
Controlling the Shape of Soft Robots Using the Koopman Operator

Ajai Singh, Jiefeng Sun, and Jianguo Zhao

Abstract— In nature, animals with soft body parts demon-
strate remarkable control over their shape, such as an elephant
trunk wrapping around a tree branch to pick it up. However,
most research on robotic manipulators focuses on controlling
the end effector, partly because the manipulator’s arm is rigidly
articulated. With recent advances in soft robotics research,
controlling a soft manipulator into many different shapes will
significantly improve the robot’s functionality, such as medical
robots morphing their shape to navigate the digestive system
and deliver drugs to specific locations. However, controlling the
shape of soft robots is challenging due to their highly nonlinear
dynamics that are computationally intensive. In this paper, we
leverage a physics-informed, data-driven approach using the
Koopman operator to realize the shape control of soft robots.
We simulate the dynamics of a soft manipulator using a physics-
based simulator (PyElastica) to generate the input-output data,
which is then used to identify an approximated linear model
based on the Koopman operator. We then formulate the shape-
control problem as a convex optimization problem that is
computationally efficient. Our linear model is over 12 times
faster than the physics-based model in simulating the manipu-
lator’s motion. Further, we can control a soft manipulator into
different shapes using model predictive control. We envision
that the proposed method can be effectively used to control the
shapes of soft robots to interact with uncertain environments
or enable shape-morphing robots to fulfill diverse tasks. This
paper is complemented with a video.

I. INTRODUCTION

Rigid-bodied robots have long been the heart of various
industries such as manufacturing, but soft robots made from
soft materials have recently emerged in robotics research [1].
Unlike rigid ones, soft robots can exploit their inherent
mechanical compliance to interact with humans or external
environments, leading to many applications such as manip-
ulation, locomotion, medical devices, etc [2], [3].

The soft robotics community has begun to explore how a
robot’s shape can enhance its functional capabilities, drawing
inspiration from biological organisms [4]. Various living
organisms can change their body shape to adapt to different
environments and respond to external stimuli. For example,
an octopus can squeeze its body through gaps much smaller
than its body size [5], and moth larvae can curl up to
roll away from predators [6]. Inspired by biological organ-
isms, researchers have developed robots that utilize different
shapes for distinct functions. Shah et al. investigated how a
soft robot can use different shapes for crawling or rolling in
different environments [7]. Hwang et al. leveraged a novel

This work is partially supported by the National Science Foundation
under Grant CMMI-2126039.

Ajai Singh, Jiefeng Sun, and Jianguo Zhao are with the Department of
Mechanical Engineering, Colorado State University, Fort Collins, CO 80523,
USA. Ajai.Singh@colostate.edu,J.Sun@colostate.edu,
Jianguo.Zhao@colostate.edu

kirigami composite to develop a morphing drone that can
autonomously transform from ground to aerial vehicle [8].
Other recent research, including [9], shows how shape mor-
phing can enhance a robot’s functionality by reaching a
desired position while avoiding obstacles.

Controlling the shape of a soft robot is challenging due
to its highly nonlinear dynamics. Researchers have devel-
oped various physics-based models using methods such as
Cosserat Rod theory [9], and model reduction method [10],
among many others [11]. Although such models can achieve
high-fidelity simulation for various soft robots [12], they
generally require extensive computational time, making them
unsuitable for shape control.

In this paper, we aim to leverage existing physics-based
models to develop computationally efficient data-driven mod-
els for controlling the shape of soft robots. We use the
open-source simulation software PyElastica [9] to generate
sufficient input-output data for a soft robot. Using the data,
we establish a data-driven model based on Koopman operator
theory [13] to obtain a finite-dimensional approximation of
the soft robot [14]. The Koopman operator can represent a
nonlinear dynamical system with a finite-dimensional linear
model to approximate the original dynamics of a soft robot.
With such a linear model, we can directly use existing control
methods such as model predictive control (MPC) to control
a soft robot’s shape.

