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Abstract—Researchers have derived many theoretical models for specifying users’ insights as they interact with a visualization
system. These representations are essential for understanding the insight discovery process, such as when inferring user interaction
patterns that lead to insight or assessing the rigor of reported insights. However, theoretical models can be difficult to apply to existing
tools and user studies, often due to discrepancies in how insight and its constituent parts are defined. This paper calls attention to the
consistent structures that recur across the visualization literature and describes how they connect multiple theoretical representations
of insight. We synthesize a unified formalism for insights using these structures, enabling a wider audience of researchers and
developers to adopt the corresponding models. Through a series of theoretical case studies, we use our formalism to compare and
contrast existing theories, revealing interesting research challenges in reasoning about a user’s domain knowledge and leveraging
synergistic approaches in data mining and data management research.
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1 INTRODUCTION

EN Shneiderman famously said, “the purpose of visu-
B alization is insight, not pictures,” underscoring a long-
held conviction in the visualization community that the goal
of the visualization tool is to enhance the user’s under-
standing of the underlying data [1]. To this end, numerous
scholars have aimed to understand the insight discovery
process, yielding a wide range of theories defining an in-
sight’s structure, properties, and efficacy. These theories
are critical in advancing insight-based research, producing
models, processes, and metrics that researchers can adopt
to derive meaning from their empirical observations. For
example, researchers have used theory to infer a user’s
objective through recurring patterns in her logged interac-
tions [2], [3], [4], [5], or to understand which of the user’s
utterances correspond to high-quality insights [6], [7].

However, the distinguishing characteristics of individual
theories, the relationships between them, and their appro-
priateness for a given evaluation scenario are still unclear.
For example, what does each theory mean by saying “in-
sight”? When theories disagree, what are the benefits and
drawbacks of adopting one over another? Finally, what gaps
exist in the literature that new theories could fill?

In pursuit of these questions, we present a theory-driven
exploration of existing work. First, we summarize existing
arguments on the role and structure of insight. Then, we
synthesize the core building blocks of insight based on ob-
served overlaps in existing theories and contribute a formal
specification for each building block. Finally, we compare
the benefits and costs of several established theories of
insight through case studies based on how they align with
or deviate from our theorized building blocks.

We observe that researchers often differ in their termi-
nology for theoretical concepts [8], [4], [9], making rote in-
terpretation of the original papers a challenging strategy for
making meaningful comparisons. Inspired by research in vi-
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sualization specification [10], [11], we adopt a specification-
based approach, where we use language-based specifica-
tions of the core building blocks of insight (as synthesized
from the literature) to implement the structures implied in
the original papers. Then, we analyze the resulting struc-
tures to identify interesting agreements and/or disagree-
ments between existing definitions. Through these specifi-
cations, we place each theory on equal ground and make
precise theoretical comparisons. Furthermore, we publish
each implemented case study as a self-contained, executable
program that can be evaluated or reused by the visualization
community in the future?.

Based on our findings, we highlight several exciting
research opportunities, such as formally defining and cap-
turing domain knowledge, sharing insight data alongside
system interaction logs, and broader use of innovations in
data mining and data management across the visualization
community. We discuss these challenges further in section 6.

In summary, this paper makes four contributions:

e We present an in-depth review of existing insight
definitions and connect them with related concepts in
insight discovery, such as analysis tasks.

« Based on observed agreements in the literature, we syn-
thesize the core building blocks of insights and con-
tribute formal specifications of these building blocks.

o We introduce four use cases for applying our formal-
ism to a range of insight-based theories and studies.

e We discuss open challenges in insight- and theory-
based visualization research motivated by this work.

2 How ARE INSIGHTS CURRENTLY DEFINED?

In this section, we review the visualization literature to
understand how insights are conceptualized and to identify
agreements and disagreements among existing theories. Note
that this work summarizes a prior literature review [12].
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2.1 Review Process

We conducted keyword searches for “visualization insight”
and “visualization task” in Google Scholar; we reviewed the
proceedings of VIS and EuroVis from 2013 to 2023; and we
noted relevant papers with “insight” in the title or abstract.
This generated an initial list of 125 papers. Then, we filtered
for only papers that explicitly investigate how to define,
analyze, or discover insights, e.g.,, “But what, exactly, is
insight? How can it be measured and evaluated?” [13]. For
each relevant paper, we reviewed its list of references to
identify papers we may have missed. To explore potential
relationships between insights and existing task theory, we
also considered papers cited by our initial list that explicitly
defined visualization objectives, tasks, or reasoning models.
These steps yielded a list of 38 papers. With feedback
from colleagues/reviewers, we extended it to include their
suggestions, producing a final list of 42 papers. The two
authors collaboratively analyzed how insight was defined
in each paper, focusing on high-level themes as well as
key characteristics of insights. We cite synergistic ideas
when relevant, e.g., knowledge graphs and visualization
recommendations.

2.2 Categories of Insight

The prior work details several high-level categories of in-
sights, distinguishing instantaneous sparks (“aha” moments)
and long-term knowledge building. For example, Chang et
al. [14] distinguish between a “knowledge-building in-
sight,” or information that extends a user’s existing knowl-
edge structures, and “spontaneous insight,” or a “eureka”
moment that reorganizes loosely related knowledge. We
focus on knowledge-building insights in this paper, but our
formalism could be extended to spontaneous insights.

We also observe categorizations focused on the source
of insights, such as the input dataset, social structures of
the analyst, or an analyst’s domain knowledge. For ex-
ample, Saraiya et al. define four categories of data-driven
insights [15], [16]: overall distributions, patterns, grouping,
and detail. Choe et al. [17] extend these ideas by provid-
ing more granular categorizations, such as distinguishing
distributions versus data summaries or correlations versus
general trends. Zgraggen et al. [7] follow a similar struc-
ture but focus on categorizing the ways people make data
comparisons to extract data-driven insights. Note that these
categories are not mutually exclusive and may co-occur [18].

However, data-driven insights are not the only insights
an analyst may uncover. For example, Gotz et al. [19], Pous-
man et al. [20], Liu and Heer [21], Choe et al. [17], and Karer
et al. [22] observe that analysts often connect what they see
in the data with their own knowledge and experiences, i.e.,
with domain knowledge that exists outside the target dataset.
Pousman et al. broaden this view to support insights that
may not be purely data-driven, in particular “awareness
insight,” “social insight,” and “reflective insight” [20].

The many variations in how insights are categorized sug-
gest that insights may not be an atomic unit in themselves.
Instead, it may be more useful to categorize the components
of insights, such as the types of knowledge gleaned from
data-driven or domain-driven sources [22]. We take this into
consideration in our formalism and subsequent analysis.

2.3 The Varying Definitions of Insight

We also observe inconsistent definitions for what constitutes
an insight. Are they utterances, statistical correlations, or
something more complex? In this section, we summarize the
range of definitions proposed in the literature to identify key
components relevant to developing a unified formalism.

Some definitions assert that insights are utterances. For
example, in the context of a user study, Saraiya et al. define
insight as “an individual observation about the data by the
participant, a unit of discovery,” [15], [16] which can include
“any data observation that the user mentions” during lab
studies [15], [21], [7], [23] and self-reported insight diaries
from field studies [24] and competition submissions [25].

