®

Check for
updates

Revisiting BBS Signatures

Stefano Tessaro® and Chenzhi Zhu®)

Paul G. Allen School of Computer Science & Engineering, University of Washington,
Seattle, USA
{tessaro,zhucz20}@cs.washington.edu

Abstract. BBS signatures were implicitly proposed by Boneh, Boyen,
and Shacham (CRYPTO ’04) as part of their group signature scheme,
and explicitly cast as stand-alone signatures by Camenisch and Lysyan-
skaya (CRYPTO ’04). A provably secure version, called BBS+, was then
devised by Au, Susilo, and Mu (SCN ’06), and is currently the object
of a standardization effort which has led to a recent RFC draft. BBS+
signatures are suitable for use within anonymous credential and DAA
systems, as their algebraic structure enables efficient proofs of knowl-
edge of message-signature pairs that support partial disclosure.

BBS+ signatures consist of one group element and two scalars. As our
first contribution, we prove that a variant of BBS+ producing shorter
signatures, consisting only of one group element and one scalar, is also
secure. The resulting scheme is essentially the original BBS proposal,
which was lacking a proof of security. Here we show it satisfies, under
the ¢-SDH assumption, the same provable security guarantees as BBS+.
We also provide a complementary tight analysis in the algebraic group
model, which heuristically justifies instantiations with potentially shorter
signatures.

Furthermore, we devise simplified and shorter zero-knowledge proofs
of knowledge of a BBS message-signature pair that support partial dis-
closure of the message. Over the BLLS12-381 curve, our proofs are 896 bits
shorter than the prior proposal by Camenisch, Drijvers, and Lehmann
(TRUST ’16), which is also adopted by the RFC draft.

Finally, we show that BBS satisfies one-more unforgeability in the
algebraic group model in a scenario, arising in the context of credentials,
where the signer can be asked to sign arbitrary group elements, meant
to be commitments, without seeing their openings.

1 Introduction

The seminal works of Camenisch and Lysyanskaya [16,17] highlighted how cer-
tain digital signature schemes with suitable algebraic structures are amenable
to applications such as anonymous credentials, direct anonymous attestation
(DAA), and group signatures. These schemes easily enable the signing of a com-
mitment, typically by being algebraically compatible with a Pedersen commit-
ment [31], and support very efficient zero-knowledge proofs of knowledge of a
valid message-signature pair.

© International Association for Cryptologic Research 2023

C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14008, pp. 691-721, 2023.
https://doi.org/10.1007/978-3-031-30589-4_24


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30589-4_24&domain=pdf
http://orcid.org/0000-0002-3751-8546
http://orcid.org/0000-0002-4276-2797
https://doi.org/10.1007/978-3-031-30589-4_24

692 S. Tessaro and C. Zhu

This paper revisits and improves BBS signatures [6,10,15], one of the most
efficient pairing-based schemes with these properties, which has recently been
in the midst of renewed interest in the context of decentralized identity. This
has led to reference implementations [1,2], to a standardization effort by the
W3C Verifiable Credentials Working group, and to an RFC draft [28]. BBS is
also a building block for DAA [12,15,18], and is used by Intel SGX’s EPID
protocol [13]. Furthermore, BBS signatures are theoretically interesting, due to
their simplicity and efficiency. Most applications, and the RFC draft, consider
the provably-secure version of BBS referred to as BBS+ [6,15], whose signatures
consist of one group element in G; and two scalars in Z,, where p is the group
order.

OUR CONTRIBUTIONS, IN A NUTSHELL. As our first main contribution, we prove
the strong unforgeability of a variant of BBS+ which produces shorter signatures
only consisting of one group element and one scalar. The resulting scheme is in
fact the original BBS signature scheme by Boneh, Boyen, and Shacham [10]
as stated by Camenisch and Lysyanskaya [17], for which however no proof of
security was known. Our new proof gives us a more efficient version of the scheme
that can replace BBS+ in applications and standards with no loss, and re-affirms
the security of prior works (e.g., [12,18]) which already used this optimized
version but relied on an incorrect proof.

Furthermore, we provide a tighter security proof in the Algebraic Group
Model [23], which also supports potentially shorter signatures. We also optimize
the associated proofs of knowledge of BBS signatures, achieving substantial sav-
ings over the current state-of-the-art [28]. Finally, we study the security of BBS
in contexts where group elements are signed, and show that the scheme satis-
fies, in the AGM, a security property which is a natural weakening of what is
achieved by structure-preserving signatures [5].

