

1 **TITLE:**

2 P300-Based Brain-Computer Interface Speller Performance Estimation with Classifier-Based
3 Latency Estimation

4
5 **AUTHORS:**

6 Nazmun N. Khan^{1*}, Taylor Sweet¹, Chase A. Harvey¹, Seth Warschausky², Jane E. Huggins^{3,4}, David
7 E. Thompson¹

8
9 ¹Brain and Body Sensing Lab, Mike Wiegert Department of Electrical & Computer Engineering,
10 Kansas State University, Manhattan, KS, United States

11 ²Adaptive Cognitive Assessment Laboratory, Department of Physical Medicine and
12 Rehabilitation, University of Michigan, Ann Arbor, MI, United States

13 ³Direct Brain Interface Laboratory, Department of Physical Medicine and Rehabilitation,
14 University of Michigan, Ann Arbor, MI, United States

15 ⁴Direct Brain Interface Laboratory, Department of Biomedical Engineering, University of
16 Michigan, Ann Arbor, MI, United States

17
18 Email addresses of the co-authors:

19 Taylor Sweet (tasweet@ksu.edu)
20 Chase A. Harvey (caharvey@ksu.edu)
21 Seth Warschausky (sethaw@med.umich.edu)
22 Jane E. Huggins (janeh@med.umich.edu)
23 David E. Thompson (davet@ksu.edu)

24
25 Email address of the corresponding author:

26 Nazmun N. Khan (nkhan1@ksu.edu)

27
28 **SUMMARY:**

29 This article presents a method for estimating same-day P300 speller Brain-Computer Interface
30 (BCI) accuracy using a small testing dataset.

31
32 **ABSTRACT:**

33 Performance estimation is a necessary step in the development and validation of Brain-Computer
34 Interface (BCI) systems. Unfortunately, even modern BCI systems are slow, making collecting
35 sufficient data for validation a time-consuming task for end users and experimenters alike. Yet
36 without sufficient data, the random variation in performance can lead to false inferences about
37 how well a BCI is working for a particular user. For example, P300 spellers commonly operate
38 around 1–5 characters per minute. To estimate accuracy with a 5% resolution requires 20
39 characters (4–20 min). Despite this time investment, the confidence bounds for accuracy from
40 20 characters can be as much as $\pm 23\%$ depending on observed accuracy. A previously published
41 method, Classifier-Based Latency Estimation (CBLE), was shown to be highly correlated with BCI
42 accuracy. This work presents a protocol for using CBLE to predict a user's P300 speller accuracy
43 from relatively few characters (~3–8) of typing data. The resulting confidence bounds are tighter

44 than those produced by traditional methods. The method can thus be used to estimate BCI
45 performance more quickly and/or more accurately.

46
47 **INTRODUCTION:**
48 Brain-computer interfaces (BCIs) are a noninvasive technology that allows individuals to
49 communicate through machines directly without regard for physical limitations imposed by the
50 body. BCI can be utilized as an assistive device operated directly by the brain. BCI uses the brain
51 activity of a user to determine if the user intends to choose a certain key (letter, number, or
52 symbol) displayed on the screen¹. In a typical computer system, a user physically presses the
53 intended key on a keyboard. However, in a BCI system with a visual display, the user needs to
54 focus on the desired key. Then, BCI will select the intended key by analyzing the measured brain
55 signals¹. The activity of the brain can be measured using various techniques. Though there are
56 competing BCIs technologies, electroencephalogram (EEG) is considered a leading technique due
57 to its noninvasive nature, high temporal resolution, reliability, and relatively low cost².

58
59 Applications of BCI include communication, device control, and also entertainment^{3,4,5,6}. One of
60 the most active BCI application areas is the P300 speller, which was introduced by Farwell and
61 Donchin⁷. The P300 is an event-related potential (ERP) produced in response to the recognition
62 of a rare but relevant stimulus⁸. When a person recognizes their target stimulus, they
63 automatically produce a P300. The P300 is an effective signal for a BCI because it conveys the
64 participant's recognition of the target event without requiring an outward response⁹.

65
66 The P300 BCI has attracted researchers from computer science, electrical engineering,
67 psychology, human factors, and various other disciplines. Advances have been made in signal
68 processing, classification algorithms, user interfaces, stimulation schemes, and many other
69 areas^{10,11,12,13,14,15}. However, regardless of the research area, the common thread in all of this
70 research is the necessity of measuring the BCI system performance. This task typically requires
71 the generation of a test data set. This necessity is not limited to research; eventual clinical
72 application as an assistive technology will likely require individual validation sets for each end
73 user to ensure the system can generate reliable communication.

74
75 Despite the considerable research applied toward the P300 BCI, the systems are still quite slow.
76 While the majority of people are able to use a P300 BCI¹⁶, most P300 Spellers produce text on
77 the order of 1–5 characters per minute. Unfortunately, this slow speed means that generating
78 test data sets requires substantial time and effort for participants, experimenters, and eventual
79 end users. Measuring BCI system accuracy is a binomial parameter estimation problem, and
80 many characters of data are necessary for a good estimate.

81
82 To estimate the presence or absence of the P300 ERP, most classifiers use a binary classification
83 model, which involves assigning a binary label (e.g., "presence" or "absence") to each trial or
84 epoch of EEG data. The general equation used by most classifiers can be expressed as:

85
86
$$\hat{y}(x) = w^T \cdot f(x) + b$$

87

88 where \hat{y} is called the classifier's score which represents the probability of the P300 response
89 being present, x is the feature vector extracted from the EEG signal, and b is a bias term¹⁷. The
90 function f is a decision function that maps the input data to the output label, and is learned from
91 a set of labeled training data using a supervised learning algorithm¹⁷. During training, the
92 classifier is trained on a labeled dataset of EEG signals, where each signal is labeled as either
93 having a P300 response or not. The weight vector and bias term are optimized to minimize the
94 error between the predicted output of the classifier and the true label of the EEG signal. Once
95 the classifier is trained, it can be used to predict the presence of the P300 response in new EEG
96 signals.

