphs, respectively.

The existence of a reconfiguration sequence of length at most � with connected
dominating sets of size at most k can be expressed by a first-order formula of length
depending only on k and �. It follows from [14] that the problem is fixed-parameter
tractable parameterized by k + � on every nowhere dense graph class and the same is
implied by [3] for every class of bounded cliquewidth.Nowhere dense graph classes are
very general classes of uniformly sparse graphs, in particular the class of planar graphs
is nowhere dense. Nowhere dense classes are themselves biclique-free, but are not nec-
essarily degenerate. Hence, our hardness result on degenerate graphs essentially settles
the question of fixed-parameter tractability for the parameter k + � on sparse graph
classes. It remains an interesting open problem to find dense graph classes beyond
classes of bounded cliquewidth on which the problem is fixed-parameter tractable.

We then turn our attention to the smaller parameter k alone. We show that CDS- R
parameterized by k is fixed-parameter tractable on the class of planar graphs. Our
approach is as follows. We first compute a small domination core for G, a set of
vertices that captures exactly the domination properties of G for dominating sets of
sizes not larger than k. The notion of a domination core was introduced in the study
of the Distance- r Dominating Set problem on nowhere dense graph classes [5].
While the classification of interactions with the domination core would suffice to solve
Dominating Set Reconfiguration on nowhere dense classes, additional difficul-
ties arise for the connected variant. In a second step we use planarity to identify large
subgraphs that have very simple interactions with the domination core and prove that
they can be replaced by constant size gadgets such that the reconfiguration properties
of G are preserved.

Observe that CDS- R parameterized by k is trivially fixed-parameter tractable on
every class of bounded degree. The existence of a connected dominating set of size k
implies that the diameter of G is bounded by k + 2, which in every bounded degree
class implies a bound on the size of the graph depending only on the degree and k.
We conjecture that CDS- R is fixed-parameter tractable parameterized by k on every
nowhere dense graph class. However, resolving this conjecture remains open for future
work (see Fig. 2).

The rest of the paper is organized as follows. We give background on graph theory
and fix our notation in Sect. 2. We show hardness of CDS- R on degenerate graphs in
Sect. 3 and show how to handle the planar case in Sect. 4.

2 Preliminaries

We denote the set of natural numbers by N. For n ∈ N, we let [n] = {1, 2, . . . , n}. We
assume that each graph G is finite, simple, and undirected. We let V (G) and E(G)

denote the vertex set and edge set of G, respectively. An edge between two vertices
u and v in a graph is denoted by {u, v} or uv. The open neighborhood of a vertex
v is denoted by NG(v) = {u | {u, v} ∈ E(G)} and the closed neighborhood by

123

486 Algorithmica (2022) 84:482–509

FPT with
parameter k +

W[1]-hard with
parameter k +

FPT with
parameter k

nowhere dense

biclique-free

bounded
VC-dimension

bounded degree

excluded
topological

minor

bounded expansion

degenerate

planar

excluded minor

bounded
pathwidth

bounded
treewidth

bounded
cliquewidth

Fig. 2 Themap of tractability for Connected Dominating Set Reconfiguration. The classes colored
in dark green admit an FPT algorithm with parameter k, the classes colored in light green admit an FPT
algorithm with parameter k + �. On the classes colored in red the problem isW[1]-hard with respect to the
parameter k + �

NG [v] = NG(v) ∪ {v}. The degree of a vertex v, denoted by dG(v), is |NG(v)|. For a
set of vertices S ⊆ V (G), we define NG(S) = {v /∈ S | {u, v} ∈ E(G), u ∈ S} and
NG [S] = NG(S)∪S. The subgraph ofG induced by S is denoted byG[S], whereG[S]
has vertex set S and edge set {{u, v} ∈ E(G) | u, v ∈ S}.We letG−S = G[V (G)\S].
A graph G is d-degenerate if every subgraph H ⊆ G has a vertex of degree at most d.
For a set C , we use K [C] to denote the complete graph on vertex set C . For an integer
r ∈ N, an r -independent set in a graph G is a subset U ⊆ V (G) such that for any
two distinct vertices u, v ∈ U , the distance between u and v in G is more than r . An
independent set in a graph is a 1-independent set. A subset of verticesU in G is called
a separator in G if G −U has more than one connected component. For s, t ∈ V (G),
we say U is an (s, t)-separator in G if there is no path from s to t in G −U .

3 Hardness on Degenerate Graphs

In this section we prove that CDS- R and CCS- R are W[1]-hard when parameter-
ized by k + � even on 5-degenerate and 4-degenerate graphs, respectively. Towards
that, we first give a polynomial-time reduction from the W[1]-hard Multicolored

Clique problem to CCS- R on 4-degenerate graphs with the property that for an input
(G, c, k) of Multicolored Clique the resulting instance of CCS- R admits either
a reconfiguration sequence of length O(k3) or no reconfiguration sequence at all. As
a result, we conclude that CCS- R is W[1]-hard when parameterized by k + � on 4-
degenerate graphs. Then, we give a parameter-preserving polynomial-time reduction
from CCS- R to CDS- R.

Let us first formally define the CCS and CCS- R problems.

123

Algorithmica (2022) 84:482–509 487

Colored Connected Subgraph (CCS) Parameter: k
Input: A graph G, a vertex-coloring c : V (G) → C , and k ∈ N such that |C | ≤ k
Question: Is there a vertex subset S ⊆ V (G) of at most k vertices with at least
one vertex from every color class such that G[S] is connected?

Colored Connected Subgraph Reconf (CCS- R) Parameter: k
Input: A graph G, a vertex-coloring c : V (G) → C , two sets Qs, Qt ⊆ V (G),
and k ∈ N such that |C |, |Qs |, |Qt | ≤ k, c(Qs) = c(Qt) = C , and G[Qs],G[Qt]
are connected
Question: Is there a reconfiguration sequence from Qs to Qt?

3.1 Reduction fromMulticolored Clique to CCS-R

We now present the reduction from Multicolored Clique to CCS- R, which we
believe to be of independent interest. We can assume, without loss of generality, that
for an input (G, c, k) of Multicolored Clique, G is connected and c is a proper
vertex-coloring, i.e., for any two distinct vertices u, v ∈ V (G) with c(u) = c(v) we
have {u, v} /∈ E(G). Before we proceed let us define a graph operation.

Definition 1 Let G be a graph and let c : V (G) → {1, . . . , k} be a proper vertex
coloring of V (G). Let H be a graph on the vertex set {1, . . . , k}. We define the
graph G �c H as follows. We remove all edges {u, v} ∈ E(G) such that c(u) = i
and c(v) = j and {i, j} /∈ E(H). We subdivide every remaining edge, i.e., for every
remaining edge {u, v} we introduce a new vertex suv , remove the edge {u, v} and
introduce instead the two edges {u, suv} and {v, suv}. We writeW (G �c H) for the set
of all subdivision vertices suv (see Fig. 3).

That is, to construct G �c H , we first make a subgraph of G by deleting the edges
between different color classes if there are no edges between the “corresponding”
vertices in H , and then subdivide the remaining edges. Let (G, c, k) be the input
instance ofMulticolored Clique, whereG is a connected graph and c is a proper k-
vertex-coloring of G. We construct an instance (H , ĉ : V (H) �→ [k + 1], Qs, Qt , 2k)
of CCS- R (Qs and Qt are the source and target sets that we describe later). Note that
the bound on the sizes of the solutions in the reconfiguration sequence is at most 2k.

We first construct a routing gadget. For 1 ≤ i ≤ k, let T i be the star with vertex
set {1, . . . , k} having vertex i as the center. For any 1 ≤ i ≤ k and 1 ≤ r ≤ 20k,
we let H (i,r) be a copy of the graph G �c T i . We let c(i,r) be the the partial vertex-
coloring of H (i,r) that is naturally inherited from G. For an illustration, consider the
input instance (G, c, k) of Multicolored Clique depicted in Fig. 3a. Then, T 2

is identical to the graph H in Fig. 3b and c represents H (2,r) = G �c T 2, for any
1 ≤ r ≤ 20k. Now, for 1 ≤ i ≤ k we define a graph Hi as follows. We useW (H (i,r))

to denote the set of subdivision vertices in H (i,r). For 1 ≤ r < 20k and all vertices
u, v in V (H (i,r))\W (H (i,r)), we connect the copy of the subdivision vertex suv in
H (i,r) (if it exists) with the copies of the vertices u and v in H (i,r+1) (see Fig. 4 for
an illustration of a portion of H1 and Fig. 5 for an illustration of a portion of H2). We
use W (Hi) to denote the set of subdivision vertices

⋃

r∈[20k] W (H (i,r)).

123

488 Algorithmica (2022) 84:482–509

• •u •

•v •

•

• •

1

2

3

4

G and a
proper coloring c : V (G) →
{1, . . . , 4}

•

•

•

•

1

2

3

4

H
on the vertex set
{1, . . . , 4}

• •u •

•v •

•

• •

• • •

•
•

suv = w1 w2 w3

w4

w5

(a) A graph (b) A graph (c) The graph G c H. Here,
we have W (G c H) =
{w1, . . . , w5}

Fig. 3 Construction of G �c H

Fig. 4 Construction of H1 from
the instance (G, c, k) depicted in
Fig. 3a. The red edges are some
of the “crossing” edges but not
all of them

H(1,1) H(1,2) H(1,3)

• • •

• •

•

• •

• • •

• ••

• • •

• •

•

• •

• • •

• • •

• • •

• •

•

• •

• • •

• • •

Fig. 5 Construction of H2 from
the instance (G, c, k) depicted in
Fig. 3a. The red edges are some
of the “crossing” edges but not
all of them

H(2,1) H(2,2) H(2,3)

• • •

• •

•

• •

• • •

•
•

• • •

• •

•

• •

• • •

•
•

• • •

• •

•

• •

• • •

•
•

123

Algorithmica (2022) 84:482–509 489

Fig. 6 Illustration of the
subgraph of R induced on
V (H (2,20k)) ∪ V (H3,1)

constructed from the instance
(G, c, k) depicted in Fig. 3a.
The red edges are some of the
“crossing edges”

H(2,20k) H(3,1)

• • •

• •

•

• •

• • •

•
•

• • •

• •

•

• •

• •

•

For each 1 ≤ i ≤ k, we use ci to denote a coloring on V (Hi) that is the union
of c(i,1), c(i,2), . . . , c(i,20k) and we color all the copies of the subdivision vertices
using a new color k + 1. In other words, we know that for each u ∈ V (Hi) we have
u ∈ V (H (i,r)), for some r ∈ {1, . . . , 20k}. Hence, if u ∈ V (H (i,r))\W (H (i,r)) then
we set ci (u) = c(i,r)(u). For all suv ∈ W (Hi), we set ci (suv) = k + 1.