Insights are often categorized by how their calculation
supports users” hypotheses, claims, and reflections, pointing
to a second definition — insights are data facts. For exmaple,
Choe et al. propose eight insight classes, where six classes
are statistical in nature (“trend,” “correlation,” “data sum-
mary,” “distribution,” “outlier” and “comparison”) and two
are adapted from existing taxonomies (“detail” [15], [24] and
“self-reflection” [20]). Zgraggen et al. propose five insight
classes, all of which are statistical in nature [7]: “shape,”
“mean,” “variance,” “correlation,” and “ranking”. This con-
sistent grouping suggests that statistical representations, i.e.,
data facts may be a core building block of insights. Chen
et al. formalize the relationship between data facts and
insights through their Fact Management Framework [26],
which provides a theoretical base for defining insights.

The prior work also suggests that insights are hypothe-
ses and/or evidence. For example, Sacha et al. argue that
users leverage analysis findings primarily as evidence to
support, refute, or generate new hypotheses [27]. To eval-
uate how study participants perform during open-ended
exploration tasks, Gomez et al. label each observed insight
from their study as a “claim,” i.e., “a general hypothesis,
question, or remark about the data model that is potentially
synthesized from multiple observations,” or as “evidence,”
such as an observation comprised of “specific references to
data points” that support the claim [28]. Guo et al. [29] and
Liu and Heer [21] adopt a similar evidence- and hypothesis-
based framing for insights, respectively. Thus, this definition
seems to build on the concept of data facts.

Finally, the prior work also suggests that insights are
knowledge links. In particular, Chang et al. argue that
visual analytics research “considers insight more or less as
units of knowledge” [14]. Others refine this idea further
by defining insights as links that connect analysis findings,
such as visualizations and statistical results [30], [31], with
user knowledge (e.g., [15], [6], [19], [32], [33], [27], [34], [22]),
such as knowledge synthesized from the current session or
earlier sessions (e.g., [35], [14], [36], [18], [37]), or a priori
knowledge the user brings to the exploration process (e.g.,
[24], [19], [32], [20], [33], [38], [22]).

These links can be implicit, such as when observed
through qualitative studies [15], [24], [18], or explicit, such
as when users apply annotation interactions [19], [36], [39]
or link interactions [35], [19], [36], [34], [37], [40] to connect
system visualization state with concepts recorded in their
own digitized notes. Furthermore, insights can be hierar-
chical and build on one another over time, increasing the
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complexity of subsequent insights [15], [24], [6], [20], [36],
[18], [34], [41], [38].

Moreover, Pike et al. argue for more formal seman-
tics for capturing user insights, which can enable visual
analysis systems to more effectively process, reason about
and even extract new insights [42]. Moreover, Smuc et al.
argue that insights are better analyzed by explicitly tracking
how they build on one another and propose relational
insight organizers (or RIOs) to organize and visualize the
resulting insight graph [18]. RIOs share similarities with
the structures proposed by Gotz et al. [19], where user
knowledge is also captured as a graph, with high-level
concepts and instantiations of these concepts representing
nodes in the graph, and links between instances and/or
data representing edges in the graph. Similar graph-based
structures have also been suggested by Shrinivasan and van
Wijk [35], Willett et al. [39], Mathisen et al. [41], and He et
al. [37], as well as in the intelligence analysis literature [43].

Integrating the Definitions: These definitions may
appear distinct. However, a close look at the varying per-
spectives points to an overarching theme — an insight is
a collection of knowledge. Although existing definitions
vary in what they emphasize, we find that the components
themselves appear to be consistent across definitions, which
we categorize as analytic and domain knowledge. For example,
analytic knowledge consistently includes data facts, gen-
eralizations, and hypotheses. Domain knowledge includes
domain expertise and personal experiences. Awareness of
these components enables us to navigate these varied def-
initions of insight. Further, our proposed formalism unites
these perspectives by distinguishing between these knowl-
edge sources and defining concrete links between them.

2.4 Scoping Insights
Insight discovery generally occurs within a certain visual
analysis scope [36], [4] which is often tightly bound with
the definition of tasks [4], [44] or objectives [9], [45] in visual-
ization research. For example, many theories categorize the
scope of insights that analysts may be looking for. These the-
ories often take the form of task faxonomies and typologies [4],
where specific tasks observed in the field or lab studies are
abstracted into task classes, such as “Find Anomalies” [46],
“Search/Comparison” [47] or “characterizing data distri-
butions and relationships” [8]. Specific to insights, several
taxonomies target common insight generation processes to
predict insight scope, rigor, and complexity [32], [29], [8].
Task models may also take the form of frameworks, where
the scope, structure, and relationships between of observed
tasks, are abstracted into general-purpose hierarchies. Ex-
amples include the framework of tasks, sub-tasks, actions,
and events proposed by Gotz and Zhou [36], and the goals
to tasks framework proposed by Lam et al. [45]. We observe
that these models predict the scope of insights by culling
the set of relevant data facts (taxonomies) or narrowing the
range of data for applying these data facts (frameworks).
However, these models only represent a range of possibili-
ties. They are inappropriate for describing the exact insights
an analyst uncovers while completing a visual analysis task.
We take these strengths and limitations into account by
defining both a data scope and method scope within our
formalism for insights in section 4.
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An analyst’s interest in pursuing certain tasks can also
be defined with respect to the kinds of insights they expect
to uncover. This observation stems from the idea that a
user’s data analysis strategy is likely informed by an initial
goal or “hunch” regarding the target dataset [45], [7], [8],
even if only vaguely at first [8]. For example, Bertin defines
tasks according to the structure of the underlying data and
the information the user seeks to learn from this data [48].
Andrienko and Andrienko extend Bertin’s ideas to define
tasks as declarative functions over data relations comprised
of targets, i.e., data attributes of interest, and constraints, i.e.,
query predicates over these attributes [49]. We note that
Andrienko and Andrienko and Bertin’s proposals overlap
significantly with established definitions of task in database
research, notably relational calculus, a core component of
the relational model that also defines tasks (or queries) as
declarative functions over data relations [50]. That being
said, existing declarative definitions of task are limited to
scoping the user’s expectations and fail to encapsulate the
insights that the user actually found, which are often the
focus of insight discovery work.

To summarize, existing task models are useful aids for
inferring insight scope but are insufficient for fully defining
insights. Thus, we focus our formalism on scoping insights
directly rather than indirectly through task-based models.

3 FORMALISM DESIGN GOALS

This paper aims to synthesize existing theories into a unified
formalism that represents the core building blocks of insight.
Such a formalism could provide theoretical consistency and
structure to future insight-based theories and evaluations.
To guide our development of a new formalism, we sum-
marize three recurring principles from the current theory
that clarify the scope, structure, and complexity of insights.
Alongside each principle, we propose a research goal that
informs our formalism in section 4.

Principle 1: Insights Represent Linked Units of Knowledge. We
observe in the literature that insights establish links between
the user’s data manipulations, data observations, and their
knowledge of related phenomena, and new insights often
link back to old ones as analysts’ understanding of the data
evolves (subsection 2.3). As a result, insights are generally
complex objects with multiple components. An insight is
not just a piece of data but the user’s interpretation of this
data, which may involve connections with prior knowledge.
These components appear consistent across the literature
but may vary in name/terminology (subsection 2.2).

It is challenging to capture these complex relationships
within an atomic insight definition. Instead, we formalize
the constituent parts of insight and their relationships. This
idea resembles a well-known problem in visualization spec-
ification. Overlaps in visualization taxonomies suggest core
components that can be formalized into guiding theory,
e.g., the Grammar of Graphics [51], which in turn guide
the development of visualization grammars such as Vega-
Lite [10]. To this end, we establish our first research goal:

Research Goal 1 (RG1): Rather than defining in-
sights as atomic units, focus on the low-level com-
ponents of insight and their relationships.



