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Abstract

The natural world is full of complex systems characterized by intricate relations between their
components: from social interactions between individuals in a social network to electrostatic inter-
actions between atoms in a protein. Topological Deep Learning (TDL) provides a comprehensive
framework to process and extract knowledge from data associated with these systems, such as
predicting the social community to which an individual belongs or predicting whether a protein
can be a reasonable target for drug development. TDL has demonstrated theoretical and prac-
tical advantages that hold the promise of breaking ground in the applied sciences and beyond.
However, the rapid growth of the TDL literature has also led to a lack of unification in nota-
tion and language across Topological Neural Network (TNN) architectures. This presents a real
obstacle for building upon existing works and for deploying TNNs to new real-world problems.
To address this issue, we provide an accessible introduction to TDL, and compare the recently
published TNNs using a unified mathematical and graphical notation. Through an intuitive and
critical review of the emerging field of TDL, we extract valuable insights into current challenges
and exciting opportunities for future development.

Keywords: deep learning, topology, message passing, graph, hypergraph, simplicial complex,
cellular complex, combinatorial complex

1 Introduction

Many natural systems as diverse as social networks (Knoke and Yang, 2019) and proteins (Jha
et al., 2022) are characterized by relational structure. This is the structure of interactions between
components in the system, such as social interactions between individuals or electrostatic interac-
tions between atoms. In Geometric Deep Learning (Bronstein et al., 2021), Graph Neural Networks
(GNNs) (Zhou et al., 2020) have demonstrated remarkable achievements in processing relational data
using graphs—mathematical objects commonly used to encode pairwise relations.

However, the pairwise structure of graphs is limiting. Social interactions can involve more than
two individuals, and electrostatic interactions more than two atoms. Topological Deep Learning
(TDL) (Hajij et al., 2023; Bodnar, 2022) leverages more general abstractions to process data with
higher-order relational structure. The theoretical guarantees (Bodnar et al., 2021a,b; Huang and
Yang, 2021) of its models, Topological Neural Networks (TNNs), lead to state-of-the-art performance
on many machine learning tasks (Dong et al., 2020; Hajij et al., 2022a; Barbarossa and Sardellitti,
2020; Chen et al., 2022)—and reveal high potential for the applied sciences and beyond.

However, the abstraction and fragmentation of mathematical notation across the TDL literature
significantly limits the field’s accessibility, while complicating model comparison and obscuring op-
portunities for innovation. To address this, we present an intuitive and systematic comparison of
published TNN architectures. We contribute:



e A pedagogical resource accessible to newcomers interested in applying TNNs to real-world
problems.

e A comprehensive and critical review of TNNs, their implementations and practical appli-
cations, with equations rewritten in our notation available at github.com/awesome-tnns.

e A summary of open research questions, challenges, and opportunities for innovation.

By establishing a common and accessible language in the field, we hope to provide newcomers and
experienced practitioners alike with a solid foundation for cutting-edge research in TDL.

Other literature reviews at the intersection of topology and machine learning have focused on data
representation (Torres et al.; 2021) and physics-inspired models (Battiston et al., 2021). TDL is part
of a broader field defined as topological machine learning, first surveyed in Hensel et al. (2021). This
field encompasses additional methods such as topological data analysis for machine learning, where
topological features computed from techniques such as persistent homology enhance the capabilities
of neural networks.

2 Topological Neural Networks

Topological Neural Networks (TNNs) are deep learning architectures that extract knowledge from
data associated with topologically rich systems such as protein structures, city traffic maps, or citation
networks. A TNN, like a GNN, is comprised of stacked layers that transform data into a series
of features (Figure 1). Each layer leverages the fundamental concepts of data and computational
domains, neighborhoods, and message passing—presented in this section.
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Figure 1: Topological Neural Network: Data associated with a complex system are features defined on a data
domain, which is preprocessed into a computational domain that encodes interactions between the system’s components
with neighborhoods. The TNN’s layers use message passing to successively update features and yield an output, e.g. a
categorical label in classification or a quantitative value in regression. The output represents new knowledge extracted
from the input data.

2.1 Domains

In Topological Deep Learning (TDL), data are features defined on discrete domains (Hajij et al., 2023;
Bodnar, 2022). Traditional examples of discrete domains include sets and graphs (Figure 2, Left).
A set is a collection of points called nodes without any additional structure. A graph is a set with
edges that encode pairwise relations between nodes, representing either geometric proximity or more
abstract relationships. For example, a graph may represent a protein, with nodes encoding its atoms
and edges encoding the pairwise bonds between them. Alternatively, a graph may represent a social
network, where nodes represent individuals and edges denote social relationships. The domains of
TDL generalize the pairwise relations of graphs to part-whole and set-types relations that permit the
representation of more complex relational structure (Figure 2, Right) (Hajij et al., 2023). Here, we
describe the key attributes of each domain and highlight their suitability for different data types. We
refer the reader to Torres et al. (2021) and Hajij et al. (2023) for more extensive discussions.



Traditional Discrete Domains Domains of Topological Deep Learning
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Figure 2: Domains: Nodes in blue, (hyper)edges in pink, and faces in dark red. Figure adapted from Hajij et al.
(2022a).

Beyond Graphs: The Domains of Topological Deep Learning

SET + PAIRWISE RELATIONS

Graph: A set of points (nodes) connected with edges that denote pairwise relationships.

SET + PART-WHOLE RELATIONS

Simplicial Complex (SC): A generalization of a graph in which three edges can form a triangular
face, four triangles can form a tetrahedral volume, and so on. Edges only connect pairs of nodes.

Cellular Complex (CC): A generalization of an SC in which faces, volumes, etc are not restricted
to be triangles or tetrahedrons but may instead take any shape. Still, edges only connect pairs of nodes.

SET + SET-TYPE RELATIONS

Hypergraph (HG): A generalization of a graph, in which higher-order edges called hyperedges can
connect arbitrary sets of two or more nodes.

SET + PART-WHOLE AND SET-TYPE RELATIONS

Combinatorial Complex (CCC): A structure that combines features of HGs and CCs. Like an HG,
edges may connect any number of nodes. Like a CC, cells can be combined to form higher-ranked
structures.

Simplicial complexes (SCs) generalize graphs to incorporate hierarchical part-whole relations
through the multi-scale construction of cells. Nodes are rank 0 cells that can be combined to form
edges (rank 1 cells). Edges are, in turn, combined to form faces (rank 2 cells), which are combined
to form volumes (rank 3 cells), and so on. As such, an SC’s faces must be triangles, volumes must be
tetrahedrons, and so forth. SCs are commonly used to encode discrete representations of 3D geomet-
ric surfaces represented with triangular meshes (Figure 3). They may also be used to represent more
abstract relations; however, there is a risk of introducing spurious connections if the strict geometric
constraints of an SC are not respected by the data—a point we elaborate on in Section 2.1.2.

Cellular complexes (CCs) generalize SCs such that cells are not limited to simplexes: faces can
involve more than three nodes, volumes more than four faces, and so on. This flexibility endows CCs
with greater expressivity than SCs (Bodnar et al., 2021b). A practitioner should consider employing
this domain when studying a system that features part-whole interactions between more than three
nodes, such as a molecule with benzene rings (Figure 3).