Now, define a graph R, which is supergraph of H1 ∪ · · · ∪ Hk , as follows. For
1 ≤ i < k and all vertices u and v, we connect the copy of the subdivision vertex suv

in H (i,20k) (if it exists) with the copies of the vertices u and v in H (i+1,1) (see Fig. 6
for an illustration).

We additionally introduce two subgraphs H0 and Hk+1. The graph H0 is obtained
by subdividing each edge of a star on vertex set {v1, . . . , vk} centered at v1. Herewe use
w2, . . . , wk to denote the subdivision vertices. Similarly, the graph Hk+1 is obtained by
subdividing each edge of star on {x1, . . . , xk} centered at xk . Here y1, . . . , yk−1 denote
the subdivision vertices. Let c0 and ck+1 be the colorings on {v1, . . . , vk, w2, . . . , wk}
and {x1, . . . , xk, y1, . . . , yk−1}, respectively, defined as follows. For all 1 ≤ i ≤ k,
c0(vi) = i and ck+1(xi) = i . For all 2 ≤ i ≤ k, c0(wi) = k + 1 and for all 1 ≤ i ≤
k−1, ck+1(yi) = k+1. Observe that we may interpret H0 as K [{v1, . . . , vk}] �c0 T 0

and Hk+1 as K [{x1, . . . , xk}] �ck+1 T k , where T 0 and T k are two stars on vertex set
{1, . . . , k}, with E(T 0) = {{1, i} : 2 ≤ i ≤ k} and E(T k) = {{k, i} : 1 ≤ i ≤ k − 1}
(as previously defined).

Finally, for each 2 ≤ i ≤ k, we connect the “subdivision vertex” wi (adjacent to
v1 and vi) to all vertices v ∈ V (H (1,1)) colored 1 or i , i.e., with c(1,1)(v) ∈ {1, i}.
For each subdivision vertex sab ∈ W (H (k,20k)), we connect sab to xk and xi , where
k = ck(a) = c(k,20k)(a) and i = ck(b) = c(k,20k)(b). Recall that sab is adjacent to a
vertex of color k and a vertex of color i , for some i < k. This completes the construction
of H (see Fig. 7). We define ĉ : V (H) �→ [k + 1] to be the union of c0, . . . , ck+1. We
define the starting configuration Qs as the set {v1, . . . , vk, w2, . . . , wk} and the target
configuration Qt as the set {x1, . . . , xk , y1, . . . , yk−1}.
Proposition 1 The sets Qs and Qt are solutions of size 2k − 1 of the CCS instance
(H , ĉ, 2k).

We now consider the instance (H , ĉ, Qs, Qt , 2k) of the CCS- R problem. Let us
give some high-level intuition about the construction before proceeding to formal
proofs. Assuming that (G, c, k) is a yes-instance of Multicolored Clique, we

123

490 Algorithmica (2022) 84:482–509

•

•

•

•

•

•

•

v1

v2

v3

v4

w2

w3

w4

H(1,1) H(4,20k)

• • •

• •

•

• •

• • •

• ••

• • •

• •

•

• •
•

• • •

•

•

•

•

•

•

•

x1

x2

x3

x4

y1

y2

y3

Fig. 7 Illustration of connections between H0 and R, and Hk+1 and R from the instance (G, c, k) depicted
in Fig. 3a. The red edges are some of the “crossing edges” between H0 and H1, and Hk and Hk+1

show how to construct a reconfiguration sequence from Qs to Qt as follows. Our goal
is to shift the connected vertices of Qs through the subgraphs H1, . . . , Hk (in that
order) while maintaining connectivity and eventually reaching Qt . To do so, we use
the corresponding vertices of the clique in each Hi, j to maintain colorful sets and
we use the vertices corresponding to subdivided edges to maintain connectivity. In
the reverse direction, we shall show that in any reconfiguration sequence, each part
of the constructed graph, i.e., each Hi , will allow us to guarantee that there exists a
vertex colored i that is connected to vertices of every other color (while maintaining
the choice of vertices along the way).

Before we analyze the reconfiguration properties of H , let us first verify that H is
4-degenerate.

Lemma 1 The graph H is 4-degenerate.

Proof We iteratively remove minimum degree vertices and show that we can always
remove a vertex of degree at most 4 in each step.

– Every subdivision vertex w ∈ W (Hi) for 1 ≤ i ≤ k has degree at most 4; it has 4
neighbors in V (Hi) ∪ V (Hi+1).

– After removal of all subdivision vertices the degree of the remaining vertices
of each Hi is at most one. That is, a vertex in H (1,1) may have a neighbor in
{w2, . . . , wk}.

– After the removal of V (H1) ∪ . . . V (Hk), the degree of all vertices except v1 and
xk is at most 2.

– Finally we remove v1 and xk .

This completes the proof. 	

Lemma 2 Let T1, T2 be two trees on vertex set {1, . . . , k} and let f1, . . . fk−1 be
an ordering of the edges in T2. Then, in polynomial time, we can find an ordering
e1, . . . , ek−1 of the edges in T1 such that the following holds. In the sequence of
graphs T ′

0, T
′
1, . . . , T

′
k−1 on vertex set {1, . . . , k}, where for each 0 ≤ i ≤ k − 2,

T ′
i+1 = T ′

i + fi − ei and T ′
0 = T1, we have that T ′

i is a tree, for all i ∈ [k − 1], and
T ′
k−1 = T2.

123

Algorithmica (2022) 84:482–509 491

Proof We proceed by induction on � = |E(T1)\E(T2)|. In the base case, we have
� = 0 and E(T1) = E(T2). In this case f1, . . . fk−1 is also the required ordering of the
edges in T1 (note that the sequence of graphs consists of only T1 = T2 in this case).

Now consider the induction step, � > 1. Let j be the first index in {1, . . . , k − 1}
such that f j /∈ E(T1).We add f j to T1 and this creates a cycle in T1. Hence, there exists
an edge e j ∈ E(T1)\E(T2)whose removal results in a tree. That is, T ′

1 = T1+ f j −e j
is a tree. Notice that |E(T ′

1)\E(T2)| = � − 1. By the induction hypothesis, there
is a sequence g1, . . . , gk−1 of edges in E(T ′

1) such that for the sequence of graphs
T ′
1 = T ′′

0 , T ′′
1 , . . . , T ′′

k−1 on vertex set {1, . . . , k}, we have T ′′
i+1 = T ′′

i + fi − gi , each
T ′′
i is a tree, and T2 = T ′′

k−1, 0 ≤ i < k. Since j is the first index in {1, . . . , k − 1}
such that f j /∈ E(T1), T ′

1 = T1 + f j − e j , and T ′′
0 , T ′′

1 , . . . , T ′′
k−1 are trees, we have

that gi = fi for all i < j . Notice that f j ∈ E(T ′
1) and E(T1) = (E(T ′

1)\{ f j }) ∪ {e j }.
We claim that e1, . . . , e j−1, e j , e j+1, . . . , ek−1, where ei = gi for all i < j ,

is the required sequence of edges in T1. Let T ′
0, T

′
1, . . . , T

′
k−1 be the sequence

where, for each 0 ≤ i ≤ k − 2, T ′
i+1 = T ′

i + fi − ei and T ′
0 = T1. Since

gi = fi = ei for all i < j , we have that T1 = T ′
0 = T ′

1 = · · · = T ′
j−1. Moreover,

T ′
j = T1 + { f1, . . . , f j } − {e1, . . . , e j } = T1 + { f1, . . . , f j } − {g1, . . . , g j } = T ′′

j
because E(T1) = (E(T ′

1)\{ f j }) ∪ {e j } and ei = gi for all i < j . Then, the sequence
T ′
j , . . . , T

′
k−1 is the same as the sequence T ′′

j , . . . , T ′′
k−1. Therefore, the sequence

e1, . . . , e j−1, e j , e j+1, . . . , ek−1 of edges in T1 satisfies the conditions of the lemma.
	

Lemma 3 If there exists a k-colored clique in G then there is reconfiguration sequence
of length O(k3) from Qs to Qt in (H , ĉ, 2k).

Proof We aim to shift the connected vertices of Qs through the subgraphs H1, . . . , Hk

(in that order) tomaintain connectivity and eventually shift to Qt . For each ui ∈ V (G),
1 ≤ j ≤ k and 1 ≤ r ≤ 20k, we use u(j,r)

i to denote the copy of ui in H (j,r).
Let C = {u1, . . . , uk} be a k-colored clique in G such that c(ui) = i , for all

1 ≤ i ≤ k. To prove the lemma, we need to define a reconfiguration sequence starting
from Qs and ending at Qt such that the cardinality of any solution in the sequence
is at most 2k. First we define k “colored” trees ̂T1, . . . , ̂Tk each on 2k − 1 vertices,
and then prove that there are reconfiguration sequences from Qs to V (̂T1), V (̂Ti) to
V (̂Ti+1) for all 1 ≤ i < k, and V (̂Tk) to Qt .

We start by defining ̂T1, . . . , ̂Tk . For each 1 ≤ i ≤ k, Ci = {u(i,1)
1 , . . . , u(i,1)

k }
and Si = {z ∈ V (H (i,1)) : |NH (i,1) (z) ∩ Ci | = 2}. That is, for each 1 ≤ j ≤ k and
j
= i , s

u(i,1)
i u(i,1)

j
∈ Si (the subdivision vertex on the edge u(i,1)

i u(i,1)
j is in Si), and

|Si | = k − 1. In other words, Ci contains the copies of the vertices of the clique C in
H (i,1) and Si contains subdivision vertices corresponding to k − 1 edges in the clique
incident on the i th colored vertex of the clique, such that H [Ci ∪ Si] is a tree. Now,
define ̂Ti = H [Ci ∪ Si]. It is easy to verify that ĉ(Ci ∪ Si) = {1, . . . , k+1} and hence
Ci ∪ Si = V (̂Ti) is a solution to the CCS instance (H , ĉ, 2k). Let Ts = H [Qs] and
Tt = H [Qt]. Note that Ts and Tt are trees on 2k − 1 vertices each.