97
98 Different classifiers can use different decision functions, such as linear discriminant analysis
99 (LDA), step-wise linear discriminant analysis (SWLDA), least squares (LS), logistic regression,
100 support vector machines (SVM), or neural networks (NNs). The least squares classifier is a linear
101 classifier that minimizes the sum of squared errors between the predicted class labels and the
102 true class labels. This classifier predicts the class label of a new test sample using the following
103 equation:

104
105
$$\hat{y}(x) = \text{sign}(\hat{w} * x) \quad (1)$$

106
107 where the sign function returns +1 if the product is positive and -1 if it is negative and weight
108 vector \hat{w} is obtained from the feature set of the training data, (x) and class labels (y) using the
109 below equation:

110
111
$$\hat{w} = (X^T X)^{-1} X^T y \quad (2)$$

112
113 In earlier research, we argued that Classifier-Based Latency Estimation (CBLE) can be used to
114 estimate BCI accuracy^{17,18,19}. CBLE is a strategy for evaluating latency variation by exploiting the
115 classifier's temporal sensitivity¹⁸. While the conventional approach to P300 classification involves
116 using a single time window that is synchronized with each stimulus presentation, the CBLE
117 method involves creating multiple time-shifted copies of the post-stimulus epochs. Then it
118 detects the time shift that results in the maximum score in order to estimate the latency of the
119 P300 response^{17,18}. Here, this work presents a protocol that estimates BCI performance from a
120 small dataset using CBLE. As a representative analysis, the number of characters is varied to make
121 predictions of overall performance of an individual. For both example datasets, the root mean
122 square error (RMSE) for vCBLE and actual BCI accuracy were computed. The results indicate that
123 the RMSE from vCBLE predictions, using its fitted data, was consistently lower than the accuracy
124 derived from 1 to 7 tested characters.

125
126 We developed a Graphical User Interface (GUI) called "CBLE Performance Estimation" for the
127 implementation of the proposed methodology. Example code is also provided (**Supplementary**
128 **Coding File 1**) that operates on the MATLAB platform. The example code performs all of the
129 steps applied in the GUI, but the steps are provided to assist the reader with adapting to a new
130 dataset. This code employs a publicly available dataset "Brain Invaders calibration-less P300-
131 based BCI using dry EEG electrodes Dataset (bi2014a)" to evaluate the proposed method²⁰.

132 Participants played up to three game sessions of Brain Invaders, each session having 9 levels of
133 the game. The data collection continued until all levels were completed or the participant lost all
134 control over the BCI system. The Brain Invaders interface included 36 symbols that flashed in 12
135 groups of six aliens. According to the Brain Invaders P300 paradigm, a repetition was created by
136 12 flashes, one for each group. Out of these 12 flashes, two flashes contained the Target symbol
137 (known as Target flashes), while the remaining 10 flashes did not contain the Target symbol
138 (known as non-Target flashes). More information on this paradigm can be found in the original
139 reference²⁰.

140

141 The CBLE approach was also implemented on a Michigan dataset, which contained data from 40
142 participants^{18,19}. Here, the data of eight participants had to be discarded because their tasks were
143 incomplete. The whole study required three visits from each participant. On the first day, each
144 participant typed a 19-character training sentence, followed by three 23-character testing
145 sentences on Days 1, 2, and 3. In this example, the keyboard included 36 characters which were
146 grouped into six rows and six columns. Each row or column was flashed for 31.25 milliseconds
147 with an interval of 125 milliseconds between flashes. Between characters, a 3.5 s pause was
148 provided.

149

150 **Figure 1** shows the block diagram of the proposed method. The detailed procedure is described
151 in the protocol section.

152

153 **PROTOCOL:**

154 The “CBLE Performance Estimation” GUI was applied on two datasets: “BrainInvaders” dataset
155 and Michigan dataset. For the “BrainInvaders” dataset, the data collection was approved by the
156 Ethical Committee of the University of Grenoble Alpes²⁰. Michigan data were collected under the
157 University of Michigan Institutional Review Board approval¹⁹. Data were analyzed under Kansas
158 State University exempt protocol 7516. If collecting new data, follow the user’s IRB-approved
159 process for collecting informed consent. Here, the proposed protocol is evaluated using offline
160 analysis of previously-recorded, de-identified data and therefore did not require additional
161 informed consent.

162

163 The graphical user interface (GUI) included in this paper is proficient in managing two distinct
164 dataset formats. The first format is associated with the BCI2000 software, while the second
165 format is referred to as the "BrainInvaders" dataset. In order to utilize the “Brain Invaders”
166 format, data must be pre-processed as described in step 1 of the protocol section. However,
167 when dealing with the “BCI2000” dataset format, step 1 can be omitted.

168

169 **1. Data preparation**

170

171 **1.1.** BrainInvaders only: Generate the input data file in ".mat" file format that can be used
172 with the "CBLE performance Estimation" graphical user interface (GUI). For a sample script, refer
173 to **Supplementary Coding File 2**.

174

175 NOTE: Each datafile consists of a two-dimensional matrix comprised of rows that represent
176 observations recorded at distinct time samples. The matrix columns numbered from 2 to 17 are
177 recordings derived from 16 EEG electrodes. The first column of the matrix denotes the timestamp
178 of each observation, while column 18 encompasses information related to experimental events.
179 In column 19, there are mostly zeros, but when a non-Target (or Target) flash starts, the numbers
180 change to one (or two) at that specific time. A detailed description may be found in the
181 reference²⁰.

182

183 **2. Download and install the GUI package**

184

185 **2.1. Download and install the “CBLE Performance Estimation” GUI.**

186

187 **3. Store the dataset in a subfolder of the GUI location**

188

189 3.1. Ensure that the dataset folder remains within the same directory as the GUI.

190

191 3.2. For instance, create a new folder and place the “CBLE Performance Estimation” GUI
192 inside it. Keep all the datasets in a subfolder within “CBLE GUI” named “Dataset.”

193

194 **4. Open the installed GUI**

195

196 4.1. Open MATLAB, change the current directory to folder where you placed the GUI, click
197 “APPS” tab and select “MY APPS”.

198

199 4.2. Under the “MY APPS” tab, select “CBLE Performance Estimation”.

200

201 **5. Choose dataset format**

202

203 5.1. Select a dataset format from the dropdown “Select dataset format”.

204

205 **6. Load EEG data file**

206

207 6.1. Click on the “Select input folder” button to choose the directory where the dataset is
208 located.

209

210 6.2. Observe the count of data files present in that selected folder.

211

212 NOTE: In the “Brain Invaders” format, each participant is represented by a single data file.
213 Therefore, the total number of data files indicates the number of participants in the study.
214 However, this is not the case for the “BCI2000” format, as each participant may have multiple
215 train and test files.

216

217 **7. Set the parameters**

218

219 7.1. Type the number of participants that the user intends to use for the estimation process
220 in the "No. of subjects" text box.

221
222 7.2. BrainInvaders only: Specify the sampling rate of the dataset.

223
224 NOTE: BCI2000 files include the sample rate.

225
226 7.3. Choose a decimation value to downsample the dataset to approximately 20 Hz in order
227 to improve classification performance²¹. For example, if the sampling frequency is 256 Hz, then
228 select a decimation value of 13.

229
230 7.4. Specify the time window for the classification in milliseconds.

231
232 NOTE: The recommended initial window size is specified, allowing the starting point to vary from
233 0 to 100 ms and the ending point from 700 to 800 ms. However, it is important to avoid making
234 the window size excessively large to prevent overlapping with another P300 event.