Principle 2: Insights Distinguish Domain Knowledge From An-
alytic Knowledge. The literature suggests that insight is not
just the simple linking of two nodes in a graph. Insights
occur at specific points within the analysis process, par-
ticularly when the user’s prior experience intersects with
the data at hand in a meaningful way. For this to oc-
cur during visual analysis, the visualizations must extend
the user’s knowledge base to bring in new information
(subsection 2.2), such as by revealing new observations or
facts about a dataset (subsection 2.3). We define analytic
knowledge as statistical, visual, or factual information that
can be derived directly from the target dataset. For example,
we can observe whether crime is trending up or down in
a given city by tallying reported crimes. Then, the user
can connect these findings with their own knowledge and
experiences to clarify the significance of analytical results.
Inspired by the concept of domain knowledge in knowledge
modeling research [52], we define domain knowledge as con-
textual information that cannot be inferred from the target
dataset. For example, crime datasets may tell us what crimes
were reported but not why they occurred; this additional
context requires a deductive approach to analyzing the
crime data. Insights can also build upon each other, where
higher-level insights likely draw on existing links between
analytic (inductive, bottom-up) and domain (deductive, top-
down) knowledge (subsection 2.3). Based on these ideas, we
propose our second research goal:
Research Goal 2 (RG2): Insights link analytic and
domain knowledge, requiring the ability to distin-
guish between them while preserving the relation-
ships and patterns that bind them together.

Principle 3: Insight Discovery is About the Interpretation of Vi-
sualizations, Not the Visualizations Themselves. We observe that
studying insight discovery requires more than just collecting
the visualizations that users create. If visualization is about
insight, not pictures [1], then insight discovery is about
tracking how people interpret the pictures [53], [3], [22],
not tracking the pictures themselves nor the corresponding
interactions. In other words, recording visualization prove-
nance, i.e., how visualizations are created over time, is a
poor substitute for recording actual insights. To understand
the relationship between visualizations and insights, we
need to be able to track them in equally fine detail. We
observe established methods [54] and formalisms [4] for
visualization provenance but a dearth of counterparts for
insights, leading to our final research goal:

Research Goal 3 (RG3): Insights represent the

interpretation of data, e.g., knowledge gleaned from

a visualization, not just the visualization itself.

4 A FORMALISM FOR VISUALIZATION INSIGHTS
As a first step towards clarifying the value of existing
insight theory, we formalize the theoretical building blocks
of insight as agreed upon in the literature. In this section,
we define the formal structure of each building block and
identify the theories from which they were sourced.

4.1 |Initial Building Blocks
Principle 1 highlights the prevailing assumption that in-
sights connect knowledge. This assumption implies a no-
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tion of links between knowledge units. Although links are
discussed frequently in the visualization literature (see sub-
section 2.3), they lack a formalism defining their structure.
The closest we observe is proposed by Kandogan et al. [31],
in which they suggest that knowledge links could be defined
using data mining structures, specifically, knowledge graphs.
Inspired by their approach, we contribute a knowledge
graph-driven formalism of links, supporting RG1. We draw
on existing research in knowledge graph construction from
the data mining [55] and knowledge modeling communi-
ties [52]. We briefly introduce knowledge graphs from the
data mining and knowledge modeling literature and defer
to surveys for more details [55], [56], [52].

4.1.1 Defining Knowledge Graphs

A knowledge graph is “a graph of data intended to accumu-
late and convey knowledge of the real world, whose nodes
represent entities of interest and whose edges represent
potentially different relations between these entities” [55]%.
Entities, the nodes of a knowledge graph, can take various
forms, including physical objects such as cities and peo-
ple [55], as well as digital objects such as web pages and
structured datasets [57]. The edges of a knowledge graph are
used to record relationships between entities [55], [56], [52],
such as which cities are located within certain countries or
hyperlinks between web pages (e.g., Wikipedia pages) and
their backing data (e.g., Wikidata). In knowledge modeling
research, knowledge nodes can also be designed around a
framework, where nodes of the same type share the same
descriptive attributes defined by the framework [52].

Visualization research in insight discovery frequently
discusses how insights drawn from visualizations can ex-
tend a user’s knowledge base (see subsection 2.3), which
can be represented as establishing new nodes N and links (or
edges E) within a knowledge graph G(N, E). To capture
this agreement, we treat analytic and domain knowledge as
knowledge nodes n € N within our formalism. Knowledge
nodes can connect to other nodes of the same type, for
example, by specifying edges e € I between related domain
knowledge nodes. We also define higher-level nodes that
group domain and analytic knowledge nodes together, such
as to specify a higher level insight node. Together, knowl-
edge nodes and knowledge links represent our initial building
blocks for defining insights.

4.1.2 Defining Knowledge Nodes and Links

Our formalism uses a graph-based data model to represent
insights, where the nodes N in the graph represent units
of (explicit [58]) knowledge, and the edges E represent the
relationship between nodes, which may be directed or undi-
rected. An example is shown in Figure 1, which is based on
the Baltimore crime data exploration example by Mathisen
et al. [41]. We see that a knowledge node can record histor-

ical or domain-specific knowledge about related concepts,
such as | majority black | (“The majority of people living in
Baltimore, MD are Black or African American”). Similarly,

we can record knowledge gained by analyzing Baltimore

2. Note that “knowledge graph” and “knowledge base” can be used
interchangeably here. We defer to this survey [56] for more details.
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Fig. 1: Knowledge nodes can be linked to form insights,
e.g., linking observations of peaks in total crimes with
related characteristics and historical events for Baltimore.
Undirected edges capture relatedness. Directed edges record
trajectories of knowledge expansion in the graph.
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Fig. 2: A peak in reported crimes is observed in April 2015.

crime data as shown in Figure 2 (e.g., [Crime Peak 04/ 15]
“There was a spike in reported crimes in April 2015”).
The edges in the graph represent relatedness and can track

the evolution of knowledge acquisition. For example, an
undirected edge can indicate the relatedness of
— [Crime Peak 04/ 15] or a directed edge can indicate that
the protests were in response to the unwarranted killing
of Freddy Grey, an unarmed black man, by the Baltimore

Police [Freddy Grey’s Funeral] —> (Protest). Similarly, if

analyzing total crimes by location (on the street, in the home,
etc.) turns out to be a “dead end” then this analysis may
not extend the user’s knowledge base, resulting in a node

Crimes by loc. | with no edges in the graph. Furthermore,

rather than Tinking protests directly with crime peaks in the
graph, we could group them into a higher-level graph node,
such as an insight node, shown as a dashed line in Figure 1.

We define knowledge links as pairs of knowledge nodes:

KnowledgeLink := (n;,n;), n; € N,n; € N

For directed links, we can further specify source and
target nodes as part of the knowledge link:

DirectedKnowledgeLink := (source, target)
source :=n; € N

target :==n; € N

To streamline our formalism, we combine knowledge nodes
and links within a single definition for knowledge nodes:
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TABLE 1: Example table T for creating an instance repre-
senting the 2015 Baltimore Protests using Equation 2.

Source Link
Wikipedia  https://en.wikipedia.org/wiki/2015_Baltimo...
Vox https://www.vox.com/2016/7/27/18089352/fre. ..

