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SUMMARY:
This article presents a method for estimating same-day P300 speller Brain-Computer Interface
(BCI) accuracy using a small testing dataset.

ABSTRACT:

Performance estimation is a necessary step in the development and validation of Brain-Computer
Interface (BCl) systems. Unfortunately, even modern BCl systems are slow, making collecting
sufficient data for validation a time-consuming task for end users and experimenters alike. Yet
without sufficient data, the random variation in performance can lead to false inferences about
how well a BCl is working for a particular user. For example, P300 spellers commonly operate
around 1-5 characters per minute. To estimate accuracy with a 5% resolution requires 20
characters (4—20 min). Despite this time investment, the confidence bounds for accuracy from
20 characters can be as much as +23% depending on observed accuracy. A previously published
method, Classifier-Based Latency Estimation (CBLE), was shown to be highly correlated with BCI
accuracy. This work presents a protocol for using CBLE to predict a user's P300 speller accuracy
from relatively few characters (~3—8) of typing data. The resulting confidence bounds are tighter
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than those produced by traditional methods. The method can thus be used to estimate BCI
performance more quickly and/or more accurately.

INTRODUCTION:

Brain-computer interfaces (BCls) are a noninvasive technology that allows individuals to
communicate through machines directly without regard for physical limitations imposed by the
body. BCl can be utilized as an assistive device operated directly by the brain. BCI uses the brain
activity of a user to determine if the user intends to choose a certain key (letter, number, or
symbol) displayed on the screen?. In a typical computer system, a user physically presses the
intended key on a keyboard. However, in a BCl system with a visual display, the user needs to
focus on the desired key. Then, BCl will select the intended key by analyzing the measured brain
signals®. The activity of the brain can be measured using various techniques. Though there are
competing BCls technologies, electroencephalogram (EEG) is considered a leading technique due
to its noninvasive nature, high temporal resolution, reliability, and relatively low cost?.

Applications of BCl include communication, device control, and also entertainment3*>8. One of
the most active BCl application areas is the P300 speller, which was introduced by Farwell and
Donchin’. The P300 is an event-related potential (ERP) produced in response to the recognition
of a rare but relevant stimulus®. When a person recognizes their target stimulus, they
automatically produce a P300. The P300 is an effective signal for a BCI because it conveys the
participant's recognition of the target event without requiring an outward response®.

The P300 BCl has attracted researchers from computer science, electrical engineering,
psychology, human factors, and various other disciplines. Advances have been made in signal
processing, classification algorithms, user interfaces, stimulation schemes, and many other
areas!01L12131415 However, regardless of the research area, the common thread in all of this
research is the necessity of measuring the BCl system performance. This task typically requires
the generation of a test data set. This necessity is not limited to research; eventual clinical
application as an assistive technology will likely require individual validation sets for each end
user to ensure the system can generate reliable communication.

Despite the considerable research applied toward the P300 BCl, the systems are still quite slow.
While the majority of people are able to use a P300 BCI*®, most P300 Spellers produce text on
the order of 1-5 characters per minute. Unfortunately, this slow speed means that generating
test data sets requires substantial time and effort for participants, experimenters, and eventual
end users. Measuring BCl system accuracy is a binomial parameter estimation problem, and
many characters of data are necessary for a good estimate.

To estimate the presence or absence of the P300 ERP, most classifiers use a binary classification

model, which involves assigning a binary label (e.g., "presence" or "absence") to each trial or
epoch of EEG data. The general equation used by most classifiers can be expressed as:

yx) =wl.f(x)+b
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where ¥ is called the classifier’s score which represents the probability of the P300 response
being present, x is the feature vector extracted from the EEG signal, and b is a bias term?’. The
function f is a decision function that maps the input data to the output label, and is learned from
a set of labeled training data using a supervised learning algorithm?'’. During training, the
classifier is trained on a labeled dataset of EEG signals, where each signal is labeled as either
having a P300 response or not. The weight vector and bias term are optimized to minimize the
error between the predicted output of the classifier and the true label of the EEG signal. Once
the classifier is trained, it can be used to predict the presence of the P300 response in new EEG
signals.