Hypergraphs (HGs) extend graphs in that their edges, called hyperedges, can connect more than
two nodes. Connections in HGs represent set-type relationships, in which participation in an interac-
tion is not implied by any other relation in the system. This makes HGs an ideal choice for data with
abstract and arbitrarily large interactions of equal importance, such as semantic text and citation
networks. Protein interaction networks (Figure 3) also exhibit this property: an interaction between



proteins requires a precise set of molecules—no more and no less. The interaction of Proteins A, B,
and C does not imply an interaction between A and B on their own.

Combinatorial complexes (CCCs) generalize CCs and HGs to incorporate both part-whole and
set-type relationships (Hajij et al., 2022a, 2023). The benefit of this can be observed in the example
of molecular representation. The strict geometric constraints of simplicial and cellular complexes
are too rigid for capturing much of hierarchical structure observed in molecules. By contrast, the
flexible but hierarchically ranked hyperedges of a combinatorial complex can capture the full richness
of molecular structure, as depicted in Figure 3. This is the most recent and most general topological
domain, introduced in 2022 by Hajij et al. (2022a) and further theoretically established in Hajij et al.
(2023).
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Figure 3: Examples of Data on Topological Domains. (a) Higher-order interactions in protein networks. (b)
Limited molecular representation: rings can only contain three atoms. (c) Triangular mesh of a protein surface. (d)
More flexible molecular representation, permitting the representation of any ring-shaped functional group. (e) Flexible
mesh which includes arbitrarily shaped faces. (f) Fully flexible molecular representation, permitting the representation

of the complex nested hierarchical structure characteristic of molecules and other natural systems. (g) Hierarchical
higher-order interactions in protein networks.
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2.1.1 Terminology

Across discrete domains, we use the term cell to denote any node or relation between nodes such
as (hyper)edges, faces, or volumes. Cells possess two attributes: size—the number of cells it con-
tains—and rank—where nodes are said to have rank 0, edges and hyperedges rank 1, faces rank 2,
and so on. The part-whole relationships of simplicial and cellular complexes impose a relationship
between the rank of a cell and its size: cells of rank r contains exactly (resp. at least) r + 1 cells
of rank r — 1: faces (r = 2) contain exactly (resp. at least) three edges (r — 1 = 1). By contrast,
hypergraph cells do not encode part-whole relations and hyperedges may have any size. However,
hypergraph cells are limited to ranks 0 and 1. A combinatorial complex is unrestricted in both rank
and size: nodes have rank 0 and cells of any size > 1 can have any rank.

There is an important distinction between the inherent domain of the data (the data domain) and
the domain in which the data will be processed within a TNN: the computational domain. Data
defined on a graph, for example, may be “lifted” (Figure 4) to an alternative domain through a
pre-processing stage (Figure 1). For instance, a protein originally given as the graph of its atoms
(nodes) and covalent bounds (edges) may be lifted into a CC computational domain that explicitly
represents its rings (faces). In this review, domain refers to the computational domain. Additionally,
the computational domain may be dynamic, changing from layer to layer in a TNN.

Dynamic Domains

Static vs. Dynamic: In a TNN, a static domain is identical for each layer. For example, all three
layers in Figure 1 operate on the same CCC, only features evolve across layers. A dynamic domain
changes from layer to layer. Nodes can be added or removed, edges can be rewired, and so on.
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Figure 4: Lifting Topological Domains. (a) A graph is “lifted” to a hypergraph by adding hyperedges that connect
groups of nodes. (b) In lifting a graph to a simplicial complex, a pairwise edge is required to bound triangular faces.
(c) A graph can be converted to a cellular complex by adding faces of any shape. (d) Hyperedges can be added to a
cellular complex to lift the structure to a combinatorial complex. Figure adopted from Hajij et al. (2023).

2.1.2 Limitations

An important limitation of both SCs and CCs is that faces (and analogous higher-order structures)
can only form rings; the nodes on the boundary of the face must be connected in pairs. In many cases,
this requirement is too stringent and can introduce artificial connections to the domain (Yang et al.,
2022a). For instance, lifting a citation network into an SC necessarily requires that any set of three
co-authors having written a paper together (A, B, C) are also pairwise connected (A and B, A and
C, B and C), even if no paper was ever exclusively authored by authors A and B, authors A and C,
or authors B and C. Yang et al. (2022a) propose a “relaxed” definition of the SC that remedies this.
They show how training a TNN on such a modified domain increases performance. We note that
even with artificial connections, SCs and CCs allow TNNs to leverage richer topological structure
and avoid computational problems faced by GNNs (Rusch et al., 2023). We further note that any
topological domain is mathematically equivalent to a (possibly larger) graph (Velickovi¢, 2022). We
choose to express domains in their form above in order to provide better intuition to newcomers and
reflect the widely adopted approaches in the literature.

2.1.3 Features on a Domain

Consider a domain, denoted X', encoding relationships between components of a system. Data on the
domain are represented as features supported on the domain’s cells. Typically, features are vectors
in R? that encode attributes of each cell. For example, features may encode the atom (node), bond
(edge), and functional group (face) types in a molecule. A feature associated with the interaction
between a set of drugs (hyperedge) could indicate the probability of adverse reaction.

We denote with h;’m a feature supported on the cell x € X at layer ¢ of the TNN, with r indicating
the rank of  (Figure 5). The domain is decomposed into ranks, with X ("), or r-skeleton, referring to
all cells of rank r. Features can be categorical or quantitative. If the feature dimension varies across
skeletons, the domain is heterogeneous.
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Figure 6: Incidence Matrices. Examples of an SC, a CC, an HG, and a CCC with their corresponding boundary
matrices B; which map from 1-cells to 0-cells. The SC and CC maps are signed to encode edge orientation: the node
appearing first in the arbitrary ordering (a,b,c,d) is always assigned -1.
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Figure 5: Features on a Domain. Left: Features onto three cells—z, y, and z. Right: Skeletons for the entire
complex: X (0) contains node features, X(1) contains edge features, and so on.

Heterogeneous Domains

Homogeneity vs. Heterogeneity: In a heterogeneous domain, the dimension d, of a feature h{’
depends on the rank r of the cell z supporting it. A homogeneous domain uses the same dimensionality
d for all ranks.

The features assigned to each cell may come directly from the data or be hand-designed by the prac-
titioner. Alternatively, features can be assigned in a pre-processing stage using embedding methods,
which compute cell feature vectors that encode the local structure of the space. For graphs, methods
such as DeepWalk (Perozzi et al., 2014) and Node2Vec (Grover and Leskovec, 2016) are commonly
used to embed nodes. Recent works have generalized these approaches to topological domains: Hy-
peredge2Vec (Sharma et al., 2018) and Deep Hyperedge (Payne, 2019) for hypergraphs, Simplex2Vec
(Billings et al., 2019) and k-Simplex2Vec (Hacker, 2020) for simplicial complexes, and Cell2Vec (Taji]
et al., 2020) for cellular complexes.