KnowledgeNode := {name, sources, targets, related}
sources := {n;, n;, ...} TN
targets := {ng, n;, ...} TN
related := {n,, ng, ...} TN
@
where name is a string identifier for the specified knowl-
edge node, and other nodes that contributed directly to the
current node can be specified as a set of sources. Nodes
influenced by the current node can be specified as a set of
targets. We can specify nodes in an undirected relation-
ship as a set of related nodes. In the remainder of the
paper, we refer only to our definition of knowledge nodes,
which implicitly contains our definition of knowledge links.

4.2 Formalizing Domain Knowledge

Revisiting Principle 2, we observe an emphasis in the liter-
ature on distinguishing different types of knowledge, such
as meaningful statistical or mathematical features that can
be derived from a target dataset, i.e., analytic knowledge, and
contextual information (e.g., personal experience, domain
expertise) that cannot be derived from this dataset, i.e.,
domain knowledge. In Figure 1, events such as Freddy Gray’s
funeral represent domain knowledge regarding the history
of Baltimore (highlighted in blue). The statistics calculated
using Baltimore crime reports represent analytic knowledge
(highlighted in orange), e.g., that April 2015 contained some
of the highest days of reported crimes between 2012 and
2015. In our formalism, we capture this distinction by for-
malizing the defining characteristics of domain knowledge
and analytic knowledge nodes, supporting RG2.

We integrate existing ideas to formalize our collective
understanding of domain knowledge. Gotz et al. [19] sug-
gest that analysts reason about different concepts as they an-
alyze a dataset, as well as specific instances of these concepts
that stand out. Extending these ideas, we treat concepts as
custom type definitions representing a belief or idea that the
analyst wants to express, such as the concepts of “racism”,
“conspiracy”, or “protest”. We define an instance as a
representative case of a concept and the supporting data T:

instance := {name, concept, T}

T:= {al, as, } (2)

where T is a relational table with at least one data at-
tribute/column (a;, ag, etc.) and row. Revisiting our run-
ning example, suppose we learn about the 2015 Baltimore
Protests through Wikipedia and Vox. We can record this in
T using two attributes (a; = Source, a3 = Link) and two
rows for the corresponding articles, shown in Table 1.
Using the concept of frames from the knowl-
edge modeling literature [52], we formally define
a DomainKnowledgeNode by extending our
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KnowledgeNode definition from Equation 1 to include
properties from our instance definition in Equation 2:

DomainKnowledgeNode := {name, sources, targets,

related, concept, T}
®)
In this way, we can capture meaningful concepts and
instances expressed within a unit of domain knowledge as
well as track their propagation through a knowledge graph.

4.3 Formalizing Analytic Knowledge

Analytic knowledge lacks a precise definition in the lit-
erature. For example, Gotz et al. appear to define ana-
lytic knowledge as annotations to domain knowledge [19].
Alternative definitions proposed by Shrinivasan and van
Wijk [35] and Andrienko and Andrienko [59] seem to sug-
gest that analytic knowledge is information gained from
querying and interacting with a dataset. These ideas also
inspired our third research goal (RG3): to distinguish users’
creation of visualizations from their interpretation of vi-
sualizations. In section 3, we define analytic knowledge
as information derived through the manipulation of data
such as through interacting with visualizations. Towards
formalizing this definition, we first clarify what we mean
by “information derived” (i.e., data relationships) from “ma-
nipulation of data” (i.e., data transformations).

4.3.1 Data Relationships

We deduce from the prior work that when researchers
encounter analytic knowledge in insight-based studies (see
subsection 2.3), they tend to interpret it in terms of mathemat-
ical or statistical characteristics, such as by recording associ-
ated data correlations, distributions, patterns, or anomalies
observed by users [15], [32], [23], [26], [17]. We refer to
these characteristics as data relationships, but they are also
referred to as data facts in the literature (see subsection 2.3).
One could simply try to track the visualizations a user
created as a proxy for data relationships. However, users
can easily draw different conclusions from the same visu-
alizations [60], making visualizations ambiguous records of
analytic knowledge [53]. Our goal is not to collect pictures
but to understand the knowledge gleaned from them. For
these reasons, we define analytic knowledge in terms of
properties that can be calculated or modeled directly from the
underlying dataset. We stress that our formalism represents
a quantitative interpretation of the analytic knowledge gained
and not the raw utterances of study participants.

There are many ways in which researchers have in-
terpreted data relationships, such as by creating statistical
representations like histograms [2], linear regression mod-
els [61] or statistical sketches [62], [26] or even machine
learning models like Hidden Markov models [3], [63] or
support vector machines [2]. Amid this panoply of tech-
niques, we observe a recurring high-level structure that we
leverage to formally define the theoretical properties of data
relationships.

Given a relational table T with data attributes A =
{a1,a2,...,a,}, we find that multivariate data relation-
ships: (1) take one or more data attributes as input variables
for training and one attribute as an output variable for
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prediction; (2) define a training function to build a model
that predicts the output given the input; and (3) define a
prediction function that uses the model to map new inputs
to projected outputs:

MultivariateRelationship := {firqin, [predict}
ftrain/fpredict = Aij = Qo, Aij C A7 (4)
a, €A

The training function can be as simple as calculating coef-
ficients for a linear equation, but it can also be complex,
such as training machine learning models. We find that
univariate relationships such as kernel density estimation:
(1) take a single input attribute to simulate; (2) define a
function to train a model to capture the corresponding
distribution; and (3) define a function to simulate records
from the modeled distribution:

UnivariateRelationship := {firain, fsimulate }
ftrain = ai = 0,a; € A (5)
fsimulate = @ — a;

This definition covers all of the data relationships ob-
served in our literature review, and easily extends to new
data relationships. For example, any new multivariate rela-
tionship that takes one or more attributes as input, predicts
an attribute as output and provides the requisite function
types are automatically covered under our formalism.

4.3.2 Data Transformations

Typically, analysts must process their data to facilitate in-
sight discovery [64], [65], such as by filtering, aggregating,
sorting, etc., which we refer to as data transformations. For
example, to answer the question “which k dates have the most
reported crimes?” we have to group the Baltimore crime data
by date, count all reported crimes per date, then sort by the
count to retrieve the top k dates.

Data transformations can have profound effects on an
analyst’s ability to extract insights. For example, Battle and
Heer found that differences in users’ interaction sequences
in Tableau could lead to different queries being executed
over the data and ultimately different answers to the same
analysis tasks [8]. Furthermore, interfaces that hinder in-
teractive data processing have been shown to negatively
impact insight generation [21], [23]. Given the critical role
of data transformations in insight discovery, we consider
them essential to formalizing analytic knowledge.

Similar to Andrienko and Andrienko [49], we spec-
ify data transformations as queries over relational tables.
We use relational algebra to represent data transformations,
where relational algebra can be considered the dual to
relational calculus [50] (see subsection 2.4 for more on rela-
tional calculus). To do this, we treat data transformations
as a sequence of relational algebra operations, where each
operation is essentially a function that takes a relational
table T as input and returns a relational table T’ as output:

DataTransformation := [01, 09, ..., 04, ...]

0 =T—T

(6)

where T may not have the same attributes or rows as T’.
For example, to calculate peak crime dates in Baltimore, we:



group by date, count reported crimes per date, and sort the
dates by count. The aggregation produces fewer attributes
and rows than the original input table since we are grouping
all reported crimes by date and returning a single count per
date. In contrast, the sort returns an output table with the
same shape as its input, since the rows are simply reordered.
As hinted at by Bertin [48] and Andrienko and An-
drienko [49], tracking data transformations can provide an
advantage over interaction logs, since it emphasizes a user’s
interpretation of the data rather than the idiosyncrasies of
a particular user interface. For example, Tableau desktop
offers a myriad of ways to filter a dataset through its
interface but they all map to the same filtering operations in
relational algebra [64], [8]. Although our formalism differs
from traditional SQL, it matches related languages such as
Microsoft LINQ [66], which can be mapped to SQL [67].

