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Abstract
We determine the maximum number of edges that a chordal graph G can have if its
degree, Δ(G), and its matching number, ν(G), are bounded. To do so, we show that
for every d, ν ∈ N, there exists a chordal graph G with Δ(G) < d and ν(G) < ν

whose number of edges matches the upper bound, while having a simple structure: G
is a disjoint union of cliques and stars.

Keywords Chordal graphs · Maximum number of edges · Matching number

1 Introduction

A problem that dates back to 1960 is to determine the maximum number of edges that
a graph can have if its maximum degree and matching number are each bounded. It is
important to note that this problem does not impose any constraint on the number of
vertices of the graph. Because of that, in general, if one of the two parameters is not
bounded, there is no upper bound on the number of edges that a graph can have. One
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can simply construct graphs formed by stars (trees that have only a single vertex of
degree greater than one) or single edges. A star with unbounded number of leaves has
matching number one but unbounded degree, while a graph that is a disjoint union of
an unbounded number of edges has bounded degree but unbounded matching number.
By Vizing’s Theorem, every graph can have its edge set partitioned into a family of
at most Δ(G) + 1 matchings, where Δ(G) denotes the degree of the graph G. Thus,
bounding both the maximum degree and the matching number is actually enough to
bound the number of edges that a graph can have. Chvátal and Hanson [7] gave a tight
upper bound on this value, in the case where no further restrictions are imposed to the
graphs considered. Later on, Balachandran and Khare [1] gave a constructive proof of
the same result, whichmade it possible to identify the structure of the graphs achieving
the given bound on the number of edges. Such graphs are called edge-extremal graphs.
In some cases, they contain induced subgraphs isomorphic to stars, as well as to cycles
of length four.

An interesting problem that arises from these results is to investigate how thenumber
of edges in the edge-extremal graphs is affected ifwe impose some additional structural
property on the graphs considered. More specifically, what happens if we restrict the
question to graph classes in which cycles of length four or stars are forbidden induced
subgraphs?Natural candidates for such graph classes are chordal graphs, that is, graphs
without induced cycles of length at least four, and claw-free graphs. In the past few
years, bounds for this problem have indeed been established for claw-free graphs in the
work of Dibek et al. [8]. Furthermore, the problem has been resolved on other graph
classes, such as bipartite graphs, split graphs, disjoint unions of split graphs and unit
interval graphs in the work of Måland [14]. However, on chordal graphs, the problem
had so far remained unresolved. Chordal graphs form an extremely well-studied graph
class, both from a structural and from an algorithmic point of view, with many and
various applications.

In this work, we determine the maximum number of edges that a chordal graph
can have, given the constraints on its maximum degree and matching number. Given
d, ν ∈ N, we denote byMchordal(d, ν) the set of chordal graphs such that Δ(G) < d
and ν(G) < ν. A graph in Mchordal(d, ν) achieving this maximum number of edges
is called an edge-extremal graph. In order to establish the upper bound on the number
of edges of an edge-extremal graph in Mchordal(d, ν) we show that, among them,
there is one that has a very simple structure: it is a disjoint union of cliques and stars
of a given size.

Theorem 1 There exists an edge-extremal graph in Mchordal(d, ν) that is a disjoint
union of cliques and stars.

Section 3 is entirely devoted to the proof of Theorem 1. Once the structure of this
special edge-extremal graph is known, we are able to establish the following upper
bound on the number of edges of a graph inMchordal(d, ν).
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Theorem 2 Given d, ν ∈ N, the maximum number of edges of a graph in
Mchordal(d, ν) is given by:

{
(d − 1)(ν − 1), if d is even

(d − 1)(ν − 1) + � d−1
2 �� ν−1

� d−1
2 � �, if d is odd

Moreover, a graph achieving this number of edges is

{
(ν − 1)K1,d−1, if d is even

rK1,d−1 + qKd , if d is odd,

where ν − 1 = q� d−1
2 � + r , with r ≥ 0.

We also show that this result is tight in the sense that the same bound does not
hold for any superclass of chordal graphs that is defined by a finite collection of
forbidden induced cycles. It is worth mentioning that this problem is related to the
famous problem of computing Ramsey numbers, the general case being equivalent to
determining Ramsey numbers for line graphs [2]. A preliminary version of this work
appeared in the proceedings of LATIN 2020 [3].

2 Preliminaries

The graphs considered are simple and undirected. We denote by VG and EG the
vertex set and edge set of G, respectively. Given x ∈ VG , we denote by NG(x) the
neighborhood of x , that is, the set of vertices that are adjacent to x . Two vertices x, y ∈
VG are true twins if NG(x) ∪ {x} = NG(y) ∪ {y}. Given x ∈ VG and X ⊆ VG \ {x},
we say x is universal to X if X ⊆ NG(x). For a set X ⊂ VG , NG(X) denotes the set of
vertices in VG \ X that have at least one neighbor in X . The degree of x is denoted by
degG(x) and is defined as |NG(x)|. The degree of a graph G is the maximum degree
of a vertex in G and it is denoted by Δ(G). A vertex x is a leaf of G if degG(x) = 1.

Given S ⊆ VG , the subgraph induced by S is denoted by G[S], and has S as its
vertex set and {uv | u, v ∈ S and uv ∈ EG} as its edge set. A clique is a set K ⊆ VG
such that G[K ] is a complete graph. A clique ismaximal if it is not properly contained
in another clique. An independent set is a set S such that G[S] has no edges. A vertex
v ∈ VG is a simplicial vertex if NG(v) is a clique. Given a set S ⊆ VG , we denote the
graph G[VG \ S] by G \ S. If S = {v}, we denote the graph G[VG \ {v}] simply by
G \ v. The set S is a separator if G \ S has a larger number of connected components
than G. Given a set F ⊆ EG , the subgraph induced by F is denoted by G[F], and has
the endpoints of the edges in F as its vertex set and F as its edge set.

