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Abstract

We determine the maximum number of edges that a chordal graph G can have if its
degree, A(G), and its matching number, v(G), are bounded. To do so, we show that
for every d, v € N, there exists a chordal graph G with A(G) < d and v(G) < v
whose number of edges matches the upper bound, while having a simple structure: G
is a disjoint union of cliques and stars.

Keywords Chordal graphs - Maximum number of edges - Matching number

1 Introduction

A problem that dates back to 1960 is to determine the maximum number of edges that
a graph can have if its maximum degree and matching number are each bounded. It is
important to note that this problem does not impose any constraint on the number of
vertices of the graph. Because of that, in general, if one of the two parameters is not
bounded, there is no upper bound on the number of edges that a graph can have. One
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can simply construct graphs formed by stars (trees that have only a single vertex of
degree greater than one) or single edges. A star with unbounded number of leaves has
matching number one but unbounded degree, while a graph that is a disjoint union of
an unbounded number of edges has bounded degree but unbounded matching number.
By Vizing’s Theorem, every graph can have its edge set partitioned into a family of
at most A(G) + 1 matchings, where A(G) denotes the degree of the graph G. Thus,
bounding both the maximum degree and the matching number is actually enough to
bound the number of edges that a graph can have. Chvétal and Hanson [7] gave a tight
upper bound on this value, in the case where no further restrictions are imposed to the
graphs considered. Later on, Balachandran and Khare [1] gave a constructive proof of
the same result, which made it possible to identify the structure of the graphs achieving
the given bound on the number of edges. Such graphs are called edge-extremal graphs.
In some cases, they contain induced subgraphs isomorphic to stars, as well as to cycles
of length four.

Aninteresting problem that arises from these results is to investigate how the number
of edges in the edge-extremal graphs is affected if we impose some additional structural
property on the graphs considered. More specifically, what happens if we restrict the
question to graph classes in which cycles of length four or stars are forbidden induced
subgraphs? Natural candidates for such graph classes are chordal graphs, that is, graphs
without induced cycles of length at least four, and claw-free graphs. In the past few
years, bounds for this problem have indeed been established for claw-free graphs in the
work of Dibek et al. [8]. Furthermore, the problem has been resolved on other graph
classes, such as bipartite graphs, split graphs, disjoint unions of split graphs and unit
interval graphs in the work of Maland [14]. However, on chordal graphs, the problem
had so far remained unresolved. Chordal graphs form an extremely well-studied graph
class, both from a structural and from an algorithmic point of view, with many and
various applications.

In this work, we determine the maximum number of edges that a chordal graph
can have, given the constraints on its maximum degree and matching number. Given
d,v € N, we denote by .#porqaai(d, v) the set of chordal graphs such that A(G) < d
and v(G) < v. A graph in .# r441(d, v) achieving this maximum number of edges
is called an edge-extremal graph. In order to establish the upper bound on the number
of edges of an edge-extremal graph in .#cpordai(d, v) we show that, among them,
there is one that has a very simple structure: it is a disjoint union of cliques and stars
of a given size.

Theorem 1 There exists an edge-extremal graph in M poraq(d, v) that is a disjoint
union of cliques and stars.

Section 3 is entirely devoted to the proof of Theorem 1. Once the structure of this
special edge-extremal graph is known, we are able to establish the following upper
bound on the number of edges of a graph in .Z¢pordai(d, v).
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Theorem2 Given d,v € N, the maximum number of edges of a graph in
Mehordal(d, V) is given by:

{(d - —1), ifd is even

d—-1Dw-1)+ L%JL;;}]L if d is odd
2

Moreover, a graph achieving this number of edges is

(v—DKy4-1, ifdiseven
rKi.a-1+qKq, ifdisodd,

where v — 1 =q|'%'| +r, withr > 0.

We also show that this result is tight in the sense that the same bound does not
hold for any superclass of chordal graphs that is defined by a finite collection of
forbidden induced cycles. It is worth mentioning that this problem is related to the
famous problem of computing Ramsey numbers, the general case being equivalent to
determining Ramsey numbers for line graphs [2]. A preliminary version of this work
appeared in the proceedings of LATIN 2020 [3].

2 Preliminaries

The graphs considered are simple and undirected. We denote by Vs and Eg the
vertex set and edge set of G, respectively. Given x € Vg, we denote by Ng(x) the
neighborhood of x, that is, the set of vertices that are adjacent to x. Two vertices x, y €
Vi are true twins if Ng(x) U {x} = Ng(y) U {y}. Givenx € Vg and X C Vi \ {x},
we say x is universal to X if X € Ng(x).Foraset X C Vi, Ng(X) denotes the set of
vertices in Vi \ X that have at least one neighbor in X. The degree of x is denoted by
deg; (x) and is defined as |Ng (x)|. The degree of a graph G is the maximum degree
of a vertex in G and it is denoted by A(G). A vertex x is a leaf of G if deg;(x) = 1.