2.2 Neighborhood Structure

A TNN successively updates cell features throughout its layers by using a notion of nearness between
cells: the neighborhood structure (Figure 1). Neighborhood structures are defined by boundary
relations, which describe how cells of different ranks relate to each other. A cell y of rank r is said
to be on the boundary of cell z of rank R if it is connected to z and rank » < R. This relation is
expressed as y < x. For example, a node connected to an edge is said to be on the boundary of that
edge.



Boundary relations are encoded in incidence matrices. Specifically, we denote with B, the matrix
that records which (regular) cells of rank r — 1 bound which cells of rank r (Figure 6). Formally, B,
is a matrix of size n,._1 X n,, with n,. denoting the number of cells of rank r > 1, defined:

(r=1)

(r)
+1 =x; <x;
B.)i; = ¢ J 1
(Br)is {0 otherwise, e

where xET'_l), a:lg-r) are two cells of ranks r — 1 and r respectively. The £1 sign encodes a notion of
orientation required for SCs and CCs (Aschbacher, 1996; Klette, 2000), and is always +1 for HGs
and CCCs.

Incidence matrices can be used to encode the four most common neighborhood structures used in the
literature, which we define in the text box below. Here, L+ ¢ denotes the typical graph Laplacian. Its
higher order generalization, the r-Hodge Laplacian, is H, = L, + L4, (Barbarossa and Sardellitti,
2020; Schaub et al., 2021). D, € N™ X" denotes the degree matrix, a diagonal matrix representing
the number of connections of r-cells with (r 4+ 1)-cells.

Neighborhood Structures

Boundary Adjacent Neighborhood B(y)={z |z < y}:
The set of y-connected x cells of next lower rank. The neighborhood is specified with the boundary
matrix B,. Example: The set of nodes x connected to edge y.

Co-Boundary Adjacent Neighborhood C(y)={z|y <z}
The set of y-connected z cells of next higher rank. The neighborhood is specified with the co-boundary
matriz BE. Example: The set of edges x connected to node y.

Lower Adjacent Neighborhood L (y)={z|3zs.t. z<yand z < z}:

The set of x cells that share a boundary z with y. The neighborhood is specified with either the
lower Laplacian matriz L , = BTBTT or the lower adjacency matriz Ay, = D, — L, .. Example: the
set of edges x that connect to any of the nodes z that touch edge y.

Upper Adjacent Neighbors L4(y) ={z|3zs.t. y <zand z < z}:

The set of = cells that share a co-boundary z with y. The neighborhood is specified with either the
upper Laplacian matriz Ly, = B,T_,_IBTH or the upper adjacency matriz Ay, = Dy — Ly ;.
Ezxample: The set of nodes x that touch any of the edges z that touch node y.
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Figure 7: Neighborhood Structures: their neighborhood matrices and illustrations for a cell = in the neighborhood

of a cell y.

2.3 Message Passing

Examples based on
this complex:

Message passing defines the computation performed by a single layer ¢ of the TNN. During message
passing, each cell’s feature h;’(r) is updated to incorporate: (1) the features associated with cells in
its neighborhood and (2) the layer’s learnable parameters denoted ©!. The term “message passing”
reflects that a signal is “traveling” through the network, passing between cells on paths laid out by
the neighborhood structure. The output h'*! of layer ¢t becomes the input to layer ¢ 4+ 1. In this
way, deeper layers incorporate information from more distant cells, as information diffuses through
the network.

2.3.1 The Steps of Message Passing

We decompose message passing into four steps, adopted from the framework of Hajij et al. (2023).
Each step is represented with a different color—red, orange, green, or blue—illustrated in Figure 8.



The Steps of Message Passing

1. Message: First, a message mglg") travels from a r’-cell y to a 7-cell & through a neighborhood
k of = denoted Ny (z):

’
T =T

Tflqg—m ) = My, (h;’(r),h;(r/),et) ) (2)

via the function My, depicted in red in Figure 8. Here, hi’w and hZ’(T,) are features of dimension
d, and d,s on cells y and z respectively, and ©f are learnable parameters. In the simplest case, this

step looks like a neighborhood matrix M propagating a feature hz'(ﬁ on r’-cell y to r-cell = as:

(r'=r)

My—z = My - hZ’(T') : @tv (3)

where M., is the scalar entry of matrix M at the row corresponding to cell z and column corre-

sponding to cell y and mq(f_zr) and O is a d,» X d, matrix. If y is not in the neighborhood structure
of x, then M, will be 0, and x cannot receive any message from y.

Next, messages are aggregated across all cells y belonging
to the neighborhood N (z):

r—r
= AGGyeni@mis”, )
resulting in the within-neighborhood aggregated message mg(cr HT). Here, AGG is an aggregation

function, depicted in orange in Figure 8, analogous to pooling in standard convolutional networks.

3. Between-Neighborhood Aggregation: Then, messages are aggregated across neighborhoods
in a neighborhood set N:

mi) = AGGNkeng(gT %T), (5)

where AGG is a (potentially different) aggregation function depicted in green in Figure 8, and m{”

is the message received by cell = that triggers the update of its feature.

4. Update: Finally, the feature on cell z is updated via a function U depicted in blue in Figure 8,
which may depend on the previous feature hfv’(r) on cell x:

0 2 (520, m) ©

The result h;“‘(r) is the updated feature on cell z that is input to layer ¢ + 1.

In this review, we decompose the structure of TNN architectures proposed in the literature into
these four message passing steps—a unified notational framework adopted from Hajij et al. (2023)
that allows us to contrast existing approaches. Many architectures repeat steps and/or modify their
order. We note that this conceptualization of message passing as a local, cell-specific operation is
called the spatial approach (Gilmer et al., 2017). In GNNs and TNNs alike, message passing can
alternatively be expressed in its dual spectral form, using global Fourier analysis over the domain.
For this review, we choose to write all equations in spatial form for intuitiveness and generality
(Bodnar et al., 2021a; Hajij et al., 2022a; Heydari and Livi, 2022).
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Figure 8: Message passing steps: 1: Message (red), , 3: Between-
neighborhood aggregation (green), 4: Update (blue). The scheme updates a feature h;’(r) on a r-cell z at layer ¢ (left

column) into a new feature htz+1’(r) on that same cell at the next layer ¢ + 1 (right column). Here, the scheme uses

four neighborhood structures Ny, for k € {1,2,3,4} (middle column). Figure adapted from (Hajij et al., 2023).
2.3.2 Tensor Diagrams

We visually represent message passing schemes with an adapted version of the tensor diagram intro-
duced in Hajij et al. (2022a) and further developed in Hajij et al. (2023). A tensor diagram provides
a graphical representation of a TNN architecture. Figure 8 explains the recipe for constructing a
tensor diagram from message passing steps.

Step Purpose Tensor diagram
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rank O at layer ¢ + eature on celly,
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Figure 9: Tensor Diagrams: a graphical notation for the four steps of a message passing scheme. A diagram depicts

how a feature on cell y at layer ¢, hg(p, becomes a feature on cell x at layer ¢t + 1, h§f“>.