235
236 7.5. Define the shift window for CBLE in milliseconds.

237
238 NOTE: The term 'shift window' refers to the window of new epochs of EEG test data which are
239 extracted by shifting the window forward one sample in time. This shift window size must be
240 larger than the original window, as it indicates the number of shifts that CBLE can detect. The
241 difference between the shift window and classification window should be less than 100 ms from
242 each side.

243
244 7.6. BC2000 only: Enter the length of the subject ID indicated in the dataset files within the
245 "ID length" field.

246
247 NOTE: The GUI expects the first sub_len characters of the filenames to encode the subject ID.

248
249 7.7. BCI2000 only: In the "Channel ID" field, indicate either the total number of channels or
250 specify the specific channel numbers to be used for the analysis.

251
252 7.8. Click the "Set parameters" button to set all the parameters required for the analysis.

253
254 8. BrainInvaders only: Split the dataset into training and test set

255
256 8.1. Select a number of targets that represents the size of the training set. The remaining
257 portion of the dataset will be considered as the test dataset.

258
259 NOTE: To ensure proper training of the model, it is essential to have a sufficiently large training
260 sample. The recommended minimum training sample size is 20, though this may vary depending

261 on the overall dataset size. If regression errors occur during training session, it is advisable to
262 increase the training sample size.

263

264 8.2. Press the "**Split the dataset**" button to divide the dataset into the training and test sets.

265

266 NOTE: Each participant will have an equal amount of training data. However, the number of test
267 data may not be equal for all participants due to the possibility of multiple attempts during the
268 task. Consequently, the total number of targets or flashes presented may vary from person to
269 person.

270

271 9. Train a model with training dataset

272

273 Note: Step 9.1 is applicable for "Brain Invaders" format and step 9.2 is applicable for "BCI2000"
274 format.

275

276 9.1. BrainInvaders only: Click on the "**Train a model**" button to apply linear regression on the
277 training dataset using equation 2 for training a classifier model.

278

279 9.2. BCI2000 only: Indicate training and testing filenames along with their data format (.dat)
280 to distinguish the training and testing files from all files. Then, click on the "**Train a model**" button
281 to apply linear regression on the training dataset.

282

283 10. Predict the accuracy of the test set

284

285 10.1. Click on the "**Predict accuracy**" to apply the trained classifier model to the test feature
286 set and predict the accuracies using equation 1.

287

288 11. Get X-target accuracies

289

290 11.1. Select a maximum target number, X, to consider in the test set.

291

292 11.2. BCI2000 only: Select a test file number if user has multiple test files.

293

294 11.3. Press "**Find X target accuracy**" to get the accuracies.

295

296 12. Calculate vCBLE

297

298 12.1. Click on the "**Find vCBLE**" button to get the vCBLE for all targets.

299

300 13. Calculate Root mean square error (RMSE) of BCI accuracy and vCBLE

301

302 13.1. Click on the “Calculate RMSE” button to calculate the RMSE between both predictions
303 based on vCBLE with BCI accuracy, and X-target accuracy with BCI accuracy.

304
305 **14. Visualize the results of the analysis**

306
307 14.1. Click on the “Accuracy vs vCBLE” button to observe the relation between total accuracy
308 and total vCBLE for all participants.

309
310 14.2. Press on the “RMSE of BCI & vCBLE” button to show the RMSE curve of BCI accuracy and
311 vCBLE.

312
313 **15. Prediction of the performance of an individual participant**

314
315 15.1. To predict the accuracy of an individual participant, place the subject id in “Sub ID”.

316
317 NOTE: Here, the dataset of all participants, excluding the test participant, will be used to train a
318 linear regression model. The vCBLE scores of all other participants and their corresponding test
319 accuracies will be utilized as predictors and labels, respectively, for the classifier.

320
321 15.2. Select a target number, n. The prediction will be made based on the accuracy of n testing
322 characters.

323
324 15.3. Click the “Predict” button to get the predicted accuracy of the test participant.

325
326 **REPRESENTATIVE RESULTS:**

327 The proposed protocol has been tested on two different datasets: “BrainInvaders” and the
328 Michigan dataset. These datasets are already introduced briefly in the Introduction section. The
329 parameters used for this two datasets are mentioned in **Table 1**. **Figures 2–4** depict the findings
330 obtained using the “BrainInvaders” dataset, whereas **Figures 5–7** demonstrate the results
331 achieved from the Michigan dataset.

332
333 The “BrainInvaders” dataset has 64 participants. **Figure 2** presents the relationship between BCI
334 accuracy and vCBLE of all 64 participants. It shows that vCBLE is highly negatively correlated with
335 BCI accuracy, although a few outliers are observed. **Figure 3** illustrates the RMSE of vCBLE and
336 actual accuracy when the prediction was made based on the accuracy of testing characters. It
337 shows the evidence that the RMSE for this prediction, based on the fit obtained by vCBLE, was
338 lower than the accuracy based on any number of testing characters from 1 to 10. For the
339 “BrainInvaders” dataset, vCBLE is capable of predicting BCI accuracy using only 7 characters. In
340 **Figure 4**, the prediction was made from the vCBLE of test sets with 2, 5, 7, and 10 characters,
341 respectively. Here, a leave-one-participant-out approach was employed in the regression analysis
342 to predict the accuracy of each individual participant. BCI accuracy and vCBLE were estimated
343 over 100 repetitions. The lower and upper bounds are ± 2 standard deviations from the mean. All
344 four conditions indicate that there is minimal variance observed when the number of participants
345 in the training set exceeds 10. We conclude that about 10 individuals are required to build the

346 regression model for the relationship between vCBLE and accuracy for a particular experimental
347 paradigm.

348

349 In the second example, the Michigan dataset has 32 participants, in which all typed one training
350 sentence on Day 1 and three testing sentences on Days 1, 2, and 3. The test sentences were 23
351 or 24 characters in length, and many participants made additional selections to correct errors
352 made during online operation. In **Figure 5**, it can be seen that the vCBLE model performed better
353 when the training and testing datasets were collected on the same day. In fact, this prediction
354 resulting from the fit provided by vCBLE resulted in a lower RMSE than the accuracy based for
355 any number of testing characters from 1-20 when the training data and testing data were
356 collected on the same day. **Figure 6** shows that overall, the vCBLE fit had a lower RMSE when the
357 test included less than six characters. Additionally, it can be seen from **Figure 7** that the RMSE of
358 the vCBLE accuracy estimation only decreases about 0.025 between three characters and the
359 optimal number of characters used. This implies that there is not much benefit to collecting more
360 than three characters for the small test set.

361

362 **FIGURE AND TABLE LEGENDS:**

363 **Figure 1: Block diagram of the proposed protocol.** (a) Data preprocessing and feature extraction.
364 (b) P300 classification. (c) Evaluation of vCBLE. (d) Predicting the accuracy of an individual.