4.3.3 Analytic Knowledge Nodes

Similar to domain knowledge nodes (subsection 4.2), we
formalize analytic knowledge nodes by merging our base
definition for knowledge nodes (Equation 1) with our def-
initions for data transformations (Equation 6) and data
relationships (Equation 4 and Equation 5):

AnalyticKnowledgeNode := {name, sources, targets,
related,
dataTransformation,
dataRelationship}

) Oiy oot

dataRelationship = {ftraina fpredict}

| {ftrain7 fsimulate}
@)

With this definition, researchers gain access to a precise,
quantitative representation of a user’s analytic knowledge.
We record exactly how the data has been manipulated and
can quantify the knowledge we believe the user gained from
their results. Further, this representation remains consistent
regardless of differences in user interfaces, enabling it to
generalize across visualization tools.

dataTransformation := [01, 02, ...

4.4 Formalizing Insights

With precise definitions for domain (Equation 3) and ana-
lytic (Equation 7) knowledge, we complete our formalism
for insights. As shown in Figure 1, we view insights as a
cluster of relevant domain and analytic knowledge nodes
within the user’s knowledge graph. However, simply draw-
ing a link between the target nodes renders this hierarchical
relationship indistinguishable from other relationships in
the graph. To express the hierarchical nature of insight, we
define it as a higher level representation of knowledge:

InsightNode := {name, sources, targets,
related, domainKnowledge,
analyticKnowledge}

domainKnowledge := {domainKnowledgeNodey,
domainKnowledgeNodes,, ...}
analyticKnowledge := {analyticKnowledgeNode;,

analyticKnowledgeNode,, ...}
®)
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where more than one node can be specified in
domainKnowledge and analyticKnowledge to support
more complex insights. Insights can also be hierarchical by
integrating other insights [68], [18], [19] (see Figure 3).

Base Insight Summary Insight

IN
DK AK IN IN IN IN
IN
Related Insights Nested Insight
Fig. 3: Various insight structures enabled by our formalism.
“DK” is domain knowledge, “AK” analytic knowledge, and
“IN” insight.

To support these relationships, we define insights as
higher level graph nodes that inherit from KnowledgeNode
(Equation 1), supporting linking and extension of insights as
the user’s knowledge graph evolves over time (see Figure 3).
Using our formalism, we can link any previous insights as
sources that informed the current insight and new insights
as targets that were informed by the current insight.

4.5 Implementation
To support transparency, evaluation, and reuse of our for-
malism by the research community, we have implemented
a specification language called PYXIS that is freely available
online. Pyxis can be used to specify all of the building blocks
defined above: concepts, instances, domain knowledge, data
transformations, data relationships, analytic knowledge,
and insights. Pyxis is implemented in TypeScript and can be
used in TypeScript and JavaScript projects. Pyxis supports
both the Node and Observable JavaScript environments.
Rather than re-implementing known data transforma-
tions, we import existing libraries into Pyxis using wrapper
classes matching the specifications in subsubsection 4.3.1
and subsubsection 4.3.2. Our codebase imports the Vega
transforms [69] and Arquero [70] libraries, so all data
transformations supported by Vega or Arquero can also
be used in Pyxis. Likewise, we import a wide range of
existing data relationships, such as linear regression models,
anomaly detection through isolation forests, and univariate
distributions via kernel density estimation through wrapper
classes that integrate existing libraries.

5 PRACTICAL USE CASES

In this section, we present four use cases demonstrating how
to apply Pyxis. We also highlight future research opportu-
nities enabled by our formalism. The corresponding Pyxis
code is shared in our supplemental materials.

5.1 Use Case 1: Recreating an Analysis Session

In this use case, we show how to use Pyxis by recreating our
ongoing example from Mathisen et al. [41], which follows
a fictional analyst, John, as he investigates crime peaks in
Baltimore from 2012 through 2015. John’s analysis uncovers
the first crime peak on April 27, 2015 which coincides
with protests sparked by the funeral of Freddie Gray, a
young black man who was killed by the Baltimore police.
An overview is provided in Figure 4, where each node
represents a particular Pyxis object that we create through-
out the example, and the edges between nodes represent
relationships between objects.



5.1.1 Specifying Domain Knowledge

Pyxis enables us to formalize John’s domain knowledge as
abstract concepts, e.g., the “protests” and specific instances of
these concepts, e.g., the “Baltimore protests.” We define the
concept “Protest” (lines 1-4). Then, we define an instance
of the “Protest” concept based on the Baltimore Protests in
2015 using a new domain knowledge node (lines 5-21).

1const protest = new Concept (

2  "Protest", // name

3 [1 // parentConcepts

4);

sconst protestsNode = new

— DomainKnowledgeNode (
"2015BaltimoreProtests", // name
protest, // associated concept
{ // metadata

6
7
8
9 attributes: [{

10 name: "Source",

11 type: nominal

12 oo Ao

13 name: "Link",

14 type: nominal

15 11y

16 values: [{

17 "Source": "Wikipedia"

18 "Link": "https://en.wikip..."

19 H

Since domain knowledge inherits from knowledge nodes
(see subsection 4.2), we can also specify node relationships,
such as one node “causing” or being “related to” another
node. For example, to link a source (i.e., parent) node, we
call the addSource function on the protestsNode object.

5.1.2 Specifying Analytic Knowledge

To develop analytic knowledge, analysts infer data relation-
ships (subsubsection 4.3.1). To prepare the data for visu-
alization or modeling, analysts apply data transformations
(subsubsection 4.3.2). We demonstrate how to create data
transformations by using Arquero to calculate total reported
crimes per day and identify peak crime days.

Domain
Concept Knowledge
[ protest H protestsNode
Data Analytic
Transformation Knowledge Insight
[ crimePeaks johnsInsight ]
Data Analytic
Relationship Knowledge

Fig. 4: An implementation of our running example from
section 4. Each node represents a specified Pyxis object and
its corresponding component from our formalism. The di-
rected edges represent input relationships. For example, the
protest object is an input to the protestsNode object.

1// Arquero Data Transformation

2const aggTransform = {

3 sources: [baltimoreCrime],

4 transforms: [

5 // group by day

6 { op: "groupby", args:
— ["CrimeDate"] 1},

7 // count crimes per day

8 { op: "rollup", args: [{ count:
— op.count () }1 1},

9 // sort days by count

10 { op: "orderby", args:

< [desc ("count")] 1},

11 // return top 3 days with highest
— counts

12 { op: "filter", args:
— op.rank () <= 2] }

13 ]

14}

15 const getAggTransformResults =

16 () => executeDataTransformation(J

— aggTransform);

(O =>

First, we specify the input dataset (line 3). Then, we
group reported crimes by date (line 6), count total records
per day (line 8), sort the dates by count (line 10), and
filter for the top three dates with the highest counts
(line 12). Finally, we execute the transformations using the
executeDataTransformation method on line 16.