Given S C Vg, the subgraph induced by S is denoted by G[S], and has § as its
vertex set and {uv | u, v € S and uv € Eg} as its edge set. A cliqgueisaset K C Vg
such that G[ K] is a complete graph. A clique is maximal if it is not properly contained
in another clique. An independent set is a set S such that G[S] has no edges. A vertex
v € Vi is a simplicial vertex if Ng(v) is a clique. Given a set S € Vg, we denote the
graph G[Vg \ S]by G\ S.If § = {v}, we denote the graph G[V¢ \ {v}] simply by
G \ v. The set S is a separator if G \ S has a larger number of connected components
than G. Given aset F C Eg, the subgraph induced by F is denoted by G[F], and has
the endpoints of the edges in F as its vertex set and F' as its edge set.

A set M C Eg is a matching if no two edges in M share a common vertex and
M 1is a perfect matching if every vertex of Vi is the endpoint of an edge in M. The
matching number of G, denoted by v(G), is the largest size of a matching in G. A
graph G 1is a factor-critical graph if for every v € Vi, G \ v has a perfect matching.
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Given a family 7 of graphs, we say that G is an JZ-free graph if G does not
contain an induced subgraph that is isomorphic to a graph in J7. If 7 = {H}, we
say G is an H-free graph. A tree is a connected acyclic graph. A star is a tree with at
most one vertex that is not a leaf, and for k € N, a k-star, denoted by K , is a star
with k leaves. A graph is a complete graph on n vertices, denoted by K,,, if there is an
edge between every pair of its vertices. Given two graphs G and H, the disjoint union
of G and H, denoted by G + H is the graph with vertex set Vg U Vg and edge set
Eg U Ey. We denote by r H the graph that is the disjoint union of » copies of a graph
H. A graph G is a bipartite graph if Vs can be partitioned into two independent sets.
A bipartite graph with bipartition (A, B) is a chain graph if there exists an ordering
v1v3 ... v, of the vertices of A such that Ng(v,;) € ... € Ng(vy). This property of
the vertices of A is called the nested neighborhood property. Bipartite chain graphs
are also known to be the bipartite 2K;-free graphs.

A graph is a chordal graph if it has no induced cycle of length at least four. Chordal
graphs constitute a widely studied graph class, with many different characterisations.
Given a graph G, a clique tree of G is atree 7 such that every vertex of .7 is a maximal
clique of G and for every v € V(G), T, = {A € V# | v € A} induces a subtree of
7. The vertices of .7 are referred to as bags and denoted with capital letters. For
simplicity, we denote the set of vertices of G associated with a vertex of .7 with the
same capital letter. A characterisation of chordal graphs due to Gavril [11] states that
a graph is chordal if and only if it has a clique tree. One important property of clique
trees is that, if 7 is a clique tree of a chordal graph G and AB € E &, then AN B
is a separator for the graph G. Another important characterisation of chordal graphs
is concerned with vertex orderings and simplicial vertices. An ordering viv; ... v, of
the vertices of G is a perfect elimination ordering for G if for every i, the vertex v;
is simplicial in the graph G[{vi41, ..., v,}]. A characterisation of chordal graphs due
to Fulkerson and Gross [10] states that a graph is chordal if and only if it has a perfect
elimination ordering. See [4] for an overview of the properties of chordal graphs and
clique trees.

Given two integers d and v and a graph class %, we denote by .# (d, v) the set of
all graphs G in € such that A(G) < d and v(G) < v. A graph in .#4(d, v) that has
the maximum number of edges is called an edge-extremal graph. When the graph class
considered is the class of all graphs, we write simply .# (d, v). The following lemma
establishes a connection between edge-extremal graphs and factor-critical graphs in
some graph classes. Even though the statement we present here is different from the
one stated in [1], the proof in [1] suffices to prove the result as stated below.

Lemma 1 ([1]) Let € be a graph class that is closed under vertex deletion and closed
under taking disjoint union with stars. Let G be an edge-extremal graph in M4 (d, v)
with maximum number of connected components that are (d — 1)-stars. Then every
connected component of G that is not a (d — 1)-star is factor-critical.

The following statement gives a summary of the results obtained by Balachandran
and Khare [1].

Theorem 3 ([1]) Givend, v € N, the maximum number of edges of a graphin . (d, v)
is givenby (d—1(v—1)+ L%J L ‘fijll] 1. Moreover, a graph achieving this number
T

r
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of edges is

rKia-1+qK}, ifdiseven
rKiqg-1+qKg, ifdisodd,

wherev —1 =¢q f%} +r, withr > 0, and K, is the graph obtained from K by the
removal of the edges of a perfect matching and addition of a new vertex adjacent to
d — 1 vertices.

In Sect. 3, we show the corresponding bounds for .#Z,j,rq44:(d, v) and obtain graphs
that achieve these bounds. We remark that, in Theorem 3, the graph r Ky 4—1 + g Ky,
obtained when d is odd, is already a chordal graph. Thus, for odd d, the edge-extremal
chordal graphs have the same number of edges as the edge-extremal general graphs.
Our proof, however, does not rely on this fact and has a unified approach, that works
regardless of the parity of d.

3 Chordal Graphs

In this section we present our main result. The strategy to determine the maximum
number of edges that a graph in .# ;orq41(d, v) can have is to show that among the
edge-extremal graphs in .# porqq1(d, V), there is one that has a very simple structure:
it is a disjoint union of cliques and stars of a given size.

Theorem 1 (restated) There exists an edge-extremal graph in M hordal(d, v) that is
a disjoint union of cliques and stars.