Researchers have recently used the Koopman operator
theory to control soft robots, as demonstrated in various
studies [14]–[16]. In particular, the work presented in [14]
shows promising results in controlling the robot’s tip to trace
a desired trajectory, while [15] used the Koopman operator
to model a soft robotic swimmer. However, controlling a soft
robot’s shape differs from existing problems (e.g., tip posi-
tion control) as the shape is specified by continuous curves
or surfaces. Therefore, our work contributes an additional
application of Koopman operator-based system identification
and control for the shape control of soft robots. Specifically,
the contribution of this paper is to develop a data-driven
method to control a soft robot’s shape by leveraging existing
physics-based models and Koopman operator theory.

The rest of the paper is organized as follows. Section II
formulates the shape control problem for a soft robot. In
Section III, we provide the mathematical underpinnings of
the Koopman operator, its approximation from data, and the
algorithm used for system identification using the Koopman
operator approach. Section IV presents MPC used with the
identified linear system. Section V details the simulation
setup, including the generation of the input-output data for a
soft robot using PyElastica [9]. Finally, section VI presents

https://youtu.be/GW711GgawTQ

the results of system identification and shape control.

II. SHAPE CONTROL PROBLEM

In this section, we formulate the shape control problem
using a general soft manipulator. We will show how to
use this framework to solve the shape control problem in
subsequent sections.

Given a soft manipulator of length L, we divide it into
N − 1 segments with equal length. The shape for the i-th
(i = 2, . . . , N) segment is specified by the section at its
top. At a discrete time step tk, we use gi(tk) ∈ SE(3) to
represent the top section’s position and orientation in the
inertia frame as shown in Fig. 1.

gi(tk) =

[︃
Ri(tk) pi(tk)

0 1

]︃
(1)

where Ri(tk) ∈ SO(3) represents the orientation, and
pi(k) ∈ R3 presents the position for the section’s centroid.
Denote the i-th segment as Li. For each segment, we assume
we can apply an actuation input u, such as forces/torques at
each segment’s top or torques generated using spline func-
tions. In practice, these actuation inputs might be generated
by artificial muscles embedded within soft materials [17].
In our setup, we apply continuous torque to the system
generated by spline functions in PyElastica. With such a
setup, the shape of the soft manipulator can be approximated
by gi(tk) ∈ SE(3) at time step tk.

g1

gi-1

gi

gi+1

Li

gi REF

gi+1 REF

gN REF

gi-1 REF

gN

X

Y

Z

Fig. 1. Illustration for the shape control problem for a soft manipulator
divided into N − 1 equal length segments with the top of each segment
shown as a yellow cross-section. The manipulator shown in solid green
color is its initial shape (t = 0), and the shape shown in faded green shows
the target shape.

Given a desired shape for the soft manipulator represented
by giref (i = 1, . . . , N−1), the shape control problem can be
formulated as finding the control input u(tk) that minimizes
the distance between gi(tk) and giref . Note that the distance
in SE(3) can be defined separately for the position and
orientation, with the Euclidean distance for position and the
geodesic distance for orientation. This paper will focus on a
simplified problem by only considering the position distance.

In this case, the problem can be formulated as follows:

minimize
u(tk)

N−1∑︂
i=1

||piref − pi(tk)||22 (2a)

subject to

x(tk+1) = f(x(tk), u(tk)), (2b)
h(x(tk), u(tk)) ≤ 0 (2c)

where piref ∈ R3 is the desired position for the ith segment.
x(tk) ∈ Rn is the combination of all pi at time instant tk, but
in general, it can include all the states used to describe the
dynamics of the soft manipulator. u(tk) ∈ Rm is the control
input of the system at tk. h(x(tk), u(tk)) ≤ 0 are the various
constraints applied to the state and control variables, which
are commonly known as polyhedral constraints.

Generally, the dynamics for a soft robot (i.e., x(tk+1) =
f(x(tk), u(tk))) is highly nonlinear, involving complicated
physics-based models [11]. Such models can only be solved
numerically with considerable computation time, preventing
them from real-time shape control of soft robots. Inspired
by recent work on using the data-driven method to identify
approximated models from either numerical or experimental
data for controlling soft robots for manipulation [14]–[16],
we aim to obtain a data-driven model using Koopman
operator theory. Then we use the model to control the shapes
of soft robots.