Different classifiers can use different decision functions, such as linear discriminant analysis
(LDA), step-wise linear discriminant analysis (SWLDA), least squares (LS), logistic regression,
support vector machines (SVM), or neural networks (NNs). The least squares classifier is a linear
classifier that minimizes the sum of squared errors between the predicted class labels and the
true class labels. This classifier predicts the class label of a new test sample using the following
equation:

y(x) = sign(w * x) (1)

where the sign function returns +1 if the product is positive and -1 if it is negative and weight
vector w is obtained from the feature set of the training data, (x) and class labels (y) using the
below equation:

wW=X"X)"'xTy (2)

In earlier research, we argued that Classifier-Based Latency Estimation (CBLE) can be used to
estimate BCl accuracy!’*®1° CBLE is a strategy for evaluating latency variation by exploiting the
classifier's temporal sensitivity'8. While the conventional approach to P300 classification involves
using a single time window that is synchronized with each stimulus presentation, the CBLE
method involves creating multiple time-shifted copies of the post-stimulus epochs. Then it
detects the time shift that results in the maximum score in order to estimate the latency of the
P300 responsel”8, Here, this work presents a protocol that estimates BCI performance from a
small dataset using CBLE. As a representative analysis, the number of characters is varied to make
predictions of overall performance of an individual. For both example datasets, the root mean
square error (RMSE) for vCBLE and actual BCl accuracy were computed. The results indicate that
the RMSE from vCBLE predictions, using its fitted data, was consistently lower than the accuracy
derived from 1 to 7 tested characters.

We developed a Graphical User Interface (GUI) called “CBLE Performance Estimation” for the
implementation of the proposed methodology. Example code is also provided (Supplementary
Coding File 1) that operates on the MATLAB platform. The example code performs all of the
steps applied in the GUI, but the steps are provided to assist the reader with adapting to a new
dataset. This code employs a publicly available dataset “Brain Invaders calibration-less P300-
based BCI using dry EEG electrodes Dataset (bi2014a)” to evaluate the proposed method?°.
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Participants played up to three game sessions of Brain Invaders, each session having 9 levels of
the game. The data collection continued until all levels were completed or the participant lost all
control over the BCl system. The Brain Invaders interface included 36 symbols that flashed in 12
groups of six aliens. According to the Brain Invaders P300 paradigm, a repetition was created by
12 flashes, one for each group. Out of these 12 flashes, two flashes contained the Target symbol
(known as Target flashes), while the remaining 10 flashes did not contain the Target symbol
(known as non-Target flashes). More information on this paradigm can be found in the original
reference®.

The CBLE approach was also implemented on a Michigan dataset, which contained data from 40
participants®19, Here, the data of eight participants had to be discarded because their tasks were
incomplete. The whole study required three visits from each participant. On the first day, each
participant typed a 19-character training sentence, followed by three 23-character testing
sentences on Days 1, 2, and 3. In this example, the keyboard included 36 characters which were
grouped into six rows and six columns. Each row or column was flashed for 31.25 milliseconds
with an interval of 125 milliseconds between flashes. Between characters, a 3.5 s pause was
provided.

Figure 1 shows the block diagram of the proposed method. The detailed procedure is described
in the protocol section.

PROTOCOL:

The “CBLE Performance Estimation” GUI was applied on two datasets: “Braininvaders” dataset
and Michigan dataset. For the “Braininvaders” dataset, the data collection was approved by the
Ethical Committee of the University of Grenoble Alpes?°. Michigan data were collected under the
University of Michigan Institutional Review Board approval®®. Data were analyzed under Kansas
State University exempt protocol 7516. If collecting new data, follow the user's IRB-approved
process for collecting informed consent. Here, the proposed protocol is evaluated using offline
analysis of previously-recorded, de-identified data and therefore did not require additional
informed consent.

The graphical user interface (GUI) included in this paper is proficient in managing two distinct
dataset formats. The first format is associated with the BCI2000 software, while the second
format is referred to as the "Braininvaders" dataset. In order to utilize the “Brain Invaders”
format, data must be pre-processed as described in step 1 of the protocol section. However,
when dealing with the “BCI2000” dataset format, step 1 can be omitted.

1. Data preparation
1.1.  Brainlnvaders only: Generate the input data file in ".mat" file format that can be used

with the "CBLE performance Estimation" graphical user interface (GUI). For a sample script, refer
to Supplementary Coding File 2.
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NOTE: Each datafile consists of a two-dimensional matrix comprised of rows that represent
observations recorded at distinct time samples. The matrix columns numbered from 2 to 17 are
recordings derived from 16 EEG electrodes. The first column of the matrix denotes the timestamp
of each observation, while column 18 encompasses information related to experimental events.
In column 19, there are mostly zeros, but when a non-Target (or Target) flash starts, the numbers
change to one (or two) at that specific time. A detailed description may be found in the
reference®.