Proof (Overview). The proof is by contradiction. We start with an edge-extremal graph
of M ¢horaai(d, v) that is, in some sense, closest to being a disjoint union of cliques
and stars. From that, we will perform a series of modifications in the graph in order
to obtain another graph of .# ,r441(d, v) that has at least as many edges as the one
we started with, but that is closer to being a disjoint union of cliques and stars, which
will be a contradiction with our initial choice. To perform the modifications, we will
consider a specific clique tree of our edge-extremal graph and exploit the structure of
this graph around one of its cliques, given by a carefully chosen node of the tree. A
crucial part of the proof is to ensure that, after each modification, the obtained graph
still belongs to .4 pordai(d, v). In this vein, Lemmas 3 and 4 will precisely show
that the two modifications we describe can indeed be performed without disrupting
membership in .# pordq1(d, v). In this way, we obtain a new edge-extremal graph
that, as a result, has several structural properties that will be exploited to conclude the
proof.

Proof of Theorem 1 Assume for a contradiction that there is no edge-extremal graph in
Mchordal (d, v) that is a disjoint union of cliques and stars. Let W be an edge-extremal
graph in A cpordq (d, v) with maximum number of (d — 1)-stars and subject to that,
with maximum number of connected components. Let W’ be a connected component
of W that is not a clique nor a star and let v = v(W’) + 1. By Lemma 1, W’ is a
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factor-critical graph and therefore |Vy/| = 2v; — 1. Note that W € . cporda(d, v1)
and, in fact, W’ is edge-extremal in .# 07441 (d, v1). Indeed, if this was not the case,
we would be able to obtain a graph in .#jrq4q1(d, v) with more edges than W by
replacing the connected component W’ by an edge-extremal graph of .#Z porqai(d, v1).
Among all the edge-extremal graphs in .# ;441 (d, v1) with 2v] — 1 vertices, let G be
the one that has a clique tree with minimum number of leaves. Note that, in particular,
G is connected, by the maximality of the number of connected components of the
graph W.

Let 7 be a clique tree of G achieving the minimum number of leaves. We consider
7 rooted in an arbitrary bag R. Let X be a node of .7. We denote by Ty the subtree
of 7 rooted at the node X. We define a subgraph G x associated with each node X of
7 in the following way. If X = R, then Gx = G. Otherwise, let S be the separator
of G given by the intersection between X and its parent in .7 and let Vr, be the set
of vertices appearing in the bags of Tx. The subgraph Gx associated with the node
X is given by G[Vr, \ S]. Observe that if X is a leaf of .7, then Gy is a complete
graph. Let B be a bottommost bag in .7 such that G p is not a complete graph. Note
that such a node indeed exists since G is not a complete graph itself. Let B, ..., B be
the children of B in .7 and let S; = B N B;. Note that, by our choice of B, the graph
Gp, = G[Vry \ S;]is a complete graph for every i. For simplicity, from now on we
denote C; = Vry. \ §; and hence G, = G[C;].

We start with the following two observations stating how the vertices of C; are
connected to those of B and what is the structure of the tree 7.

Observation 1 For every i, the subgraph of G induced by the edges E; = {xy | x €
S; and y € C;} is a chain graph.

Proof Note that (S;, C;) constitutes a partition of VTB ,thus G[E;] is a bipartite graph.
Suppose for a contradiction that there exists an induced 2K> in G| E;] with vertex set
{x1, y1, x2, 2}, with x1, x» € S; and y1, y» € C;. Since S; and C; are cliques in G,
the vertices x1, y1, x2 and y» would form an induced Cy4 in G, a contradiction with
the fact that G is chordal. Therefore G[E;] is indeed bipartite and 2 K,-free, that is, a
chain graph. O

Observation 2 For every i, the subtree Tp, is a path.

Proof Since G[VTB ]is a chordal graph, by Observation 1, the bipartite graph obtained
from G[VTB ] by deletlng the edges inside S; and C; is a chain graph. Because of the
nested nei ghborhood property of chain graphs, G[Vr, ]has a clique tree that is a path.
Since .7 was chosen with minimum number of leavés, the subtree Tp; is a path, for
every i. O

In what follows, we want to modify the graph G in such a way to obtain a graph that
is still chordal, has the same number of vertices as G and belongs to .#¢pordai (d, v1),
but either has more edges than G, or is disconnected, or has a clique tree with fewer
leaves. Either one of these outcomes will contradict the choice of G. The modifications
to be performed in G will consist in the addition and removal of edges, as well as of
vertices. After each modification, one crucial part of the proof is to ensure that the
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matching number of the obtained graph is still strictly less than vy. This will follow
from the fact that G has 2v; — 1 vertices. Therefore, the addition of edges to G does
not lead to a graph with matching number greater or equal to v;. Moreover, for any
k € N, the same holds for the simultaneous removal of k vertices from such a graph
followed by simultaneous addition of k new vertices. We formalize this in the following
observation for later reference.

Observation 3 Let H be any graph on 2v| — 1 vertices. Then any modification that
preserves the number of vertices of H cannot lead to a graph with matching number
at least vy.