A set M ⊆ EG is a matching if no two edges in M share a common vertex and
M is a perfect matching if every vertex of VG is the endpoint of an edge in M . The
matching number of G, denoted by ν(G), is the largest size of a matching in G. A
graph G is a factor-critical graph if for every v ∈ VG , G \ v has a perfect matching.
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Given a family H of graphs, we say that G is an H -free graph if G does not
contain an induced subgraph that is isomorphic to a graph in H . If H = {H}, we
say G is an H -free graph. A tree is a connected acyclic graph. A star is a tree with at
most one vertex that is not a leaf, and for k ∈ N, a k-star, denoted by K1,k , is a star
with k leaves. A graph is a complete graph on n vertices, denoted by Kn , if there is an
edge between every pair of its vertices. Given two graphs G and H , the disjoint union
of G and H , denoted by G + H is the graph with vertex set VG ∪ VH and edge set
EG ∪ EH . We denote by r H the graph that is the disjoint union of r copies of a graph
H . A graph G is a bipartite graph if VG can be partitioned into two independent sets.
A bipartite graph with bipartition (A, B) is a chain graph if there exists an ordering
v1v2 . . . vr of the vertices of A such that NG(vr ) ⊆ . . . ⊆ NG(v1). This property of
the vertices of A is called the nested neighborhood property. Bipartite chain graphs
are also known to be the bipartite 2K2-free graphs.

A graph is a chordal graph if it has no induced cycle of length at least four. Chordal
graphs constitute a widely studied graph class, with many different characterisations.
Given a graphG, a clique tree ofG is a treeT such that every vertex ofT is amaximal
clique of G and for every v ∈ V (G), Tv = {A ∈ VT | v ∈ A} induces a subtree of
T . The vertices of T are referred to as bags and denoted with capital letters. For
simplicity, we denote the set of vertices of G associated with a vertex of T with the
same capital letter. A characterisation of chordal graphs due to Gavril [11] states that
a graph is chordal if and only if it has a clique tree. One important property of clique
trees is that, if T is a clique tree of a chordal graph G and AB ∈ ET , then A ∩ B
is a separator for the graph G. Another important characterisation of chordal graphs
is concerned with vertex orderings and simplicial vertices. An ordering v1v2 . . . vn of
the vertices of G is a perfect elimination ordering for G if for every i , the vertex vi
is simplicial in the graph G[{vi+1, . . . , vn}]. A characterisation of chordal graphs due
to Fulkerson and Gross [10] states that a graph is chordal if and only if it has a perfect
elimination ordering. See [4] for an overview of the properties of chordal graphs and
clique trees.

Given two integers d and ν and a graph class C , we denote byMC (d, ν) the set of
all graphs G in C such that Δ(G) < d and ν(G) < ν. A graph in MC (d, ν) that has
themaximum number of edges is called an edge-extremal graph. When the graph class
considered is the class of all graphs, we write simplyM (d, ν). The following lemma
establishes a connection between edge-extremal graphs and factor-critical graphs in
some graph classes. Even though the statement we present here is different from the
one stated in [1], the proof in [1] suffices to prove the result as stated below.

Lemma 1 ([1]) Let C be a graph class that is closed under vertex deletion and closed
under taking disjoint union with stars. Let G be an edge-extremal graph inMC (d, ν)

with maximum number of connected components that are (d − 1)-stars. Then every
connected component of G that is not a (d − 1)-star is factor-critical.

The following statement gives a summary of the results obtained by Balachandran
and Khare [1].

Theorem 3 ([1])Given d, ν ∈ N, themaximumnumber of edges of a graph inM (d, ν)

is given by (d − 1)(ν − 1)+� d−1
2 �� ν−1

� d−1
2 � �. Moreover, a graph achieving this number
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of edges is

{
r K1,d−1 + qK ′

d , if d is even

rK1,d−1 + qKd , if d is odd,

where ν − 1 = q� d−1
2 � + r , with r ≥ 0, and K ′

d is the graph obtained from Kd by the
removal of the edges of a perfect matching and addition of a new vertex adjacent to
d − 1 vertices.

In Sect. 3, we show the corresponding bounds forMchordal(d, ν) and obtain graphs
that achieve these bounds. We remark that, in Theorem 3, the graph r K1,d−1 + qKd ,
obtained when d is odd, is already a chordal graph. Thus, for odd d, the edge-extremal
chordal graphs have the same number of edges as the edge-extremal general graphs.
Our proof, however, does not rely on this fact and has a unified approach, that works
regardless of the parity of d.

3 Chordal Graphs

In this section we present our main result. The strategy to determine the maximum
number of edges that a graph in Mchordal(d, ν) can have is to show that among the
edge-extremal graphs inMchordal(d, ν), there is one that has a very simple structure:
it is a disjoint union of cliques and stars of a given size.

Theorem 1 (restated) There exists an edge-extremal graph in Mchordal(d, ν) that is
a disjoint union of cliques and stars.

Proof (Overview). The proof is by contradiction.We start with an edge-extremal graph
of Mchordal(d, ν) that is, in some sense, closest to being a disjoint union of cliques
and stars. From that, we will perform a series of modifications in the graph in order
to obtain another graph of Mchordal(d, ν) that has at least as many edges as the one
we started with, but that is closer to being a disjoint union of cliques and stars, which
will be a contradiction with our initial choice. To perform the modifications, we will
consider a specific clique tree of our edge-extremal graph and exploit the structure of
this graph around one of its cliques, given by a carefully chosen node of the tree. A
crucial part of the proof is to ensure that, after each modification, the obtained graph
still belongs to Mchordal(d, ν). In this vein, Lemmas 3 and 4 will precisely show
that the two modifications we describe can indeed be performed without disrupting
membership in Mchordal(d, ν). In this way, we obtain a new edge-extremal graph
that, as a result, has several structural properties that will be exploited to conclude the
proof.