2. Download and install the GUI package

2.1. Download and install the “CBLE Performance Estimation” GUI.

3. Store the dataset in a subfolder of the GUI location

3.1.  Ensure that the dataset folder remains within the same directory as the GUI.

3.2. For instance, create a new folder and place the “CBLE Performance Estimation” GUI
inside it. Keep all the datasets in a subfolder within “CBLE GUI” named “Dataset.”

4. Open the installed GUI

4.1. Open MATLAB, change the current directory to folder where you placed the GUI, click
“APPS” tab and select “MY APPS”.

4.2. Under the “MY APPS” tab, select “CBLE Performance Estimation”.
5. Choose dataset format

5.1. Select a dataset format from the dropdown “Select dataset format”.
6. Load EEG data file

6.1. Click on the "Select input folder" button to choose the directory where the dataset is
located.

6.2. Observe the count of data files present in that selected folder.

NOTE: In the "Brain Invaders" format, each participant is represented by a single data file.
Therefore, the total number of data files indicates the number of participants in the study.
However, this is not the case for the "BCI2000" format, as each participant may have multiple

train and test files.

7. Set the parameters
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7.1. Type the number of participants that the user intends to use for the estimation process
in the “No. of subjects” text box.

7.2.  Brainlnvaders only: Specify the sampling rate of the dataset.

NOTE: BCI2000 files include the sample rate.

7.3.  Choose a decimation value to downsample the dataset to approximately 20 Hz in order
to improve classification performance?®. For example, if the sampling frequency is 256 Hz, then
select a decimation value of 13.

7.4.  Specify the time window for the classification in milliseconds.

NOTE: The recommended initial window size is specified, allowing the starting point to vary from
0 to 100 ms and the ending point from 700 to 800 ms. However, it is important to avoid making
the window size excessively large to prevent overlapping with another P300 event.

7.5.  Define the shift window for CBLE in milliseconds.

NOTE: The term 'shift window' refers to the window of new epochs of EEG test data which are
extracted by shifting the window forward one sample in time. This shift window size must be
larger than the original window, as it indicates the number of shifts that CBLE can detect. The
difference between the shift window and classification window should be less than 100 ms from

each side.

7.6. BC2000 only: Enter the length of the subject ID indicated in the dataset files within the
"ID length" field.

NOTE: The GUI expects the first sub_len characters of the filenames to encode the subject ID.

7.7. BCI2000 only: In the "Channel ID" field, indicate either the total number of channels or
specify the specific channel numbers to be used for the analysis.

7.8. Click the “Set parameters” button to set all the parameters required for the analysis.

8. Brainlnvaders only: Split the dataset into training and test set

8.1. Select a number of targets that represents the size of the training set. The remaining
portion of the dataset will be considered as the test dataset.

NOTE: To ensure proper training of the model, it is essential to have a sufficiently large training
sample. The recommended minimum training sample size is 20, though this may vary depending
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on the overall dataset size. If regression errors occur during training session, it is advisable to
increase the training sample size.

8.2.  Press the "Split the dataset" button to divide the dataset into the training and test sets.
NOTE: Each participant will have an equal amount of training data. However, the number of test
data may not be equal for all participants due to the possibility of multiple attempts during the
task. Consequently, the total number of targets or flashes presented may vary from person to
person.

9. Train a model with training dataset

Note: Step 9.1 is applicable for “Brain Invaders” format and step 9.2 is applicable for “BCI2000”
format.

9.1. Brainlnvaders only: Click on the “Train a model” button to apply linear regression on the
training dataset using equation 2 for training a classifier model.

9.2. BCI2000 only: Indicate training and testing filenames along with their data format (.dat)
to distinguish the training and testing files from all files. Then, click on the “Train a model” button
to apply linear regression on the training dataset.

10. Predict the accuracy of the test set

10.1. Click on the “Predict accuracy” to apply the trained classifier model to the test feature
set and predict the accuracies using equation 1.

11. Get X-target accuracies

11.1. Select a maximum target number, X, to consider in the test set.
11.2. BCI2000 only: Select a test file number if user has multiple test files.
11.3. Press “Find X target accuracy” to get the accuracies.