For every v € B, let fg(v, i) denote the number of neighbors that vertex v has
in the clique Cj, that is, fg(v,i) = |Ng(v) N C;|. Note that if fg(v,i) > O,
then v € S;. Let u; 1,...,u;)c; be an ordering of the vertices of C; such that
degs(ui;1) = degg(uin) > ... > degqs(uic;)- Since G[E;] is a chain graph
by Observation 1, we may assume that for every v € B with fg(v,i) > O,
NeW)NCi ={ui 1, ..., ui fo0i)-

We first state and prove the following lemma that can be understood as the converse
of Observation 1 and that will be useful throughout the paper to show that a graph is
chordal.

Lemma2 Let H be any graph and B, C1, ..., Cy be cliques of H such that

— Ny (C;) € B, forevery 1 <i <k;
— H[Vg\ (Uf:]Ci)] is a chordal graph.

If the subgraph G; of H induced by the edges E; = {xy |x € Bandy € C;}isa
chain graph for every 1 <i <k, then H is a chordal graph.

Proof Since G; is a chain graph and degg (u;,1) > degg(u;2) > ... > degq (ui |c;)),
we conclude that Ng, (u;c;)) S Ng, (Ui c;-1) € ... € Ng,(u;1). We will show
how to construct a perfect elimination ordering for the graph H. Note that for every
1 <i <k, the vertex u; |c;| is simplicial in H. Moreover, for every i < k and every
J = |Cil, the vertex u; ; is simplicial in H[Vg \ {u; jy1, ..., ui c;}]. Indeed, since
E; is a chain graph, the set {u; 1, ..., u; j}U (BN Ny (u; ;)) is a clique. Finally, since
H[Vyg \ (Uf.‘ZICI-)] is a chordal graph, it has a perfect elimination ordering o’ of its
vertices. Let o; = u; |c;| ... ui,1. Then o107 ... oxo’ is a perfect elimination ordering
for H, which concludes the proof that H is chordal. O

We are now ready to state the two modifications that will be used repeatedly through-
out the proof of Theorem 1.

Modification 1 Let B, Cy, ..., Ci be subsets of the vertex set of the chordal graph G
as previously described and let v € B.For 1 <i <k, if 0 < fg(v,i) < |Cj| and v
has a neighbor that does not belong to G[Vr,], we do the following (see Fig. 1a):

(i) Add an edge between v and the vertex u;, f(v,i)+1;
(ii) Delete the edge from v to one of its neighbors outside G[Vr,]. This neighbor is
chosen in the following way: consider the subtree T, of .7 formed by the bags
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that contain the vertex v. Let L be a leaf of T, that is not in the subtree rooted in
B. Such a leaf exists since v has a neighbor outside G[Vr,]. Let L’ be the bag
that is adjacent to L in T}. Since L ¢ L', there exists u € L \ L'. Let u be the
chosen neighbor of v and delete the edge uv.

Lemma 3 Modification I preserves both membership in Mchoraaqi(d, vi) and number
of edges.

Proof Let G’ be the graph obtained with the application of Modification 1. First, note
that since the edges between B and C; induce a chain graph, v € N¢ (u;, 5 (v,i)) andv ¢
NG (i, f5,i)+1), wehave that NG (u; 5 w,iy+1) C NG (i, f5(v,i))- Therefore,in G’ we
have Ng/ (u;, f;.iy+1) € N/ (Ui, f5(v,i))» which implies that the addition of the edge
VU;, fg(v,i)+1 Preserves the nested neighborhood property in the bipartite graph induced
by the edges between B and C;. Thus, by Lemma 2 and since G is chordal, the addition
of this edge does not disrupt membership in the class of chordal graphs. Therefore, to
show that G’ is chordal it suffices to show that the removal of the edge uv preserves
chordality. We do so by providing a clique tree to G — uv. This clique tree is obtained
from 7 as follows. Let L” = L\ {u}. If L” # L’, add L” between L and L’ in the
tree .7 and delete v from L. If L” = L/, just delete v from L in .7 . Also, note that this
operation does not change the number of leaves in 7. Hence, we obtain that the graph
G’ is chordal. Note that the degree of v does not change with this modification. The only
vertex whose degree was increased by Modification 1is u; s (v,i)+1. However, note that
since Ng' (Ui, fgw.iy+1) C No (Ui, f5v,i)) and deger (i, f5v.1)) = dege i, fv.i)) <
d, we have that degq/ (4 5 (v,i)+1) < d. This shows that Modification 1 does not
increase the maximum degree of the graph. Since Modification 1 preserves the number
of vertices and |Vg| = 2v; — 1, by Observation 3, it does not lead to a graph with
matching number greater or equal to v;. We conclude the proof by observing that

|Ec’| = |Eg], since exactly one edge was deleted and exactly one edge was added by
this modification. O
Modification 2 Let B, Cy, ..., C be subsets of the vertex set of the chordal graph G

as previously described and let v € B.For 1 <i < k,if 0 < fg(v,i) < |C;| and
fc (v, j) > 0 for some j > i, we do the following (see Fig. 1b):

(i) Delete the edge vu; f;(, )
(ii) Add the edge vu; 15w, +1-

Lemma 4 Modification 2 preserves both membership in Mchoraqa(d, vi) and number
of edges.