Proof of Theorem 1 Assume for a contradiction that there is no edge-extremal graph in
Mchordal(d, ν) that is a disjoint union of cliques and stars. LetW be an edge-extremal
graph in Mchordal(d, ν) with maximum number of (d − 1)-stars and subject to that,
with maximum number of connected components. Let W ′ be a connected component
of W that is not a clique nor a star and let ν1 = ν(W ′) + 1. By Lemma 1, W ′ is a
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factor-critical graph and therefore |VW ′ | = 2ν1 − 1. Note that W ′ ∈ Mchordal(d, ν1)

and, in fact, W ′ is edge-extremal inMchordal(d, ν1). Indeed, if this was not the case,
we would be able to obtain a graph in Mchordal(d, ν) with more edges than W by
replacing the connected componentW ′ by an edge-extremal graph ofMchordal(d, ν1).
Among all the edge-extremal graphs inMchordal(d, ν1)with 2ν1−1 vertices, letG be
the one that has a clique tree with minimum number of leaves. Note that, in particular,
G is connected, by the maximality of the number of connected components of the
graph W .

LetT be a clique tree of G achieving the minimum number of leaves. We consider
T rooted in an arbitrary bag R. Let X be a node of T . We denote by TX the subtree
of T rooted at the node X . We define a subgraph GX associated with each node X of
T in the following way. If X = R, then GX = G. Otherwise, let S be the separator
of G given by the intersection between X and its parent in T and let VTX be the set
of vertices appearing in the bags of TX . The subgraph GX associated with the node
X is given by G[VTX \ S]. Observe that if X is a leaf of T , then GX is a complete
graph. Let B be a bottommost bag in T such that GB is not a complete graph. Note
that such a node indeed exists since G is not a complete graph itself. Let B1, …, Bk be
the children of B in T and let Si = B ∩ Bi . Note that, by our choice of B, the graph
GBi = G[VTBi \ Si ] is a complete graph for every i . For simplicity, from now on we
denote Ci = VTBi \ Si and hence GBi = G[Ci ].

We start with the following two observations stating how the vertices of Ci are
connected to those of B and what is the structure of the tree TBi .

Observation 1 For every i , the subgraph of G induced by the edges Ei = {xy | x ∈
Si and y ∈ Ci } is a chain graph.

Proof Note that (Si ,Ci ) constitutes a partition of VTBi , thusG[Ei ] is a bipartite graph.
Suppose for a contradiction that there exists an induced 2K2 in G[Ei ] with vertex set
{x1, y1, x2, y2}, with x1, x2 ∈ Si and y1, y2 ∈ Ci . Since Si and Ci are cliques in G,
the vertices x1, y1, x2 and y2 would form an induced C4 in G, a contradiction with
the fact that G is chordal. Therefore G[Ei ] is indeed bipartite and 2K2-free, that is, a
chain graph. 
�
Observation 2 For every i , the subtree TBi is a path.

Proof SinceG[VTBi ] is a chordal graph, by Observation 1, the bipartite graph obtained
from G[VTBi ] by deleting the edges inside Si and Ci is a chain graph. Because of the
nested neighborhood property of chain graphs, G[VTBi ] has a clique tree that is a path.
Since T was chosen with minimum number of leaves, the subtree TBi is a path, for
every i . 
�

In what follows, we want to modify the graphG in such a way to obtain a graph that
is still chordal, has the same number of vertices as G and belongs toMchordal(d, ν1),
but either has more edges than G, or is disconnected, or has a clique tree with fewer
leaves. Either one of these outcomeswill contradict the choice ofG. Themodifications
to be performed in G will consist in the addition and removal of edges, as well as of
vertices. After each modification, one crucial part of the proof is to ensure that the
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matching number of the obtained graph is still strictly less than ν1. This will follow
from the fact that G has 2ν1 − 1 vertices. Therefore, the addition of edges to G does
not lead to a graph with matching number greater or equal to ν1. Moreover, for any
k ∈ N, the same holds for the simultaneous removal of k vertices from such a graph
followed by simultaneous addition of k newvertices.We formalize this in the following
observation for later reference.

Observation 3 Let H be any graph on 2ν1 − 1 vertices. Then any modification that
preserves the number of vertices of H cannot lead to a graph with matching number
at least ν1.

For every v ∈ B, let fG(v, i) denote the number of neighbors that vertex v has
in the clique Ci , that is, fG(v, i) = |NG(v) ∩ Ci |. Note that if fG(v, i) > 0,
then v ∈ Si . Let ui,1, . . . , ui,|Ci | be an ordering of the vertices of Ci such that
degG(ui,1) ≥ degG(ui,2) ≥ . . . ≥ degG(ui,|Ci |). Since G[Ei ] is a chain graph
by Observation 1, we may assume that for every v ∈ B with fG(v, i) > 0,
NG(v) ∩ Ci = {ui,1, . . . , ui, fG (v,i)}.

We first state and prove the following lemma that can be understood as the converse
of Observation 1 and that will be useful throughout the paper to show that a graph is
chordal.