2.3.3 Types of Message Passing Functions

The message passing function My, employed in Step 1 is defined by the practitioner. There are
three kinds of functions commonly used in the literature, as outlined in Figure 10 (Bronstein, 2022).
The variety used determines how layer parameters weight each incoming message from cell y to cell
x. The standard convolutional case multiplies each message by some learned scalar. The attentional
convolutional case weights this multiplication depending on the features of the cells involved. The

10



general case implements a potentially non-linear function that may or may not incorporate attention.
Some schemes also make use of fixed, non-learned weights to assign different levels of importance to
higher-order cells. Figure 10 illustrates each type with tensor diagrams.
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Figure 10: Types of Message Passing Functions. In each case, a cell z; (an edge) receives information from its
various neighbors, cells y; (two nodes, an edge, and a face). The message received by cell z; from cell y; is determined
by a specific function c(x;,y;), a(x;,y;), or g(x;,y;). Top: Each neighborhood cell y; sends a message to cell z;.
(Inspired by P. Velickovié and (Bronstein, 2022)). Bottom: Illustration of the message-passing scheme above using
tensor diagrams (Hajij et al., 2023).

3 Literature Review

We now review the literature on topological neural networks (TNNs) over hypergraphs, simplicial
complexes, cellular complexes, and combinatorial complexes, using the conceptual framework of Sec-
tion 2. We summarize and compare the TNNs in terms of their architectures (Section 3.1), the
machine learning tasks to which they have been applied (Section 3.2), and their geometric properties
(Section 3.3).

3.1 Architectures

Figure 11 summarizes TNN architectures according to the fundamental concepts introduced in Section
2, with the domain on the vertical axis, the message passing type on the horizontal axis, neighbor-
hood structures and message passing equations visually represented with tensor diagrams. We share
complete message passing equations for each architecture—decomposed according to the four steps
introduced in Section 2.3.1 and rewritten in unifying notations —at github.com/awesome-tnns.

3.1.1 Hypergraphs

Of the domains considered here, hypergraph neural networks have been most extensively researched,
and have been surveyed previously (Ling et al., 2021; Gao et al., 2022; Hu et al., 2021; Wang et al.,
2021a; Fischer et al., 2021). Many papers in the early literature do not use hypergraphs as the
computational domain. Rather, algorithms like clique-expansion (Zien et al., 1999; Agarwal et al.,
2005; Zhou et al., 2006) are used to reduce hypergraphs to graphs, which are then processed by
the model. This reduction adversely affects performance, as structural information is lost (Hein
et al., 2013; Li et al., 2013; Chien et al., 2019). Many such graph-based models—including HGNN
(Feng et al., 2019), HyperConv(Bai et al., 2021), HyperGCN (Yadati et al., 2019), and HNHN (Dong
et al., 2020)—are used as benchmarks for more recent models that do computationally operate on
hypergraphs. Here, we focus on models that preserve hypergraph structure during learning.

Many hypergraph models use a message passing scheme comprised of two phases, with information
flowing from nodes to their hyperedges and then back to the nodes. We call this the two-phase

11
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Figure 11: Topological Neural Networks (TNNs): A Graphical Literature Review. We organize TNNs
according to the domain (rows) and the message passing type (columns).
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scheme. The scheme appears in many tensor diagrams of Figure 11 where information flows from
blue to pink (phase 1) and then from pink to blue (phase 2). The scheme is used in models with both
standard and attentional message passing.

Standard

Of those using a standard message passing, the models from Arya et al. (2020), Yi and Park (2020),
Wei et al. (2021), and Huang and Yang (2021) use the two-phase scheme. Yi and Park (2020) is
unique in using a learnable weight matrix in the first phase of message passing. On the second
phase, Wei et al. (2021) and the UniGCN model from Huang and Yang (2021) are unique in using a
fixed weight matrix on top of learnable weights. In Arya et al. (2019), Yi and Park (2020), and the
UniGNN, UniSAGE, and UniGCNII models from Huang and Yang (2021), the initial feature on each
node is recurrently used to update each incoming message—denoted with a looped black arrow in
Figure 11. We note that Huang and Yang (2021) systematically generalizes some of the most popular
GNN architectures to hypergraphs with its unifying framework: UniGNN.

In Dong et al. (2020), fixed Weights are used on both the node to hyperedge and hyperedge to
node phases. The paper AllSet (Chien et al., 2022) uses a similar structure while incorporating
fully learnable multi-set functions for nelghborhood aggregation, which imbues its TNNs with high
expressivity and generality. EHNN (Kim et al., 2022) (excluded from Figure 11 for its complexity; see
written equations) proposes a maximally expressive model using sparse symmetric tensors to process
data on hypergraphs with uniformly sized hyperedges.

Attentional / General

The models from Jiang et al. (2019), Ding et al. (2020), Yi and Park (2020), Wang et al. (2021a),
and the UniGAT model from Huang and Yang (2021) employ the two-phase scheme in concert with
attentional message passing. The architectures of Li et al. (2022a) and Li et al. (2022b) apply multi-
head attention. Heydari and Livi (2022) adapts the two-phase scheme in order to update node features
through two parallel paths. Chien et al. (2022) and Kim et al. (2022) offer transformer-based variants
of their standard architectures, concurrently with Li et al. (2022Db).

3.1.2 Simplicial Complexes

Simplicial complexes were first explored from a signal processing perspective (Battiston et al., 2020),
with initial focus on edge flows (Jiang et al., 2011; Schaub and Segarra, 2018), Hodge Laplac1ans
(Barbarossa and Sardellitti, 2020; Schaub et al., 2020), and convolution (Yang et al., 2021, 2022b;
Tsufi and Yang, 2022). As a precursor to deep learning, Roddenberry and Segarra (2019) introduced
L1 in HodgeNet to learn convolutions on edge features on graphs. This contrasts with former GNN
approaches processing node features.

Standard

EDbli et al. (2020) (SNN) and Bunch et al. (2020) (SCCONV) first generalized the convolutional
approach of Roddenberry and Segarra (2019) to features supported on faces and cells of higher ranks.
Unlike HodgeNet, SNN and SCCONV use both £ 1 and £4 1. In SNN (Ebli et al., 2020) messages
are not passed between adjacent ranks. By contrast, SCCONYV uses independent boundary and co-
boundary neighborhoods, hence incorporating features from adjacent ranks. Yang et al. (2022¢) also
makes use of this multi-neighborhood scheme for updating and classifying edge features. They also
propose a single neighborhood scheme with an update including the initial cell’s feature. Roddenberry
et al. (2021) and Yang et al. (2022d) devise schemes where messages comlng from £, ;1 and L4 are
weighted separately, providing greater learning flexibility. Yang et al. (2022d) allows features to
travel multiple hops through the domain by using a polynomial form of the neighborhood structures,
leveraging the simplicial convolutional filter fromYang et al. (2022b). Yang and Isufi (2023) extend
this multiple-hop model with additional neighborhood structures. Keros et al. (2022) used a modified
version of £ to find signals coiled around holes in the complex. BSCNet (Chen et al., 2022) combines
node and edge-level shifting to predict links between nodes. This was the first model to pass messages
between arbitrary ranks, leveraging a pseudo Hodge Laplacian.