III. SYSTEM IDENTIFICATION USING KOOPMAN
OPERATOR THEORY

Given the complicated dynamics of a soft robot, we will
use Koopman operator theory to directly identify a compu-
tationally efficient linear model using the input-output data
generated by physics-based models (e.g., PyElastica [9]). In
this section, we briefly review the preliminaries for Koopman
operators.

Given a nonlinear dynamical system, the Koopman op-
erator first maps the states of the original system using
scalar functions (also called observables) of the states into
lifted space with new state variables. The new system in
the lifted space with the new state variables is generally an
infinite dimensional linear system. Unlike the linearization
about a point that becomes inaccurate when operating away
from the linearizing point, the Koopman operator describes
the evolution of the scalar observable throughout the state
space in a linear fashion. This makes the Koopman operator
approach preferable when realizing linear representation of
nonlinear systems [18].

We briefly review the Koopman operator framework for
control systems, as described in [14]. Assume a discrete
nonlinear dynamical system given by:

x(tk+1) = f(x(tk))

y(tk) = g(x(tk))
(3)

where x(tk), x(tk+1) ∈ Rn are the state vector at time
instant tk, tk+1 respectively, y(tk) ∈ Rr is the output of
the system at tk. To simplify notations, we use x(tk) and
xtk interchangeably in the following discussions.

To map the state x to a lifted space, we use a basis or
observation function ϕ(x(tk)) : Rn → R ∈ F , where F
is the space of all basis functions. The Koopman operator
K : F → F is defined as:

(Kϕ)(xtk) = ϕ(f(xtk)) = ϕ(xtk+1) (4)

which means the Koopman operator simply updates the
observation of the state in the lifted space from the current
time step to the next step.

K is generally an infinite dimensional linear operator, but
we can use a finite subspace to approximate it. Let the
finite dimensional approximation of K be K̄. K̄ operates on
F̄ ⊂ F which is the subspace spanned by a finite set of
basis functions. K̄ can be obtained using Extended Dynamic
Mode Decomposition (EDMD) as discussed in [19], and
this approximation is achieved by solving the following
optimization problem

minimize
A

K−1∑︂
k=0

||ψ(xtk+1
)−Aψ(xtk)||22 (5)

where ψ(x) = [ψ1(x) , ψ2(x) , ψ3(x) , . . . , ψnb
(x)]⊤ with

{ψi : Rn → R}nb
i=1 represents the nb basis functions,

A ∈ Rnb×nb is the finite dimensional approximation of the
Koopman operator, nb is the total number of basis functions,
K is the cardinality of the data-set given by D = {xtk}Kk=0

and ⊤ is the transpose operator.
Solving the minimization problem of Eq. (5), we can

represent the nonlinear dynamical system given by Eq. (3)
as the following discrete linear dynamical system

z(tk+1) = Az(tk)

ỹ(tk) = Cz(tk)
(6)

where z(tk) = ψ(x(tk)) ∈ Rnb and ỹ(tk) is the output. The
matrix C ∈ Rr×nb is obtained just like A by solving

minimize
C

K∑︂
k=1

||y(tk)− Cψ(x(tk))||22 (7)

Similarly, for a nonlinear dynamical system with control
inputs, the methodology discussed can be used. Consider a
discrete nonlinear dynamical system given by

x(tk+1) = f(x(tk), u(tk))

y(tk) = g(x(tk))
(8)

where u(tk) ∈ Rm is the control input. Then in this case
to approximate the Koopman Operator, the minimization
problem in Eq. (5) changes to

minimize
A,B

K−1∑︂
k=0

||ψ(x(tk+1))− (Aψ(x(tk)) +Bu(tk))||22

(9)
Thus, by solving the minimization problem of Eq. (9),

the finite approximation of the Koopman operator is ap-
proximated by A and B, and it acts as one step predictor
of the nonlinear dynamical system described by Eq. (8).
The minimization problem for the output equation, i.e.,

for C matrix remains the same as given by Eq. (7) We
will use EDMD [14], [19] to construct the linear model
of a soft robot since EDMD is a data-driven method that
approximates the leading Koopman eigenfunctions, eigen-
values, and modes whereas other data-driven methods such
as generalized Laplace analysis, Ulam Galerkin method,
and Dynamic Mode Decomposition cannot approximate the
three quantities [19]. One could also use neural networks to
approximate the three quantities, but neural networks require
a lot of training data and tuning.