365

366 **Figure 2: Accuracy vs. vCBLE.** BCI accuracy plotted against vCBLE using “bi2014a” dataset. It
367 shows a high negative correlation between accuracy and vCBLE.

368

369 **Figure 3: RMSE of BCI accuracy and vCBLE.** The RMSE of vCBLE and accuracy were plotted against
370 different test dataset sizes (1-10) using “bi2014a” dataset. Overall, vCBLE performs better than
371 BCI accuracy.

372

373 **Figure 4: Comparison of models using RMSE.** These models are built while predictions are
374 performed from different sizes of test characters. Top left: 2 targets; top right: 5 targets; bottom
375 left: 7 targets; bottom right: 10 targets.

376

377 **Figure 5: RMSE Values of vCBLE Models.** A separate model was built to predict accuracy over
378 three different days using the Michigan dataset. The RMSE values for models built using different
379 test dataset sizes are shown.

380

381 **Figure 6: Model comparison.** The mean of the RMSE over three days was computed for the vCBLE
382 and the accuracy models using Michigan data.

383

384 **Figure 7: Mean RMSE difference from the best model.** For each day, the minimum RMSE value
385 was subtracted from each character's RMSE value. The mean was calculated over the three days.
386 This graph represents the average performance of a model using a certain data set size compared
387 to the best model.

388

389 **TABLE 1: Standard parameters for “BrainInvaders” and Michigan datasets.**

390

391 **DISCUSSION:**

392 This article outlined a method for estimating BCI accuracy using a small P300 dataset. Here, the
393 current protocol was developed based on the "bi2014a" dataset, although the efficacy of the
394 protocol was confirmed on two different datasets. To successfully implement this technique, it is
395 crucial to establish certain variables, such as the epoch window for the original data, the window
396 for time shifting, the down-sampling ratio, and the size of both the training and testing datasets.
397 These variables are determined by the characteristics of the dataset being used, including the
398 number of targets or characters, the number of sequences, and the total number of participants.
399

400 The findings of the "bi2014a" dataset indicate that vCBLE's prediction exhibits superior
401 performance compared to character-level BCI accuracy for all test conditions (less than 10
402 characters), which involve test datasets containing one to ten characters. However, when the
403 test dataset comprises more than seven targets, the performance of vCBLE shows minimal
404 variance. Results from the Michigan data suggest that using vCBLE to predict same-day
405 performance will outperform the accuracy-based estimation if the test data set is less than six
406 characters. Interestingly, increasing the amount of data used to build this model only improves
407 marginally after the first few characters of data. Overall, this would imply that it is not necessary
408 to collect large amounts of data to predict same-day accuracy.
409

410 According to the outcomes of the "bi2014a" dataset, it can be suggested that a minimum of 10
411 participants is necessary to construct a classifier model that can forecast an individual's BCI
412 accuracy. However, this also depends on the number of characters or the number of sequences
413 used in both the training and testing phases. The " bi2014a " dataset includes several participants
414 who had a relatively small number of total targets. It is worth mentioning that the vCBLE
415 prediction method has already been successfully tested on small-size datasets consisting of 32
416 and 9 participants, respectively, and has demonstrated effective performance^{17,18}. However,
417 these datasets have a relatively larger number of total targets, such as 19 characters in the
418 training session and a minimum of 23 characters in the testing session.
419

420 There are a few limitations to be aware of when applying this method. From the analysis of the
421 Michigan dataset, the vCBLE model seems to perform worse when the training and test data are
422 collected on different days. Also, this method requires multiple participants to build a custom
423 model for a given dataset. Moreover, the proposed method has been tested on four classifiers,
424 including a least-squares classifier, stepwise linear discriminant analysis, support vector machine
425 (SVM), and space autoencoder (SAE)^{17,18}. However, the protocol should be applicable to any time-
426 sensitive classifier. Despite these limitations, the potential time savings to the research and
427 clinical communities warrant further investigation and application.
428

429 **ACKNOWLEDGMENTS:**

430 The data used for representative results were collected from the work supported by the National
431 Institute of Child Health and Human Development (NICHD), the National Institutes of Health (NIH)
432 under Grant R21HD054697, and the National Institute on Disability and Rehabilitation Research
433 (NIDRR) in the Department of Education under Grant H133G090005 and Award Number

434 H133P090008. The rest of the work was funded in part by the National Science Foundation (NSF)
435 under award #1910526. Findings and opinions within this work do not necessarily reflect the
436 positions of NICHD, NIH, NIDRR or NSF.

437

438 **DISCLOSURES:**

439 All authors declare they do not have any conflicts of interest.

440

441 **REFERENCES:**

1. Rezeika A, Benda M, Stawicki P, Gembler F, Saboor A, Volosyak I. Brain-Computer Interface spellers: A review. *Brain Sci.* **8**(4), (2018).
2. Gannouni S, Aledaily A, Belwafi K, Aboalsamh H. Emotion detection using electroencephalography signals and a zero-time windowing-based epoch estimation and relevant electrode identification. *Sci. Rep.* **11**(1), 7071(2021).
3. Daly JJ, Wolpaw JR. Brain-computer interfaces in neurological rehabilitation. *Lancet Neurol.* **7**(11), 1032–1043(2008).
4. Birbaumer N. Breaking the silence: brain-computer interfaces (BCI) for communication and motor control. *Psychophysiology.* **43**(6), 517–532(2006).
5. Riccio A, Simione L, Schettini F, Pizzimenti A, Inghilleri M, Belardinelli MO, et al. Attention and P300-based BCI performance in people with amyotrophic lateral sclerosis. *Front. Hum. Neurosci.* **7**, 732(2013).
6. Finke A, Lenhardt A, Ritter H. The MindGame: a P300-based brain-computer interface game. *Neural Netw.* **22**, (9), 1329–1333(2009).
7. Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. *Electroencephalogr. Clin. Neurophysiol.* **70**(6), 510–523(1988).
8. Li Q, Lu Z, Gao N, Yang J. Optimizing the performance of the visual P300-speller through active mental tasks based on color distinction and modulation of task difficulty. *Front. Hum. Neurosci.* **13**, 130(2019).
9. McFarland DJ, Sarnacki WA, Townsend G, Vaughan T, Wolpaw JR. The P300-based brain-computer interface (BCI): effects of stimulus rate. *Clin. Neurophysiol.*, **122**(4), 731–737(2011).
10. Krusienski DJ, Sellers EW, Cabestaing F, Bayoudh S, McFarland DJ, Vaughan TM, et al. A comparison of classification techniques for the P300 Speller. *J. Neural Eng.* **3**(4), 299–305(2006).