MPSN (Bodnar et al., 2021a) explicitly details their message-passing scheme in the spatial domain,
subsuming previous models described from a spectral approach. Hajij et al. (2022b) introduces High
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Skip Networks (HSNs), in which each layer updates features through multiple sequential convolutional
steps, “skipping” it through higher ranks as a generalization of skip-connections in conventional neural
networks.

Attentional / General

SAN (Giusti et al., 2022a), SAT (Goh et al., 2022), and SGAT (Lee et al., 2022) concurrently intro-
duced attentional message passing networks on the simplicial domain. Each model makes use of a
unique set of neighborhood structures and attention coefficients. SGAT is the only model as of yet
developed for heterogeneous simplicial complexes of general rank. Hajij et al. (2022¢) introduces a
variety of general message passing schemes with two neighborhood structures. Bodnar et al. (2021a)
uses all four neighborhood structures, endowing each with a separate learnable matrix and general
aggregation function.

3.1.3 Cellular Complexes

Just as for simplicial complexes, cellular complex networks have been significantly influenced by work
in signal processing (Barbarossa and Sardellitti, 2020; Sardellitti et al., 2021; Roddenberry et al.,
2022). These works demonstrated that representing data in the CC domain yields substantially
better results than the more rigid SC domain.

Standard

Roddenberry et al. (2022) proposes theoretically possible message passing schemes for CCs inspired
by works in the SC domain. As of yet, these models have not been implemented.

Attentional / General

Hajij et al. (2020) introduces the first TNNs to be theoretically defined on the CC domain. Bodnar
et al. (2021b) was the first to implement and evaluate such a model, and demonstrated that TNNs
on CCs outperform state-of-the-art graph-based models in expressivity and classification tests. The
CAN model from (Giusti et al., 2022b) adapts a modified version of the message passing scheme from
Giusti et al. (2022a) onto the CC domain.

3.1.4 Combinatorial Complexes

The combinatorial complex domain was only recently mathematically defined by Hajij et al. (2022a).
This work introduces four attentional message passing schemes for CCCs tailored to mesh and graph
classification. A more extensive analysis is needed to quantify the advantages of this domain over
other topological domains.

3.2 Tasks

Table 3.2 reviews the tasks studied by each paper proposing TNNs. Tasks are first categorized into:
node-level tasks assigning labels to nodes, as in node classification, regression or clustering; edge-level
tasks assigning labels to edges, as in edge classification or link prediction; and complex-level tasks
assigning labels to each complex as a whole, as in hypergraph classification. Tasks are additionally
labeled according to their purpose (e.g. classification, regression, prediction). We also indicate the
extent of benchmarking performed on each model and code availability.
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Domain Model Task Level Task Purpose Comparisons
g
= B O

HG HyperSage Arya et al. (2020) v Classification (Inductive + Transductive) GNN SOTA
AllSet Chien et al. (2022) v Classification TNN SOTA
HyperGat Ding et al. (2020) v Classification GNN SOTA
HNHN Dong et al. (2020) v v Classification, Dimensionality Reduction GNN SOTA
HMPNN* Heydari and Livi (2022) v Classification TNN SOTA
UniGNN Huang and Yang (2021) v Classification (Inductive + Transductive) TNN SOTA
DHGNN Jiang et al. (2019) v Classification (Multimodal) GNN SOTA
EHNN Kim et al. (2022) v Classification, Keypoint Matching TNN SOTA
HHNN Li et al. (2022a) v Link prediction TNN SOTA
HTNN Li et al. (2022b) v Classification TNN SOTA
SHARE* Wang et al. (2021a) v Prediction GNN SOTA
DHGCN* Wei et al. (2021) v Classification GNN SOTA
HGC-RNN* (Yi and Park, 2020) v Prediction GNN SOTA

SC MPSN Bodnar et al. (2021a) v' v Classification, Trajectory Classification GNN SOTA
SCCONV Bunch et al. (2020) v Classification Graph
BScNet Chen et al. (2022) v Link prediction GNN SOTA
SNN Ebli et al. (2020) v Imputation None
SAN Giusti et al. (2022a) v Classification, Trajectory Classification TNN SOTA
SAT Goh et al. (2022) v' v Classification, Trajectory Classification TNN SOTA
HSN* Hajij et al. (2022b) v v v Classification, Link prediction, Vector embedding  Graph
SCA* Hajij et al. (2022c) v Clustering Graph
Dist2Cycle Keros et al. (2022) v Homology Localization GNN SOTA
SGAT Lee et al. (2022) v Classification GNN SOTA
SCoNe Roddenberry et al. (2021) v Trajectory Classification TNN SOTA
SCNN* Yang et al. (2022b) v Imputation TNN SOTA
SCCNN Yang and Isufi (2023) v Link prediction, Trajectory Classification TNN SOTA
SCN Yang et al. (2022c¢) v Classification TNN SOTA

CcC CWN Bodnar et al. (2021b) v Classification, prediction, regression GNN SOTA
CAN Giusti et al. (2022b) v/ Classification GNN SOTA

CCcC HOAN* Hajij et al. (2022a) vV Classification GNN SOTA

Table 1: Applications of Topological Neural Networks (TNNs). We organize papers
according to domain and task level, task purpose, and extent of benchmark testing (Graph:
compared to graph-based models, GNN SOTA: compared to GNN state-of-the-art, TNN
SOTA: compared to state-of-the-art on topological domain). We exclude papers without
implementation, and use * to indicate that an implementation has not been shared.
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3.3 Symmetries and Geometric Properties

Topological domains possess symmetries and other geometric properties that should be respected to
ensure the quality of the features learned by a TNN (Bronstein et al.; 2017). Here, we outline such
properties harnessed by models in the literature.

Hypergraphs. On hypergraphs, the following symmetries are desirable:

1. Permutation Invariance: Relabeling the nodes and applying the TNN yields an output that
is identical to the original output obtained without relabeling. This requires the aggregation
functions to be permutation invariant, such as a mean or a sum (Arya et al., 2020; Kim et al.,
2022; Chien et al., 2022; Dong et al., 2020; Keros et al., 2022). This is also called hypergraph
isomorphism invariance.

2. Global Neighborhood Invariance: The network’s representation of a node is invariant to hy-
peredge cardinality: a hyperedge connecting many nodes is weighted the same as a hyperedge
connecting less nodes (Arya et al.; 2020).

Simplicial Complex. For simplicial complexes, the following symmetries have been considered:

1. Permutation Invariance: Invariance to node relabeling; the same as for HGs. (Schaub et al.,
2021; Roddenberry et al., 2021; Bodnar et al., 2021a)

2. Orientation Equivariance: Changing the orientation of the simplicial complex (i.e. flipping the
signs in the incidence matrix) re-orients the output of that network accordingly (Schaub et al.,
2021; Roddenberry et al., 2021; Bodnar et al., 2021a).