IV. MODEL PREDICTIVE CONTROL FOR KOOPMAN
OPERATOR BASED LINEAR SYSTEM

In this section, we briefly review model predictive control
(MPC) and then show how MPC can be used alongside the
Koopman operator for shape control.

Many model-based controllers have been developed for
soft robots [20], [21], but most rely on simplifying assump-
tions and are primarily designed for static control. While
such controllers have been proven to be very efficient for the
static control of soft robotic manipulators, they are unsuitable
for dynamic control. Dynamic control can be achieved by
supplementing a piece-wise constant curvature model with
data-driven trajectory optimization. However, the downside
of this approach is that the training tends to be task-specific
[14]. More realistic physics-based models have also been
proposed, but they are computationally expensive.

From Section III, the Koopman operator is used to approx-
imate a linear system of a nonlinear dynamical system from
data. In [14], the authors constructed an MPC controller from
a linear Koopman representation of a nonlinear dynamical
system. We use a similar approach to construct an MPC
for shape control of a soft manipulator. Since the identified
model is linear, the MPC optimization offers computational
advantages over nonlinear ones as the MPC optimization
problem is convex, which can be solved very efficiently
with any method for convex optimization. To implement the
Koopman-based MPC, we first define the objective function
as follows:

J = z(tNh
)⊤Q(tNh

)z(tNh
)+

Nh−1∑︂
i=0

{z(ti)⊤Q(ti)z(ti) + u(ti)
⊤R(ti)u(ti)}

where Nh ∈ N is the prediction horizon, Q(ti) ∈ Rnb×nb ,
R(ti) ∈ Rm×m are positive semidefinite matrices. Here Q
and R are constant matrices or vectors also known as weight
or cost matrices. Then we can iteratively solve a convex
quadratic program over a receding horizon as:

minimize
u(ti)

J (10a)

subject to

z(ti+1) = Az(ti) +Bu(tk), (10b)
z(0) = ψ(x(tk)) (10c)

Every time the optimization routine is called, the predic-
tions need to be set to the current lifted state ψ(x(tk)). While

the size of the cost and constraint matrices depend on the
dimension of the lifted state nb, [22] shows that these can be
rendered independent of nb by transforming the problem into
its so-called dense-form [14]. We use the above framework
to solve the shape control problem presented in section II.

V. SIMULATION SETUP

In this paper, we use PyElastica, an open-source, physics-
based simulator for soft robots based on the Cosserat rod
theory, to generate the data for the Koopman operator. We
choose PyElastica due to its relative accuracy, accessibility,
and ease of setup. When using PyElastica, we set up a
simulation that requires the user to define a system of rods,
establish initial and boundary conditions on the rod, run the
simulation, and collect data for post-processing. The detailed
process can be found in [23].

The physical parameters for our manipulator are listed in
Table I. The robot base is fixed as the boundary condition,
and actuation is achieved by applying torques distributed
along the arm’s length. The torques are decomposed into
orthogonal functions in local normal and bi-normal direc-
tions, determined by continuous splines with N independent
control points. We do not apply torque in the axial direction
to twist the robot.

TABLE I
LIST OF PHYSICAL PARAMETERS FOR THE SIMULATION SETUP

Physical Parameter Value Unit

Number of tracking points 6 N/A
Starting Position of the rod (vector) [0.0, 0.0, 0.0] N/A
Direction in which rod extends(vector) [0.0, 0.0, 1.0] N/A
Normal vector of rod [1.0, 0.0, 0.0] N/A
Length of rod 1.00 meter (m)
Radius of the tip 0.05 meter (m)
Radius of the base 0.05 meter (m)
Density of the rod 1.0 ×103 kg/m3

Energy dissipation constant 10.00 N/A
Young’s Modulus 1.00 ×107 Pa
Poisson’s Ration 0.50 N/A

*The vectors are defined with respect to the standard right-hand coordinate system.