Proof Let G’ be the graph obtained after the application of Modification 2. The
only vertex that had its degree increased by this modification is u; s (v,i)+1. How-
ever, as in the proof of Lemma 3, since vu; f;w,iy € Eg and vu; f;w,iy+1 € Ec,
we have that degg (Ui, f5v,i)+1) < degg Wi, f5(v,i)). Thus, dege (i, fow,i+1) =<
degq (Ui, 5 (v.iy) = degg (Ui, f;(v.i)) < d,implying that A(G’) < d. Moreover, again
since Modification 2 preserves the number of vertices and |V | = 2v; — 1, by Obser-
vation 3, it does not lead to a graph with matching number greater or equal to v;. It
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Ve \ Vry [ . ] Ve \ Ve [ ®u ]
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(a) Modification 1

B B

= [/”\-]

C ~ b
Yi,fo(v,i)+1 Y, fG(v.3) 1 i fg(v,i)+1 ch(vJ>

(b) Modification 2

Fig.1 The dotted lines between two vertices indicate non-edges

is also easy to see that |Eg/| = |Eg/, since exactly one edge was deleted in step (i)
and exactly one edge was added to the graph in step (ii). It remains to show that the
obtained graph is still chordal. Indeed, note that the deletion of the edge vu; 7, )
(resp. addition of the edge vu; f;(v,i)+1) preserves the nested neighborhood property
in the bipartite graph induced by the edges between B and C; (resp. C;). Thus, by
Lemma 2, the graph G’ is a chordal graph. O

Recall that our graph G is an edge-extremal graph in .Zcporqq1(d, v1), and that the
graph obtained from W by replacing the connected component W’ by G is also an
edge-extremal graph in .#;;orqq1(d, v) with maximum number of connected compo-
nents. For simplicity of notation, we call this graph W again. Let G* be the graph
obtained from G by exhaustive applications of Modification 2 followed by exhaustive
applications of Modification 1. It follows immediately from Lemmas 3 and 4 that
G* € Mchordai(d, v1) and that G* is edge-extremal in this set. Moreover, if the graph
obtained after the application of any modification is disconnected, we reach a contra-
diction with the maximality of the number of components of W. Therefore, we can
assume G* is connected. The following lemma describes the major structural property
of G* that will be exploited in the remainder of the proof.

Lemma5 Let G* be the graph obtained from G by exhaustive applications of Mod-
ification 2 followed by exhaustive applications of Modification 1. Then, for every
v € Vg= N B and every i, if v has at least one neighbor in C;, one of the following
conditions hold:

(a) Ci g NG*(U);
(b) degg«(v) = A(G*) and Ng=(v) S BUC U...UC;.

Proof First, let G’ be the graph obtained from G by exhaustive applications of Modi-
fication 2. Since this modification can no longer be applied, then for every v € B
and every i such that fg/(v,i) > 0, we have that either fg (v,i) = |C;| or

@ Springer



3596 Algorithmica (2022) 84:3587-3602

fo'(v, j) = 0 for every j > i. Thus, for every v € B, there exists at most one
index £ such that 0 < fg/ (v, £) < |C¢|. Now we apply Modification 1 exhaustively
to G’ and obtain the graph G*. Recall that fg/(v,i) = |[Ng/(v) N C;|. Observe that,
for every v € B, if fg/(v,i) = 0, then fg+(v,i) = 0 and if fg (v,i) = |C;|, then
fc*(v, i) = |Cj|. Indeed, Modification 1 is only applied to a vertex v € B and index
iif0 < fg'(v,i) < |Ci| and, when applied, it does not change f¢' (v, j) for j # i.
Furthermore, since Modification 1 can no longer be applied, if a vertex v is such that
0 < fg*(v,i) < |Ci|, then v has no neighbors outside BUC{U...UC;. Thatis, if con-
dition (a) does not hold, then Ng+(v) € BUCU...UC;. Itremains to show that, in this
case, deg;«(v) = A(G™). To see this, first note that by Lemmas 3 and 4, we have that
|Egx| = |Eg| and that G* € A ;phoraai(d, v1), thus G* is an edge-extremal graph in
AMchordal(d, v1). If degg« (v) < A(G™), we can add to G* the edge vu; ;. (v,i)+1- The
addition of this edge does not change the maximum degree of G* since degs+(v) <
A(G*) by assumption, and dg+(U;, fo. (v.iy+1) < dGx(Ui foe(vi)) < A(G*). More-
over, by Lemma 2, the addition of this edge preserves chordality, and together with
Observation 3, we conclude that it preserves membership in .4 pordq1(d, v1). How-
ever, the obtained graph has more edges than G*, a contradiction. This shows that
degs«(v) = A(G*) and concludes the proof of Lemma 5. O

Since the graph G* is such that A(G*) < d and |Eg+| = |Eg|, we can replace
the connected component G in our edge-extremal graph W by G*. This replacement
will be convenient since Lemma 5 provides useful information on the structure of G*.
More concretely, in the rest of the proof we shall assume that B, C1, ..., Ci satisfy
the conclusion of Lemma 5.

Let b be the size of the clique B, let A = A(G*) and recall that S; is the separator
between the bag B; and B and S is the separator between the bag B and its parent in
7. We are now going to conclude the proof of Theorem 1 with a case analysis.

Case 1. There exists i such that |C;| +b < A + 1.

Case 1.1.k > 2.