Case 1 Reconfiguration from Qs to V (̂T1). Informally, we move to ̂T1 by adding
a token on u(1,1)

i and then removing a token from vi for i in the order 2, . . . , k, 1

123

492 Algorithmica (2022) 84:482–509

(for a total of 2k token additions/removals). Finally, we move the tokens from
{w2, . . . , wk−1} to S1 in 2(k − 1) steps. The length of the reconfiguration sequence is
2k + 2(k − 1) = 4k − 2.

Formally, we define Z0 = Qs and for each 1 ≤ j ≤ k−1, Z2 j−1 = Z2 j−2∪{u(1,1)
j+1 }

and Z2 j = Z2 j−1\{v j+1}. That is, for each 1 ≤ j ≤ k − 1,

Z2 j−1 = {u(1,1)
2 , . . . , u(1,1)

j+1 } ∪ {v j+1 . . . , vk, v1} ∪ {w1, . . . , wk−1}, and

Z2 j = {u(1,1)
2 , . . . , u(1,1)

j+1 } ∪ {v j+2 . . . , vk, v1} ∪ {w1, . . . , wk−1}.

Next, we define Z2k−1 and Z2k as

Z2k−1 = {u(1,1)
2 , . . . , u(1,1)

k , u(1,1)
1 } ∪ {v1} ∪ {w1, . . . , wk−1}, and

Z2k = {u(1,1)
2 , . . . , u(1,1)

k , u(1,1)
1 } ∪ {w1, . . . , wk−1}.

In other words, the first five sets in the reconfiguration sequence look as follows:

Z0 = {v2, . . . , vk, v1} ∪ {w1, . . . , wk−1}
Z1 = {u(1,1)

2 } ∪ {v2, . . . , vk, v1} ∪ {w1, . . . , wk−1}
Z2 = {u(1,1)

2 } ∪ {v3, . . . , vk, v1} ∪ {w1, . . . , wk−1}
Z3 = {u(1,1)

2 , u(1,1)
3 } ∪ {v3, . . . , vk, v1} ∪ {w1, . . . , wk−1}

Z4 = {u(1,1)
2 , u(1,1)

3 } ∪ {v4, . . . , vk, v1} ∪ {w1, . . . , wk−1}
Z5 = {u(1,1)

2 , u(1,1)
3 , u(1,1)

4 } ∪ {v4, . . . , vk, v1} ∪ {w1, . . . , wk−1}.

It is easy to verify that Z1, . . . Z2k are solutions to the CCS instance (H , ĉ, 2k).
Thus, we now have a reconfiguration sequence Z0, Z1, . . . , Z2k , where Z0 = Qs .

Next, we explain how to get a reconfiguration sequence from Z2k to V (̂T1). Recall
that Z2k = C1 ∪ {w1, . . . , wk−1} and V (̂T1) = C1 ∪ S1. Let s j = s

u(1,1)
1 u(1,1)

j
, for

all 2 ≤ j ≤ k. Notice that S1 = {s2, . . . , sk}. To obtain a reconfiguration sequence
from Z2k to V (̂T1), we add s j and then remove w j for j in the order 2, . . . , k. Since
w j and s j connect the same two vertices from C1, this reconfiguration sequence will
maintain connectivity. Moreover, it is easy to verify that each set in the reconfiguration
sequence uses all the colors {1, . . . , k + 1}. Therefore, there exists a reconfiguration
sequence of length 4k − 2 from Qs to V (̂T1).

Case 2 Reconfiguration from V (̂T i) to V (̂T i+1). First we define 20k trees
P1, . . . P20k , each on 2k − 1 vertices such that for all 1 ≤ r ≤ 20k, (i) V (Pr) ⊆
V (H (i,r)), and (i i) ̂Ti = P1. Then we give a reconfiguration sequence from V (Pr)
to V (Pr+1) for all r ∈ [20k − 1] and a reconfiguration sequence from V (P20k) to
V (̂Ti+1).

Recall that C = {u1, . . . , uk} is a k-colored clique in G such that c(ui) = i for
all 1 ≤ i ≤ k. For each 1 ≤ r ≤ 20k, let Cr

i = {u(i,r)
1 , . . . , u(i,r)

k } and Sri = {z ∈
V (H (i,r)) : NH (i,r) (z)∩Cr

i = 2}. That is, for each 1 ≤ j ≤ k and j
= i , s
u(i,r)
i u(i,r)

j
∈ Sri

123

Algorithmica (2022) 84:482–509 493

(i.e, the subdivision vertex on the edge u(i,r)
i u(i,r)

j is in Sri) and |Sri | = k − 1. Let
Pr = H [Cr

i ∪ Sri]. Notice that for all r ∈ [20k], Pr is a tree on 2k − 1 vertices.
Moreover, for each 1 ≤ r ≤ 20k, V (Pr) is a solution to the CCS instance (H , ĉ, 2k).

Case 2(a) Reconfiguration from V (Pr) to V (Pr+1). By arguments similar to those
given for Case 1, one can prove that there is a reconfiguration sequence of length
4k − 2 from V (Pr) to V (Pr+1), for all 1 ≤ r < 20k. For completeness we give the
details here. Fix an integer 1 ≤ r < 20k. Let s j = s

ui,ri u(i,r)
j

and s′
j = s

u(i,r+1)
i u(i,r+1)

j

for all j ∈ {1, . . . , k}\{i}. Notice that Sri = {s j : j ∈ {1, . . . , k}\{i}} and Sr+1
i =

{s′
j : j ∈ {1, . . . , k}\{i}}. Now we define Z0 = V (Pr) = Cr

i ∪ Sri and for each

1 ≤ j ≤ i − 1, Z2 j−1 = Z2 j−2 ∪ {u(i,r+1)
j } and Z2 j = Z2 j−1\{u(i,r)

j }. That is, for
each 1 ≤ j ≤ i − 1,

Z2 j−1 = {u(i,r+1)
1 , . . . , u(i,r+1)

j } ∪ {u(i,r)
j . . . , u(i,r)

k } ∪ Sri , and

Z2 j = {u(i,r+1)
1 , . . . , u(i,r+1)

j } ∪ {u(i,r)
j+1 . . . , u(i,r)

k } ∪ Sri .

For each i ≤ j ≤ k − 1, Z2 j−1 = Z2 j−2 ∪ {u(i,r+1)
j+1 } and Z2 j = Z2 j−1\{u(i,r)

j+1 }.
That is, for each i ≤ j ≤ k − 1,

Z2 j−1 = {u(i,r+1)
1 , . . . , u(i,r+1)

i−1 , u(i,r+1)
i+1 , . . . , u(i,r+1)

j+1 }
∪{u(i,r)

j+1 . . . , u(i,r)
k , u(i,r)

i } ∪ Sri

and

Z2 j = {u(i,r+1)
1 , . . . , u(i,r+1)

i−1 , u(i,r+1)
i+1 , . . . , u(i,r+1)

j+1 }
∪{u(i,r)

j+2 . . . , u(i,r)
k , u(i,r)

i } ∪ Sri .

Next, we define Z2k−1 and Z2k as

Z2k−1 = {u(i,r+1)
1 , . . . , u(i,r+1)

k } ∪ {u(i,r)
i } ∪ Sri , and

Z2k = {u(i,r+1)
1 , . . . , u(i,r+1)

k } ∪ Sri .

Next, for each 1 ≤ j ≤ k − 1, let Z2k+2 j−1 = Z2k+2 j−2 ∪ {s′
j } and Z2k+2 j =

Z2k+2 j−1\{s j }. It is easy to verify that Z1, . . . Z4k−2 are solutions to the CCS instance
(H , ĉ, 2k) and Z0, . . . , Z4k−2 is a reconfiguration sequence where Z0 = V (Pr) and
Z4k−2 = V (Pr+1).

Case 2(b) Reconfiguration from V (P20k) to V (̂T i+1). Next, we explain how to get
a reconfiguration sequence from V (P20k) to V (̂Ti+1) using Lemma 2. Recall that we
have

C20k
i = {u(i,20k)

1 , . . . , u(i,20k)
k } and

S20ki = {z ∈ V (H (i,20k)) : |NH (i,20k) (z) ∩ C20k
i | = 2}.

123

494 Algorithmica (2022) 84:482–509

Let Ci+1 = {u(i+1,1
1 , . . . , u(i+1,1)

k } and Si+1 = {z ∈ V (H (i+1,1)) : NH (i+1,1) (z) ∩
Ci+1 = 2}. For ease of presentation, let s j = s

u(i,20k)
i u(i,20k)

j
for all j ∈ {1, . . . , k}\{i}.

Also, let s′
j = s

u(i+1,1)
i u(i+1,1)

j
for all j ∈ {1, . . . , k}\{i + 1}. That is, S20ki = {s j : j ∈

{1, . . . , k}\{i}} and Si+1 = {s′
j : j ∈ {1, . . . , k}\{i + 1}}. Notice that V (P20k) =

C20k
i ∪ S20ki and V (̂Ti+1) = Ci+1 ∪ Si+1.
Towards proving the required reconfiguration sequence, we give a reconfiguration

sequence fromC20k
i ∪S20ki toCi+1∪S20ki and then fromCi+1∪S20ki toCi+1∪Si+1. The

reconfiguration sequence fromC20k
i ∪S20ki toCi+1∪S20ki is similar to the one inCase 1.

That is, we add u(i+1,1)
j and delete u(i,20k)

j for j in the order 1, . . . , i−1, i+1, . . . , k, i .

This gives a reconfiguration sequence from C20k
i ∪ S20ki to Z = Ci+1 ∪ S20ki of length

2k.
Next we explain how to get a reconfiguration sequence from Z = Ci+1 ∪ S20ki to

Ci+1 ∪ Si+1. Notice that H [Z] and ̂Ti+1 = H [Ci+1 ∪ Si+1] are trees. Recall that
T i is the star on {1, . . . , k} with vertex i being the center, and T i+1 is is the star
on {1, . . . , k} with vertex i being the center. Also, c j is a coloring on H j which is

inherited from the coloring c ofG. That is, ci+1(u
(i+1,1)
j) = j for all 1 ≤ j ≤ k. Then,

H [Z] = K [Ci+1] �ci+1 T
i and ̂Ti+1 = H [Ci+1 ∪ Si+1] = K [Ci+1] �ci+1 T

i+1.
Let ei+1

1 , . . . , ei+1
k−1 be an arbitrary ordering of the the edges in T

i+1. By Lemma 2,
we have a sequence ei1, . . . , e

i
k−1 of edges in T i such that for the sequence

T i
0 , T i

1 , . . . , T i
k−1 on vertex set {1, . . . , k}, where for each 0 ≤ j ≤ k − 2, T i

j+1 =
T i
j + ei+1

j − eij and T i
0 = T i , the following holds.

