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SUMMARY: 28 

This article presents a method for estimating same-day P300 speller Brain-Computer Interface 29 

(BCI) accuracy using a small testing dataset.  30 

 31 

ABSTRACT: 32 

Performance estimation is a necessary step in the development and validation of Brain-Computer 33 

Interface (BCI) systems. Unfortunately, even modern BCI systems are slow, making collecting 34 

sufficient data for validation a time-consuming task for end users and experimenters alike. Yet 35 

without sufficient data, the random variation in performance can lead to false inferences about 36 

how well a BCI is working for a particular user. For example, P300 spellers commonly operate 37 

around 1–5 characters per minute. To estimate accuracy with a 5% resolution requires 20 38 

characters (4–20 min). Despite this time investment, the confidence bounds for accuracy from 39 

20 characters can be as much as ±23% depending on observed accuracy. A previously published 40 

method, Classifier-Based Latency Estimation (CBLE), was shown to be highly correlated with BCI 41 

accuracy. This work presents a protocol for using CBLE to predict a user's P300 speller accuracy 42 

from relatively few characters (~3–8) of typing data. The resulting confidence bounds are tighter 43 
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than those produced by traditional methods. The method can thus be used to estimate BCI 44 

performance more quickly and/or more accurately. 45 

 46 

INTRODUCTION: 47 

Brain-computer interfaces (BCIs) are a noninvasive technology that allows individuals to 48 

communicate through machines directly without regard for physical limitations imposed by the 49 

body. BCI can be utilized as an assistive device operated directly by the brain. BCI uses the brain 50 

activity of a user to determine if the user intends to choose a certain key (letter, number, or 51 

symbol) displayed on the screen1. In a typical computer system, a user physically presses the 52 

intended key on a keyboard. However, in a BCI system with a visual display, the user needs to 53 

focus on the desired key. Then, BCI will select the intended key by analyzing the measured brain 54 

signals1. The activity of the brain can be measured using various techniques. Though there are 55 

competing BCIs technologies, electroencephalogram (EEG) is considered a leading technique due 56 

to its noninvasive nature, high temporal resolution, reliability, and relatively low cost2. 57 

 58 

Applications of BCI include communication, device control, and also entertainment3,4,5,6. One of 59 

the most active BCI application areas is the P300 speller, which was introduced by Farwell and 60 

Donchin7. The P300 is an event-related potential (ERP) produced in response to the recognition 61 

of a rare but relevant stimulus8. When a person recognizes their target stimulus, they 62 

automatically produce a P300. The P300 is an effective signal for a BCI because it conveys the 63 

participant's recognition of the target event without requiring an outward response9.  64 

 65 

The P300 BCI has attracted researchers from computer science, electrical engineering, 66 

psychology, human factors, and various other disciplines. Advances have been made in signal 67 

processing, classification algorithms, user interfaces, stimulation schemes, and many other 68 

areas10,11,12,13,14,15. However, regardless of the research area, the common thread in all of this 69 

research is the necessity of measuring the BCI system performance. This task typically requires 70 

the generation of a test data set. This necessity is not limited to research; eventual clinical 71 

application as an assistive technology will likely require individual validation sets for each end 72 

user to ensure the system can generate reliable communication. 73 

 74 

Despite the considerable research applied toward the P300 BCI, the systems are still quite slow. 75 

While the majority of people are able to use a P300 BCI16, most P300 Spellers produce text on 76 

the order of 1–5 characters per minute. Unfortunately, this slow speed means that generating 77 

test data sets requires substantial time and effort for participants, experimenters, and eventual 78 

end users. Measuring BCI system accuracy is a binomial parameter estimation problem, and 79 

many characters of data are necessary for a good estimate. 80 

 81 

To estimate the presence or absence of the P300 ERP, most classifiers use a binary classification 82 

model, which involves assigning a binary label (e.g., "presence" or "absence") to each trial or 83 

epoch of EEG data. The general equation used by most classifiers can be expressed as: 84 