Lemma 2 Let H be any graph and B,C1, . . . ,Ck be cliques of H such that

– NH (Ci ) ⊆ B, for every 1 ≤ i ≤ k;
– H [VH \ (∪k

i=1Ci )] is a chordal graph.
If the subgraph Gi of H induced by the edges Ei = {xy | x ∈ B and y ∈ Ci } is a
chain graph for every 1 ≤ i ≤ k, then H is a chordal graph.

Proof Since Gi is a chain graph and degG(ui,1) ≥ degG(ui,2) ≥ . . . ≥ degG(ui,|Ci |),
we conclude that NGi (ui,|Ci |) ⊆ NGi (ui,|Ci |−1) ⊆ . . . ⊆ NGi (ui,1). We will show
how to construct a perfect elimination ordering for the graph H . Note that for every
1 ≤ i ≤ k, the vertex ui,|Ci | is simplicial in H . Moreover, for every i ≤ k and every
j ≤ |Ci |, the vertex ui, j is simplicial in H [VH \ {ui, j+1, . . . , ui,|Ci |}]. Indeed, since
Ei is a chain graph, the set {ui,1, . . . , ui, j }∪ (B ∩ NH (ui, j )) is a clique. Finally, since
H [VH \ (∪k

i=1Ci )] is a chordal graph, it has a perfect elimination ordering σ ′ of its
vertices. Let σi = ui,|Ci | . . . ui,1. Then σ1σ2 . . . σkσ

′ is a perfect elimination ordering
for H , which concludes the proof that H is chordal. 
�

Weare now ready to state the twomodifications thatwill be used repeatedly through-
out the proof of Theorem 1.

Modification 1 Let B,C1, . . . ,Ck be subsets of the vertex set of the chordal graph G
as previously described and let v ∈ B. For 1 ≤ i ≤ k, if 0 < fG(v, i) < |Ci | and v

has a neighbor that does not belong to G[VTB ], we do the following (see Fig. 1a):

(i) Add an edge between v and the vertex ui, fG (v,i)+1;
(ii) Delete the edge from v to one of its neighbors outside G[VTB ]. This neighbor is

chosen in the following way: consider the subtree Tv of T formed by the bags
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that contain the vertex v. Let L be a leaf of Tv that is not in the subtree rooted in
B. Such a leaf exists since v has a neighbor outside G[VTB ]. Let L ′ be the bag
that is adjacent to L in Tv . Since L � L ′, there exists u ∈ L \ L ′. Let u be the
chosen neighbor of v and delete the edge uv.

Lemma 3 Modification 1 preserves both membership inMchordal(d, ν1) and number
of edges.

Proof Let G ′ be the graph obtained with the application of Modification 1. First, note
that since the edges between B andCi induce a chain graph, v ∈ NG(ui, fG (v,i)) and v /∈
NG(ui, fG (v,i)+1),we have that NG(ui, fG (v,i)+1) ⊂ NG(ui, fG (v,i)). Therefore, inG ′ we
have NG ′(ui, fG (v,i)+1) ⊆ NG ′(ui, fG (v,i)), which implies that the addition of the edge
vui, fG (v,i)+1 preserves the nested neighborhood property in the bipartite graph induced
by the edges between B andCi . Thus, by Lemma 2 and sinceG is chordal, the addition
of this edge does not disrupt membership in the class of chordal graphs. Therefore, to
show that G ′ is chordal it suffices to show that the removal of the edge uv preserves
chordality. We do so by providing a clique tree to G − uv. This clique tree is obtained
from T as follows. Let L ′′ = L \ {u}. If L ′′ �= L ′, add L ′′ between L and L ′ in the
treeT and delete v from L . If L ′′ = L ′, just delete v from L inT . Also, note that this
operation does not change the number of leaves inT . Hence, we obtain that the graph
G ′ is chordal.Note that the degree of v does not changewith thismodification. The only
vertexwhosedegreewas increasedbyModification1 isui, fG (v,i)+1.However, note that
since NG ′(ui, fG (v,i)+1) ⊂ NG ′(ui, fG (v,i)) and degG ′(ui, fG (v,i)) = degG(ui, fG (v,i)) <

d, we have that degG ′(ui, fG (v,i)+1) < d. This shows that Modification 1 does not
increase themaximum degree of the graph. SinceModification 1 preserves the number
of vertices and |VG | = 2ν1 − 1, by Observation 3, it does not lead to a graph with
matching number greater or equal to ν1. We conclude the proof by observing that
|EG ′ | = |EG |, since exactly one edge was deleted and exactly one edge was added by
this modification. 
�

Modification 2 Let B,C1, . . . ,Ck be subsets of the vertex set of the chordal graph G
as previously described and let v ∈ B. For 1 ≤ i ≤ k, if 0 < fG(v, i) < |Ci | and
fG(v, j) > 0 for some j > i , we do the following (see Fig. 1b):

(i) Delete the edge vu j, fG (v, j);
(ii) Add the edge vui, fG (v,i)+1.

Lemma 4 Modification 2 preserves both membership inMchordal(d, ν1) and number
of edges.