(i) T i
j is a tree for all 0 ≤ j ≤ k − 1, and

(ii) T i
k−1 = T i+1.

This implies that, from the sequences ei1, . . . , e
i
k−1 and ei+1

1 , . . . , ei+1
k−1, we get a

sequence f1, . . . , f ′
k−1 on S20ki and a sequence f ′

1, . . . , f ′
k−1 on Si+1 such that the

for the sequence L0, . . . , L2(k−1), where L0 = Ci+1 ∪ { f1, . . . , fk−1} and for all
1 ≤ j ≤ k − 1 L2 j−1 = (L2 j−2 ∪ { f ′

i }), L2 j = L2 j−1\{ fi } the following holds.

(1) H [Li] is connected for all 0 ≤ i ≤ k − 1, and
(2) Lk−1 = Si+1 ∪ Ci+1.

Here, conditions (1) and (2) follow from conditions (i) and (i i), respectively.More-
over, ĉ(Li) = [k+1] for all 0 ≤ i ≤ 2(k−1) and L0 = Z . Thus, L0, . . . , L2(k−1) is a
valid reconfiguration sequence from Z to V (̂Ti+1). Note that the ordering on the edges
implies an ordering by which we can move the subdivision vertices from Si to Si+1
without violating connectivity. This implies that there is a reconfiguration sequence
from V (P20k) to V (̂Ti+1), of length 4k − 2. Therefore, we have a reconfiguration
sequence from V (̂Ti) to V (̂Ti+1) of length O(k2).

Case 3 Reconfiguration from V (̂Tk) to V (T t). The arguments for this case are
similar to those given in Case 1, we therefore omit the details. By summing up the
lengths of reconfiguration sequences, we get that if (G, c, k) is a yes-instance of
Multicolored Clique then there is a reconfiguration sequence from Qs to Qt , of
length O(k3). 	

123

Algorithmica (2022) 84:482–509 495

Lemma 4 If there is a reconfiguration sequence from Qs to Qt then there is a k-colored
clique in G.

Proof For each 1 ≤ i ≤ k + 1, let Ri be the set of vertices colored by the color i . That
is, Ri = ĉ−1(i). First, we prove some auxiliary claims. The proofs of the following
two claims follow from the construction of H and the definition of ĉ.

Claim 1 (i) R1 ∪ . . . ∪ Rk is an independent set in H, and (i i) every vertex in Rk+1 is
connected to vertices of at most two distinct colors.

Claim 2 Let v,w ∈ V (H)\(V (H0) ∪ V (Hk+1)) be two distinct vertices such that
ĉ(v) = ĉ(w) and ĉ(v) ∈ {1, . . . , k}. If v and w have a common neighbor in
V (H)\V (H0), then v and w are copies of same vertex z ∈ V (G).

Claim 3 Let Y ⊆ V (H) be a vertex subset such that ĉ(Y) = {1, . . . , k + 1} and H [Y]
is connected. Then, |Y | ≥ 2k − 1.

Proof Let B = Y \̂c−1(k + 1) = Y ∩ (R1 ∪ . . . ∪ Rk). Since ĉ(Y) = {1, . . . , k + 1},
|B| ≥ k and by Claim 1(i), B is an independent set in H . By Claim 1(i i), each vertex
in Ri+1 is connected to vertices of at most two distinct colors. Thus, since H [Y] is
connected, the claim follows. 	

Suppose (H , ĉ, Qs, Qt , 2k) is a yes-instance of CCS- R. Then, there is a reconfig-
uration sequence D1, . . . , D� for � ∈ N, where D1 = Qs and D� = Qt . Without loss
of generality, we assume that the sequence D1, . . . , D� is a minimal reconfiguration
sequence. Then, by Claim 3, for each i ∈ [�], 2k − 1 ≤ |Di | ≤ 2k.

Moreover, since |D1| = |D�| = 2k−1, we have that for each even i , Di is obtained
from Di−1 by a token addition, and for each odd i , Di is obtained from Di−1 by a
token removal. This also implies that for each even i , |Di | = 2k, for each odd i ,
|Di | = 2k − 1, and � is odd.

Claim 4 Let i ∈ [�] and |Di | = 2k − 1. Then, for all 1 ≤ j ≤ k, |Di ∩ R j | = 1, and
|Di ∩ Rk+1| = k − 1. Moreover, each vertex in Di ∩ Rk+1 will be adjacent to exactly
two vertices in H [Di] and these vertices will be of different colors from {1, . . . , k}.
Proof By Claim 1, R1 ∪ . . . ∪ Rk is independent and every vertex of Rk+1 is adjacent
to vertices of at most two different color classes. Hence, we need at least k − 1
vertices from Rk+1 that make the connections between the vertices of Di colored with
{1, . . . , k}. The above statement along with the assumption |Di | = 2k − 1 imply the
claim. 	

Claim 5 Let i ∈ {2, . . . � − 1}. Let v ∈ Di and w ∈ Di+1 such that v,w /∈ V (H0) ∪
V (Hk+1), at most one vertex in {v,w} is in V (H (1,1)), and ĉ(v) = ĉ(w) ∈ {1, . . . , k}.
Then, v andw are copies of the same vertex in G.Moreover, v,w ∈ V (H j)∪V (H j+1)

for some j ∈ [k − 1].
Proof Suppose v and w are not copies of the same vertex z ∈ V (G). We know that
|Di | = 2k − 1 or |Di | = 2k.

123

496 Algorithmica (2022) 84:482–509

Case 1 |Di | = 2k − 1. Since Di is a solution, Di induces a connected subgraph in H .
By Claim 4, |Di ∩ R j | = 1 for all j ∈ {1, . . . , k} and |Di ∩ Rk+1| = k − 1. Also, by
Claim 1, (i) R1 ∪ . . . ∪ Rk is an independent set in H , and (i i) every vertex in Rk+1
is connected to vertices of at most two distinct colors. Statements (i) and (i i), and the
fact that |Di | = 2k − 1 imply that (i i i) H [Di] is a tree and each vertex in Di ∩ Rk+1
is incident to exactly two vertices in Di . Since |Di+1| = |Di | + 1, in reconfiguration
step i + 1, we add a vertex to obtain Di+1. We know that v ∈ Di . Since, for any color
q ∈ [k], there is exactly one vertex in Di of color q (i.e., |Di ∩ Rq | = 1), we have
that Di+1 = Di ∪ {w}. Moreover, in step i + 2, the vertex removed from Di+1 will
be from {v,w} and that vertex will be v (because of the minimality assumption of the
length of the reconfiguration sequence). That is, Di+2 = (Di ∪ {w})\{v}. Notice that
|Di | = |Di+2| = 2k − 1. Let b a vertex in Di+2 which is adjacent to w in H [Di+2].
Since Rk+1 ∩ Di = Rk+1 ∩ Di+2 and |Di | = |Di+2| = 2k − 1, by Claim 1, the
neighbors of b in H [Di] and H [Di+2] are of the same color. This implies that b is
adjacent to v in H [Di]. Thus, we proved that {b, w}, {b, v} ∈ E(H). If b ∈ V (H0),
then v,w ∈ V (H (1,1)) which is a contradiction to the assumption. Otherwise, by
Claim 2, we conclude that v and w are copies of same vertex.

Case 2 |Di |= 2k. In this case Di+1 is obtained by removing a vertex from Di .
Moreover, i ≥ 3, because we have two vertices in Di from V (H)\D1. Since |Di+1| =
2k − 1, because of Claim 4, Di+1 is obtained by removing the vertex v from Di . That
is, Di+1 = Di\{v} and v,w ∈ Di . Then, again by Claim 4, there is v′ ∈ {v,w} such
that Di−1 � {v′} = Di . Let w′ = {v,w}\{v′}. Since i ≥ 3, we now apply Case 1 with
respect to w′ ∈ Di−1 and v′ ∈ Di to complete the proof. 	

Claim 6 For any index j ∈ {1, . . . , k} and color q ∈ {1, . . . , k}, there exist an odd
i ∈ {3, . . . , �} and r ∈ {5k, . . . , 15k} such that Di contains a vertex of color q from
V (H j,r).

Proof Without loss of generality, assume that k ≥ 2.Moreover, for any odd i ∈ [�−2],
there is a vertex common in Di and Di+2 (since k ≥ 2). This implies that H [D1 ∪
D3 . . . D�] is a connected subgraph of H . Notice that for any j ∈ {1, . . . , k} and
r ∈ [20k], V (H (j,r)) is a (v1, x1)-separator in H . Therefore, since H [D1∪D3 . . . D�]
is connected and v1, x1 ∈ D1 ∪ D�, (i) for any j ∈ [k] and r ∈ [20k], there is an odd
i ∈ [�] such that Di contains a vertex from V (H (j,r)). Now fix an index j ∈ {1, . . . , k}
and a color q ∈ {1, . . . , k}. By statement (i), there is an odd i ∈ {1, . . . , �} such that
Di contains a vertex from V (H (j,10k)). Since H [Di] is connected, |Di | = 2k − 1,
Di ∩ V (H (j,10k))
= ∅, and any vertex in V (H)\⋃15k

r=5k V (H (j,r)) is at distance
more that 5k (by the construction of H), we have that all the vertices in Di belong to
⋃15k

r=5k V (H (j,r)). Moreover, by Claim 4, Di contains a vertex colored q and that will
also be present in

⋃15k
r=5k V (H (j,r)). This completes the proof of the claim. 	

Claim 7 For any color q ∈ {1, . . . , k}, the vertices of color q from
⋃k

i=2 V (Hi) used
in the reconfiguration sequence D1, . . . , D� are copies of the same vertex z ∈ V (G).
Moreover, exactly one vertex from V (H j) of color q is used in the reconfiguration for
all 2 ≤ j ≤ k.

123

Algorithmica (2022) 84:482–509 497

Proof Fix a color q ∈ {1, . . . , k}. ByClaim 6, there are vertices of color q from V (H j)

for all j is used in the reconfiguration sequence. By Claim 5, all these vertices are
copies of the same vertex z ∈ V (G). 	