 85 

𝒚̂(𝑥) = 𝑤𝑇 . 𝑓(𝑥) + 𝑏 86 

 87 



where 𝑦̂ is called the classifier’s score which represents the probability of the P300 response 88 

being present, x is the feature vector extracted from the EEG signal, and b is a bias term17. The 89 

function f is a decision function that maps the input data to the output label, and is learned from 90 

a set of labeled training data using a supervised learning algorithm17. During training, the 91 

classifier is trained on a labeled dataset of EEG signals, where each signal is labeled as either 92 

having a P300 response or not. The weight vector and bias term are optimized to minimize the 93 

error between the predicted output of the classifier and the true label of the EEG signal. Once 94 

the classifier is trained, it can be used to predict the presence of the P300 response in new EEG 95 

signals. 96 

 97 

Different classifiers can use different decision functions, such as linear discriminant analysis 98 

(LDA), step-wise linear discriminant analysis (SWLDA), least squares (LS), logistic regression, 99 

support vector machines (SVM), or neural networks (NNs). The least squares classifier is a linear 100 

classifier that minimizes the sum of squared errors between the predicted class labels and the 101 

true class labels. This classifier predicts the class label of a new test sample using the following 102 

equation:  103 

 104 

                                                                 𝑦̂(𝑥) = 𝑠𝑖𝑔𝑛(𝒘̂ ∗ 𝑥)                                                                (1) 105 

 106 

where the sign function returns +1 if the product is positive and -1 if it is negative and weight 107 

vector 𝒘̂ is obtained from the feature set of the training data, (x) and class labels (y) using the 108 

below equation: 109 

 110 

                                                                  𝑾̂ = (𝑿𝑇𝑿)−1𝑿𝑇𝑦                                                                 (2) 111 

               112 

In earlier research, we argued that Classifier-Based Latency Estimation (CBLE) can be used to 113 

estimate BCI accuracy17,18,19. CBLE is a strategy for evaluating latency variation by exploiting the 114 

classifier's temporal sensitivity18. While the conventional approach to P300 classification involves 115 

using a single time window that is synchronized with each stimulus presentation, the CBLE 116 

method involves creating multiple time-shifted copies of the post-stimulus epochs. Then it 117 

detects the time shift that results in the maximum score in order to estimate the latency of the 118 

P300 response17,18. Here, this work presents a protocol that estimates BCI performance from a 119 

small dataset using CBLE. As a representative analysis, the number of characters is varied to make 120 

predictions of overall performance of an individual. For both example datasets, the root mean 121 

square error (RMSE) for vCBLE and actual BCI accuracy were computed. The results indicate that 122 

the RMSE from vCBLE predictions, using its fitted data, was consistently lower than the accuracy 123 

derived from 1 to 7 tested characters. 124 

 125 

We developed a Graphical User Interface (GUI) called “CBLE Performance Estimation” for the 126 

implementation of the proposed methodology.  Example code is also provided (Supplementary 127 

Coding File 1)  that operates on the MATLAB platform. The example code performs all of the 128 

steps applied in the GUI, but the steps are provided to assist the reader with adapting to a new 129 

dataset.  This code employs a publicly available dataset “Brain Invaders calibration-less P300-130 

based BCI using dry EEG electrodes Dataset (bi2014a)” to evaluate the proposed method20.  131 



Participants played up to three game sessions of Brain Invaders, each session having 9 levels of 132 

the game. The data collection continued until all levels were completed or the participant lost all 133 

control over the BCI system. The Brain Invaders interface included 36 symbols that flashed in 12 134 

groups of six aliens. According to the Brain Invaders P300 paradigm, a repetition was created by 135 

12 flashes, one for each group. Out of these 12 flashes, two flashes contained the Target symbol 136 

(known as Target flashes), while the remaining 10 flashes did not contain the Target symbol 137 

(known as non-Target flashes). More information on this paradigm can be found in the original 138 

reference20. 139 

 140 

The CBLE approach was also implemented on a Michigan dataset, which contained data from 40 141 

participants18,19. Here, the data of eight participants had to be discarded because their tasks were 142 

incomplete. The whole study required three visits from each participant. On the first day, each 143 

participant typed a 19-character training sentence, followed by three 23-character testing 144 

sentences on Days 1, 2, and 3. In this example, the keyboard included 36 characters which were 145 

grouped into six rows and six columns. Each row or column was flashed for 31.25 milliseconds 146 

with an interval of 125 milliseconds between flashes. Between characters, a 3.5 s pause was 147 

provided.  148 

 149 

Figure 1 shows the block diagram of the proposed method. The detailed procedure is described 150 

in the protocol section. 151 

 152 

PROTOCOL:       153 

The “CBLE Performance Estimation” GUI was applied on two datasets: “BrainInvaders” dataset 154 

and Michigan dataset. For the “BrainInvaders” dataset, the data collection was approved by the 155 