Proof Let G ′ be the graph obtained after the application of Modification 2. The
only vertex that had its degree increased by this modification is ui, fG (v,i)+1. How-
ever, as in the proof of Lemma 3, since vui, fG (v,i) ∈ EG and vui, fG (v,i)+1 /∈ EG ,
we have that degG(ui, fG (v,i)+1) < degG(ui, fG (v,i)). Thus, degG ′(ui, fG (v,i)+1) ≤
degG ′(ui, fG (v,i)) = degG(ui, fG (v,i)) < d, implying that Δ(G ′) < d. Moreover, again
since Modification 2 preserves the number of vertices and |VG | = 2ν1 − 1, by Obser-
vation 3, it does not lead to a graph with matching number greater or equal to ν1. It
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(a)

(b)

Fig. 1 The dotted lines between two vertices indicate non-edges

is also easy to see that |EG ′ | = |EG |, since exactly one edge was deleted in step (i)
and exactly one edge was added to the graph in step (ii). It remains to show that the
obtained graph is still chordal. Indeed, note that the deletion of the edge vu j, fG (v, j)

(resp. addition of the edge vui, fG (v,i)+1) preserves the nested neighborhood property
in the bipartite graph induced by the edges between B and C j (resp. Ci ). Thus, by
Lemma 2, the graph G ′ is a chordal graph. 
�

Recall that our graph G is an edge-extremal graph inMchordal(d, ν1), and that the
graph obtained from W by replacing the connected component W ′ by G is also an
edge-extremal graph inMchordal(d, ν) with maximum number of connected compo-
nents. For simplicity of notation, we call this graph W again. Let G∗ be the graph
obtained from G by exhaustive applications of Modification 2 followed by exhaustive
applications of Modification 1. It follows immediately from Lemmas 3 and 4 that
G∗ ∈ Mchordal(d, ν1) and that G∗ is edge-extremal in this set. Moreover, if the graph
obtained after the application of any modification is disconnected, we reach a contra-
diction with the maximality of the number of components of W . Therefore, we can
assumeG∗ is connected. The following lemma describes the major structural property
of G∗ that will be exploited in the remainder of the proof.

Lemma 5 Let G∗ be the graph obtained from G by exhaustive applications of Mod-
ification 2 followed by exhaustive applications of Modification 1. Then, for every
v ∈ VG∗ ∩ B and every i , if v has at least one neighbor in Ci , one of the following
conditions hold:

(a) Ci ⊆ NG∗(v);
(b) degG∗(v) = Δ(G∗) and NG∗(v) ⊆ B ∪ C1 ∪ . . . ∪ Ci .

Proof First, let G ′ be the graph obtained from G by exhaustive applications of Modi-
fication 2. Since this modification can no longer be applied, then for every v ∈ B
and every i such that fG ′(v, i) > 0, we have that either fG ′(v, i) = |Ci | or
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fG ′(v, j) = 0 for every j > i . Thus, for every v ∈ B, there exists at most one
index � such that 0 < fG ′(v, �) < |C�|. Now we apply Modification 1 exhaustively
to G ′ and obtain the graph G∗. Recall that fG ′(v, i) = |NG ′(v) ∩ Ci |. Observe that,
for every v ∈ B, if fG ′(v, i) = 0, then fG∗(v, i) = 0 and if fG ′(v, i) = |Ci |, then
fG∗(v, i) = |Ci |. Indeed, Modification 1 is only applied to a vertex v ∈ B and index
i if 0 < fG ′(v, i) < |Ci | and, when applied, it does not change fG ′(v, j) for j �= i .
Furthermore, since Modification 1 can no longer be applied, if a vertex v is such that
0 < fG∗(v, i) < |Ci |, then v has no neighbors outside B∪C1∪. . .∪Ci . That is, if con-
dition (a) does not hold, then NG∗(v) ⊆ B∪C1∪. . .∪Ci . It remains to show that, in this
case, degG∗(v) = Δ(G∗). To see this, first note that by Lemmas 3 and 4, we have that
|EG∗ | = |EG | and that G∗ ∈ Mchordal(d, ν1), thus G∗ is an edge-extremal graph in
Mchordal(d, ν1). If degG∗(v) < Δ(G∗), we can add toG∗ the edge vui, fG∗ (v,i)+1. The
addition of this edge does not change the maximum degree of G∗ since degG∗(v) <

Δ(G∗) by assumption, and dG∗(ui, fG∗ (v,i)+1) ≤ dG∗(ui, fG∗ (v,i)) < Δ(G∗). More-
over, by Lemma 2, the addition of this edge preserves chordality, and together with
Observation 3, we conclude that it preserves membership in Mchordal(d, ν1). How-
ever, the obtained graph has more edges than G∗, a contradiction. This shows that
degG∗(v) = Δ(G∗) and concludes the proof of Lemma 5. 
�

Since the graph G∗ is such that Δ(G∗) < d and |EG∗ | = |EG |, we can replace
the connected component G in our edge-extremal graph W by G∗. This replacement
will be convenient since Lemma 5 provides useful information on the structure of G∗.
More concretely, in the rest of the proof we shall assume that B,C1, . . . ,Ck satisfy
the conclusion of Lemma 5.

Let b be the size of the clique B, let Δ = Δ(G∗) and recall that Si is the separator
between the bag Bi and B and S is the separator between the bag B and its parent in
T . We are now going to conclude the proof of Theorem 1 with a case analysis.
Case 1. There exists i such that |Ci | + b ≤ Δ + 1.

Case 1.1. k ≥ 2.
We may assume, without loss of generality, that |C1| ≤ |C2| ≤ . . . ≤ |Ck |. In

particular, this implies that |C1| + b ≤ Δ + 1. We will show that, in this case, all
the vertices of C1 are adjacent to all the vertices of S1 ∪ . . . ∪ Sk . This will lead
to a contradiction with the number of leaves of the clique tree of G. Suppose for a
contradiction that there exists v ∈ S1∪ . . .∪ Sk that is not universal toC1. This implies
that fG∗(v, 1) < |C1|.

We will show that the graph G∗ can be modified in order to obtain another edge-
extremal graph, also in Mchordal(d, ν1), in which v is adjacent to every vertex of
C1.

First, note that it cannot be the case that fG∗(v, 1) > 0, since by Lemma 5, if
0 < fG∗(v, 1) < |C1|, then v has maximum degree and has no neighbors outside
B ∪C1. However, this is a contradiction, since |C1| + b ≤ Δ + 1. Thus, we conclude
that fG∗(v, 1) = 0.