Now we define a k-size vertex subset C ⊆ V (G) and prove that C is a clique in G.
We let C = {ai ∈ V (G) : 1 ≤ i ≤ k, c(ai) = i , and the copy of ai in V (H2) is used
in D1, . . . , D�}. Because of Claim 7, we have that |C | = k and C contains a vertex
of each color in c. C = {a1, . . . , ak} ⊆ V (G) and for each q ∈ [k], c(aq) = q. We
now prove that C is indeed a clique in G. Towards that, we need to prove that for each
1 ≤ q < j ≤ k, {aq , a j } ∈ E(G).

Claim 8 Let 1 ≤ q < j ≤ k. Then, {aq , a j } ∈ E(G).

Proof By Claim 6, we know that there exist an odd i ∈ [�] and r ∈ {5k, . . . , 15k} such
that Di contains a vertex of color q in V (H (j,r)). Thus, by Claim 7, a copy of a j and
a copy of aq are present in Di . Let u j and uq be the vertices in Di colored with j and
q, respectively. By Claim 7, u j is a copy of a j and uq is a copy of aq . Any vertex b in
V (H j) colored k + 1 is adjacent to vertices of exactly two colors, out of which one
color is j . Moreover, by the construction of H , (a) if b is adjacent to x and y in V (H j),
and x and y are copies of x ′ and y′ in G, respectively, then {x ′, y′} ∈ E(G). We know
that H [Di] is connected, |Rs ∩ Di | = 1 for all 1 ≤ s ≤ k, Di\Rk+1 is an independent
set in H , and each vertex in Di colored with k + 1 is adjacent to exactly two vertices
in Di\Rk+1 with one of them being u j (see Claims 1 and 4). This implies that there
is common neighbor b for uq and u j and hence {aq , a j } ∈ E(G), by statement (a)

above. This completes the proof of the claim. 	

This completes the proof of the lemma. 	

Theorem 1 CCS- R parameterized by k + � is W[1]-hard on 4-degenerate graphs.

3.2 Reduction from CCS-R to CDS-R

We give a polynomial-time parameter-preserving reduction from CCS- R to CDS- R

that is fairly straightforward. Let (G, c, Qs, Qt , k) be an instance of CCS- R. Let
c : V (G) �→ {1, . . . , k′}, where k′ ≤ k. We construct a graph H as follows. For each
1 ≤ i ≤ k′, we add a vertex di and connect di to all the vertices in c−1(i). Next, for each
1 ≤ i ≤ k′, we add a pendant vertex xi (i.e., {di , xi } is an edge). Let D = {d1, . . . , dk′ }.
We output (H , Qs ∪ D, Qt ∪ D, k + k′) as the new CDS- R instance.

Lemma 5 If G is a d-degenerate graph then H is a (d + 1)-degenerate graph.

Proof For each vertex v ∈ V (G), dH (v) = dG(v) + 1. Thus, after removing V (G)

and {xi : 1 ≤ i ≤ k′}, the remaining graph is edgeless. 	

It is easy to verify that for any reconfiguration sequence Qs = R1, . . . , R� = Qt of

the instance (G, c, Qs, Qt , k) of CCS-R, Qs ∪ D = R1 ∪ D, . . . , R� ∪ D = Qt ∪ D
is a reconfiguration sequence of the instance (H , Qs ∪ D, Qt ∪ D, k + k′) of CDS-R.
Now we prove the reverse direction.

123

498 Algorithmica (2022) 84:482–509

Lemma 6 If (H , Qs ∪ D, Qt ∪ D, k + k′) is a yes-instance then (G, c, Qs, Qt , k) is
a yes-instance.

Proof Notice that the set D is contained in any connected dominating set of H . More-
over for any minimal connected dominating set Z in H , Z ∩ {xi : 1 ≤ i ≤ k′} = ∅,
H [Z\D] is connected, and Z\D contains a vertex from c−1(i) for all 1 ≤ i ≤ k′
(recall that G is a subgraph of H). Therefore, by deleting D from each set in a recon-
figuration sequence of (H , Qs ∪ D, Qt ∪ D, k + k′), we get a valid reconfiguration
sequence of (G, c, Qs, Qt , k). This completes the proof. 	

Thus, by Theorem 1, we have the following theorem.

Theorem 2 CDS- R parameterized by k + � is W[1]-hard on 5-degenerate graphs.

4 Fixed-Parameter Tractability on Planar Graphs

This section is devoted to proving that CDS- R under TAR parameterized by k is
fixed-parameter tractable on planar graphs. In fact, we show that the problem admits a
polynomial kernel. Recall that a kernel for a parameterized problemQ is a polynomial-
time algorithm that computes for each instance (I , k) of Q an equivalent instance
(I ′, k′)with |I ′|+k′ ≤ f (k) for somecomputable function f . The kernel is polynomial
if the function f is polynomial. We prove that for every instance (G, S, T , k) of
CDS- R, with G planar, we can compute in polynomial time an instance (G ′, S, T , k)
where |V (G ′)| ≤ h(k) for some polynomial h, G ′ planar, and where there exists a
reconfiguration sequence under TAR from S to T in G (using at most k tokens) if and
only if such a sequence exists in G ′.

Our approach is as follows.We first compute a small domination core forG, that is,
a set of vertices that captures exactly the domination properties of G for dominating
sets of sizes not larger than k. While the classification of interactions with the domi-
nation core would suffice to solve Dominating Set Reconfiguration, additional
difficulties arise for the connected variant. In a second step we use planarity to iden-
tify large subgraphs that have very simple interactions with the domination core and
prove that they can be replaced by constant size gadgets such that the reconfiguration
properties of G are preserved.

4.1 Domination Cores

Definition 2 Let G be a graph and let k ≥ 1 be an integer. A k-domination core is a
subset C ⊆ V (G) of vertices such that every set X ⊆ V (G) of size at most k that
dominates C also dominates G.

It is not difficult to see that Dominating Set is fixed-parameter tractable on all
graphs that admit a k-domination core of size at most f (k) that is computable in time
g(k)·nc, for any computable functions f , g and constant c. This approachwasfirst used
(implicitly) in [5] to solve Distance- r Dominating Set on nowhere dense graph
classes. In case k is the size of aminimum(distance-r) dominating set, one can establish

123

Algorithmica (2022) 84:482–509 499

the existence of a linear size k-domination core on classes of bounded expansion [7]
(including the class of planar graphs) and a polynomial size (in fact an almost linear
size) k-domination core on nowhere dense graph classes [9,24]. If k is not minimum,
there exist classes of bounded expansion such that a k-domination core must have at
least quadratic size [8]. The most general graph classes that admit k-domination cores
are given in [10]. Moreover,Dominating Set Reconfiguration and Distance- r
Dominating Set Reconfiguration are fixed-parameter tractable on all graphs that
admit small (distance-r) k-domination cores [25,33].

Lemma 7 There exists a polynomial h such that for all k ≥ 1, every planar graph G
admits a polynomial-time computable k-domination core of size at most h(k).

The lemma is implied by Theorem 1.6 of [24] by the fact that planar graphs are
nowhere dense. We want to stress again that the polynomial size of the k-domination
core results from the fact that k may not be the size of a minimum dominating set,
if k is minimum we can find a linear size core. Explicit bounds on the degree of the
polynomial can be derived from [30,32], but we refrain from doing so to not disturb
the flow of ideas.

The following lemma is immediate from the definition of a k-domination core.

Lemma 8 If C is a k-domination core and D is a dominating set of size at most k that
contains a vertex set W ⊂ D such that N [D] ∩ C = N [D\W] ∩ C = C, then D\W
is also a dominating set.

Definition 3 Let G be a graph and let A ⊆ V (G). The projection of a vertex v ∈
V (G)\A into A is the set N (v) ∩ A. If two vertices u, v have the same projection into
A we write u ∼A v.

Obviously, the relation ∼A is an equivalence relation. The following lemma is
folklore, one possible reference is [11].

Lemma 9 Let G be a planar graph and let A ⊆ V (G). Then there exists a constant c
such that there are at most c · |A| different projections to A, that is, the equivalence
relation ∼A has at most c · |A| equivalence classes.

4.2 Reduction Rules

LetG be an embedded planar graph.We say that a vertex v touches a face f if v is drawn
inside f or belongs to the boundary of f or is adjacent to a vertex on the boundary of
f . We fix two connected dominating sets S and T of size at most k. We will present a
sequence of lemmas, each of which implies a polynomial-time computable reduction
rule that allows us to transformG to a planar graphG ′ that inherits its embedding from
G, with S, T ⊆ V (G ′) and that has the same reconfiguration properties with respect
to S and T as G. To not overload notation, after stating a lemma with a reduction rule,
we assume that the reduction rule is applied until this is no longer possible and call the
resulting graph again G. We also assume that whenever one or more of our reduction
rules are applicable, then they are applied in the order presented.Wewill guarantee that
S and T will always be connected dominating sets of size at most k, hence, after each

123

500 Algorithmica (2022) 84:482–509

Fig. 8 A vertex s ∈ Si can
dominate at most 3 vertices of
N (u) ∩ N (v)

•u

•v

s• • • • •

application of a reduction rule, we can recompute a k-domination core in polynomial
time. This yields only polynomial overhead and allows us to assume that we always
have marked a k-domination core C of size at most h(k) as described in Lemma 7.
This allows us to state the lemmas as if G and C are fixed. Without loss of generality
we assume that C contains S and T .

Definition 4 A set W of vertices or edges is irrelevant if there is a reconfiguration
sequence from S to T in G if and only if there is a reconfiguration sequence from S
to T in G − W .

Definition 5 Let u, v ∈ V (G) be distinct vertices. We call the set D(u, v) := (N (u)∩
N (v)) ∪ {u, v} the diamond induced by u and v. We call |N (u) ∩ N (v)| the thickness
of D(u, v).

Lemma 10 If G contains a diamond D(u, v) of thickness greater than 3k, then at
least one of u or v must be occupied by a token in every step of every reconfiguration
sequence from S to T .

Proof Assume S = S1, . . . , St = T is a reconfiguration sequence from S to T and
u, v /∈ Si for some 1 ≤ i ≤ t .

Then every s ∈ Si can dominate at most 3 vertices of N (u) ∩ N (v): otherwise
u, v, s together with 3 vertices of N (u) ∩ N (v) different from u, v and s would form
a complete bipartite graph K3,3 (Fig. 8). 	

Lemma 11 If G contains a diamond D(u, v) of thickness greater than 3k, then we can
remove all internal edges in D(u, v), i.e., edges with both endpoints in N (u) ∩ N (v).