Ethical Committee of the University of Grenoble Alpes20. Michigan data were collected under the 156 

University of Michigan Institutional Review Board approval19. Data were analyzed under Kansas 157 

State University exempt protocol 7516.  If collecting new data, follow the user's IRB-approved 158 

process for collecting informed consent. Here, the proposed protocol is evaluated using offline 159 

analysis of previously-recorded, de-identified data and therefore did not require additional 160 

informed consent.  161 

 162 

The graphical user interface (GUI) included in this paper is proficient in managing two distinct 163 

dataset formats. The first format is associated with the BCI2000 software, while the second 164 

format is referred to as the "BrainInvaders" dataset. In order to utilize the “Brain Invaders” 165 

format, data must be pre-processed as described in step 1 of the protocol section. However, 166 

when dealing with the “BCI2000” dataset format, step 1 can be omitted. 167 

 168 

1. Data preparation 169 

 170 

1.1. BrainInvaders only: Generate the input data file in ".mat" file format that can be used 171 

with the "CBLE performance Estimation" graphical user interface (GUI). For a sample script, refer 172 

to Supplementary Coding File 2. 173 

 174 



NOTE: Each datafile consists of a two-dimensional matrix comprised of rows that represent 175 

observations recorded at distinct time samples. The matrix columns numbered from 2 to 17 are 176 

recordings derived from 16 EEG electrodes. The first column of the matrix denotes the timestamp 177 

of each observation, while column 18 encompasses information related to experimental events. 178 

In column 19, there are mostly zeros, but when a non-Target (or Target) flash starts, the numbers 179 

change to one (or two) at that specific time. A detailed description may be found in the 180 

reference20. 181 

 182 

2. Download and install the GUI package 183 

 184 

2.1. Download and install the “CBLE Performance Estimation” GUI. 185 

 186 

3. Store the dataset in a subfolder of the GUI location  187 

 188 

3.1. Ensure that the dataset folder remains within the same directory as the GUI. 189 

 190 

3.2.  For instance, create a new folder and place the “CBLE Performance Estimation” GUI 191 

inside it. Keep all the datasets in a subfolder within “CBLE GUI” named “Dataset.” 192 

 193 

4. Open the installed GUI 194 

 195 

4.1. Open MATLAB, change the current directory to folder where you placed the GUI, click 196 

“APPS” tab and select “MY APPS”.  197 

 198 

4.2. Under the “MY APPS” tab, select “CBLE Performance Estimation”. 199 

 200 

5. Choose dataset format 201 

 202 

5.1. Select a dataset format from the dropdown “Select dataset format”. 203 

 204 

6. Load EEG data file 205 

 206 

6.1. Click on the "Select input folder" button to choose the directory where the dataset is 207 

located. 208 

 209 

6.2. Observe the count of data files present in that selected folder. 210 

 211 

NOTE: In the "Brain Invaders" format, each participant is represented by a single data file. 212 

Therefore, the total number of data files indicates the number of participants in the study. 213 

However, this is not the case for the "BCI2000" format, as each participant may have multiple 214 

train and test files. 215 

 216 

7. Set the parameters 217 

 218 



7.1. Type the number of participants that the user intends to use for the estimation process 219 

in the “No. of subjects” text box. 220 

 221 

7.2. BrainInvaders only: Specify the sampling rate of the dataset. 222 

 223 

NOTE: BCI2000 files include the sample rate. 224 

 225 

7.3. Choose a decimation value to downsample the dataset to approximately 20 Hz in order 226 

to improve classification performance21. For example, if the sampling frequency is 256 Hz, then 227 

select a decimation value of 13. 228 

 229 

7.4. Specify the time window for the classification in milliseconds. 230 

 231 

NOTE: The recommended initial window size is specified, allowing the starting point to vary from 232 

0 to 100 ms and the ending point from 700 to 800 ms. However, it is important to avoid making 233 

the window size excessively large to prevent overlapping with another P300 event. 234 

 235 

7.5. Define the shift window for CBLE in milliseconds.  236 

 237 

NOTE: The term 'shift window' refers to the window of new epochs of EEG test data which are 238 

extracted by shifting the window forward one sample in time. This shift window size must be 239 

larger than the original window, as it indicates the number of shifts that CBLE can detect. The 240 

difference between the shift window and classification window should be less than 100 ms from 241 

each side. 242 

 243 

7.6. BC2000 only: Enter the length of the subject ID indicated in the dataset files within the 244 

"ID length" field.  245 

 246 

NOTE: The GUI expects the first sub_len characters of the filenames to encode the subject ID. 247 