3. Simplicial Locality (geometric property): In each layer, messages are only passed between r-cells
and (r £ 1)-cells (Schaub et al., 2021). If that property is not verified, and messages can pass
between any - and 7’-cells, then the network has extended simplicial locality.

In addition, simplicial awareness can be imposed, such that message passing on a simplicial complex
with maximum cell rank r depends on every rank v < r (Roddenberry et al., 2021).

Cellular Complex and Combinatorial Complex. Permutation invariance is defined for CCs (Bod-
nar et al., 2021b) and CCCs (Iajij et al., 2022a) just as for SCs and HGs. Beyond generalizing global
neighborhood invariance to CCC, more research is required to understand the symmetries that can
equip this general topological domain.

4 Discussion

Our literature review has revealed the diversity of TNN architectures as well as their main axes of
comparison. Looking to the future, we highlight four salient opportunities for development.

Within-Domain and Between-Domain Benchmarking. Table 3.2 shows that the domain
choice strongly correlates with a TNN’s task level. This necessarily makes within-domain compar-
isons difficult, regardless of code sharing. We also emphasize that many TNNs are only benchmarked
against graph-based models or early models in their respective domain, which makes between-domain
comparisons equally difficult. As the field grows, improving within and between-domain benchmark-
ing mechanisms will be critical to better informing model selection and quantifying progress.

TNN Architectures on General Domains. The diversity of implementations on HGs and SCs
point to a strong potential for similar development in the cellular and combinatorial domains. For
instance, only one attentional CC model has been proposed (Giusti et al., 2022b). Moreover, any
previously developed HG/SC/CC model can be reproduced in the CCC domain and, if desirable, im-
proved with greater flexibility. Evaluating the impact of this added flexibility will directly characterize
utility of richer topological structure in deep learning.
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Connecting to the Graph Literature. The HG field’s ties to the graph community has led to
GNN-based advancements not yet propagated to other domains. A first example are dynamic do-
mains, successful with HGs for tasks like pose estimation (Liu et al., 2020), rail transit modeling (Wang
et al., 2021Db), and co-authorship prediction (Jiang et al., 2019). No work in other discrete domains
has explored dynamism. In addition, outside of the HG domain, TNNs are largely implemented as
homogeneous networks. This leaves room for heterogeneous and non-Euclidean generalizations.

Going Deeper. Over-smoothing occurs when a network is too effective at aggregating signal over
multiple layers. This leads to very similar features across cells and poor performance on the down-
stream learning task. While this issue draws attention in the graph community (Chen et al., 2020a;
Oono and Suzuki, 2020; Rusch et al., 2023), little of this work has been generalized to TNNs, causing
them to remain mostly shallow. UniGCNII (Huang and Yang, 2021) achieves a 64-layer deep TNN
by generalizing over-smoothing solutions from GNNs (Chen et al., 2020b) to the HG domain. HSNs
(Hajij et al., 2022b) generalize skip connections to allow signal to propagate further, but are still
implemented as shallow networks.

5 Conclusion

In this work, we have provided a comprehensive, intuitive and critical view of the advances in TNNs
through unifying notations and graphical illustrations. We have characterized each neural network by
its choice of data domain and its model, which we further specify through choice of neighboring struc-
ture(s) and message-passing scheme. We hope that this review will make this rich body of work more
accessible to practitioners whose fields would benefit from topology-sensitive deep learning.

References
David Knoke and Song Yang. Social network analysis. SAGE publications, 2019.

Kanchan Jha, Sriparna Saha, and Hiteshi Singh. Prediction of protein—protein interaction using graph
neural networks. Scientific Reports, 12(1):1-12, 2022.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Velickovi¢. Geometric deep learning;:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
AT Open, 1:57-81, 2020.

Mustafa Hajij, Ghada Zamzmi, Theodore Papamarkou, Nina Miolane, Aldo Guzméan-Séenz,
Karthikeyan Natesan Ramamurthy, Tolga Birdal, Tamal Dey, Soham Mukherjee, Shreyas Sam-
aga, Neal Livesay, Robin Walters, Paul Rosen, and Michael Schaub. Topological deep learning:
Going beyond graph data. arXiv preprint arXiv:1906.09068 (v3), 2023.

Cristian Bodnar. Topological Deep Learning: Graphs, Complezes, Sheaves. PhD thesis, Apollo -
University of Cambridge Repository, 2022. URL https://www.repository.cam.ac.uk/handle/
1810/350982.

Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Lio, and
Michael Bronstein. Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks.
In International Conference on Machine Learning, pages 1026-1037. PMLR, 2021a.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar, and
Michael Bronstein. Weisfeiler and Lehman Go Cellular: CW Networks. Advances in Neural Infor-
mation Processing Systems, 34:2625-2640, 2021b.

Jing Huang and Jie Yang. Unignn: a unified framework for graph and hypergraph neural networks.
In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21,
2021.

17



Yihe Dong, Will Sawin, and Yoshua Bengio. Hnhn: Hypergraph networks with hyperedge neurons.
ICML Graph Representation Learning and Beyond Workshop, 2020. URL https://arxiv.org/
abs/2006.12278.

Mustafa Hajij, Ghada Zamzmi, Theodore Papamarkou, Nina Miolane, Aldo Guzméan-Sdenz,
and Karthikeyan Natesan Ramamurthy. Higher-order attention networks. arXiv preprint
arXiv:2206.00606 (v1), 2022a.

Sergio Barbarossa and Stefania Sardellitti. Topological signal processing over simplicial complexes.
IEEFE Transactions on Signal Processing, 68:2992-3007, 2020.

Yuzhou Chen, Yulia R Gel, and H Vincent Poor. Bscnets: Block simplicial complex neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 6333—6341,
2022.

Leo Torres, Ann S Blevins, Danielle Bassett, and Tina Eliassi-Rad. The why, how, and when of
representations for complex systems. SIAM Review, 63(3):435-485, 2021.

Federico Battiston, Enrico Amico, Alain Barrat, Ginestra Bianconi, Guilherme Ferraz de Arruda,
Benedetta Franceschiello, Iacopo Iacopini, Sonia Kéfi, Vito Latora, Yamir Moreno, et al. The
physics of higher-order interactions in complex systems. Nature Physics, 17(10):1093-1098, 2021.

Felix Hensel, Michael Moor, and Bastian Rieck. A survey of topological machine learning methods.
Frontiers in Artificial Intelligence, 4, 2021. ISSN 2624-8212. doi: 10.3389/frai.2021.681108. URL
https://www.frontiersin.org/articles/10.3389/frai.2021.681108.

Ruochen Yang, Frederic Sala, and Paul Bogdan. Efficient representation learning for higher-order
data with simplicial complexes. In Bastian Rieck and Razvan Pascanu, editors, Proceedings of the
First Learning on Graphs Conference, volume 198 of Proceedings of Machine Learning Research,
pages 13:1-13:21. PMLR, 09-12 Dec 2022a.

T. Konstantin Rusch, Michael M. Bronstein, and Siddhartha Mishra. A survey on oversmoothing in
graph neural networks, 2023.