Note that the spline control points for normal and bi-
normal directions are distinct, requiring two splines. To
generate these two splines for each simulation case, we
randomly generate two torques in normal and bi-normal
directions for each control point. Initially, the robot assumes
a straight and upright shape. In the simulation, the two torque
splines are kept constant as a step input for the system.
We use the position Verlet integration algorithm as the time
stepping algorithm with a time step ∆t = 0.0001 s such that
we can capture the transient behavior of the soft manipulator
accurately. We then simulate the system for 20 s to ensure
that the soft manipulator has reached a steady state.

To construct a linear model of the soft robotic system
using the Koopman operator, we collect data for system
identification by simulating the robot with random inputs. We
simulate the manipulator for 30 cases. For each simulation
case, we collect 2000 snapshots with a sampling time of
Ts = 0.01 s. These data sets are used for approximating the

Koopman Operator. The system identification is conducted
by lifting the collected snapshots using the basis function
with delays defined in section III. We use first-order poly-
nomials with delay d = 1 as the basis function and then
performed least square regression as shown in Eqs. (9) and
(7) to obtain the A ∈ R47×47, B ∈ R47×10, and C ∈ R18×47

matrices, respectively [14]. Note that we choose first-order
polynomials as the basis functions because they can generate
more accurate predictions compared with other choices such
as higher-order polynomials, radial basis functions, etc. For
the problem, we have selected 47 basis functions with degree
1. For the 47 functions, the first 18 are defined as the output
of the system, the next 28 are delay coordinates, and a
constant 1 is added so that we do not lift the inputs. One
might consider using higher-degree polynomials or more ba-
sis functions to minimize the prediction error ϕ̇(x) = Aϕ(x).
However, increasing the polynomial order generally leads to
more functions in ϕ, and thus more derivatives ϕ̇ must be
expressed by ϕ. Consequently, the increase in polynomial
order causes the derivatives ϕ̇ to grow in complexity, making
it more challenging for ϕ̇ to be expressed by ϕ [24].

VI. RESULTS

In this section, we first quantify the identified linear model
in terms of accuracy and speed by comparing it with the
physics-based model. We demonstrate that it can realize
tip and shape control much faster with the identified linear
model and an MPC.

A. The Accuracy and Speed of the Identified Linear Model

0 1 2 3 4 5
Time(s)

0

0.005

0.01

0.015

0.02

Pr
ed

ic
tio

n
Er

ro
r (

m
et

er
)

Dataset with min prediction error
Dataset with max prediction error

Fig. 2. Prediction error plots for datasets having the least (green) and
maximum (blue) prediction error. The error at each time step was calculated
using Eq. (11). For clarity of the plot, only 2 of 6 prediction errors are
shown.

The accuracy of the Koopman model is estimated by
calculating the error at time step ti defined as:

Err(ti) =
1

L

⌜⃓⃓⎷ 1

Nx

Nx∑︂
j=1

(xj(ti)− xjref (ti))2 (11)

where L = 1 is the length of the soft manipulator, Nx = 18
is the number of states, xj(ti), xjref (ti) are the jth state
vector at time ti approximated by Koopman based model
and actual physics-based model, respectively. This accuracy

TABLE II
MEAN TIME COMPARISON OF PHYSICS AND KOOPMAN-BASED MODEL

Time steps Physics-based Koopman-based

1 1.7 ms ± 353 µs 188 µs ± 29.5 µs
10 2.21 ms ± 112 µs 159 µs ± 50.7 µs
100 9.14 ms ± 386 µs 696 µs ± 23.5 µs
1000 60.8 ms ± 1.13 ms 4.75 ms ± 111 µs
10000 568 ms ± 7.2 ms 44.6 ms ± 640 µs
100000 5.6 s ± 49.3 ms 435 ms ± 5.79 ms

* The time shown is the mean time per loop.

depends on the number of basis functions and the types
of basis functions. We validate the identified linear model
against 6 different data sets with random inputs generated
with the same method mentioned in section V.