1const crimePeaks = new
— AnalyticKnowledgeNode (
2 "peakCrimes", // node name
s Date.now(), // timestamp
4+ aggTransform, // data transformation
s null, // data relationship
6 getAggTransformResults, // results
7

Next, we record how John processed the data to identify
peaks in a new analytic knowledge node. First, we give
this analytic knowledge a name (line 2) and record when
John learned it (line 3). Then, we connect relevant data
transformations and/or relationships (lines 4-5). In this case,
John’s findings relate only to the aggTransform object.
Similar to domain knowledge nodes, we can link to other
analytic knowledge nodes using addSource, addTarget,
and addRelated. All node objects share this property.

To demonstrate data relationships in Pyxis consider this
extension of the Baltimore example: suppose John is curious
whether location is indicative of crime type, for example,
whether different crimes happen indoors versus outdoors,
or in an apartment versus a business. We can specify a new
model to predict this relationship as follows:



1const descRel = new

— DecisionTreeClassification/(
2  "predictCrimeType", // name
3 [ // input attributes to predict with
4 {
5 name: "Inside/Outside",
6 attributeType:
— AttributeType.nominal
7 }y
8 {
9 name: "Premise",
10 attributeType:

— AttributeType.nominal

11 }
12 1,
13 // output attribute to be predicted
14 {
15 name: "Description",
16 attributeType: AttributeType.nominal
17 }
18);
wvwdt.train (baltimoreCrimes.records);
wconst prediction = dt.predict (|

— baltimoreCrimes.records[0]);

Since the input and output attributes are categorical, we
specify a decision tree classifier to predict their relationship
(line 1). The input attributes used to train the model are
“Inside/Outside” and “Premise” (lines 3-12). The output at-
tribute being predicted is “Description” (lines 14-17), which
describes the type of crime reported. However, using a
machine learning relationship is not required, and the model
type can easily be swapped in Pyxis by choosing a relation-
ship type other than DecisionTreeClassification.
Line 19 shows how we can train the specified decision tree
model on the Baltimore crimes dataset and Line 20 shows
how this model can be used to predict the crime type of
specific records. In this way, specified analytic knowledge
can be evaluated for statistical rigor by testing the accuracy
of the underlying data relationships, supporting prior calls
for more precise evaluation of user insights [7].

Suppose that Inside/Outside and Premise are not
strong predictors of crime Description. We can record
this result in a new AnalyticKnowledgeNode as follows:

1const crimelLoc = new

— AnalyticKnowledgeNode (
"crimeLocations", // node name
Date.now (), // timestamp
null, // data transformation
descRel, // data relationship
null // results

)

N G w N

Pyxis supports any type of multivariate relationship,
including K nearest neighbors, linear regression, and naive
Bayes models, as well as univariate relationships (e.g., via
kernel density estimation) and other statistical relationships
such as outliers (e.g., via isolation forests).

5.1.3 Specifying Insight

The last step in specifying insights is to link domain knowl-
edge with relevant analytic knowledge. Continuing our
example, we specify an insight connecting John’s domain
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knowledge about the Baltimore protests (line 4) and analytic
knowledge regarding peak crime dates in Baltimore (line 5):

1const johnsInsight =
// name

new InsightNode (

2 "johnsInsight",

3 // domain knowledge

4 [protestsNode],

5 // analytic knowledge
6 [crimePeaks, crimeloc]
7);

We can also keep track of John’s “dead ends” as desired,
for example including our crimeLoc analytic knowledge
node as shown on line 4. Similar to the domain and analytic
knowledge nodes, insight objects also support the linking of
source, target, and related insights.

5.2 Use Case 2: Analyzing Insight Complexity

Similar to insight scope, insight complexity is an important
concept in the literature. For example, insight complexity is
used to estimate the quality or value of insights [6], [18],
[37]. In this use case, we explore how North defines insight
complexity [6] and connect this definition with alternative
conceptualizations of insight complexity in the literature.

5.2.1 Three Levels of Complexity

North argues that “complexity is determined by how much
data is involved in the insight” and gives three forms of
“insights” over monthly rents as examples [6]. We imple-
ment these insights (see Figure 5) using data from the U.S.
Department of Housing and Urban Development®.

A) “Simple” Insights. North’s simplest insight computes
minimum and maximum rent values, which we calcu-
late using an aggregate data transformation.

B) “More Complex” Insights. North proposes a “more com-
plex” insight that estimates a normal distribution over
the rent data, which we calculate as a univariate data
relationship using Vega's statistics package®.

C) “Even More Complex” Insights. The most complex insight
estimates the shape of the rent distribution using a
histogram. This maps to a series of data transformations
to bin the data and then aggregate it by bin ranges.

5.2.2 Insight Complexity C Query Complexity?

According to our formalism, North’s examples involve a
univariate data relationship (a normal distribution) and
two sets of data transformations (min/max calculations and
binned aggregation). Further, North seems to emphasize
the data transformations, which are essentially relational
queries over data (see subsection 4.3). We see this in Fig-
ure 5, where binned aggregation requires a more complex
sequence of operations compared to the min/max calcu-
lations. Here, “insight complexity” could mean relational
query complexity, which aligns well with existing definitions
of insight posed by Andrienko and Andrienko [49] and
Bertin [48] as well as relevant database research [71] and
even research on program complexity [72]. In this sense, the
Andrienko and Andrienko [49] and Bertin [48] definitions

3. https:/ /www.huduser.gov/portal/datasets /50per.html
4. https:/ /github.com/vega/vega-statistics /
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A) “Simple” Insight Example
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C) “Even More Complex” Insight Example

1 const aggregateTransformation = {
2 sources: [hudRents],
3 transforms: [

4 {

5 op: "rollup",
6

7

8

[ aggregate(rent56_2, min) ]

args: [{
min_rent_2br: d => op.min(d["rent56_2"]),
max_rent_2br: d => op.max(d["rent50_2"])
9 H
10 }
1 ]
12 };

[ aggregate(rent56_2, max) ]

B) “More Complex” Insight Example

1 const nmm = new NormalDistribution(

2 “normal dist - HUD dataset - 2br only"
3 hudRents.records[8].attributes

4 .filter(a => a.name === "rent50_2")[0
5);
6 nmm.train(hudRents.records);

hudRents

[ NormalDistribution(rent56_2) ]

10 {

1 op: "rollup",
12 args: [{

13 count: op.count()
14 H

15 +

16 {

17 op: "orderby"
18 args: ["bins"]
19 }

20 ]

21};

1 const binnedTransformation = {
2 sources: [hudRents],
3 transforms: [

4 {

6 args: [{
:
8

"bins":
[ aggregate(bins, count) }

3

bin("rent56_2", {"maxbins": 3@})

9 h

Fig. 5: North's three levels of insight complexity [6] in Pyxis alongside the corresponding relational operators.

could be considered generalizations of North’s definition of
insight complexity since relational queries can encompass a
wider range of programs than min-max or histogram calcu-
lations. Queries also provide an easy means of calculating
data coverage, which North uses to define complexity.

That being said, defining insight complexity as query
complexity makes data manipulation the focus of insight
rather than how people interpret data, ie., as data rela-
tionships. Thus, this view of insight complexity is defi-
cient, as hinted at by North’s inclusion of a univariate
data relationship. Saraiya et al. [15] and Smuc et al. [18]
extend this idea to include multivariate relationships in
their definitions. Kandogan and Engelke take this a step
further by applying relational query patterns to express
data relationships such as linear correlations [31], further
enriching our understanding of insight complexity. With a
richer definition of insights comes the need for alternative
methods for measuring insight complexity, which could be
an exciting opportunity for future research.