11. Sellers EW, Donchin E. A P300-based brain-computer interface: initial tests by ALS patients. *Clin. Neurophysiol.* **117** (3), 538–548(2006).
12. Donchin E, Spencer KM, Wijesinghe R. The mental prosthesis: assessing the speed of a P300-based brain-computer interface. *IEEE Trans. Rehabil. Eng.* **8** (2), 174–179(2000).
13. Höhne J, Schreuder M, Blankertz B, Tangermann M. A novel 9-class auditory ERP paradigm driving a predictive text entry system. *Front. Neurosci.* **5**, 99(2011).
14. Acqualagna L, Treder MS, Blankertz B. Chroma Speller: Isotropic visual stimuli for truly gaze-independent spelling. *2013 6th International IEEE/EMBS Conference on Neural Engineering (NER)*, (2013).
15. Townsend G, LaPallo BK, Boulay CB, Krusienski DJ, Frye GE, Hauser CK, et al. A novel P300-based brain-computer interface stimulus presentation paradigm: moving beyond rows and columns. *Clin. Neurophysiol.* **121**(7), 1109–1120(2010).
16. Guger C, Daban S, Sellers E, Holzner C, Krausz G, Carabalona R, et al. How many people are able to control a P300-based brain-computer interface (BCI)?, *Neurosci. Lett.* **462**(1), 94–98(2009).
17. Mowla MR, Gonzalez-Morales JD, Rico-Martinez J, Ulichnie DA, Thompson DE. A comparison of classification techniques to predict Brain-computer interfaces accuracy using classifier-based latency estimation. *Brain Sci.* **10**(10), (2020).
18. Thompson, D. E., Warschausky, S., & Huggins, J. E}. Classifier-based latency estimation: a novel way to estimate and predict BCI accuracy. *Journal of Neural Engineering*. **10**(1), (2012).
19. Thompson DE, Gruis KL, Huggins JE. A plug-and-play brain-computer interface to operate commercial assistive technology. *Disabil. Rehabil. Assist. Technol.* **9**(2), 144–150(2014).
20. Korczowski, L., Ostaschenko, E., Andreev, A., Cattan, G., Coelho Rodrigues, P. L., Gautheret, V., & Congedo, M. (2019). Brain Invaders calibration-less P300-based BCI using dry EEG electrodes Dataset (bi2014a) [Data set]. Zenodo.
21. Krusienski DJ, Sellers EW, Cabestaing F, Bayoudh S, McFarland DJ, Vaughan TM, Wolpaw JR. A comparison of classification techniques for the P300 Speller. *J Neural Eng.* **3**(4), (2006).

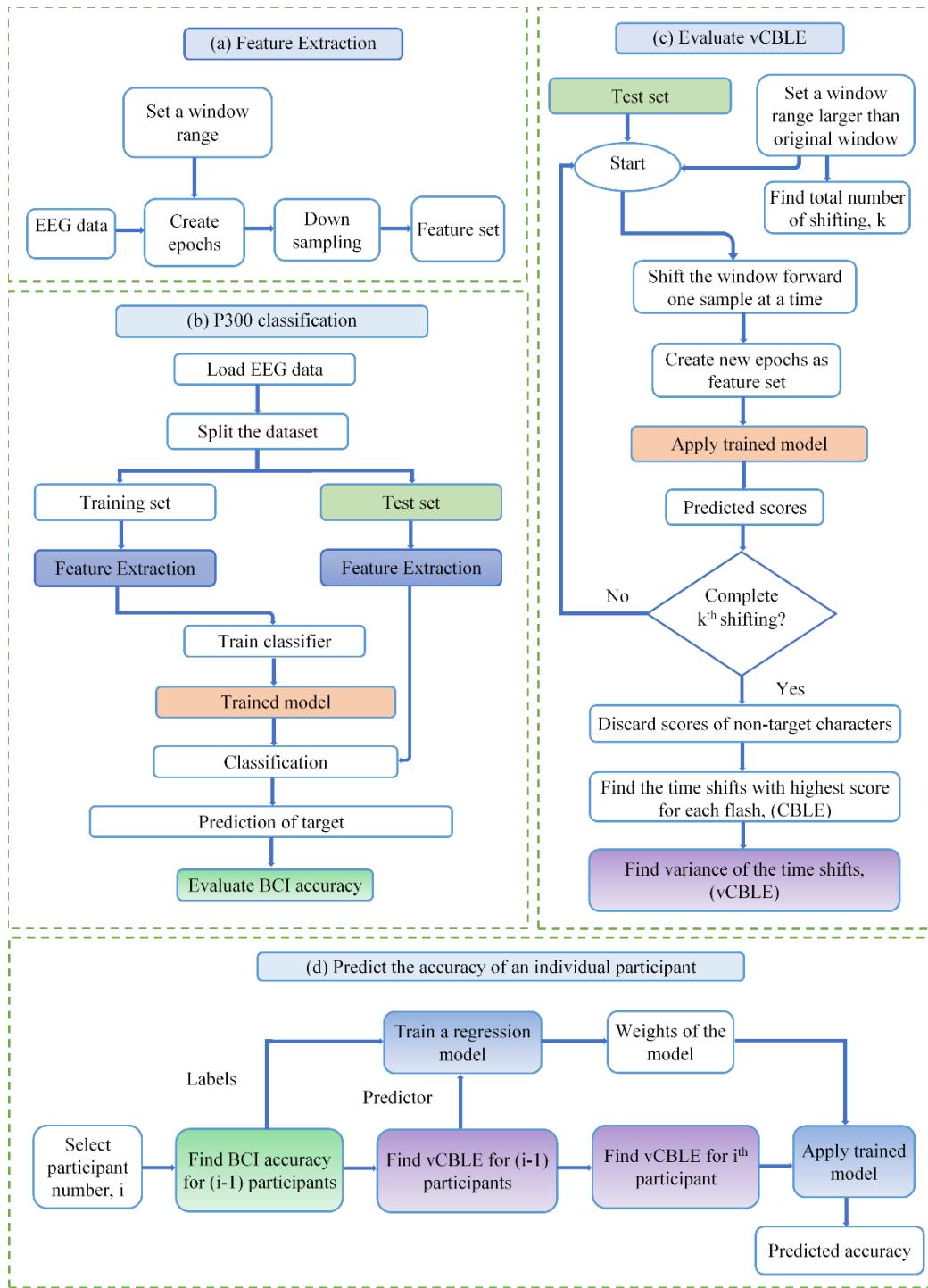
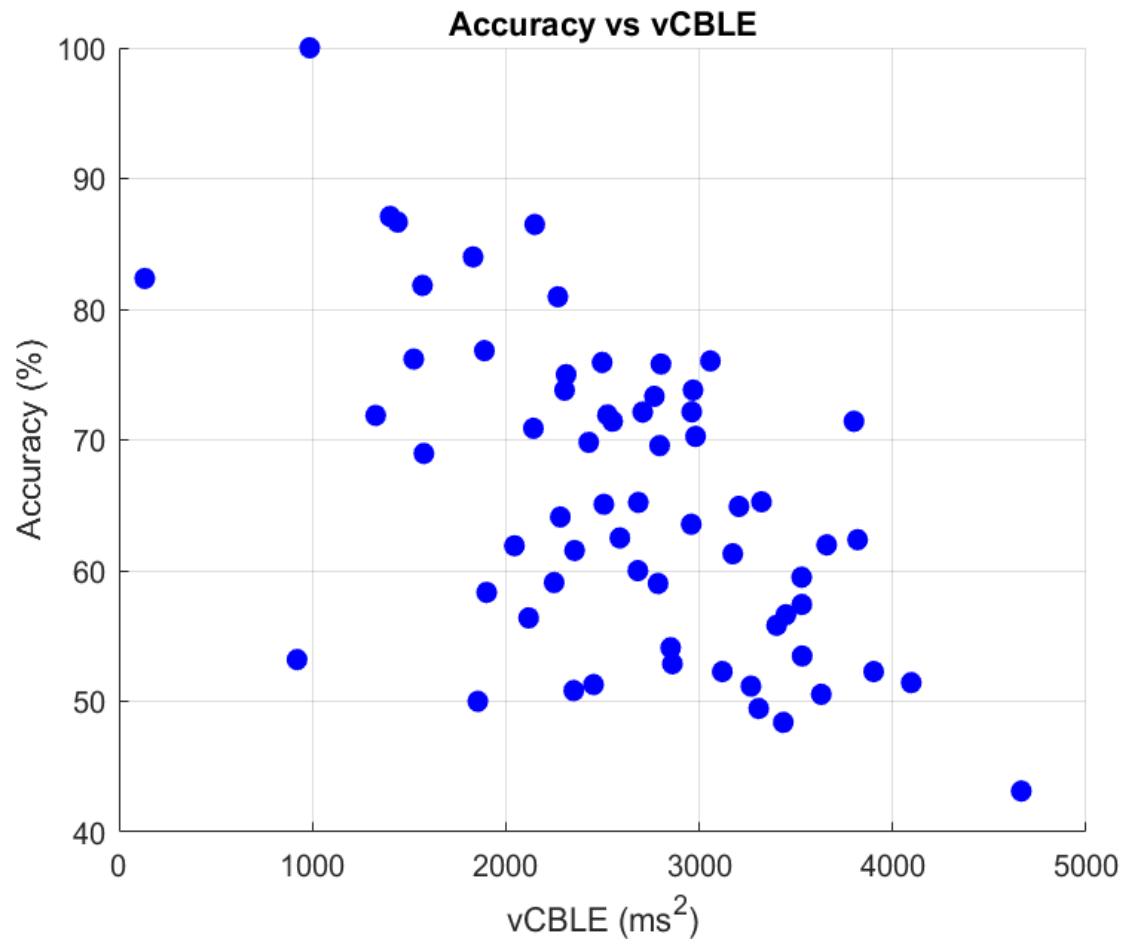