0 0.5 1 1.5 2
Time(s)

0

0.2

0.4

0.6

0.8

|| T
ip

 -
R

ef
 ||

2

Fig. 3. Results for the control of the tip of the manipulator. The plot shows
the Euclidean distance between the tip and the reference set point.

The linear model generated by the Koopman operator has a
maximum mean RMSE of 35E-4 meters (obtained by taking
the average of all the Err over the entire simulation time)
and a minimum mean RMSE of 6.78E-4 across all states.
Fig. 2 shows the prediction error for two datasets between the
Koopman-based linear model and the physics-based model.
The results for these two datasets are chosen because the
error curves for all the other four cases are between these
two error curves.

The Koopman-based model is more time-efficient than
the Physics-based model. We measure the average time for
multiple simulations while accounting for interference from
other operating system tasks. For the Koopman-based model,
we run it seven times with 100 loops, simulating the model
for a specific time step ∆t. The physics-based model is run
seven times with only 10 loops due to the much longer time
required for each loop. The time comparison tests are run on
a computer with 16 GB Random Access Memory (RAM) and
a 2.6 GHz CPU. Table II shows the comparison between the
mean time taken by both models to run for a finite number
of time steps. We can see the Koopman-based linear model
is over 12 times faster than the physics-based model, except
in the case of a single step.

Controlling a soft robot’s tip represents a special case of
the shape control problem proposed in section II. Unlike
controlling a soft robot’s shape, which requires controlling

multiple points, we control only one point, i.e., the tip of
the manipulator. This problem can also be called set point
tracking in three-dimensional space. To address this problem,
we use the MPC with a prediction horizon Nh = 25 steps.
The desired reference set points are chosen as [0.1, 0.2, 0.3].
To demonstrate the control of the tip, we move the tip from
the rest position, i.e., from [0, 0, 1] to [0.1, 0.2, 0.3] where the
elements of the vector are the x, y, z coordinates of the tip.
The result is shown in Figure 3, which shows the Euclidean
distance between the robot’s tip and the reference point over
time. The plot clearly shows that the MPC controller can
move the tip to the desired location within 0.5 s.

B. Shape Control with Koopman-based MPC

We further demonstrate the shape control of a soft manip-
ulator by controlling it to form different shapes, specifically
three letters: ‘C’, ‘S’, and an inverted ‘U’. The linear
MPC controller derives the optimal control input over the
prediction horizon of Nh = 25. The controller has a single
constraint i.e. the dynamics of the soft manipulator for
various shapes. Its objective is to move tracked points to the
desired location. A cost function is chosen to penalize the
distance between reference and robot points. We generate
reference shapes using the physics-based model with the
shooting method, which are then used as references for
the MPC controller. Note that since the bottom of the
manipulator is rigidly fixed to the ground, the segment close
to the ground needs to resemble a vertical shape due to the
spline used to interpolate the torques in PyElastica. If we do
not consider this segment, however, the desired shapes are
indeed similar to the letters ‘C’ and ‘S’.

The results for the three shapes are illustrated in Fig. 4,
where we plot the robot’s final shape and the desired shape.
From the figure, we can see the robot can accomplish the
desired shape. To quantify the error between the final and
desired shape, we plot the RMSE in meters for different
tracking points for the morphed shapes in Fig. 5. Root
Mean Squared Error is calculated as the Euclidean distance
between the final position generated by the controller for
a tracking point and the corresponding reference point. As
seen from the error in Fig. 5, the final position error can be
quite small (< 5% with respect to the manipulator’s length).
Note that we only used points for the shape control for
the simulations, but we can also add orientations into the
formulation of the shape control problem.