5.2.3 Benefits of the Formalism

Using our formalism, we could hypothesize new measures
of insight complexity, such as by measuring knowledge
depth by computing the longest path from a knowledge
node to its earliest ancestor, which aligns with existing
definitions of exploration depth [8]. Using Pyxis, knowl-
edge node depth can be calculated programmatically by
backtracking from a node’s directed edges. This calculation
can also be augmented to include the number of relational
operations involved in connected data transformations.
Consistent with North’s assertion, we could even measure
knowledge breadth as the percentage of data values (rows X
attributes/columns) involved as inputs and outputs to the
corresponding data transformations and/or relationships.

5.3 Use Case 3: Analyzing Participants’ Insights

Although insight-based user studies have been critical to
understanding how people form insights, participants’ in-
sights are generally self-reported, requiring a means of
validating insight quality. Traditionally this has been done by
hand [15], [24], [6], [21], [29]. However, recent considers how
to partially automate the validation process [7], [8], [37].
Pyxis provides a convenient structure for validating par-
ticipants” insights and could facilitate further automation.

We demonstrate this benefit by recreating insights reported
by Battle and Heer from their study of how analysts explore
data in Tableau [8]. We focus on task “T3” for the wildlife
strikes dataset®, which asks: “What relationships (if any) do
you observe involving weather conditions and strike frequency, or
counts over time?” The task also specifies three attributes to
consider: precip, sky, and incident_date. We recreate
two contradictory answers observed by Battle and Heer:
(A) strikes are not correlated with time (reported by 13
participants) and (B) bad weather leads to more strikes over
time (reported by 3 participants). We use Pyxis to shed light
on the discrepancy among participants (see Figure 6.)

A) Analyze the precip Attribute. First, we analyze the
incidence of wildlife strikes using the precip attribute
by applying a series of data transformations to: remove
null precip entries on lines 4-7, extract the year from
each incident_date on line 11, and count the total
incidents observed per year, grouped by precip condi-
tions (e.g., “fog,” “rain,” etc.) on lines 15-26. Overall, we
see that incidents do not appear to increase with time,
with the exception of “rain” conditions, shown in Fig-
ure 6b. We can record these findings in a new analytic
knowledge node named precipNode in Figure 6a.

B) Analyze the sky Attribute. Second, we repeat this analy-
sis, but replace precip with sky on lines 6 and 12 in
our code, denoted in yellow in Figure 6a. In this case,
we see a steady increase in incidents per year for all
observed weather conditions, shown in Figure 6¢c. We
can record these findings in a new analytic knowledge
node named skyNode in Figure 6a.

5.3.1 Benefits of The Formalism

We see that even when performing the same data transfor-
mations, participants could still derive drastically different
answers based on which attributes were analyzed. These
results suggest that even if participants’ analyzed both
attributes while completing T3, their answers were likely
influenced by which attribute they favored, precip or
sky. Since Battle and Heer focused on analyzing interaction
sequences [8], they may have overlooked potential structural
similarities in participants’ answers. By using a consistent
structure to represent analytic knowledge, we see how the
data can influence which conclusions participants draw
regardless of which interactions were performed.

5. https:/ /wildlife.faa.gov/search


https://wildlife.faa.gov/search

A) First, We Analyze the Incidence of Strikes Using the precip Attribute
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Total Strikes Per Year, Grouped By Precipitation

1const precipNode = new AnalyticKnowledgeNode ( precip
2 “precipKnowledge”, // name
KI const precipTransfcrmaticn =4 \--: 3 the.n:w(), //gtlmestamp g ® fog )
2 sources: [birdstrikes], \--p4 precipTransformation, // transformation S fog, rain
i transforms: [ ' 5 null, // data relationship ES ® fog, rain, snow
wgi " ' 6 // [optional] description
5 op: “filter”, R ! 7 “Incidents do not increase with time.” g fog, snow
6 args: [d => d.precip !== null && ! 8); ® rain
7 op.lower(d.precip) !== “none”] ' ! R
8 ' rain, snow
9 { : ® snow
10 op: “derive”, i
11 args: !{ ~ Ve ., '
12 year: d = °P~Ye;r<dl(;"01der)tgdate D. | : B) Second, We Analyze the sky b) Analvzi h ib Strik
precip: d => op.lower(d.precip i K .
b 1 " attribute and Compare. (b) Analyzing the precip attribute. Strikes
v i do not appear to increase with time.
T e ey |
:g args: [“year”,"precip”] ! 1const skyNode = new AnalyticKnowledgeNode(
! 2 “skyKnowledge”, // name . .
20 { i | 3 Date.now(), // timestamp Total Strikes Per Year, Grouped By Sky Conditions
21 op: “rollup”, L_» 4 skyTransformation, // transformation sky
22 args: [{ frequency: op.count() }] 5 null, // data relationship 3,000
23 b 6 // [optional] description > @ no cloud
24 { 7 “Incidents increase over time.” g overcast
25 op: “orderby”, 8); @ 2,000
26 ) args: [“year”] g. @ some cloud
27 [
- some clouds
28 ] & 1,000
o J

(a) Specified data transformations (left) and analytic knowledge nodes
(right). Only lines 6-7 and 13 need to change to analyze the precip or

sky attribute, shown in yellow.

1,990 2,000

year

(c) Analyzing the sky attribute. Strikes ap-
pear to increase with time.

2,010

Fig. 6: In a prior study [8], participants explored wildlife-aircraft strikes under various weather conditions, precip and
sky. Holding data transformations constant (a), we posit that participants who focused on the precip attribute (b) versus
the sky attribute (c) likely drew different conclusions, showing how attribute selection can influence insight discovery.

Zgraggen et al. [7]: Sleep Analysis Battle & Heer [8]: Birdstrikes Task 2
{

dimension: "hours_of_sleep”,

filter: "

target_buckets: "8 > hours_of_sleep &

Original Insight

"Airplane has more occurrences of damage"
Format

hours_of_sleep >= 7, 9 > hours_of_sleep
8& hours_of_sleep >= 8, 10 >
hours_of_sleep && hours_of_sleep >= 9",
comparison: "rank_buckets_count"

}

Binning Binning
bin(hours_of_sTeep)

groupby (bins)

filter(damage, ac_class)

groupby(ac_class)

aggregate(damage, count)

Pyxis Format

Fig. 7: Although the analytic knowledge observed by
Zgraggen et al. [7] and Battle and Heer [8] have very
different formats, they share striking structural similarities
when implemented using our formalism.

5.4 Use Case 4: Comparing Insight Studies

In this use case, we seek to understand how existing insight-
based studies define insight and application-driven defini-
tions compare with existing theories. In other words: how
useful are existing theories for existing studies?

5.4.1 A Tale of Two Studies

For the sake of space, we limited our analysis to two
insight-based studies by Zgraggen et al. [7] and Battle and
Heer [8]. We used Pyxis to implement all of the insights
shared by Zgraggen et al. for their sleep study dataset
exploration task, i.e., from Figure 3 of their paper [7]. We
also implemented three insights observed by Battle and
Heer as analysts explored wildlife strikes data [8]. Examples
of insights from both studies are shown in Figure 7, using
the original formats at the top (lightly edited to maximize

readability) and the corresponding Pyxis data structures (in
this case, data transformations) at the bottom.