Figure 1: Block diagram of the proposed protocol. (a) Data preprocessing and feature extraction. (b) P300 classification. (c) Evaluation of vCBLE. (d) Predicting the accuracy of an individual.



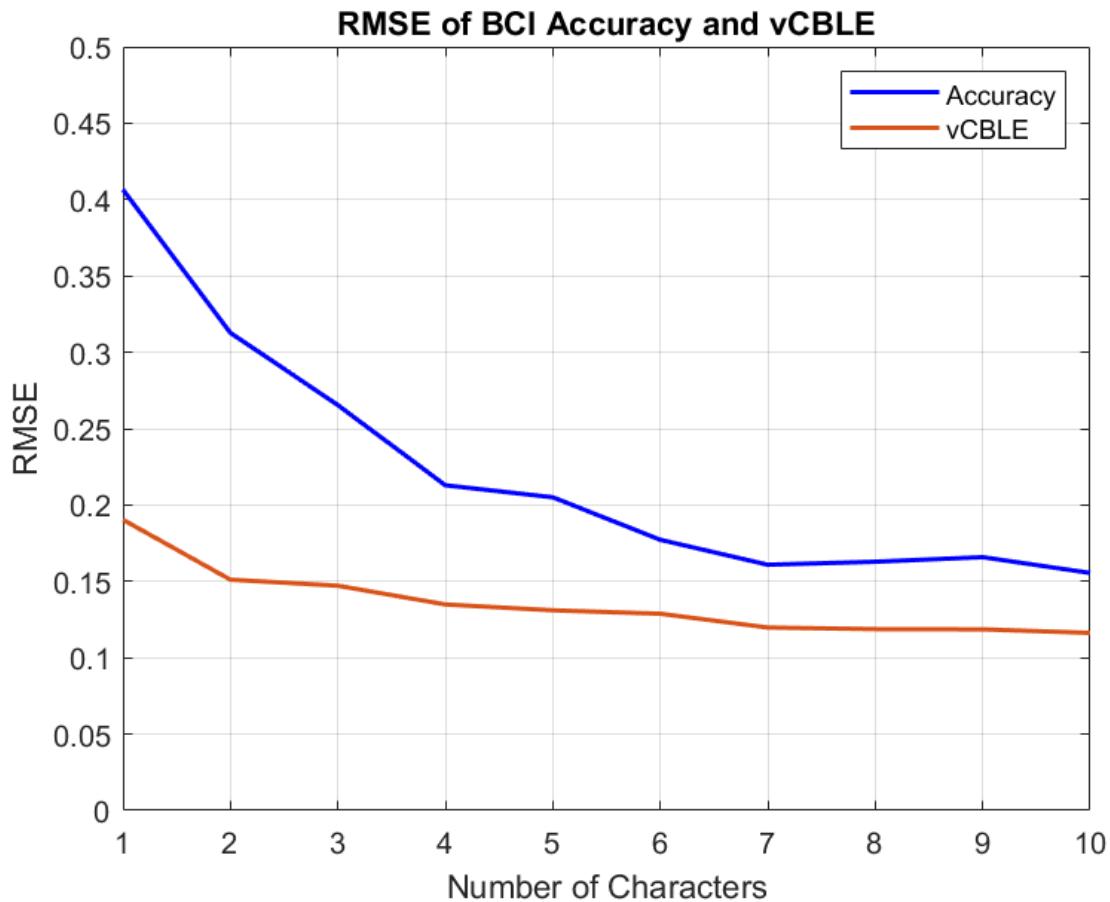
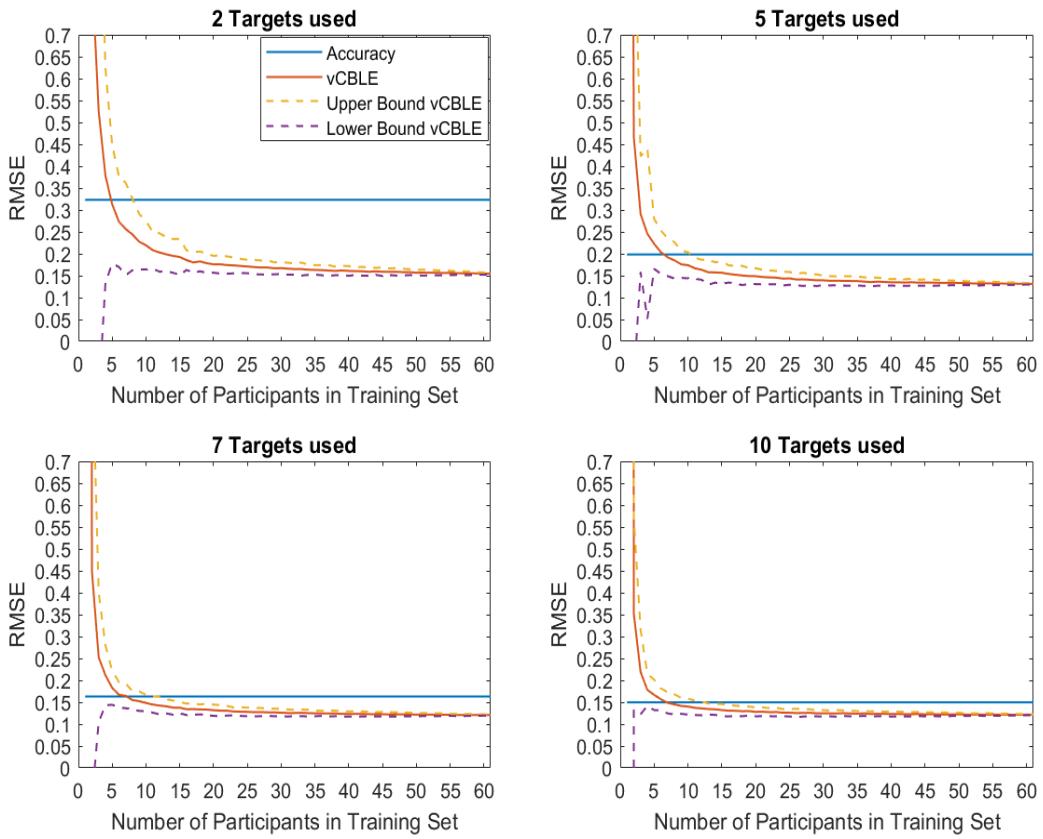
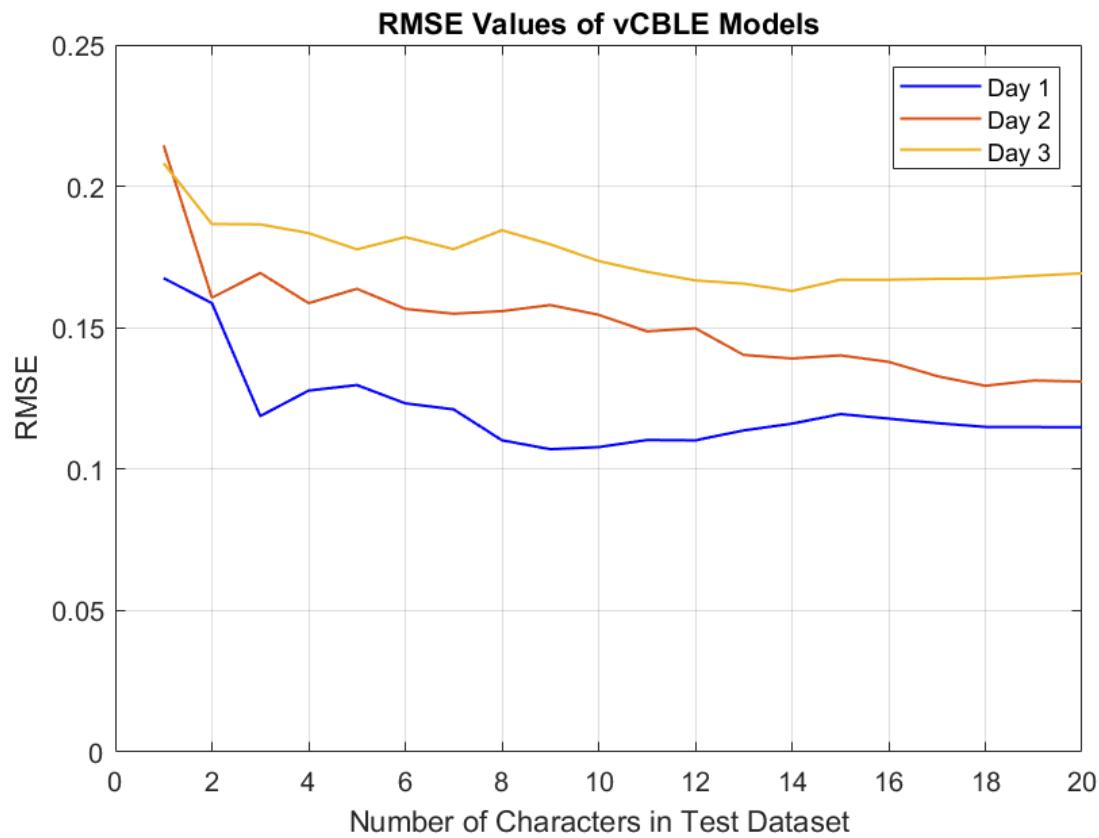


Figure 3: RMSE of BCI accuracy and vCBLE. The RMSE of vCBLE and accuracy were plotted against different test dataset sizes (1-10) using “bi2014a” dataset. Overall, vCBLE performs better than BCI accuracy.



459
460
461
462 **Figure 4: Comparison of models using RMSE.** These models are built while predictions are
463 performed from different sizes of test characters. Top left: 2 targets; top right: 5 targets;
464 bottom left: 7 targets; bottom right: 10 targets.

465



466

467

468 **Figure 5: RMSE Values of vCBLE Models.** A separate model was built to predict accuracy over
469 three different days using the Michigan dataset. The RMSE values for models built using
470 different test dataset sizes are shown.