We may assume, without loss of generality, that |C;| < |C2| < ... < |Ck|. In
particular, this implies that |C1| +b < A + 1. We will show that, in this case, all
the vertices of C; are adjacent to all the vertices of S§; U ... U S. This will lead
to a contradiction with the number of leaves of the clique tree of G. Suppose for a
contradiction that there exists v € S1U. ..U S thatis not universal to Cy. This implies
that fg=(v, 1) < |Cy].

We will show that the graph G* can be modified in order to obtain another edge-
extremal graph, also in .Zcpordqai(d, v1), in which v is adjacent to every vertex of
C.

First, note that it cannot be the case that fg+(v, 1) > 0, since by Lemma 5, if
0 < fg+(v,1) < |Cy], then v has maximum degree and has no neighbors outside
B U Cy. However, this is a contradiction, since |C| +b < A + 1. Thus, we conclude
that fg=(v, 1) = 0.

In what follows, we will modify the graph G* and the deletion of some edges might
disrupt the membership in the class of chordal graphs. In these cases, we will use the
following modification in order to restore it.
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Modification 3 Let H be any graph satisfying the conditions of Lemma 2. We do the
following:

(i) Delete from H all the edges xy such that x € B and y € C; for some i;
(i1) Foreachv € Bandeach | <i <k, if fy(v,i) > 0, add the edges between v
and the vertices u; 1, ..., Ui fyv,i)-

Lemma 6 Modification 3 preserves membership in the class of chordal graphs and
number of edges.

Proof Let H' be the graph obtained from H by Modification 3. We show that, for
every | < i < k, H'[E;] is a chain graph, where E; = {xy | x € Band y € C;}.
It will then follow from Lemma 2 that H’ is chordal. Suppose this is not the case, and
letv,w € Band u; j,u; ¢ € C;, with j < £, be such that {v, w, u; j, u; ¢} induces a
2K; in H'[E;] with edges vu; j and wu; ¢. However, since j < £, the edge wu; ; was
also added in step (ii), a contradiction. Finally, it is easy to see that |Egy/| = |Eg],
since the degrees of the vertices in B remain unchanged. O

We now modify G* as follows. Let j be the largest index for which fg+(v, j) > 0.
If fg+(v, j) = |Cjl, since |C1| < |C}|, we can delete |C1| edges between v and C;
and add all the edges between v and C. We then apply Modification 3 to the obtained
graph in order to obtain a graph that, by Lemma 6, is chordal. Note that the only vertices
whose degree has increased are the ones in C;. However, since [C1|+b < A+ 1, we
conclude that the maximum degree of G* did not increase.

If fG+(v, j) < |Cjl, then, by Lemma 5, v has maximum degree and has no neigh-
bors outside BU C1 U. ..U C;. Furthermore, recall that fg+ (v, 1) = 0, which means
that v has no neighbors in C;. Since |B| = b and v € B, we have that v has exactly
A — b+ 1neighborsin Co U...UC;. Therefore Zézz fex(v,£) = A—b+ 1. Since
|C1] < A — b+ 1 by assumption, we can delete |C| edges between v and vertices of
C, U...UC; and add all the edges between v and C;. We then apply Modification 3
to the obtained graph in order to obtain a graph that, by Lemma 6, is chordal. Again,
the only vertices whose degree has increased in this process are the ones from Cy, thus
we conclude the obtained graph still has degree at most A.

Finally note that in both cases, the modifications do not change the number of
edges of G*, since Zﬁ:] fc* (v, £) remains the same. They also preserve the number
of vertices of G*, which has 2v; — 1 vertices. Thus by Observation 3, the modifications
lead to a graph with matching number still strictly smaller than vi. Moreover, in this
obtained graph, v is adjacent to all the vertices of C;. We perform this change for
every v € Sy U...U S such that fg+(v, 1) > 0 and obtain a new edge-extremal
graph in .#;porqq1(d, v1) such that all the vertices of C are adjacent to all the vertices
of §; U ... U 8. Recall that among all the edge-extremal graphs in .#Z¢pordaq1(d, vi)
with 2v; — 1 vertices, G was the one that had a clique tree with minimum number
of leaves. This new graph, however, has a clique tree that has fewer leaves than the
clique tree .7 of G. This is because the clique C; U S U. ..U Sy is contained in B and
contains the intersection between B and each child of B (see Fig. 2). This contradicts
the minimality of the number of leaves of 7.

Case 1.2. k = 1.
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Fig. 2 To the left, the clique tree .7 and to the right, a clique tree of the updated graph G* that has fewer
leaves than .7

Since G p is not a clique by assumption, there exists v € Vi, \ S thatis not universal
to Cy in G*. If fg+(v, 1) > O then v € Sj. In this case, by Lemma 5, v has maximum
degree and no neighbors outside B U Cy. Hence, degs«(v) < b—14|Cy|— 1, which
implies that A < b + |C| — 2. This is a contradiction with the assumption of Case 1
that |C1] +b < A+ 1.

If fg+(v, 1) = 0, then visasimplicial vertex in G*. Since v € B, degg«(v) = b—1.
By the assumption of Case 1,b—14|C1| < A.Thus, we can add all the edges between
v and the vertices of C; and obtain a graph whose maximum degree is still at most
A. Moreover, by Observation 3 the matching number of the obtained graph is still
less than vy. Finally, since v is now adjacent to all vertices of Cy, the bipartite graph
induced by the edges between B and Cj is a chain graph, and hence, by Lemma 2, the
obtained graph is chordal. Thus, this graph belongs to .#jrdq1(d, v1) and has more
edges than G*, a contradiction.