5.4.2 These Studies Share Striking Similarities

Upon first impression, these insights may appear to be
drastically different. However, we observed striking struc-
tural similarities. First, both studies record insights as analytic
knowledge only and omit domain knowledge. Second, the
vast majority of analytic knowledge were data transformations
only, but some data relationships are also observed, e.g.,
linear correlations. Third, our implemented data structures
were very similar between the two studies. For example,
most data transformations involved filtering and/or group-
ing by an independent variable and aggregating a depen-
dent variable to produce summary statistics. An example is
shown in Figure 7, where Zgraggen et al. observe quantita-
tive binning on the hours_of_sleep attribute and Battle
and Heer observe nominal binning using the ac_class
attribute. Quantitative binning requires an extra step to
discretize hours_of_sleep into bins, but otherwise, their
data transformations have identical structures.

5.4.3 Existing Theory Only Covers a Subset of “Insights”

In some cases, we see strong overlaps between observed
analytic knowledge from these studies and existing theory
papers. For example, the rank_buckets_count insight in
Figure 7 bears a strong resemblance to North’s rent distri-
bution example [6] (see subsection 5.2). However, North’s
examples only provide a partial fit for the analytic knowl-
edge observed by Zgraggen et al. [7] and Battle and Heer [8].
For example, North does not provide explicit examples of
multivariate relationships. Definitions emphasizing domain
knowledge would also be a poor fit (e.g., [19]) since domain
knowledge is not a focus of these studies.



Instead, theories that emphasize analytic knowledge as
a whole are more appropriate. For example, Yang et al.
formalize data facts, which encompass both data transfor-
mations and data relationships [26]. Kandogan and Engelke
provide an alternative definition of analytic knowledge
based primarily on relational query patterns [31]. Similarly,
Demiralp et al. define insights as “a strong manifestation
of a distributional property of the data, such as strong
correlation, tight clustering, low dispersion, and so on.” [62].
However, neither paper cites these definitions. We find that
many insight-based studies observe the discovery of both
data transformations and data relationships during visual
analysis sessions [15], [18], [31], [37]. We also observe a
recurring theme: these studies tend to reference the more
popular definitions of insight rather than the most relevant
ones. This pattern reveals an important limitation to existing
theory: it is difficult to identify and apply the most relevant
theories to insight-based studies. Our formalism takes a
step towards addressing these challenges by providing a
framework for navigating existing theories of insight.

5.4.4 Benefits of the Formalism

Given the importance of data distributions as analytic
knowledge, we could reuse the corresponding Pyxis ob-
jects as templates for extracting this knowledge from new
datasets, e.g., for visualization recommendation [73]. Fur-
ther, rather than limiting recommendations to quantitative
binning (i.e., standard histograms), we can also apply qual-
itative binning as observed by Battle and Heer [8]. To use
Pyxis objects as templates, we can replace the assigned
attributes in the Pyxis objects (e.g., hours_of_sleep,
ac_class) with equivalent attribute(s) from a target
dataset. This approach also reveals the potential of Pyxis as
a language for taxonomizing observed insights, thereby ex-
tending existing categorizations (subsection 2.2) with a cor-
pus of exemplars amenable to quantitative meta-analysis.

6 DiscussiON AND FUTURE WORK

Researchers largely agree on the structure of insights, i.e.,
their major building blocks, but not their semantics, i.e.,
how these building blocks are interpreted. We hone existing
structural consistencies into a unified formalism to quantify
the complexity and scope of observed knowledge. We high-
light exciting future directions based on this work.

6.1 Declarative Specification of Insights

We observe a consistent progression from an unstructured
recording of analytic knowledge towards declarative speci-
fication of analytic knowledge. This is exemplified in the
progressions of building blocks proposed by North [13],
Kandogan and Engelke [31], Zgraggen et al. [7], and An-
drienko and Andrienko [49] as well as in related work
by Suh et al. [74]. These works converge on expressing a
user’s interpretation of data in terms of relational queries
rather than a series of logged system interactions or interface
manipulations. An example from Zgraggen et al. is shown in
Figure 7. This direction can also provide interesting oppor-
tunities to intersect with related areas, such as databases and
programming languages research [75]. Still, there are clear
limitations to this approach revealed by our formalism (see
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subsection 5.2). For example, relational query languages like
SQL lack declarative representations for multivariate and
univariate data relationships. We highlight this as a critical
gap to be filled in future theories.

6.2 Supporting Domain Knowledge

We observed a recurring theme across insight-based theories
and studies: they lack precise specifications for domain
knowledge, hindering our community’s ability to reason
about user knowledge as a whole. For example, a correla-
tion between two generic variables is meaningless without
domain context, e.g., a correlation between certain drugs
and patient health outcomes [37] or the incidence of crime
and racial injustice in Baltimore [41]. This is not solely a
visualization provenance issue. For example, recent research
shows how visualization recommendation systems [60], [73]
and visualization languages [76] can be hindered by their
inability to incorporate domain and task context. Thus,
incorporating user domain knowledge appears to be a con-
sistent challenge within visualization research.

As a first step, we observe a need for more precise
methods for expressing user domain knowledge, ideally
at the theoretical level. In this way, we can capture user
domain knowledge with equivalent precision as analytic
knowledge, allowing our community to more accurately
model user learning and knowledge building over time.

One possibility for refining representations of domain
knowledge is to exploit formalisms from knowledge graphs,
which could enable us to automate traditionally manual
practices using graph-based algorithms, e.g., to quantify the
depth and breadth of user knowledge (subsection 5.2), to
detect patterns in knowledge acquisition [43], [31], or even
to provide additional context to visualization tools such
as for visualization recommendation tasks [77]. Further,
knowledge graphs could support bias detection by detecting
problematic links between domain and analytic knowledge,
and analytic knowledge and conclusions that are drawn.

6.3 Sharing Insight Data

A critical second step is to prioritize sharing of insight data.
For example, although Liu and Heer share their annotations
for user insights, it is impossible to extract the specific
data users were analyzing in imMens in tandem with these
annotations [21]. Zgraggen et al. [7] and Kandogan and
Engelke [31] derive insight specifications from their study
data but only share a handful of examples as brief anecdotes
in their papers. Similarly, Guo et al. only describe a few
example insights from their study in their paper [29]. In con-
trast, best practices in visualization provenance encourage
consistent tracking, sharing, and reuse of recorded system
interaction logs (e.g., [4], [78], [8], [79]).

Insight corpora could open new avenues for visualiza-
tion research. For example, recorded insights could be ag-
gregated to form reusable insight femplates to detect insights
within new datasets. Insight datasets could also be used as
unit tests for evaluating insight specifications, for example,
by adapting the coverage and diversity measures proposed
by Gathani et al. to apply to insight specifications [4]. Our
formalism eases this burden somewhat by providing precise
specifications for the core building blocks of insights. In
this way, researchers can choose which building blocks to



focus on and use Pyxis to share observed instances of these
building blocks from their user studies.

7 CONCLUSION

Reviewing the literature, we find that researchers seem to
agree on the structure of visual analysis insights, i.e., their
major building blocks, but not the semantics of insights, i.e.,
how these building blocks are interpreted. We propose a
unified formalism that integrates multiple theoretical defi-
nitions of insight and contribute a toolkit called Pyxis for
specifying insights using our formalism. We demonstrate
how to use Pyxis to implement existing definitions of insight
and compare the resulting structures. We find that current
definitions fail to support rich specifications of domain
knowledge and analytic knowledge, revealing exciting vi-
sualization research opportunities in domain knowledge
representation, automated analytical reasoning, and collabo-
rations with data management and data mining researchers.
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