 248 

7.7. BCI2000 only: In the "Channel ID" field, indicate either the total number of channels or 249 

specify the specific channel numbers to be used for the analysis. 250 

 251 

7.8. Click the “Set parameters” button to set all the parameters required for the analysis. 252 

 253 

8. BrainInvaders only: Split the dataset into training and test set 254 

 255 

8.1. Select a number of targets that represents the size of the training set. The remaining 256 

portion of the dataset will be considered as the test dataset. 257 

 258 

NOTE: To ensure proper training of the model, it is essential to have a sufficiently large training 259 

sample. The recommended minimum training sample size is 20, though this may vary depending 260 



on the overall dataset size. If regression errors occur during training session, it is advisable to 261 

increase the training sample size. 262 

 263 

8.2. Press the "Split the dataset" button to divide the dataset into the training and test sets. 264 

 265 

NOTE: Each participant will have an equal amount of training data. However, the number of test 266 

data may not be equal for all participants due to the possibility of multiple attempts during the 267 

task. Consequently, the total number of targets or flashes presented may vary from person to 268 

person. 269 

 270 

9. Train a model with training dataset 271 

 272 

Note: Step 9.1 is applicable for “Brain Invaders” format and step 9.2 is applicable for “BCI2000” 273 

format. 274 

 275 

9.1. BrainInvaders only: Click on the “Train a model” button to apply linear regression on the 276 

training dataset using equation 2 for training a classifier model. 277 

 278 

9.2. BCI2000 only: Indicate training and testing filenames along with their data format (.dat) 279 

to distinguish the training and testing files from all files. Then, click on the “Train a model” button 280 

to apply linear regression on the training dataset. 281 

 282 

10. Predict the accuracy of the test set 283 

 284 

10.1. Click on the “Predict accuracy” to apply the trained classifier model to the test feature 285 

set and predict the accuracies using equation 1. 286 

 287 

11. Get X-target accuracies 288 

 289 

11.1. Select a maximum target number, X, to consider in the test set. 290 

 291 

11.2. BCI2000 only: Select a test file number if user has multiple test files.  292 

 293 

11.3. Press “Find X target accuracy” to get the accuracies.  294 

 295 

12. Calculate vCBLE 296 

 297 

12.1. Click on the "Find vCBLE" button to get the vCBLE for all targets. 298 

 299 

13. Calculate Root mean square error (RMSE) of BCI accuracy and vCBLE 300 

 301 



13.1. Click on the “Calculate RMSE” button to calculate the RMSE between both predictions 302 

based on vCBLE with BCI accuracy, and X-target accuracy with BCI accuracy. 303 

 304 

14. Visualize the results of the analysis 305 

 306 

14.1. Click on the “Accuracy vs vCBLE” button to observe the relation between total accuracy 307 

and total vCBLE for all participants. 308 

 309 

14.2. Press on the “RMSE of BCI & vCBLE” button to show the RMSE curve of BCI accuracy and 310 

vCBLE. 311 

 312 

15. Prediction of the performance of an individual participant  313 

 314 

15.1. To predict the accuracy of an individual participant, place the subject id in “Sub ID”. 315 

 316 

NOTE: Here, the dataset of all participants, excluding the test participant, will be used to train a 317 

linear regression model. The vCBLE scores of all other participants and their corresponding test 318 

accuracies will be utilized as predictors and labels, respectively, for the classifier. 319 

 320 

15.2. Select a target number, n. The prediction will be made based on the accuracy of n testing 321 

characters. 322 

 323 

15.3. Click the “Predict” button to get the predicted accuracy of the test participant. 324 

 325 

REPRESENTATIVE RESULTS: 326 

The proposed protocol has been tested on two different datasets: “BrainInvaders” and the 327 

Michigan dataset. These datasets are already introduced briefly in the Introduction section. The 328 

parameters used for this two datasets are mentioned in Table 1. Figures 2–4 depict the findings 329 

obtained using the “BrainInvaders” dataset, whereas Figures 5–7 demonstrate the results 330 

achieved from the Michigan dataset. 331 

 332 

The “BrainInvaders” dataset has 64 participants. Figure 2 presents the relationship between BCI 333 

accuracy and vCBLE of all 64 participants. It shows that vCBLE is highly negatively correlated with 334 