Petar Velickovi¢. Message passing all the way up. arXiv preprint arXiv:2202.11097, 2022.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations.
In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 701-710, 2014.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings of
the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pages
855-864, 2016.

Ankit Sharma, Shafiq Joty, Himanshu Kharkwal, and Jaideep Srivastava. Hyperedge2vec: Distributed
representations for hyperedges, 2018.

Josh Payne. Deep hyperedges: a framework for transductive and inductive learning on hypergraphs.
arXiv preprint arXiv:1910.02633, 2019.

Jacob Charles Wright Billings, Mirko Hu, Giulia Lerda, Alexey N Medvedev, Francesco Mottes,
Adrian Onicas, Andrea Santoro, and Giovanni Petri. Simplex2vec embeddings for community
detection in simplicial complexes. arXiv preprint arXiv:1906.09068, 2019.

Celia Hacker. k-simplex2vec: a simplicial extension of node2vec. arXiv preprint arXiv:2010.056306,
2020.

Mustafa Hajij, Kyle Istvan, and Ghada Zamzmi. Cell Complex Neural Networks. NeurIPS 2020
Workshop TDA and Beyond, 2020.

Michael Aschbacher. Combinatorial cell complexes. In Progress in Algebraic Combinatorics, pages
1-80. Mathematical Society of Japan, 1996.

18



Reinhard Klette. Cell complexes through time. In Vision Geometry IX, volume 4117, pages 134-145.
SPIE, 2000.

Michael T Schaub, Yu Zhu, Jean-Baptiste Seby, T Mitchell Roddenberry, and Santiago Segarra.
Signal processing on higher-order networks: Livin’on the edge... and beyond. Signal Processing,
187:108149, 2021.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural

message passing for quantum chemistry. In International conference on machine learning, pages
1263-1272. PMLR, 2017.

Sajjad Heydari and Lorenzo Livi. Message passing neural networks for hypergraphs. In Elias
Pimenidis, Plamen P. Angelov, Chrisina Jayne, Antonios Papaleonidas, and Mehmet Aydin,
editors, Proceedings of 31st International Conference on Artificial Neural Networks, Part II,
volume 13530 of Lecture Notes in Computer Science, pages 583-592. Springer, 2022. doi:
10.1007/978-3-031-15931-2\ _48.

Michael  Bronstein. Beyond message passing: a  physics-inspired  paradigm
for  graph  neural networks, May  2022. URL  https://thegradient.pub/
graph-neural-networks-beyond-message-passing-and-weisfeiler-lehman/.

Tian Ling, Zhang Jinchuan, Zhang Jinhao, Zhou Wangtao, and Zhou Xue. A review of knowledge
graphs: Representation, construction, reasoning and knowledge hypergraph theory [j]. Computer
Applications, 41(08):2161-2186, 2021.

Yue Gao, Zizhao Zhang, Haojie Lin, Xibin Zhao, Shaoyi Du, and Changqing Zou. Hypergraph
learning: Methods and practices. IEEE Transactions on Pattern Analysis and Machine Intelligence,
44(5):2548-2566, 2022. doi: 10.1109/TPAMI.2020.3039374.

Bing-De Hu, Xin-Gen Wang, Xin-Yu Wang, Ming-Li Song, and Chun Chen. Survey on hypergraph
learning: Algorithm classification and application analysis. Journal of Software, 33(2):498-523,
2021.

Jianling Wang, Kaize Ding, Ziwei Zhu, and James Caverlee. Session-based recommendation with
hypergraph attention networks. In Proceedings of the 2021 SIAM International Conference on
Data Mining (SDM), pages 82-90. STAM, 2021a.

Maximilian T Fischer, Alexander Frings, Daniel A Keim, and Daniel Seebacher. Towards a survey on
static and dynamic hypergraph visualizations. In 2021 IEEE visualization conference (VIS), pages
81-85. IEEE, 2021.

Jason Y Zien, Martine DF Schlag, and Pak K Chan. Multilevel spectral hypergraph partitioning
with arbitrary vertex sizes. IEEE Transactions on computer-aided design of integrated circuits and
systems, 18(9):1389-1399, 1999.

Sameer Agarwal, Jongwoo Lim, Lihi Zelnik-Manor, Pietro Perona, David Kriegman, and Serge Be-
longie. Beyond pairwise clustering. In 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), volume 2, pages 838-845. IEEE, 2005.

Dengyong Zhou, Jiayuan Huang, and Bernhard Scholkopf. Learning with hypergraphs: Clustering,
classification, and embedding. Advances in neural information processing systems, 19, 2006.

Matthias Hein, Simon Setzer, Leonardo Jost, and Syama Sundar Rangapuram. The total variation
on hypergraphs-learning on hypergraphs revisited. Advances in Neural Information Processing
Systems, 26, 2013.

Guoyin Li, Liqun Qi, and Gaohang Yu. The z-eigenvalues of a symmetric tensor and its application
to spectral hypergraph theory. Numerical Linear Algebra with Applications, 20(6):1001-1029, 2013.

I Eli Chien, Huozhi Zhou, and Pan Li. hs2: Active learning over hypergraphs with pointwise and
pairwise queries. In The 22nd International Conference on Artificial Intelligence and Statistics,
pages 2466-2475. PMLR, 2019.

19



Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pages 3558-3565, 2019.

Song Bai, Feihu Zhang, and Philip HS Torr. Hypergraph convolution and hypergraph attention.
Pattern Recognition, 110:107637, 2021.

Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and Partha
Talukdar. Hypergen: A new method for training graph convolutional networks on hypergraphs.
Advances in neural information processing systems, 32, 2019.

Devanshu Arya, Deepak K Gupta, Stevan Rudinac, and Marcel Worring. Hypersage: Generalizing
inductive representation learning on hypergraphs. arXiv preprint arXiw:2010.04558, 2020.

Jaehyuk Yi and Jinkyoo Park. Hypergraph convolutional recurrent neural network. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery € Data Mining, pages
3366-3376, 2020.

Jinfeng Wei, Yunxin Wang, Mengli Guo, Pei Lv, Xiaoshan Yang, and Mingliang Xu. Dy-
namic hypergraph convolutional networks for skeleton-based action recognition. arXiv preprint
arXiw:2112.10570, 2021.

Devanshu Arya, Stevan Rudinac, and Marcel Worring. Hyperlearn: a distributed approach for repre-
sentation learning in datasets with many modalities. In Proceedings of the 27th ACM International
Conference on Multimedia, pages 2245-2253, 2019.

Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. You are allset: A multiset function frame-
work for hypergraph neural networks. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=hpBTIv2uy_E.

Jinwoo Kim, Saeyoon Oh, Sungjun Cho, and Seunghoon Hong. Equivariant hypergraph neural
networks. In Computer Vision—-ECCV 2022: 17th European Conference, Tel Aviv, Israel, October
23-27, 2022, Proceedings, Part XXI, pages 86—103. Springer, 2022.

Jianwen Jiang, Yuxuan Wei, Yifan Feng, Jingxuan Cao, and Yue Gao. Dynamic hypergraph neural
networks. In Proceedings of International Joint Conferences on Artificial Intelligence, 2019.