Proof Assume S = S1, . . . , St = T is a reconfiguration sequence from S to T .
According to Lemma 10, for each 1 ≤ i ≤ t , Si ∩ {u, v}
= ∅. Hence all vertices of
N (u) ∩ N (v) are always dominated by at least one of u or v, say by u. Moreover,
having tokens on more than one vertex of N (u) ∩ N (v) will never create connectivity
via internal edges that is not already there via edges incident on u. In other words, for
any connected dominating set S of G, if an edge yz is used for connectivity, where
y, z ∈ N (u) ∩ N (v), then the edge can be replaced by the path yuz or the path yvz
(depending on which of u or v is in S). 	

As described earlier, we now apply the reduction rule of Lemma 11 until this is
no longer possible, and name the resulting graph again G. As we did not make use
of the properties of a k-domination core in the lemma, it is sufficient to recompute a
k-domination core C after applying the reduction rule exhaustively. In the following
it may be necessary to recompute it after each application of a reduction rule. We will
not mention these steps explicitly in the following.

123

Algorithmica (2022) 84:482–509 501

Fig. 9 Every vertex of C\{u, v}
can touch at most 3 consecutive
faces of H . In the figure we
assume the vertices c1 and c2
are in C\{u, v}. The faces that
are touched by c1 or c2 are
colored in blue. The uncolored
faces f and g are not touched by
vertices of C\{u, v}

•
u

•v

•• • • • • • • •c1• c2 •
f g

x1 x3x2

Lemma 12 If G contains a diamond D(u, v) of thickness greater than 4|C | + 3k + 1
then G contains an irrelevant vertex.

Proof Let H be the subgraph of G induced by D(u, v). We enumerate the vertices
of N (u) ∩ N (v) consecutively as x1, . . . , xt for some t > 4|C | + 3k + 1. We let
X = {x1, . . . , xt }. Note that since we have t vertex-disjoint paths between u and v in
H , these paths define the boundaries of t faces in the plane embedding of H (after
applying the reduction rule of Lemma 11, H has all the edges {u, x} and {v, x} for
x ∈ N (u) ∩ N (v) and no other edges). Each vertex in C\{u, v} can be adjacent in
H to at most two vertices in X , hence each vertex in C\{u, v} can touch at most 3
consecutive faces of H (Fig. 9).

This leaves |C | + 3k + 1 faces of H that are not touched by a vertex of C\{u, v}.
By the pigeonhole principle we can find 2 adjacent faces f and g of H that are not
touched by a vertex of C\{u, v}.

We let x1 and x2 denote the two vertices on the boundary of face f different from u
and v and we let x2 and x3 denote the two vertices on the boundary of face g different
from u and v. Recall that, due to Lemma 11, we know that there are no edges between
those three vertices. Let W denote the set of all vertices contained in the face of the
cycle u, x1, v, x3, u. In particular,W contains x2. We claim that the vertices ofW can
be removed from G without changing the reconfiguration properties of G, i.e., W is
a set of irrelevant vertices. Let G ′ = G − W . First observe that, since S, T ⊆ C ,
W ∩ (S ∪ T) = ∅, hence S, T ⊆ V (G ′). We show that reconfiguration from S to T is
possible in G if and only if reconfiguration from S to T is possible in G ′.

Assume S = S1, . . . , St = T is a reconfiguration sequence from S to T in G. Let
S′
1, . . . , S

′
t , where for 1 ≤ i ≤ t , S′

i := Si if Si does not contain a vertex of W and
S′
i := (Si\W)∪{x1} otherwise. Note that this modification leaves S and T unchanged,

hence, S′
1 = S1 and S′

t = St . We claim that S′
1, . . . , S

′
t is a reconfiguration sequence

from S to T in G ′.

Claim 9 For 1 ≤ i ≤ t , S′
i is a dominating set of G, and hence also of G ′.

Proof No vertex ofW is adjacent to a vertex of C\{u, v} andW ∩C = ∅ by construc-
tion. Hence, the only vertices of C that are possibly adjacent to a vertex of W are the
vertices u and v. Whenever Si contains a vertex of W , we have x1 ∈ S′

i , which domi-
nates both u and v. Hence, S′

i dominates at least the vertices of C that Si dominates.
We use Lemma 8 to conclude that S′

i is a dominating set of G. 	

Claim 10 For 1 ≤ i ≤ t , S′

i is connected.

123

502 Algorithmica (2022) 84:482–509

Proof Let s1, s2 ∈ Si\W and let P be a shortest path between s1 and s2 in G[Si]. We
have to show that there exists a path between s1 and s2 in G[S′

i]. If P does not use a
vertex of W , then there is nothing to show. Hence, assume P uses a vertex of W . By
definition ofW , both s1 and s2 lie outside or on the boundary of the face h of the cycle
u, x1, v, x3 that contains x2. Hence, P must enter and leave the face h, and as P is a
shortest path, it must enter and leave via opposite vertices, i.e., via u and v, or via x1
and x3 (as all other pairs are linked by an edge and we could find a shorter path). If P
contains u and v, then we can replace the vertices of W on P by x1 and we are done.

Hence, assume P uses x1 and x3. As D(u, v) is a diamond of thickness greater than
4|C | + 3k + 1 > 3k, according to Lemma 10 at least one of the vertices u and v, say
u, is contained in Si , and by definition also in S′

i . Then we can replace the vertices of
W on P by u and we are again done. 	

Finally, the following claim is immediate from the definition of each S′
i . Combining

Claims 9, 10, and 11 , we conclude that S′
1, . . . , S

′
t is a reconfiguration sequence from

S to T in G ′.

Claim 11 S′
i+1 is obtained from S′

i by the addition or removal of a single token for all
1 ≤ i < t .

To prove the opposite direction, assume S = S′
1, . . . , S

′
t = T is a reconfiguration

sequence from S to T in G ′. We claim that this is also a reconfiguration sequence
from S to T in G. All we have to show is that S′

i is a dominating set of G for all
1 ≤ i ≤ t . This follows immediately from the fact that S′

i is a dominating set of G ′,
and hence, as W is not adjacent to C\{u, v} and W ∩C = ∅, also a dominating set of
C in G. Then according to Lemma 8, S′

i also dominates G. We conclude that there is
a reconfiguration sequence from S to T in G if and only if there is a reconfiguration
sequence from S to T in G ′ = G − W . 	

We may in the following assume that G does not contain diamonds of thickness
greater than 4|C | + 3k + 1.

Corollary 1 If a vertex v ∈ V (G) has degree greater than (4|C | + 3k + 1) · k, then
the token on v is never lifted throughout a reconfiguration sequence.

Proof Assume S = S1, . . . , St = T is a reconfiguration sequence from S to T in G
and assume there is Si with v /∈ Si . The dominating set Si has at most k vertices and
must dominate N (v). Hence, there must be one vertex u ∈ Si that dominates at least
a 1/k fraction of N (v), which is larger than 4|C | + 3k + 1. Then there is a diamond
D(u, v) of thickness greater than 4|C |+3k+1, which does not exist after application
of the reduction rule of Lemma 12. 	

According to Corollary 1, the only vertices that can have high degree after apply-
ing the reduction rules are vertices that are never lifted throughout a reconfiguration
sequence. This gives rise to another reduction rule that is similar to the rule of
Lemma 11.

Lemma 13 Assume v is a vertex of degree greater than (4|C | + 3k + 1) · k. Then we
may remove all edges with both endpoints in N (v).

123

Algorithmica (2022) 84:482–509 503

Proof LetG ′ be the graph obtained fromG by removing all edges with both endpoints
in N (v). We claim that reconfiguration between S and T is possible in G if and only
if it is possible in G ′. The fact that S and T are in fact connected dominating sets in
G ′ is implied by the argument below.

Assume S = S1, . . . , St = T is a reconfiguration sequence from S to T in G.
We claim that the same sequence is a reconfiguration sequence in G ′. According to
Corollary 1, v ∈ Si for all 1 ≤ i ≤ t . This implies that Si is connected in G ′ for all
1 ≤ i ≤ t , as all x, y ∈ Si that are no longer connected by an edge in G ′ but were
connected in G are connected via a path of length 2 using the vertex v. It is also easy
to see that Si is a dominating set in G ′, as all vertices that are no longer dominated
by s ∈ Si in G are still dominated by v. Observe that this in particular implies that
S and T are connected dominating sets in G ′. Vice versa, if S = S1, . . . , St = T is
a reconfiguration sequence from S to T in G ′, this is trivially also a reconfiguration
sequence in G. 	

The following reduction rule is obvious.

Lemma 14 If a vertex v has more than k + 1 pendant neighbors, i.e., neighbors of
degree exactly one, then it suffices to retain exactly k + 1 of them in the graph.

Lemma 15 There are at most c|C | · (4|C | + 3k + 1) vertices of V (G)\C that have 2
neighbors in C, where c is the constant of Lemma 9.

Proof According to Lemma 9 there are at most c|C | different projections to C . Each
projection class that has at least 3 representatives has size at most 2, as otherwise we
would find a K3,3 as a subgraph, contradicting the planarity of G. Consider a class
with a projection of size 2 into C . Denote these two vertices of C by u and v. If
this class has more than 4|C | + 3k + 1 representatives, then D(u, v) is a diamond of
thickness greater than 4|C | + 3k + 1, which cannot exist after exhaustive application
of the reduction rule of Lemma 12. 	

We now come to the description of our final reduction rule. Let D denote the set of
vertices containing both C and all vertices of V (G)\C having at least two neighbors
inC . In other words, V (G)\D contains all those vertices in V (G)\C that have exactly
one neighbor in C . According to Lemma 15 at most c|C | · (4|C | + 3k + 1) vertices
have two neighbors in C , hence |D| ≤ c|C | · (4|C | + 3k + 1) + |C | =: p.
Lemma 16 Assume there are twovertices u andvwith degree greater than4p+(4|C |+
3k+1) ·k+1. LetP be a maximum set of vertex-disjoint paths of length at least 2 that
run betweenu and v using only vertices in V (G)\D. If |P| > 4p+(4|C |+3k+1)·k+1,
then there is G ′ such that the instances (G, S, T , k) and (G ′, S, T , k) are equivalent,
G ′ is planar, and |V (G ′)| < |V (G)|.
Proof We first show that we can essentially establish the situation depicted in Fig. 10.
We may assume that the paths ofP are induced paths, otherwise we may replace them
by induced paths. Let H be the graph induced on u, v and the vertices of P . In the
figure, the paths of P are depicted by thick edges, while the diagonal edges do not
belong to the paths. This situation is similar to the situation in the proof of Lemma 12.
Just as in the proof of Lemma 12, we find two adjacent faces f , g of H that do not
touch a vertex of D\{u, v}.