12. Calculate vCBLE

12.1. Click on the "Find vCBLE" button to get the vCBLE for all targets.

13. Calculate Root mean square error (RMSE) of BCl accuracy and vCBLE



302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

13.1. Click on the “Calculate RMSE” button to calculate the RMSE between both predictions
based on vCBLE with BCl accuracy, and X-target accuracy with BCl accuracy.

14. Visualize the results of the analysis

14.1. Click on the “Accuracy vs vCBLE” button to observe the relation between total accuracy
and total vCBLE for all participants.

14.2. Press on the “RMSE of BCl & vCBLE” button to show the RMSE curve of BCl accuracy and
vCBLE.

15. Prediction of the performance of an individual participant
15.1. To predict the accuracy of an individual participant, place the subject id in “Sub ID”.

NOTE: Here, the dataset of all participants, excluding the test participant, will be used to train a
linear regression model. The vCBLE scores of all other participants and their corresponding test
accuracies will be utilized as predictors and labels, respectively, for the classifier.

15.2. Select a target number, n. The prediction will be made based on the accuracy of n testing
characters.

15.3. Click the “Predict” button to get the predicted accuracy of the test participant.

REPRESENTATIVE RESULTS:

The proposed protocol has been tested on two different datasets: “Braininvaders” and the
Michigan dataset. These datasets are already introduced briefly in the Introduction section. The
parameters used for this two datasets are mentioned in Table 1. Figures 2—4 depict the findings
obtained using the “Brainlnvaders” dataset, whereas Figures 5-7 demonstrate the results
achieved from the Michigan dataset.

The “Brainlnvaders” dataset has 64 participants. Figure 2 presents the relationship between BCI
accuracy and vCBLE of all 64 participants. It shows that vCBLE is highly negatively correlated with
BCl accuracy, although a few outliers are observed. Figure 3 illustrates the RMSE of vCBLE and
actual accuracy when the prediction was made based on the accuracy of testing characters. It
shows the evidence that the RMSE for this prediction, based on the fit obtained by vCBLE, was
lower than the accuracy based on any number of testing characters from 1 to 10. For the
“Brainlnvaders” dataset, vCBLE is capable of predicting BCl accuracy using only 7 characters. In
Figure 4, the prediction was made from the vCBLE of test sets with 2, 5, 7, and 10 characters,
respectively. Here, a leave-one-participant-out approach was employed in the regression analysis
to predict the accuracy of each individual participant. BCl accuracy and vCBLE were estimated
over 100 repetitions. The lower and upper bounds are *+2 standard deviations from the mean. All
four conditions indicate that there is minimal variance observed when the number of participants
in the training set exceeds 10. We conclude that about 10 individuals are required to build the
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regression model for the relationship between vCBLE and accuracy for a particular experimental
paradigm.

In the second example, the Michigan dataset has 32 participants, in which all typed one training
sentence on Day 1 and three testing sentences on Days 1, 2, and 3. The test sentences were 23
or 24 characters in length, and many participants made additional selections to correct errors
made during online operation. In Figure 5, it can be seen that the vCBLE model performed better
when the training and testing datasets were collected on the same day. In fact, this prediction
resulting from the fit provided by vCBLE resulted in a lower RMSE than the accuracy based for
any number of testing characters from 1-20 when the training data and testing data were
collected on the same day. Figure 6 shows that overall, the vCBLE fit had a lower RMSE when the
test included less than six characters. Additionally, it can be seen from Figure 7 that the RMSE of
the VvCBLE accuracy estimation only decreases about 0.025 between three characters and the
optimal number of characters used. This implies that there is not much benefit to collecting more
than three characters for the small test set.

FIGURE AND TABLE LEGENDS:
Figure 1: Block diagram of the proposed protocol. (a) Data preprocessing and feature extraction.
(b) P300 classification. (c) Evaluation of vCBLE. (d) Predicting the accuracy of an individual.

Figure 2: Accuracy vs. vVCBLE. BCl accuracy plotted against vCBLE using “bi2014a” dataset. It
shows a high negative correlation between accuracy and vCBLE.

Figure 3: RMSE of BCl accuracy and vCBLE. The RMSE of vCBLE and accuracy were plotted against
different test dataset sizes (1-10) using “bi2014a” dataset. Overall, vCBLE performs better than
BCl accuracy.

Figure 4: Comparison of models using RMSE. These models are built while predictions are
performed from different sizes of test characters. Top left: 2 targets; top right: 5 targets; bottom
left: 7 targets; bottom right: 10 targets.