In what follows, we will modify the graphG∗ and the deletion of some edges might
disrupt the membership in the class of chordal graphs. In these cases, we will use the
following modification in order to restore it.
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Modification 3 Let H be any graph satisfying the conditions of Lemma 2. We do the
following:

(i) Delete from H all the edges xy such that x ∈ B and y ∈ Ci for some i ;
(ii) For each v ∈ B and each 1 ≤ i ≤ k, if fH (v, i) > 0, add the edges between v

and the vertices ui,1, . . . , ui, fH (v,i).

Lemma 6 Modification 3 preserves membership in the class of chordal graphs and
number of edges.

Proof Let H ′ be the graph obtained from H by Modification 3. We show that, for
every 1 ≤ i ≤ k, H ′[Ei ] is a chain graph, where Ei = {xy | x ∈ B and y ∈ Ci }.
It will then follow from Lemma 2 that H ′ is chordal. Suppose this is not the case, and
let v,w ∈ B and ui, j , ui,� ∈ Ci , with j < �, be such that {v,w, ui, j , ui,�} induces a
2K2 in H ′[Ei ] with edges vui, j and wui,�. However, since j < �, the edge wui, j was
also added in step (ii), a contradiction. Finally, it is easy to see that |EH ′ | = |EH |,
since the degrees of the vertices in B remain unchanged. 
�

We now modify G∗ as follows. Let j be the largest index for which fG∗(v, j) > 0.
If fG∗(v, j) = |C j |, since |C1| ≤ |C j |, we can delete |C1| edges between v and C j

and add all the edges between v and C1. We then apply Modification 3 to the obtained
graph in order to obtain a graph that, byLemma6, is chordal. Note that the only vertices
whose degree has increased are the ones in C1. However, since |C1| + b ≤ Δ + 1, we
conclude that the maximum degree of G∗ did not increase.

If fG∗(v, j) < |C j |, then, by Lemma 5, v has maximum degree and has no neigh-
bors outside B ∪C1 ∪ . . . ∪C j . Furthermore, recall that fG∗(v, 1) = 0, which means
that v has no neighbors in C1. Since |B| = b and v ∈ B, we have that v has exactly
Δ− b+ 1 neighbors in C2 ∪ . . .∪C j . Therefore

∑ j
�=2 fG∗(v, �) = Δ− b+ 1. Since

|C1| ≤ Δ − b+ 1 by assumption, we can delete |C1| edges between v and vertices of
C2 ∪ . . . ∪C j and add all the edges between v and C1. We then apply Modification 3
to the obtained graph in order to obtain a graph that, by Lemma 6, is chordal. Again,
the only vertices whose degree has increased in this process are the ones fromC1, thus
we conclude the obtained graph still has degree at most Δ.

Finally note that in both cases, the modifications do not change the number of
edges of G∗, since

∑k
�=1 fG∗(v, �) remains the same. They also preserve the number

of vertices ofG∗, which has 2ν1−1 vertices. Thus by Observation 3, the modifications
lead to a graph with matching number still strictly smaller than ν1. Moreover, in this
obtained graph, v is adjacent to all the vertices of C1. We perform this change for
every v ∈ S1 ∪ . . . ∪ Sk such that fG∗(v, 1) > 0 and obtain a new edge-extremal
graph inMchordal(d, ν1) such that all the vertices of C1 are adjacent to all the vertices
of S1 ∪ . . . ∪ Sk . Recall that among all the edge-extremal graphs in Mchordal(d, ν1)

with 2ν1 − 1 vertices, G was the one that had a clique tree with minimum number
of leaves. This new graph, however, has a clique tree that has fewer leaves than the
clique treeT of G. This is because the clique C1 ∪ S1 ∪ . . .∪ Sk is contained in B and
contains the intersection between B and each child of B (see Fig. 2). This contradicts
the minimality of the number of leaves of T .

Case 1.2. k = 1.
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Fig. 2 To the left, the clique tree T and to the right, a clique tree of the updated graph G∗ that has fewer
leaves than T

SinceGB is not a clique by assumption, there exists v ∈ VGB \S that is not universal
to C1 in G∗. If fG∗(v, 1) > 0 then v ∈ S1. In this case, by Lemma 5, v has maximum
degree and no neighbors outside B ∪C1. Hence, degG∗(v) ≤ b− 1+ |C1| − 1, which
implies that Δ ≤ b + |C1| − 2. This is a contradiction with the assumption of Case 1
that |C1| + b ≤ Δ + 1.

If fG∗(v, 1) = 0, then v is a simplicial vertex inG∗. Since v ∈ B, degG∗(v) = b−1.
By the assumption of Case 1, b−1+|C1| ≤ Δ. Thus, we can add all the edges between
v and the vertices of C1 and obtain a graph whose maximum degree is still at most
Δ. Moreover, by Observation 3 the matching number of the obtained graph is still
less than ν1. Finally, since v is now adjacent to all vertices of C1, the bipartite graph
induced by the edges between B and C1 is a chain graph, and hence, by Lemma 2, the
obtained graph is chordal. Thus, this graph belongs to Mchordal(d, ν1) and has more
edges than G∗, a contradiction.
Case 2. For every i , |Ci | + b > Δ + 1.