123

504 Algorithmica (2022) 84:482–509

•
u

• v

•

•

•

•

•

•

•

•

•

•

xf

yf

zu

zv

xg

yg
⇒

•
u

• v

•

•

•

•

•

•

•

•

Fig. 10 An exemplary situation handled by Lemma 16

Claim 12 The paths bounding f and g have length 3, i.e., they have exactly two inner
vertices.

Proof First observe that P ∈ P cannot have length exactly 2, as then P contains a
vertex adjacent to both u and v. However, the vertices with this property lie in D, and
hence by construction not on P .

Assume there is P ∈ P of length greater than 3. Let M(u) denote the neighbors of
u that are in V (G)\D and are only adjacent to u and to no other vertex ofC . Similarly,
let M(v) denote the neighbors of v that are in V (G)\D and are only adjacent to v and
to no other vertex of C . By construction, the faces f and g do not contain vertices
of D\{u, v}. Furthermore, P contains exactly one vertex of M(u) and exactly one
vertex of M(v). It cannot contain two vertices of one of these sets, as otherwise P
is not an induced path. Hence, assume that P contains another vertex x that is not
in M(u) ∪ M(v). Then x must be dominated by a vertex different from u and from
v. However, by construction, the faces f and g do not touch a vertex of D\{u, v} ⊇
(S ∪ T)\{u, v}, a contradiction. 	

Denote by x f , y f the two vertices that lie on the boundary of f and not on the
boundary of g and by xg, yg the two vertices that lie on the boundary of g and not on
the boundary of f . Assume that x f , xg ∈ M(u) and y f , yg ∈ M(v). Denote by zu, zv
the vertices shared by f and g different from u and v that are adjacent to u and v,
respectively. Denote by W the set of all vertices that lie inside the face h of the cycle
u, x f , y f , v, yg, xg, u that contains the vertices zu and zv . Hence W contains at least
the vertices zu and zv . By Corollary 1, we know that u, v ∈ Si , for all 1 ≤ i ≤ t (both
u and v can never be lifted). Consequently, by Lemma 13, we know that there are no
edges with both endpoints in N (v) nor edges with both endpoints in N (u). Combining
the previous fact with the fact that all vertices ofW are adjacent to either u or v (but not
both) and to no other vertex of C ⊇ S∪ T , we conclude thatW consists of exactly the
two vertices zu and zv and that there are no edges between zu and xg, x f and no edges
between zv and yg, y f . Note that we can safely assume that none of the degree-one
neighbors of u or v are inside W . We claim that the vertices zu and zv are irrelevant
and can be removed after possibly introducing an additional edge to the graph. Recall
that S and T do not contain the vertices zu and zv . We define G ′ as follows.

123

Algorithmica (2022) 84:482–509 505

– If {u, v} /∈ E(G) and ({x f , zv} ∈ E(G) or {y f , zu} ∈ E(G)) and ({xg, zv} ∈
E(G) or {yg, zu} ∈ E(G)) then G ′ is obtained from G by deleting zu and zv and
introducing the edge {x f , yg}.

– Otherwise, G ′ is obtained from G by simply deleting zu and zv .

We claim that (G, S, T , k) and (G ′, S, T , k) are equivalent instances of CDS- R.
Assume first that there exists a reconfiguration sequence S = S1, . . . , St = T in G.
We distinguish two cases. First assume that {u, v} ∈ E(G). Hence,G ′ is obtained from
G by simply deleting zu and zv . Let S′

1, . . . , S
′
t , where for 1 ≤ i ≤ t , S′

i = Si\{zu, zv}.
We claim that S′

1, . . . , S
′
t is a reconfiguration sequence from S to T in G ′.

Claim 13 For 1 ≤ i ≤ t , S′
i is a dominating set of G, and hence also of G ′.

Proof The vertices zu and zv are not adjacent to a vertex ofC\{u, v} and {zu, zv}∩C =
∅. Hence, the only vertices of C that are possibly adjacent to zu or zv are the vertices
u and v. According to Lemma 1, u, v ∈ Si , and moreover u, v ∈ S′

i , for all 1 ≤ i ≤ t .
Hence, S′

i dominates at least the vertices of C that Si dominates. We use Lemma 8 to
conclude that S′

i is a dominating set of G. 	

Claim 14 For 1 ≤ i ≤ t , S′

i is connected.

Proof Let s1, s2 ∈ Si\{zu, zv} and let P be a shortest path between s1 and s2 in G[Si].
We have to show that there exists a path between s1 and s2 in G[S′

i]. If P does not use
zu nor zv then there is nothing to prove. Hence, assume P uses zu or zv (or both). By
definition ofW , both s1 and s2 lie outside the face h of the cycle u, x f , y f , v, yg, xg, u
that contains zu, zv . Hence, P must enter and leave the face h, say it enters at u and
leaves at y f . All other possibilities are handled analogously. Then we can avoid the
vertices zu and zv by walking to v first, then u (or x f), and then to y f . 	

The next claim follows from the definition of S′
i and the fact that we can remove

any duplicate consecutive sets in a reconfiguration sequence.

Claim 15 S′
i+1 is obtained from S′

i by the addition or removal of a single token for all
1 ≤ i < t .

This finishes the proof in case {u, v} ∈ E(G). Hence, we assume now that {u, v} /∈
E(G) and ({x f , zv} ∈ E(G) or {y f , zu} ∈ E(G)) and ({xg, zv} ∈ E(G) or {yg, zu} ∈
E(G)). That is, G ′ is obtained from G by deleting zu and zv and introducing the edge
{x f , yg}. We now obtain S′

i from Si , for 1 ≤ i ≤ t , by replacing

– zu by x f and zv by yg if Si ∩ {zu, zv} = {zu, zv},
– zu by x f if Si ∩ {zu, zv} = {zu}, and
– zv by yg if Si ∩ {zu, zv} = {zv}.
We claim that S′

1, . . . , S
′
t is a reconfiguration sequence from S to T in G ′. We need

no new arguments to prove that each S′
i is a dominating set of G and hence of G ′ and

that each S′
i+1 is obtained from S′

i by adding or removing one token. It remains to
show that each S′

i is connected in G ′.

Claim 16 For 1 ≤ i ≤ t , S′
i is connected in G ′.

123

506 Algorithmica (2022) 84:482–509

Proof According to Lemma 1, u, v ∈ Si , and also u, v ∈ S′
i , for all 1 ≤ i ≤ t .

If Si\{zu, zv} is connected, S′
i is also connected, hence assume Si\{zu, zv} is not

connected. As X = {u, x f , zu, xg} is connected via u and Y = {v, y f , zv, yg} is
connected via v, it suffices to show that our vertex exchange creates a connection in
G ′ between any vertex of X and any vertex of Y . If Si ∩{zu, zv} = {zu, zv} this is clear,
as we shift the tokens to x f and yg and in G ′ we have introduced the edge {x f , yg}.
If Si ∩ {zu, zv} = {zu}, then {zu, yg} ∈ E(G) and yg ∈ Si , or {zu, y f } ∈ E(G) and
y f ∈ Si . We move the token zu to x f . In the first case we have connectivity via the
new edge {x f , yg} ∈ E(G ′), and in the second case we have connectivity via the edge
{x f , y f } ∈ E(G). The case Si ∩ {zu, zv} = {zv} is symmetric. 	

This finishes the proof that if (G, S, T , k) is a positive instance then (G ′, S, T , k)
is a positive instance. Now assume that there exists a reconfiguration sequence S =
S′
1, . . . , S

′
t = T in G ′. In case we do not introduce the new edge to obtain G ′ from

G, we do not need new arguments to see that S′
1, . . . , S

′
t is a reconfiguration sequence

also in G. Moreover, if G ′′[S′
i] is connected for all i , where G ′′ is obtained from G ′ by

removing the edge {x f , yg}, then again there is nothing to prove as G ′ is a subgraph
of G and therefore S = S′

1, . . . , S
′
t = T is a reconfiguration sequence in G. Hence,

assume that there exists at least one contiguous subsequence σ starting at index s and
ending at index f (with possibly s = f) such that G ′′[S′

s],G ′′[S′
s+1], . . . ,G ′′[S′

f]
are not connected. In other words, there exists a subsequence of length one or more
that uses the edge {x f , yg} for connectivity. Moreover, we assume, without loss of
generality (the other case is symmetric), that S′

s is obtained from S′
s−1 by adding a

token on vertex yg , i.e., S′
s = S′

s−1 ∪ {yg}, and S′
f +1 is obtained from S′

f by removing
the token on vertex x f , i.e., S′

f +1 = S′
f \{x f }. We also assume that E(G) contains the

edges {x f , zv} and {zu, yg} (the remaining cases are handled identically). It remains
to show how to modify σ so that it does not use the edge {x f , yg} for connectivity
and remains a valid reconfiguration sequence in G. By applying the same arguments
for any such subsequence we obtain the required reconfiguration sequence in G. We
modify σ as follows. We let S′′

i = (S′
i\{yg}) ∪ {zv}, for s ≤ i ≤ f . Then we replace

S′
f +1 by four new sets A1, A2, A3, and A4, where A1 = S′

f \{x f }, A2 = A1 ∪ {zu},
A3 = A2\{zv}, A3 = A3 ∪ {yg}, and A4 = A3\{zu}. Using the fact that the vertices
x f , y f , xg, yg are not adjacent to vertices of D\{u, v}, it is easy to see that this yields
a valid reconfiguration sequence, as both domination and connectivity are preserved.
This completes the proof of the lemma. 	

We are ready to state the final result.

Theorem 3 CDS- R under TAR parameterized by k admits a polynomial kernel on
planar graphs.

Proof Our kernelization algorithm starts by computing (in polynomial time) a k-
domination core C of size at most h(k) as described in Lemma 7. Without loss of
generality we assume that C contains S and T . After each application of a reduction
rule, we recompute the core, giving a polynomial blow-up of the running time. We are
left to prove that each reduction rule can be implemented in polynomial time and that
we end up with a polynomial number of vertices. It is clear that the reduction rules of
Lemmas 12, 13 and 14 can easily be implemented in polynomial time. The reduction

123

Algorithmica (2022) 84:482–509 507

rule of Lemma 16 is slightlymore involved, however, we can use a standardmaximum-
flow algorithm to compute in polynomial time a maximum set of vertex-disjoint paths
in a subgraph of G. It remains to bound the size of G. Recall that we call D the set
of all vertices C and of all vertices of V (G)\C that have at least 2 neighbors in C . It
follows from Lemma 15 that D has size at most c|C | · (4|C | + 3k + 1) + |C | =: p,
where c is the constant of Lemma 9. We are left to bound the number of vertices in
V (G)\C having exactly one neighbor in C (recall that each vertex in V (G)\C has at
least one neighbor in S ∪ T ⊆ C).