VII. CONCLUSION

In this paper, we employ a data-driven method based on
the Koopman operator to establish an approximate linear
model of a soft manipulator using the input-output data
from an accurate yet computationally inefficient physics-
based model. This linear model is both accurate and over
12 times faster than the physics-based model. Combining
with a linear MPC, we successfully control a soft robot’s
shape, a task that is highly challenging when using a physics-
based model. Our future work will extend this method to
control a soft robot made from a combination of several rods

‘’ C ‘’ ‘’ S ‘’ ‘’ U ‘’

Fig. 4. Results for controlling the soft robot to three different shapes. The object in solid green is the shape of the actual soft robot, and the gray envelope
is the reference shape. Note that the reference shape has been scaled to 10% of the actual reference for better visualizations.

0

TP#6 [27.15,44.31,7.55]*E-3

2

0.04
TP#3 [5.79E-3,7.31E-3,6.77E-4]

TP#5 [14.62,30.32,4.24]*E-3

0.03

4

0.03

#10-3

Z
R

M
SE

 Position Error for S shape

6

Y RMSE

0.020.02

X RMSE

8

TP#4 [21.39,20.67,1.95]*E-3

0.010.01

TP#2 [5.55E-5,6.88E-5,1.76E-5]

0 0

Fig. 5. Position error of the tracking points (TP) corresponding to the S
shape acquired by the soft manipulator as shown in Figure 4. The vector
following each TP shows RMSE for X, Y, and Z for a particular TP. (Note
that the error for TP 1 was always 0 as it was static, hence it was ignored
in the error plot.)

to form a polyhedron (e.g., tetrahedron, Octahedron, etc.)
to generate more diverse shapes, which can be potentially
experimentally verified through soft robot prototypes driven
by artificial muscles.

REFERENCES

[1] D. Rus and M. T. Tolley, “Design, fabrication and control of soft
robots,” Nature, vol. 521, no. 7553, pp. 467–475, 2015.

[2] M. Cianchetti, C. Laschi, A. Menciassi, and P. Dario, “Biomedical
applications of soft robotics,” Nature Reviews Materials, vol. 3, no. 6,
pp. 143–153, 2018.

[3] P. Polygerinos, N. Correll, S. A. Morin, B. Mosadegh, C. D. Onal,
K. Petersen, M. Cianchetti, M. T. Tolley, and R. F. Shepherd, “Soft
robotics: Review of fluid-driven intrinsically soft devices; manufac-
turing, sensing, control, and applications in human-robot interaction,”
Advanced Engineering Materials, vol. 19, no. 12, p. 1700016, 2017.

[4] D. Shah, B. Yang, S. Kriegman, M. Levin, J. Bongard, and R. Kramer-
Bottiglio, “Shape changing robots: bioinspiration, simulation, and
physical realization,” Advanced Materials, vol. 33, no. 19, p. 2002882,
2021.

[5] K. J. Quillin, “Kinematic scaling of locomotion by hydrostatic an-
imals: ontogeny of peristaltic crawling by the earthworm lumbricus
terrestris,” Journal of Experimental Biology, vol. 202, no. 6, pp. 661–
674, 1999.

[6] R. Armour and J. Vincent, “J bionic eng. 2006, 3, 195-208; c) l. van
griethuijsen, b. trimmer,” Biol. Rev, vol. 89, pp. 656–670, 2014.

[7] D. S. Shah, J. P. Powers, L. G. Tilton, S. Kriegman, J. Bongard, and
R. Kramer-Bottiglio, “A soft robot that adapts to environments through
shape change,” Nature Machine Intelligence, vol. 3, no. 1, pp. 51–59,
2021.

[8] D. Hwang, E. J. Barron III, A. T. Haque, and M. D. Bartlett, “Shape
morphing mechanical metamaterials through reversible plasticity,”
Science Robotics, vol. 7, no. 63, p. eabg2171, 2022.

[9] N. Naughton, J. Sun, A. Tekinalp, T. Parthasarathy, G. Chowdhary,
and M. Gazzola, “Elastica: A compliant mechanics environment for
soft robotic control,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 3389–3396, 2021.

[10] O. Goury and C. Duriez, “Fast, generic, and reliable control and simu-
lation of soft robots using model order reduction,” IEEE Transactions
on Robotics, vol. 34, no. 6, pp. 1565–1576, 2018.