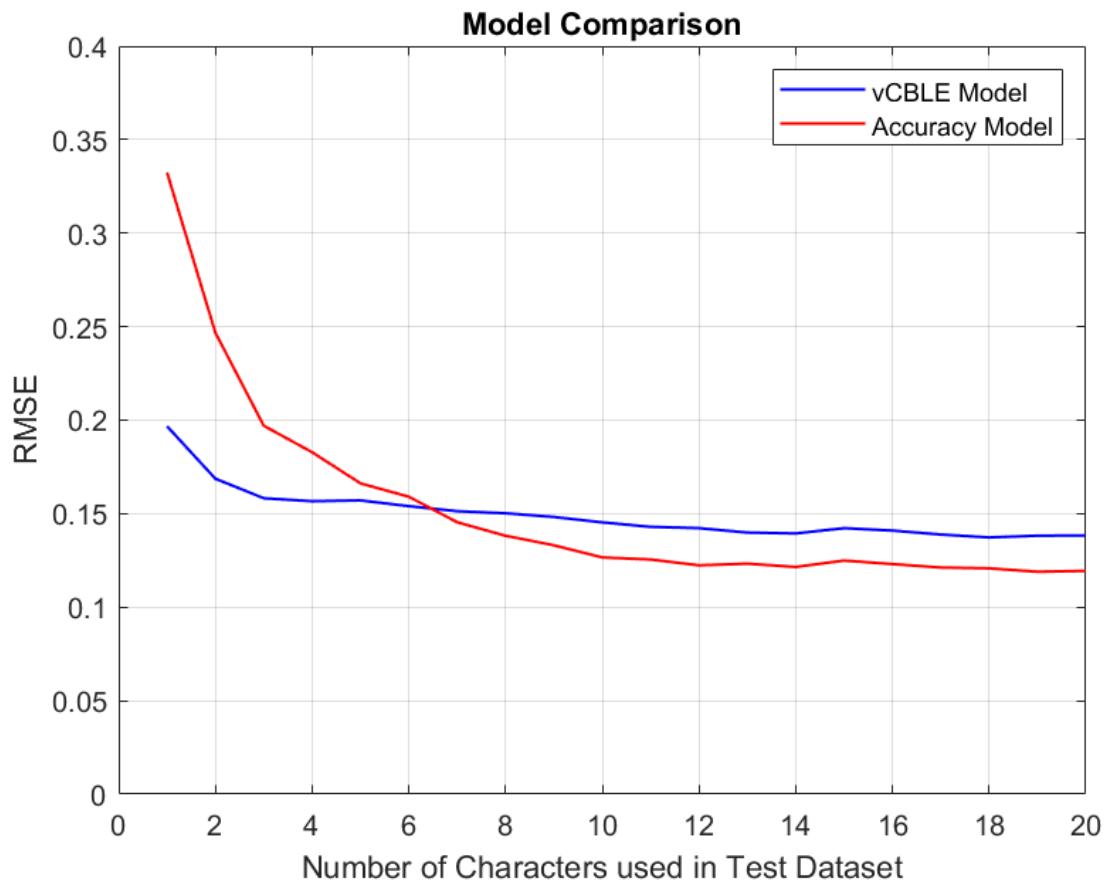
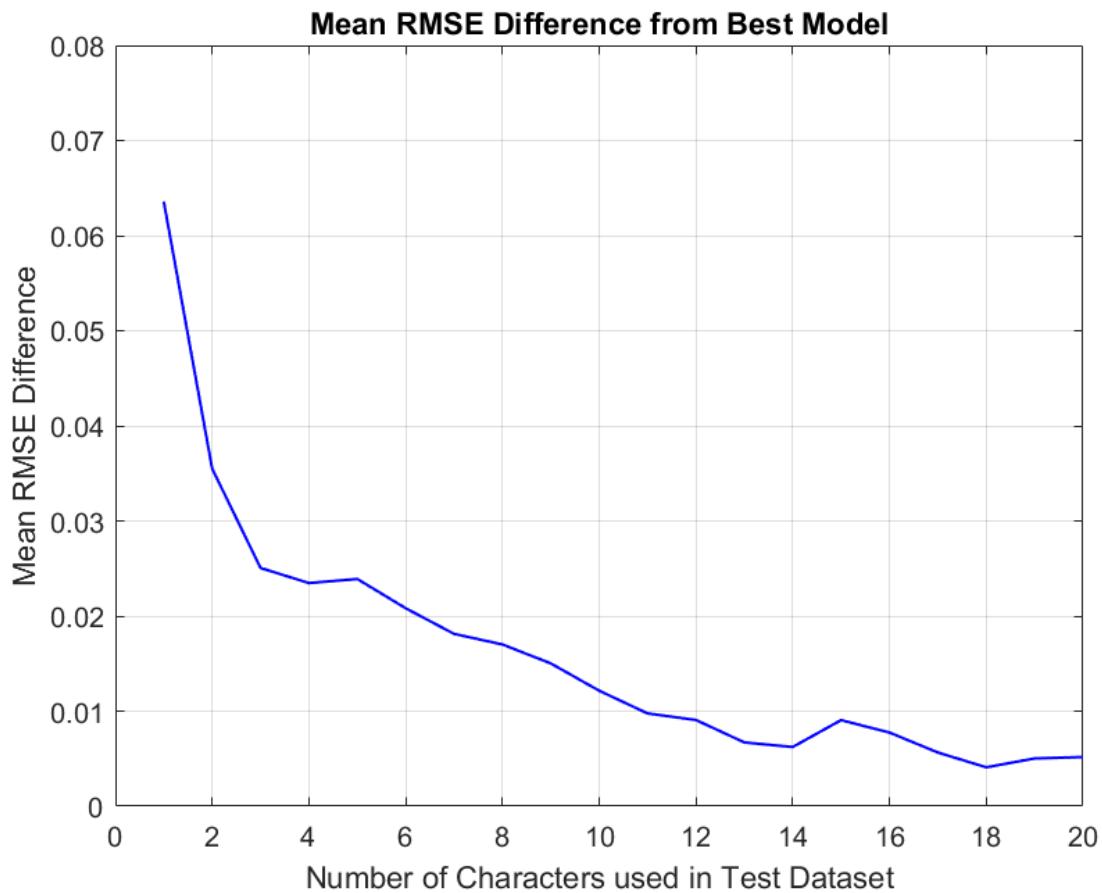


Figure 6: Model comparison. The mean of the RMSE over three days was computed for the vCBLE and the accuracy models using Michigan data.



479 **Figure 7: Mean RMSE difference from the best model.** For each day, the minimum RMSE value
480 was subtracted from each character's RMSE value. The mean was calculated over the three
481 days. This graph represents the average performance of a model using a certain data set size
482 compared to the best model.
483

484
485
486

Table 1: Standard parameters for “BrainInvaders” and Michigan datasets

Dataset name	Subject number	ID length	Channel ID	Sampling rate	Decimation value	Original window	CBLE window	Training sample no	Target number, X
Brain Invaders	64	N/A	[1:16]	512	26	[100, 600]	[0, 700]	20	10
Michigan	32	4	[1:16]	256	13	[4, 804]	[-100, 900]	N/A	20

487