BBS+. The BBS+ scheme was proposed by Au, Susilo, and Mu [6], based on
ideas by [10,17], and proved secure under the ¢-SDH assumption. The proof was
then adapted to type-3 pairings by Camenisch, Drijvers, and Lehmann [15]. It
signs vectors m € ij. To do so, the public parameters consist of £+ 2 generators
g1,ho, hi,...,hy € G1, and a signature has the format (4, e,s), where s,e € Z,,
are randomly chosen, and

¢
A= <91h8 H h;n[z]>
i1

Here, x € Z, is the secret key, and given the public key Xy = g5 € G2, and a
pairing, it is easy to verify a valid BBS+ signature.

x+e

SECURITY FOR BBS SIGNATURES. The only difference between BBS and BBS+
is the additional term h{ in the latter, which mandates the inclusion of s in the
signature. A natural question is whether this term is necessary, or instead an
artifact of the proofs [6,15]. Indeed, no attack seems to affect plain BBS, without
the term hg, but prior proof attempts (e.g., [12]) contained fundamental errors.



Revisiting BBS Signatures 693

We prove that (plain) BBS signatures are indeed secure under the ¢-SDH
assumption. The concrete security guarantees are essentially identical to those
established for BBS+, and this suggests a more efficient drop-in replacement
for BBS+ in existing applications. Our techniques close in particular gaps left
by incorrect proofs, and can be used to prove exculpability of the original BBS
group signature scheme [10].

TicHT AGM BOUNDS. Our new proof, not unlike the prior proofs for BBS+,
is not tight, i.e., it incurs a multiplicative loss equal to the number of signing
queries ¢q. As a strong hint that this loss may be artificial, we give a tight proof
for BBS signatures in the Algebraic Group Model [23].

Our AGM analysis also addresses a different artificial aspect of the standard-
model analysis, namely the random choice of e values from Z,. Instead, our AGM
analysis merely asks that these values are unlikely to collide, and their collision
probability becomes a term (meant to be negligible) in the security bound. This
allows for more flexibility, in that the e values could be generated from a counter
or (assuming random oracles) as a hash of the message. It also suggests a BBS
variant, which we call truncated BBS, where e is chosen from Zy2x, where A is
the desired security level (typically, A = 128). On BLS12-381, this does not have
any benefit. However, as in all schemes based on ¢-SDH, one may want to assess
the potential impact of attacks such as those by Brown and Gallant [14] and
Cheon [20] and choose an even bigger curve—in that case, truncation of the
scalar may become effective.

SIGNING COMMITMENTS. An important question is to which extent BBS can be
thought as a signature scheme signing a user-supplied group element, i.e., an
element C € G; is signed as (Cﬁ ,€). Indeed, in the context of blind issuance of
credentials, one can think of C' = g h{"" --- ;" as a commitment sent from the
user to the signer, and the signer’s response (C'/(#*¢)_¢) is a valid BBS signature
onm = (my,...,myg). It is not hard to see that this form of BBS does not yield a
secure signature scheme over group elements as e.g., a signature on C' can easily
be transformed, by squaring it, into a signature on C?. However, we show that,
in the AGM, BBS satisfies a form of one-more unforgeability, where obtaining
signatures of ¢ group elements does not enable the attacker to produce valid
BBS signatures (e.g., by “opening” these group elements as commitments) on
more than ¢ messages. This is sufficient in the context of blind issuance.

ZERO-KNOWLEDGE POKS. We also revisit the problem of proving knowledge
of a BBS message-signature pair with new zero-knowledge proofs of knowledge
which are shorter than state-of-the art solutions adopted in the RFC draft [28§]
and initially proposed in [15]. To prove knowledge of a BBS message-signature
pair (m, o), without revealing k out of the £ components of m, our proof (when
compiled as a NIZK via the Fiat-Shamir transform) consists of 2 elements in
G1, as well as k + 3 scalars in Z,. The proof adopted in the RFC draft, in
contrast, consists of 3 elements in 1, and k + 5 scalars. While a reduction by
one scalar is possible due to our removal of the random value s from a signature,
the remaining optimizations are the result of a different approach.