Kaize Ding, Jianling Wang, Jundong Li, Dingcheng Li, and Huan Liu. Be more with less: Hypergraph
attention networks for inductive text classification. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 4927-4936, Online, November
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.399. URL
https://aclanthology.org/2020.emnlp-main.399.

Yongkang Li, Zipei Fan, Jixiao Zhang, Dengheng Shi, Tiangi Xu, Du Yin, Jinliang Deng, and Xuan
Song. Heterogeneous hypergraph neural network for friend recommendation with human mobility.
In Proceedings of the 81st ACM International Conference on Information & Knowledge Manage-
ment, pages 4209-4213, 2022a.

Mengran Li, Yong Zhang, Xiaoyong Li, Yuchen Zhang, and Baocai Yin. Hypergraph transformer
neural networks. ACM Transactions on Knowledge Discovery from Data (TKDD), 2022b.

Federico Battiston, Giulia Cencetti, Iacopo Tacopini, Vito Latora, Maxime Lucas, Alice Patania,
Jean-Gabriel Young, and Giovanni Petri. Networks beyond pairwise interactions: structure and
dynamics. Physics Reports, 874:1-92, 2020.

Xiaoye Jiang, Lek-Heng Lim, Yuan Yao, and Yinyu Ye. Statistical ranking and combinatorial hodge
theory. Mathematical Programming, 127(1):203-244, 2011.

Michael T Schaub and Santiago Segarra. Flow smoothing and denoising: Graph signal processing in
the edge-space. In 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP),
pages 735-739. IEEE, 2018.

Michael T Schaub, Austin R Benson, Paul Horn, Gabor Lippner, and Ali Jadbabaie. Random walks
on simplicial complexes and the normalized hodge 1-laplacian. SIAM Review, 62(2):353-391, 2020.

20



Maosheng Yang, Elvin Isufi, Michael T Schaub, and Geert Leus. Finite impulse response filters
for simplicial complexes. In 2021 29th European Signal Processing Conference (EUSIPCO), pages
2005-2009. IEEE, 2021.

Maosheng Yang, Elvin Isufi, Michael T Schaub, and Geert Leus. Simplicial convolutional filters.
IEEFE Transactions on Signal Processing, 70:4633-4648, 2022b.

Elvin Isufi and Maosheng Yang. Convolutional filtering in simplicial complexes. In ICASSP 2022-
2022 IEEF International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
5578-5582. IEEE, 2022.

T Mitchell Roddenberry and Santiago Segarra. Hodgenet: Graph neural networks for edge data. In
2019 53rd Asilomar Conference on Signals, Systems, and Computers, pages 220-224. IEEE, 2019.

Stefania Ebli, Michaél Defferrard, and Gard Spreemann. Simplicial neural networks. In TDA &
Beyond, 2020.

Eric Bunch, Qian You, Glenn Fung, and Vikas Singh. Simplicial 2-complex convolutional neural
networks. In TDA & Beyond, 2020.

Ruochen Yang, Frederic Sala, and Paul Bogdan. Efficient representation learning for higher-order
data with simplicial complexes. In Learning on Graphs Conference, pages 13—1. PMLR, 2022c.

T Mitchell Roddenberry, Nicholas Glaze, and Santiago Segarra. Principled simplicial neural networks
for trajectory prediction. In International Conference on Machine Learning, pages 9020-9029.
PMLR, 2021.

Maosheng Yang, Elvin Isufi, and Geert Leus. Simplicial convolutional neural networks. In ICASSP
2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 8847-8851. IEEE, 2022d.

Maosheng Yang and Elvin Isufi. Convolutional learning on simplicial complexes. arXiv preprint
arXi:2301.11163, 2023.

Alexandros D Keros, Vidit Nanda, and Kartic Subr. Dist2cycle: A simplicial neural network for
homology localization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pages 7133-7142, 2022.

Mustafa Hajij, Karthikeyan Natesan Ramamurthy, Aldo Guzman-Séenz, and Ghada Za. High Skip
Networks: A Higher Order Generalization of Skip Connections. In ICLR 2022 Workshop on Geo-
metrical and Topological Representation Learning, 2022b.

Lorenzo Giusti, Claudio Battiloro, Paolo Di Lorenzo, Stefania Sardellitti, and Sergio Barbarossa.
Simplicial attention networks. arXiv preprint arXiv:2203.07485, 2022a.

Christopher Wei Jin Goh, Cristian Bodnar, and Pietro Lio. Simplicial attention networks. arXiv
preprint arXiv:2204.09455, 2022.

See Hian Lee, Feng Ji, and Wee Peng Tay. Sgat: Simplicial graph attention network. In International
Joint Conference on Artificial Intelligence, 2022.

Mustafa Hajij, Ghada Zamzmi, Theodore Papamarkou, Vasileios Maroulas, and Xuanting Cai. Sim-
plicial complex representation learning. In Machine Learning on Graphs (MLoG) Workshop at 15th
ACM International WSDM (2022) Conference, WSDM2022-MLoG ; Conference date: 21-02-2022
Through 25-02-2022, January 2022c.

Stefania Sardellitti, Sergio Barbarossa, and Lucia Testa. Topological signal processing over cell
complexes. In 2021 55th Asilomar Conference on Signals, Systems, and Computers, pages 1558
1562. IEEE, 2021.

T Mitchell Roddenberry, Michael T Schaub, and Mustafa Hajij. Signal processing on cell complexes.
In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 8852-8856. IEEE, 2022.

21



Lorenzo Giusti, Claudio Battiloro, Lucia Testa, Paolo Di Lorenzo, Stefania Sardellitti, and Sergio
Barbarossa. Cell attention networks. arXiv preprint arXiv:2209.08179, 2022b.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric
deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18-42, 2017.

Shengyuan Liu, Pei Lv, Yuzhen Zhang, Jie Fu, Junjin Cheng, Wanqing Li, Bing Zhou, and Mingliang
Xu. Semi-dynamic hypergraph neural network for 3d pose estimation. In IJCAI pages 782-788,
2020.

Jingcheng Wang, Yong Zhang, Yun Wei, Yongli Hu, Xinglin Piao, and Baocai Yin. Metro passenger
flow prediction via dynamic hypergraph convolution networks. IFEE Transactions on Intelligent
Transportation Systems, 22(12):7891-7903, 2021b.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. In Proceedings of the
AAAI conference on artificial intelligence, volume 34, pages 3438-3445, 2020a.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. In International Conference on Learning Representations, 2020. URL https://
openreview.net/forum?id=S11d02EFPr.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International conference on machine learning, pages 1725-1735. PMLR,
2020b.

22



	Introduction
	Topological Neural Networks
	Domains
	Terminology
	Limitations
	Features on a Domain

	Neighborhood Structure
	Message Passing
	The Steps of Message Passing
	Tensor Diagrams
	Types of Message Passing Functions


	Literature Review
	Architectures
	Hypergraphs
	Simplicial Complexes
	Cellular Complexes
	Combinatorial Complexes

	Tasks
	Symmetries and Geometric Properties

	Discussion
	Conclusion