BCI accuracy, although a few outliers are observed. Figure 3 illustrates the RMSE of vCBLE and 335 

actual accuracy when the prediction was made based on the accuracy of testing characters. It 336 

shows the evidence that the RMSE for this prediction, based on the fit obtained by vCBLE, was 337 

lower than the accuracy based on any number of testing characters from 1 to 10. For the 338 

“BrainInvaders” dataset, vCBLE is capable of predicting BCI accuracy using only 7 characters. In 339 

Figure 4, the prediction was made from the vCBLE of test sets with 2, 5, 7, and 10 characters, 340 

respectively. Here, a leave-one-participant-out approach was employed in the regression analysis 341 

to predict the accuracy of each individual participant. BCI accuracy and vCBLE were estimated 342 

over 100 repetitions. The lower and upper bounds are ±2 standard deviations from the mean. All 343 

four conditions indicate that there is minimal variance observed when the number of participants 344 

in the training set exceeds 10. We conclude that about 10 individuals are required to build the 345 



regression model for the relationship between vCBLE and accuracy for a particular experimental 346 

paradigm. 347 

 348 

In the second example, the Michigan dataset has 32 participants, in which all typed one training 349 

sentence on Day 1 and three testing sentences on Days 1, 2, and 3. The test sentences were 23 350 

or 24 characters in length, and many participants made additional selections to correct errors 351 

made during online operation. In Figure 5, it can be seen that the vCBLE model performed better 352 

when the training and testing datasets were collected on the same day. In fact, this prediction 353 

resulting from the fit provided by vCBLE resulted in a lower RMSE than the accuracy based for 354 

any number of testing characters from 1-20 when the training data and testing data were 355 

collected on the same day. Figure 6 shows that overall, the vCBLE fit had a lower RMSE when the 356 

test included less than six characters. Additionally, it can be seen from Figure 7 that the RMSE of 357 

the vCBLE accuracy estimation only decreases about 0.025 between three characters and the 358 

optimal number of characters used. This implies that there is not much benefit to collecting more 359 

than three characters for the small test set. 360 

 361 

FIGURE AND TABLE LEGENDS:  362 

Figure 1: Block diagram of the proposed protocol. (a) Data preprocessing and feature extraction. 363 

(b) P300 classification. (c) Evaluation of vCBLE. (d) Predicting the accuracy of an individual.  364 

 365 

Figure 2: Accuracy vs. vCBLE. BCI accuracy plotted against vCBLE using “bi2014a” dataset. It 366 

shows a high negative correlation between accuracy and vCBLE. 367 

 368 

Figure 3: RMSE of BCI accuracy and vCBLE. The RMSE of vCBLE and accuracy were plotted against 369 

different test dataset sizes (1-10) using “bi2014a” dataset. Overall, vCBLE performs better than 370 

BCI accuracy. 371 

 372 

Figure 4: Comparison of models using RMSE. These models are built while predictions are 373 

performed from different sizes of test characters. Top left: 2 targets; top right: 5 targets; bottom 374 

left: 7 targets; bottom right: 10 targets. 375 

 376 

Figure 5: RMSE Values of vCBLE Models. A separate model was built to predict accuracy over 377 

three different days using the Michigan dataset. The RMSE values for models built using different 378 

test dataset sizes are shown.  379 

 380 

Figure 6: Model comparison. The mean of the RMSE over three days was computed for the vCBLE 381 

and the accuracy models using Michigan data.   382 

 383 

Figure 7: Mean RMSE difference from the best model. For each day, the minimum RMSE value 384 

was subtracted from each character's RMSE value. The mean was calculated over the three days. 385 

This graph represents the average performance of a model using a certain data set size compared 386 

to the best model.  387 

 388 

TABLE 1: Standard parameters for “BrainInvaders” and Michigan datasets. 389 



 390 

DISCUSSION: 391 

This article outlined a method for estimating BCI accuracy using a small P300 dataset. Here, the 392 

current protocol was developed based on the “bi2014a” dataset, although the efficacy of the 393 

protocol was confirmed on two different datasets. To successfully implement this technique, it is 394 

crucial to establish certain variables, such as the epoch window for the original data, the window 395 

for time shifting, the down-sampling ratio, and the size of both the training and testing datasets. 396 