[11] G. Mengaldo, F. Renda, S. L. Brunton, M. Bächer, M. Calisti,
C. Duriez, G. S. Chirikjian, and C. Laschi, “A concise guide to
modelling the physics of embodied intelligence in soft robotics,”
Nature Reviews Physics, pp. 1–16, 2022.

[12] J. Sun and J. Zhao, “Modeling and simulation of soft robots driven
by embedded artificial muscles: an example using twisted-and-coiled
actuators,” in American Control Conference (ACC), 2022, pp. 2911–
2916.

[13] B. O. Koopman, “Hamiltonian systems and transformation in
hilbert space,” Proceedings of the National Academy of Sciences,
vol. 17, no. 5, pp. 315–318, 1931. [Online]. Available: https:
//www.pnas.org/doi/abs/10.1073/pnas.17.5.315

[14] D. Bruder, X. Fu, R. B. Gillespie, C. D. Remy, and R. Vasudevan,
“Data-driven control of soft robots using koopman operator theory,”
IEEE Transactions on Robotics, vol. 37, no. 3, pp. 948–961, 2020.

[15] M. L. Castaño, A. Hess, G. Mamakoukas, T. Gao, T. Murphey,
and X. Tan, “Control-oriented modeling of soft robotic swimmer
with koopman operators,” in IEEE/ASME International Conference
on Advanced Intelligent Mechatronics (AIM), 2020, pp. 1679–1685.

[16] E. Kamenar, N. Ćrnjarić-Žic, D. Haggerty, S. Zelenika, E. W. Hawkes,
and I. Mezić, “Prediction of the behavior of a pneumatic soft robot
based on koopman operator theory,” in 2020 43rd International Con-
vention on Information, Communication and Electronic Technology
(MIPRO). IEEE, 2020, pp. 1169–1173.

[17] J. Sun, B. Tighe, Y. Liu, and J. Zhao, “Twisted-and-coiled actuators
with free strokes enable soft robots with programmable motions,” Soft
robotics, vol. 8, no. 2, pp. 213–225, 2021.

[18] A. Mauroy and I. Mezić, “Global stability analysis using the eigen-
functions of the koopman operator,” IEEE Transactions on Automatic
Control, vol. 61, no. 11, pp. 3356–3369, 2016.

[19] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, “A data–driven
approximation of the koopman operator: Extending dynamic mode
decomposition,” Journal of Nonlinear Science, vol. 25, no. 6, pp.
1307–1346, 2015.

[20] C. Della Santina, A. Bicchi, and D. Rus, “On an improved state
parametrization for soft robots with piecewise constant curvature and
its use in model based control,” IEEE Robotics and Automation Letters,
vol. 5, no. 2, pp. 1001–1008, 2020.

[21] C. Della Santina, C. Duriez, and D. Rus, “Model based control of soft
robots: A survey of the state of the art and open challenges,” arXiv
preprint arXiv:2110.01358, 2021.

[22] M. Korda and I. Mezić, “Linear predictors for nonlinear dynamical
systems: Koopman operator meets model predictive control,” Auto-
matica, vol. 93, pp. 149–160, 2018.

[23] X. Zhang, F. Chan, T. Parthasarathy, and M. Gazzola, “Modeling and
simulation of complex dynamic musculoskeletal architectures,” Nature
Communications, vol. 10, no. 1, pp. 1–12, 2019.

[24] V. Cibulka, T. Haniš, and M. Hromčı́k, “Data-driven identification of
vehicle dynamics using koopman operator,” in 2019 22nd International
Conference on Process Control (PC19). IEEE, 2019, pp. 167–172.

https://www.pnas.org/doi/abs/10.1073/pnas.17.5.315
https://www.pnas.org/doi/abs/10.1073/pnas.17.5.315

	Introduction
	Shape Control Problem
	System Identification using Koopman Operator Theory
	Model Predictive Control for Koopman operator based linear system
	Simulation Setup
	Results
	The Accuracy and Speed of the Identified Linear Model
	Shape Control with Koopman-based MPC

	Conclusion
	References