Figure 5: RMSE Values of vCBLE Models. A separate model was built to predict accuracy over
three different days using the Michigan dataset. The RMSE values for models built using different
test dataset sizes are shown.

Figure 6: Model comparison. The mean of the RMSE over three days was computed for the vCBLE
and the accuracy models using Michigan data.

Figure 7: Mean RMSE difference from the best model. For each day, the minimum RMSE value
was subtracted from each character's RMSE value. The mean was calculated over the three days.
This graph represents the average performance of a model using a certain data set size compared
to the best model.

TABLE 1: Standard parameters for “Braininvaders” and Michigan datasets.
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DISCUSSION:

This article outlined a method for estimating BCl accuracy using a small P300 dataset. Here, the
current protocol was developed based on the “bi2014a” dataset, although the efficacy of the
protocol was confirmed on two different datasets. To successfully implement this technique, it is
crucial to establish certain variables, such as the epoch window for the original data, the window
for time shifting, the down-sampling ratio, and the size of both the training and testing datasets.
These variables are determined by the characteristics of the dataset being used, including the
number of targets or characters, the number of sequences, and the total number of participants.

The findings of the "bi2014a" dataset indicate that vCBLE's prediction exhibits superior
performance compared to character-level BCl accuracy for all test conditions (less than 10
characters), which involve test datasets containing one to ten characters. However, when the
test dataset comprises more than seven targets, the performance of vCBLE shows minimal
variance. Results from the Michigan data suggest that using vCBLE to predict same-day
performance will outperform the accuracy-based estimation if the test data set is less than six
characters. Interestingly, increasing the amount of data used to build this model only improves
marginally after the first few characters of data. Overall, this would imply that it is not necessary
to collect large amounts of data to predict same-day accuracy.

According to the outcomes of the “bi2014a” dataset, it can be suggested that a minimum of 10
participants is necessary to construct a classifier model that can forecast an individual's BCI
accuracy. However, this also depends on the number of characters or the number of sequences
used in both the training and testing phases. The " bi2014a " dataset includes several participants
who had a relatively small number of total targets. It is worth mentioning that the vCBLE
prediction method has already been successfully tested on small-size datasets consisting of 32
and 9 participants, respectively, and has demonstrated effective performance!”8. However,
these datasets have a relatively larger number of total targets, such as 19 characters in the
training session and a minimum of 23 characters in the testing session.

There are a few limitations to be aware of when applying this method. From the analysis of the
Michigan dataset, the vCBLE model seems to perform worse when the training and test data are
collected on different days. Also, this method requires multiple participants to build a custom
model for a given dataset. Moreover, the proposed method has been tested on four classifiers,
including a least-squares classifier, stepwise linear discriminant analysis, support vector machine
(SVM), and space autoencoder (SAE)”18, However, the protocol should be applicable to any time-
sensitive classifier. Despite these limitations, the potential time savings to the research and
clinical communities warrant further investigation and application.
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Figure 1: Block diagram of the proposed protocol. (a) Data preprocessing and feature
extraction. (b) P300 classification. (c) Evaluation of vCBLE. (d) Predicting the accuracy of an
individual.
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Figure 2: Accuracy vs. VCBLE. BCl accuracy plotted against vCBLE using “bi2014a” dataset. It
shows a high negative correlation between accuracy and vCBLE.
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468 Figure 5: RMSE Values of vCBLE Models. A separate model was built to predict accuracy over
469 three different days using the Michigan dataset. The RMSE values for models built using

470 different test dataset sizes are shown.
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Figure 6: Model comparison. The mean of the RMSE over three days was computed for the
VvCBLE and the accuracy models using Michigan data.
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479 Figure 7: Mean RMSE difference from the best model. For each day, the minimum RMSE value
480 was subtracted from each character's RMSE value. The mean was calculated over the three
481 days. This graph represents the average performance of a model using a certain data set size
482 compared to the best model.
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Table 1: Standard parameters for “Braininvaders” and Michigan datasets

Dataset | Subject ID Channel | Sampling | Decimation | Original CBLE Training | Target
. ) sample | number,
name number | length ID rate value window | window no X
Brain ) [100,
Invaders 64 N/A [1:16] 512 26 600] [0, 700] 20 10
_ [-100,
Michigan 32 4 [1:16] 256 13 [4, 804] 900] N/A 20