Let v ∈ S1 ∪ . . . ∪ Sk . Let av be the smallest index such that fG∗(v, av) > 0. Note
that v cannot be universal to Cav in G∗, since by assumption |Cav | + b > Δ + 1.
By Lemma 5, degG∗(v) = Δ and NG∗(v) ⊆ B ∪ Cav . This implies that for every
v ∈ S1 ∪ . . . ∪ Sk , there exists a unique index av such that fG∗(v, av) > 0. That
is, for any j �= av , fG∗(v, j) = 0, and thus Si ∩ S j = ∅ if i �= j . Also, since
NG∗(v) ⊆ B ∪ Cav and v has degree Δ, we have that fG∗(v, av) = Δ − b + 1. That
is, if av = au , then u and v are true twins in G∗. Moreover, for any 1 ≤ i < j ≤ k,
|NG∗(Si ) ∩ Ci | = |NG∗(S j ) ∩ C j |. Let S be the separator between B and its parent
in the clique tree T . Since for every v ∈ S1 ∪ . . . ∪ Sk , NG∗(v) ⊆ B ∪Cav , we know
that S ∩ Si = ∅, for every i . Also, since the graph G∗ is connected, S �= ∅. See Fig. 3.

Let u ∈ NG∗(Si ) ∩ Ci . Suppose for a contradiction that degG∗(u) < Δ. Let G1 be
the graph obtained from G∗ by the deletion of one vertex of S and addition of a new
vertex w in Si , such that NG1 [w] = B ∪ (N (Si ) ∩ Ci ).

Claim 1 G1 is chordal, |EG1 | ≥ |EG∗ | and Δ(G1) = Δ(G∗).

Proof Note that w is a true twin of the vertices in Si , and since the vertices of Si
have maximum degree, it holds that degG1

(w) = Δ and hence the graph G1 has
at least as many edges as G∗. The only vertices whose degree has increased after
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Fig. 3 Graph G∗ in case 2. Thick lines indicate all possible edges between the sets. Gray text indicates the
cardinality of the vertex set. Note that every vertex of Ci that does not belong to NG∗ (Si ) is a simplicial
vertex of G∗

this modification are those belonging to NG1(Si ) ∩ Ci . However, note that if x ∈
NG1(Si ) ∩ Ci , then degG1

(x) = degG∗(x) + 1. Since degG∗(x) < Δ by assumption,
we have that degG1

(x) ≤ Δ(G∗) and thus Δ(G1) = Δ(G). To see that G1 is chordal,
it suffices to notice that the class of chordal graphs is closed under vertex deletion and
under the addition of true twins. 
�

If G1 is disconnected or has more edges than G∗, we have a contradiction. We
repeat the above modification until either the graph obtained is disconnected, that is,
until S = ∅, or until for every i , the degree of the vertices in NG1(Si )∩Ci isΔ. LetG2
be the graph obtained after exhaustive application of the above modification. If G2 is
disconnected, we have a contradiction with themaximality of the number of connected
components of our initial edge-extremal graph. Otherwise, by Claim 1, we have that
G2 is chordal, |EG2 | ≥ |EG∗ | and Δ(G2) = Δ(G∗). Moreover, by Observation 3,
ν(G2) < ν1. Therefore, we can now replace G∗ by G2 in our edge-extremal graph
W . Note that G2 is such that:

1. For every 1 ≤ i < j ≤ k, Si ∩ S j = ∅;
2. For every 1 ≤ i ≤ k, the vertices of Si and of NG2(Si ) ∩ Ci have degree Δ and

|NG2(Si ) ∩ Ci | = Δ − b + 1.

Case 2.1. k ≥ 2.
Let yi be the number of simplicial vertices in the clique Ci . Assume without loss

of generality that y1 ≥ y2. We perform the following modifications in the graph G2:
deletion of one simplicial vertex from C2 and one vertex from S1 and addition of one
vertex to S2 and one simplicial vertex to C1. Note that, after this modification, the
only vertices that had their degree changed are the simplicial vertices from C1 and C2.
Since these simplicial vertices did not have maximum degree before, the degree of the
obtained graph does not exceed the degree of G2. Note that y2 − 1+ Δ − b + 1+ Δ

edges were removed by the deletion of the two vertices and y1 + Δ − b+ 1+ Δ were
added by the addition of the other two vertices. However, since y1 ≥ y2, we have that
the obtained graph has strictly more edges than G2, which is a contradiction.

Case 2.2. k = 1.
Since all vertices in S1 and in NG2(S1)∩C1 have maximum degree, we can perform

the following modification in G2: delete all vertices of S1 and add |S1| vertices to
NG2(S1) ∩ C1. The graph obtained after this modification has the same number of
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edges as G2, since |S1| vertices of degree Δ were removed and the same amount of
verticeswith the same degreewas added. However, the obtained graph is disconnected,
which is a contradiction with the maximality of the number of connected components
of the edge-extremal graph W .

This concludes the proof of Theorem 1. 
�
By Theorem 1, we know that there is an edge-extremal graph in Mchordal(d, ν)

that is a disjoint union of cliques and stars. The next lemma gives a tight upper bound
on the number of edges of such an edge-extremal graph when d is even.

Lemma 7 Let G be a graph in Mchordal(d, ν) that is a disjoint union of cliques and
stars. If d is even, then |EG | ≤ (d − 1)(ν − 1).

Proof LetG be a graph such thatΔ(G) ≤ d−1 and ν(G) ≤ ν−1 and that is a disjoint
union of cliques and stars. We proceed by induction in k, the number of connected
components of G. If k = 1 and G is a star, then Δ(G) ≤ d − 1 and |EG | ≤ d − 1. If
G is a clique, then |VG | ≤ d. If |VG | = d, thenΔ(G) = d −1 and ν(G) = d

2 , since G

is even. Then |EG | = (|VG |
2

) = d(d−1)
2 = Δ(G)ν(G) ≤ (d − 1)(ν − 1). Now assume

|VG | ≤ d − 1. Since G is a clique, ν(G) ≥ |VG |−1
2 . Hence, |EG | = |VG |(|VG |−1)

2 ≤
(d − 1)ν(G) ≤ (d − 1)(ν − 1).