These variables are determined by the characteristics of the dataset being used, including the 397 

number of targets or characters, the number of sequences, and the total number of participants.  398 

 399 

The findings of the "bi2014a" dataset indicate that vCBLE's prediction exhibits superior 400 

performance compared to character-level BCI accuracy for all test conditions (less than 10 401 

characters), which involve test datasets containing one to ten characters. However, when the 402 

test dataset comprises more than seven targets, the performance of vCBLE shows minimal 403 

variance. Results from the Michigan data suggest that using vCBLE to predict same-day 404 

performance will outperform the accuracy-based estimation if the test data set is less than six 405 

characters. Interestingly, increasing the amount of data used to build this model only improves 406 

marginally after the first few characters of data. Overall, this would imply that it is not necessary 407 

to collect large amounts of data to predict same-day accuracy.  408 

 409 

According to the outcomes of the “bi2014a” dataset, it can be suggested that a minimum of 10 410 

participants is necessary to construct a classifier model that can forecast an individual's BCI 411 

accuracy. However, this also depends on the number of characters or the number of sequences 412 

used in both the training and testing phases. The " bi2014a " dataset includes several participants 413 

who had a relatively small number of total targets. It is worth mentioning that the vCBLE 414 

prediction method has already been successfully tested on small-size datasets consisting of 32 415 

and 9 participants, respectively, and has demonstrated effective performance17,18. However, 416 

these datasets have a relatively larger number of total targets, such as 19 characters in the 417 

training session and a minimum of 23 characters in the testing session. 418 

 419 

There are a few limitations to be aware of when applying this method. From the analysis of the 420 

Michigan dataset, the vCBLE model seems to perform worse when the training and test data are 421 

collected on different days. Also, this method requires multiple participants to build a custom 422 

model for a given dataset. Moreover, the proposed method has been tested on four classifiers, 423 

including a least-squares classifier, stepwise linear discriminant analysis, support vector machine 424 

(SVM), and space autoencoder (SAE)17,18. However, the protocol should be applicable to any time-425 

sensitive classifier. Despite these limitations, the potential time savings to the research and 426 

clinical communities warrant further investigation and application. 427 

 428 
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 442 
 443 

Figure 1: Block diagram of the proposed protocol. (a) Data preprocessing and feature 444 

extraction. (b) P300 classification. (c) Evaluation of vCBLE. (d) Predicting the accuracy of an 445 

individual. 446 



 447 
 448 

 449 

Figure 2: Accuracy vs. vCBLE. BCI accuracy plotted against vCBLE using “bi2014a” dataset. It 450 

shows a high negative correlation between accuracy and vCBLE. 451 

 452 



 453 
 454 

Figure 3: RMSE of BCI accuracy and vCBLE. The RMSE of vCBLE and accuracy were plotted 455 

against different test dataset sizes (1-10) using “bi2014a” dataset. Overall, vCBLE performs 456 

better than BCI accuracy. 457 
 458 
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 461 

Figure 4: Comparison of models using RMSE. These models are built while predictions are 462 

performed from different sizes of test characters. Top left: 2 targets; top right: 5 targets; 463 

bottom left: 7 targets; bottom right: 10 targets.  464 
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 467 

Figure 5: RMSE Values of vCBLE Models. A separate model was built to predict accuracy over 468 

three different days using the Michigan dataset. The RMSE values for models built using 469 

different test dataset sizes are shown.  470 
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 473 

Figure 6: Model comparison. The mean of the RMSE over three days was computed for the 474 

vCBLE and the accuracy models using Michigan data.  475 
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 477 
 478 

Figure 7: Mean RMSE difference from the best model. For each day, the minimum RMSE value 479 

was subtracted from each character's RMSE value. The mean was calculated over the three 480 

days. This graph represents the average performance of a model using a certain data set size 481 

compared to the best model. 482 
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Table 1: Standard parameters for “BrainInvaders” and Michigan datasets 485 

 486 

Dataset 
name 

Subject 
number 

ID 
length 

Channel 
ID 

Sampling 
rate 

Decimation 
value 

Original 
window 

CBLE 
window 

Training 
sample 

no 

Target 
number, 

X 

Brain 
Invaders 

64 N/A [1:16] 512 26 
[100, 
600] 

[0, 700] 20 10 

Michigan 32 4 [1:16] 256 13 [4, 804] 
[-100, 
900] 

N/A 20 
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