Case 2. Forevery i, |Ci| +b > A + 1.

Letv € S;U...U S. Let a, be the smallest index such that fg+(v, ay) > 0. Note
that v cannot be universal to C,, in G*, since by assumption |Cq, | +b > A + 1.
By Lemma 5, degg+(v) = A and Ngx(v) € B U Cg,. This implies that for every
v € S; U...U S, there exists a unique index a, such that fg+(v, a,) > 0. That
is, for any j # ay, fe+(v,j) = 0, and thus §; N S; = P if i # j. Also, since
Ng+(v) € B U C,, and v has degree A, we have that fg+(v,a,) = A — b+ 1. That
is, if a, = ay,, then u and v are true twins in G*. Moreover, forany 1 <i < j <k,
[NG=(S;) N Ci| = |[Ng=(S;) N Cj|. Let S be the separator between B and its parent
in the clique tree .7. Since for every v € S; U...U S, Ng+(v) € B U C,,, we know
that SN S; = @, for every i. Also, since the graph G* is connected, S # . See Fig. 3.

Letu € Ng+(S;) N C;. Suppose for a contradiction that deg;-(u) < A. Let G be
the graph obtained from G* by the deletion of one vertex of S and addition of a new
vertex w in S;, such that Ng,[w] = B U (N(S;) N C;).

Claim1 G is chordal, |Eg,| > |Eg+| and A(G1) = A(G¥).
Proof Note that w is a true twin of the vertices in S;, and since the vertices of S;

have maximum degree, it holds that deg; (w) = A and hence the graph G; has
at least as many edges as G*. The only vertices whose degree has increased after
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this modification are those belonging to Ng,(S;) N C;. However, note that if x €
Ng,(Si) N Ci, then degg, (x) = degg«(x) + 1. Since degg«(x) < A by assumption,
we have that degg;, (x) < A(G™) and thus A(G) = A(G). To see that G is chordal,
it suffices to notice that the class of chordal graphs is closed under vertex deletion and
under the addition of true twins. O

If G is disconnected or has more edges than G*, we have a contradiction. We
repeat the above modification until either the graph obtained is disconnected, that is,
until § = ¥, or until for every i, the degree of the vertices in Ng, (S;)NC; is A. Let G2
be the graph obtained after exhaustive application of the above modification. If G, is
disconnected, we have a contradiction with the maximality of the number of connected
components of our initial edge-extremal graph. Otherwise, by Claim 1, we have that
G is chordal, |Eg,| > |Eg+| and A(G2) = A(G*). Moreover, by Observation 3,
v(G7) < vi. Therefore, we can now replace G* by G in our edge-extremal graph
W. Note that G, is such that:

1. Forevery l <i < j <k, S NS; =0
2. Forevery 1 < i < k, the vertices of S; and of Ng,(S;) N C; have degree A and
ING,(Si)NCi| =A—-b+ 1.

Case 2.1. k > 2.

Let y; be the number of simplicial vertices in the clique C;. Assume without loss
of generality that y; > y,. We perform the following modifications in the graph G:
deletion of one simplicial vertex from C; and one vertex from S; and addition of one
vertex to S> and one simplicial vertex to Ci. Note that, after this modification, the
only vertices that had their degree changed are the simplicial vertices from Cj and C>.
Since these simplicial vertices did not have maximum degree before, the degree of the
obtained graph does not exceed the degree of Go. Notethat y — 1+ A—-b+ 1+ A
edges were removed by the deletion of the two vertices and y; + A —b + 1 + A were
added by the addition of the other two vertices. However, since y; > y;, we have that
the obtained graph has strictly more edges than G, which is a contradiction.

Case2.2.k = 1.

Since all vertices in S and in N, (S1) N C1 have maximum degree, we can perform
the following modification in G»: delete all vertices of S; and add |S;| vertices to
Ng,(S1) N Cy. The graph obtained after this modification has the same number of
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edges as G, since |S]| vertices of degree A were removed and the same amount of
vertices with the same degree was added. However, the obtained graph is disconnected,
which is a contradiction with the maximality of the number of connected components
of the edge-extremal graph W.

This concludes the proof of Theorem 1. O

By Theorem 1, we know that there is an edge-extremal graph in .#cpordaq1(d, v)
that is a disjoint union of cliques and stars. The next lemma gives a tight upper bound
on the number of edges of such an edge-extremal graph when d is even.

Lemma7 Let G be a graph in Mcpordai(d, v) that is a disjoint union of cliques and
stars. If d is even, then |[Eg| < (d — 1)(v — 1).

Proof Let G be a graph such that A(G) < d—1and v(G) < v—1 and that is a disjoint
union of cliques and stars. We proceed by induction in &, the number of connected
components of G. If k = 1 and G is a star, then A(G) <d — land |[Eg| <d — 1. If
G isaclique, then |Vg| <d.If |Vg| =d,then A(G) =d —1and v(G) = %, since G
is even. Then |Eg| = (1"¢') = 44D = A(G)v(G) < (d — 1)(v — 1). Now assume
IVG| < d — 1. Since G is a clique, v(G) > Y=l Hence, |Eg| = YelJal=l <
d—-—1Hv(G)<(d—-1Dw-—1).