Let G be a disjoint union of cliques and stars with k > 1 connected components.
Let H be a component of G and G ′ be the graph obtained from G by the removal
of the vertices of H . Then Δ(G ′) ≤ Δ(G) and by the induction hypothesis, |EG ′ | ≤
Δ(G ′)ν(G ′). If H is a star, then ν(G ′) = ν(G)− 1 and |EG | ≤ |EG ′ | +Δ(G), which
implies that |EG | ≤ Δ(G)ν(G) ≤ (d − 1)(ν − 1).

If H is a clique, we have that |EG | = |EG ′ | + (|VH |
2

) ≤ Δ(G ′)ν(G ′) + (|VH |
2

)
.

If |VH | = d, then ν(H) = d
2 , since d is even, and ν(G ′) = ν(G) − d

2 . Hence,

|EG | ≤ Δ(G)(ν(G) − d
2 ) + (d

2

) ≤ (d − 1)(ν − 1). Now assume that |VH | ≤ d − 1.

Since G is a clique, ν(H) ≥ |VH |−1
2 and thus ν(G ′) ≤ ν(G) − |VH |−1

2 . Hence |EG | ≤
Δ(G ′)ν(G ′) + (|VH |

2

) ≤ Δ(G)(ν(G) − |VH |−1
2 ) + (|VH |

2

)
. And since |VH | ≤ d − 1, we

conclude that |EG | ≤ (d − 1)(ν − 1). 
�
By Theorem 3, we already know the maximum number of edges that a graph that

is a disjoint union of cliques and stars can have when d is odd. From Theorem 1 and
Lemma 7, we obtain our main result, Theorem 2 (see page 2), which establishes the
upper bound on the number of edges that a chordal graph ofMchordal(d, ν) can have
and shows that the obtained bound is tight.

4 Final Remarks and Open Problems

In this work, we determined the maximum number of edges that a chordal graph
can have if its maximum degree and matching number are bounded. We also exhibit
examples of graphs achieving this bound.

An interesting question that remains open comes from the fact that the graph K ′
i

used in Theorem 3 has an inducedC4. For each d and ν, what is the maximum number
of edges of a graph in MC4- f ree(d, ν)? We point out that the bound on the number
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Fig. 4 A C4-free graph with
Δ = 3, ν = 5 and |E | = 16

of edges for chordal graphs does not hold for C4-free graphs, as can be seen by the
graph P , obtained from the famous Petersen graph by the subdivision of one edge
(see Fig. 4). We have that Δ(P) = 3, ν(P) = 5 and |EP | = 16. The bound given by
Theorem 1 when d = 4 and ν = 6 is 15. This idea can be further generalized to create
examples in the class of H -free graphs, where H is any finite collection of cycles.
Indeed, let r be the size of a largest cycle of H . A result due to Kochol [13] about
snarks implies that for any r ≥ 5 there exists an infinite family of 3-regular graphs of
girth r that have a perfect matching. Let G be one such graph and let H be the graph
obtained from G by the subdivision of one edge. The graph H is clearlyH -free and
is such that Δ(H) = 3, ν(H) = ν(G) and |EH | = 3ν(H) + 1, while the bound given
by Theorem 1 when d = 4 and ν = ν(H) + 1 is 3ν(H).

Another related open problemmentioned in [8] is to determine the maximum num-
ber of edges that an arbitrary connected graph can have if its degree and matching
number are bounded. We remark that the problem is open even for connected chordal
graphs. In this case, we observe that the edge-extremal graph described in Theorem 1
can be turned into a connected graph by identifying two leaves of distinct components.
This shows that the maximum number of edges does not change when the connectivity
contraint is imposed to chordal graphs and d is even. However, this is not the case
when d is odd. In particular, as shown in [1], if ν − 1 divides d−1

2 , the edge-extremal
graphs described in Theorem 3 are unique and thus, the connectivity contraint will
definitely result in a decrease in the maximum number of edges.

It is also interesting to point out that, as brieflyhinted in the introduction, the problem
of determining the maximum number of edges a graph can have under constraints on
its degree and matching number is related to that of edge coloring graphs. An edge
coloring of a graph is a partition of its edge set into disjoint matchings (also referred
to as color classes). By Vizing’s Theorem, a graph can always be edge colored with
Δ(G) + 1 colors. However, the problem of deciding whether Δ(G) colors suffice
is NP-complete [12]. There are very few known sufficient conditions to guarantee a
graph cannot be edge colored with Δ(G) colors. The most famous (and simple) of
them is to test whether the graph has too many edges, that is, if |EG | > Δ(G)� |VG |

2 �.
A graph whose number of edges satisfy this inequality is called overfull. In particular,
if a graph has a vertex v of maximum degree such that G[NG [v]] is overfull, then this
graph is called neighborhood overfull and cannot be edge colored with Δ(G) colors
either. The complexity of the edge coloring problem restricted to chordal graphs has
remained open for many years, despite numerous efforts towards a solution (see, e.g.,
[5, 6, 9]). In particular, Figueiredo et al. [9] conjectured that a chordal graph is edge
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colorable with Δ(G) colors if and only if it is not subgraph overfull. The bound on
the number of edges we provide in Theorem 1 implies that no chordal graph of odd
maximum degree is subgraph overfull. Hence, if the conjecture of Figueiredo et al.
holds, every such graph can be edge colored with Δ(G) colors. So far, this has only
been confirmed for split graphs of odd maximum degree [6]. The same question for
chordal graphs remains an interesting open problem to be solved.
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