Let p′ = (4p+ (4|C | + 3k + 1) · k + 1) · (4|C | + 3k + 1) · k + k + 1, which is still
a polynomial in k. Towards a contradiction, assume that there exists an equivalence
class Q in ∼C with a projection of size one containing more than p′ vertices. Let
u ∈ C denote the projection of the aforementioned class. Due to Lemma 14, we know
that at most k + 1 of the vertices in Q are pendant, i.e., adjacent to only u in G. Since
we cannot apply the reduction rule of Lemma 13 any more, we know that there are no
edges with both endpoints in Q. Hence, all but k+1 vertices of Q must be adjacent to
at least one other vertex in V (G)\C . Let R = NG(Q)\{u} denote this set of neighbors.
No vertex in R can be adjacent to more than 4|C |+3k+1 vertices of Q, as we cannot
apply the reduction rule of Lemma 12. The vertices of R must be dominated by S,
and cannot be dominated by u, as otherwise two neighbors of u would be connected.
Hence, there is v ∈ S different from u that dominates at least a 1/k fraction of R.
This implies the existence of at least 4p + (4|C | + 3k + 1) · k + 1 vertex-disjoint
paths of length at least 2 that run between u and v. But in this case, the reduction rule
of Lemma 16 is applicable. Therefore, we conclude that Q cannot exist, obtaining a
bound on the size of all equivalence classes of ∼C , as needed. 	

5 Conclusion

We have shown that the CDS- R problem parameterized by k is fixed-parameter
tractable for planar graphs and (trivially) for graphs of bounded degree. Moreover,
a simple observation shows that the problem is fixed-parameter tractable parameter-
ized by k+� on every nowhere dense graph class and the same holds for every class of
bounded cliquewidth. On the negative side, our reduction shows that CDS- R param-
eterized by k + � is W[1]-hard on 5-degenerate graphs. It remains open to determine
where exactly the boundary between tractable and intractable lies for CDS- R param-
eterized by k. We conjecture that CDS- R is fixed-parameter tractable parameterized
by k on every nowhere dense graph class. However, resolving this conjecture remains
open for future work (see Fig. 2). Towards proving that conjecture, we believe that
the classes of graphs of bounded pathwidth or treewidth are the obvious next classes
to study.

123

508 Algorithmica (2022) 84:482–509

References

1. Blum, J.,Ding,M., Thaeler,A., Cheng,X.:Connected dominating set in sensor networks andMANETs,
pp. 329–369 (2006). https://doi.org/10.1007/0-387-23830-1_8

2. Cereceda, L., van den Heuvel, J., Johnson, M.: Connectedness of the graph of vertex-colourings. Discr.
Math. 308(56), 913–919 (2008)

3. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of
bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)

4. Cygan,M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh,
S.: Parameterized Algorithms. Springer, Berlin (2015). https://doi.org/10.1007/978-3-319-21275-3

5. Dawar, A., Kreutzer, S.: Domination problems in nowhere-dense classes. In: IARCS Annual Confer-
ence on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2009, pp.
157–168 (2009)

6. Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms—Linkages, Origami, Polyhedra. Cam-
bridge University Press, Cambrige (2007)

7. Drange, P.G., Dregi, M.S., Fomin, F.V., Kreutzer, S., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M.,
Reidl, F., Villaamil, F.S., Saurabh, S., Siebertz, S., Sikdar, S.: Kernelization and sparseness: the case
of dominating set. In: 33rd Symposium on Theoretical Aspects of Computer Science, STACS 2016,
pp. 31:1–31:14 (2016)

8. Eiben, E., Kumar, M., Mouawad, A.E., Panolan, F., Siebertz, S.: Lossy kernels for connected dominat-
ing set on sparse graphs. In: 35th Symposium on Theoretical Aspects of Computer Science, STACS
2018, pp. 29:1–29:15 (2018)

9. Eickmeyer,K.,Giannopoulou,A.C.,Kreutzer, S.,Kwon,O., Pilipczuk,M.,Rabinovich,R., Siebertz, S.:
Neighborhood complexity and kernelization for nowhere dense classes of graphs. In: 44th International
Colloquium on Automata, Languages, and Programming, ICALP 2017, pp. 63:1–63:14 (2017)

10. Fabianski, G., Pilipczuk, M., Siebertz, S., Toruńczyk, S.: Progressive algorithms for domination and
independence. In: 36th International Symposium on Theoretical Aspects of Computer Science, STACS
2019, pp. 27:1–27:16 (2019)

11. Gajarský, J., Hlinený, P., Obdrzálek, J., Ordyniak, S., Reidl, F., Rossmanith, P., Villaamil, F.S., Sikdar,
S.: Kernelization using structural parameters on sparse graph classes. J. Comput. Syst. Sci. 84, 219–242
(2017)

12. Gharibian, S., Sikora, J.: Ground state connectivity of local hamiltonians. In: Proceedings of the 42nd
International Colloquium on Automata, Languages, and Programming, ICALP 2015, pp. 617–628
(2015)

13. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity of Boolean satisfia-
bility: computational and structural dichotomies. SIAM J. Comput. 38(6), 2330–2355 (2009)

14. Grohe, M., Kreutzer, S., Siebertz, S.: Deciding first-order properties of nowhere dense graphs. J. ACM
(JACM) 64(3), 17 (2017)

15. Gupta, A., Kumar, A., Roughgarden, T.: Simpler and better approximation algorithms for network
design. In: L.L. Larmore, M.X. Goemans (eds.) Proceedings of the 35th Annual ACM Symposium on
Theory of Computing, June 9–11, 2003, San Diego, CA, USA, pp. 365–372. ACM (2003). https://doi.
org/10.1145/780542.780597

16. Haas, R., Seyffarth, K.: The k-dominating graph. Graphs Comb. 30(3), 609–617 (2014)
17. Haddadan, A., Ito, T., Mouawad, A.E., Nishimura, N., Ono, H., Suzuki, A., Tebbal, Y.: The complexity

of dominating set reconfiguration. Theor. Comput. Sci. 651, 37–49 (2016). https://doi.org/10.1016/j.
tcs.2016.08.016

18. van den Heuvel, J.: The complexity of change. Surv. Comb. 409(2013), 127–160 (2013)
19. Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara, R., Uno, Y.: On the

complexity of reconfiguration problems. Theor. Comput. Sci. 412(12–14), 1054–1065 (2011)
20. Ito, T., Kamiński, M., Demaine, E.D.: Reconfiguration of list edge-colorings in a graph. Discr. Appl.

Math. 160(15), 2199–2207 (2012)
21. Johnson, W.W., Story, W.E.: Notes on the “15” puzzle. Am. J. Math. 2(4), 397–404 (1879)
22. Kanj, I.A., Xia, G.: Flip distance is in FPT time o(n+ k * ĉ k). In: 32nd International Symposium on

Theoretical Aspects of Computer Science, STACS 2015, pp. 500–512 (2015)
23. Kendall, G., Parkes, A.J., Spoerer, K.: A survey of NP-complete puzzles. ICGA J., pp. 13–34 (2008)

123

https://doi.org/10.1007/0-387-23830-1_8
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/780542.780597
https://doi.org/10.1145/780542.780597
https://doi.org/10.1016/j.tcs.2016.08.016
https://doi.org/10.1016/j.tcs.2016.08.016

Algorithmica (2022) 84:482–509 509

24. Kreutzer, S., Rabinovich,R., Siebertz, S.: Polynomial kernels andwideness properties of nowhere dense
graph classes. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, pp. 1533–1545 (2017)

25. Lokshtanov, D.,Mouawad, A.E., Panolan, F., Ramanujan,M.S., Saurabh, S.: Reconfiguration on sparse
graphs. J. Comput. Syst. Sci. 95, 122–131 (2018)

26. Lubiw, A., Pathak, V.: Flip distance between two triangulations of a point set is NP-complete. Comput.
Geom. 49, 17–23 (2015)

27. Mouawad, A.E.: On reconfiguration problems: structure and tractability (2015)
28. Mouawad, A.E., Nishimura, N., Pathak, V., Raman, V.: Shortest reconfiguration paths in the solu-

tion space of Boolean formulas. In: Automata, Languages, and Programming—42nd International
Colloquium, ICALP 2015, Kyoto, Japan, July 6–10, 2015, Proceedings, Part I, pp. 985–996 (2015)

29. Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the parameterized complexity
of reconfiguration problems. Algorithmica 78(1), 274–297 (2017)

30. Nadara, W., Pilipczuk, M., Rabinovich, R., Reidl, F., Siebertz, S.: Empirical evaluation of approxi-
mation algorithms for generalized graph coloring and uniform quasi-wideness. In: 17th International
Symposium on Experimental Algorithms, SEA 2018, pp. 14:1–14:16 (2018)

31. Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018)
32. Pilipczuk, M., Siebertz, S., Toruńczyk, S.: On the number of types in sparse graphs. In: Proceedings of

the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, pp. 799–808. ACM (2018)
33. Siebertz, S.: Reconfiguration on nowhere dense graph classes. Electr. J. Comb. 25(3), P3.24 (2018)
34. Suzuki, A., Mouawad, A.E., Nishimura, N.: Reconfiguration of dominating sets. J. Comb. Optim.

32(4), 1182–1195 (2016)
35. Swamy, C., Kumar, A.: Primal-dual algorithms for connected facility location problems. In: Jansen,

K., Leonardi, S., Vazirani, V. (eds.) Approximation Algorithms for Combinatorial Optimization, pp.
256–270. Springer, Berlin (2002)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	On the Parameterized Complexity of Reconfiguration of Connected Dominating Sets
	Abstract
	1 Introduction
	2 Preliminaries
	3 Hardness on Degenerate Graphs
	3.1 Reduction from Multicolored Clique to CCS-R
	3.2 Reduction from CCS-R to CDS-R

	4 Fixed-Parameter Tractability on Planar Graphs
	4.1 Domination Cores
	4.2 Reduction Rules

	5 Conclusion
	References