Let G be a disjoint union of cliques and stars with k > 1 connected components.
Let H be a component of G and G’ be the graph obtained from G by the removal
of the vertices of H. Then A(G’) < A(G) and by the induction hypothesis, |Eg/| <
A(GHv(G'). If H is a star, then v(G') = v(G) — 1 and |Eg| < |Eg/| + A(G), which
implies that |[Eg| < A(G)v(G) < (d — (v —1).

If H is a clique, we have that |Eg| = |Eg/| + ("2) < AG)v(G) + ("F).
If |Vyg| = d, then v(H) = %, since d is even, and v(G') = v(G) — %. Hence,
|[Eg| < A(G)(v(G) — %) + (g) < (d —1)(v —1). Now assume that |Vg| < d — 1.

Since G is aclique, v(H) > % and thus v(G") < v(G) — % Hence |Eg| <
AG WG+ (M) < AG)((G) — M=y + (V#1). And since [Vy| <d — 1, we
conclude that |[Eg| < (d — 1)(v — 1). O

By Theorem 3, we already know the maximum number of edges that a graph that
is a disjoint union of cliques and stars can have when d is odd. From Theorem 1 and
Lemma 7, we obtain our main result, Theorem 2 (see page 2), which establishes the
upper bound on the number of edges that a chordal graph of .#j,orqa1(d, V) can have
and shows that the obtained bound is tight.

4 Final Remarks and Open Problems

In this work, we determined the maximum number of edges that a chordal graph
can have if its maximum degree and matching number are bounded. We also exhibit
examples of graphs achieving this bound.

An interesting question that remains open comes from the fact that the graph K/
used in Theorem 3 has an induced Cjy. For each d and v, what is the maximum number
of edges of a graph in .Zc,- free(d, v)? We point out that the bound on the number
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Fig.4 A Cj4-free graph with
A=3,v=5and |[E| =16

of edges for chordal graphs does not hold for C4-free graphs, as can be seen by the
graph P, obtained from the famous Petersen graph by the subdivision of one edge
(see Fig. 4). We have that A(P) = 3, v(P) = S and |Ep| = 16. The bound given by
Theorem 1 whend = 4 and v = 6 is 15. This idea can be further generalized to create
examples in the class of .77-free graphs, where ¢ is any finite collection of cycles.
Indeed, let » be the size of a largest cycle of .7. A result due to Kochol [13] about
snarks implies that for any » > 5 there exists an infinite family of 3-regular graphs of
girth r that have a perfect matching. Let G be one such graph and let H be the graph
obtained from G by the subdivision of one edge. The graph H is clearly .7#’-free and
is such that A(H) = 3, v(H) = v(G) and |Ey| = 3v(H) + 1, while the bound given
by Theorem 1 whend =4 and v = v(H) + 1 is 3v(H).

Another related open problem mentioned in [8] is to determine the maximum num-
ber of edges that an arbitrary connected graph can have if its degree and matching
number are bounded. We remark that the problem is open even for connected chordal
graphs. In this case, we observe that the edge-extremal graph described in Theorem 1
can be turned into a connected graph by identifying two leaves of distinct components.
This shows that the maximum number of edges does not change when the connectivity
contraint is imposed to chordal graphs and d is even. However, this is not the case
when d is odd. In particular, as shown in [1], if v — 1 divides %, the edge-extremal
graphs described in Theorem 3 are unique and thus, the connectivity contraint will
definitely result in a decrease in the maximum number of edges.

Itis also interesting to point out that, as briefly hinted in the introduction, the problem
of determining the maximum number of edges a graph can have under constraints on
its degree and matching number is related to that of edge coloring graphs. An edge
coloring of a graph is a partition of its edge set into disjoint matchings (also referred
to as color classes). By Vizing’s Theorem, a graph can always be edge colored with
A(G) + 1 colors. However, the problem of deciding whether A(G) colors suffice
is NP-complete [12]. There are very few known sufficient conditions to guarantee a
graph cannot be edge colored with A(G) colors. The most famous (and simple) of
them is to test whether the graph has too many edges, that is, if |[Eg| > A(G) LWZ—G‘J.
A graph whose number of edges satisfy this inequality is called overfull. In particular,
if a graph has a vertex v of maximum degree such that G[ N [v]] is overfull, then this
graph is called neighborhood overfull and cannot be edge colored with A(G) colors
either. The complexity of the edge coloring problem restricted to chordal graphs has
remained open for many years, despite numerous efforts towards a solution (see, e.g.,
[5, 6, 9]). In particular, Figueiredo et al. [9] conjectured that a chordal graph is edge
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colorable with A(G) colors if and only if it is not subgraph overfull. The bound on
the number of edges we provide in Theorem 1 implies that no chordal graph of odd
maximum degree is subgraph overfull. Hence, if the conjecture of Figueiredo et al.
holds, every such graph can be edge colored with A(G) colors. So far, this has only
been confirmed for split graphs of odd maximum degree [6]. The same question for
chordal graphs remains an interesting open problem to be solved.
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