694 S. Tessaro and C. Zhu

RELATED SCHEMES. We note that when signing individual elements of Z,, the
simpler Boneh-Boyen signatures [9] would typically outperform BBS. The closest
scheme to BBS is the one by Pointcheval-Sanders (PS) [32]. PS signatures consist
of two group elements, and are comparably efficient to the short version of BBS
from this paper. However, both the public and the secret keys grow linearly with
£, the length of the message vector to be signed, whereas in BBS they consist of a
single element. (The group generators in BBS can be generated as the output of
a hash function, and they should not be part of the key materials.) PS signatures
feature properties which BBS does not possess, including re-randomizability and
aggregability. The latter property is essential for their use in the recent Coconut
system [33], for which BBS does not appear suitable.

OUTLINE. Our new proof for BBS is given in Sect. 3, followed by our AGM
analysis in Sect. 4. Our new zero-knowledge proofs are given in Sect. 5, and our
analysis of BBS as a signature scheme on group elements is in Sect. 6. We give
a technical overview next.

1.1 Technical Overview

NEw BBS PROOF. It is instructive to first review existing proofs [6,15] for
BBS+. To this end, we consider the special case where we sign a single scalar
m € Zy, i.e., a signature under secret key x € Z,, takes form, for random s, e € Zj,

o= (A,s,e), where A = (g1h8h’1”)ﬁ _

If an attacker obtains ¢ adaptively chosen signatures (A;,s;,e;) for message
m; € Z, and finally produces a valid forgery (A%, e*, s*) for a message m* € Z,,
we can identify three cases, which are to be addressed differently:

(1) There exists an i € [g] such that A; = A* and ¢; = ¢*
(2) There exists an i € [g] such that A; # A* and e; = e*

(3) e* ¢ {e1,...,eq}

The most challenging case is (2). Indeed, (1) implies that g, h§ R} = g1hg by,
while (s;,m;) # (s*,m"), which in turn implies a break of the discrete logarithm
assumption in G;. For (3), instead, one resorts to a by-now classical technique
by Boneh and Boyen [9]. The key point here is that to break ¢-SDH, given
g1,9%, ..., 97" € Gy, along with g, g% in Gy, it is enough to compute gf(m)/(“e),
for a polynomial p(X) which is not divisible by X + e. This indeed allows us to
recover gi/ <w+e), which gives us a valid ¢-SDH solution.

To do so, the reduction picks ey, ..., e, ahead of time. It uses g5 as the public
key, but uses new generators g, = gfp(m), ho = g‘f‘p(r) and h; = g'fp(x) for Gq,
where p(X) = [T, (X + ¢;) and «, 3,0 «s Z,. Note that g, ho, h1 can easily be
computed from g for i € [g], since p(X) has degree ¢, and that for any m, s,

1
and i € [g], the reduction can always simulate a signature (g;hjh7")= = , since
p(X) is divisible by X + e;. Moreover, a forgery for e* ¢ {e1,...,e,}, allows us to

1

compute (e*, gy ), and break ¢-SDH.



Revisiting BBS Signatures 695

HANDLING CASE (2). The value s was crucial in [6,15] to deal with (2). To see
how it was used, let us assume that we can actually guess the index ¢ for which
(2) occurs. Then, with p(X) = [],,;(X + ¢;), the reduction can set

_ op’ _Azredi?

91:91p(m)>h0:91 ¢ , h1:h’g.

Queries for j # i can be answered as above for any (s, m), since p’(X) is divisible
by X+ e;. In contrast, for the i-th query, on message m;, the reduction can only
answer for the specific choice of s; = a — 3 - m;, since

1
_ X . —L | 2: )0\ Tteq _
As = @y = = (37°) T =gt

Despite the fact that s; depends on m;, one can show that its distribution is
uniform. If the attacker now produces a forgery with e* = e;, it means that we
have

. x « ﬁ = 1+%(s*+ﬁm*)
A*:<§1h8h§n) =0 i )

(X+6i)571

and the reduction can solve ¢-SDH because 1+ =

by X+€i.

(s*+m*) is not divisible

OUR IMPROVEMENT. The reduction for BBS+4 programs s in a message-
dependent way to handle (2). Our main idea here is to let e play this role
instead, thus dispensing with the use of s, and in fact obtaining a slightly sim-
pler reduction. Concretely, for BBS, we drop hg, as it is not needed any more,

and we set up

g, = " (z)(z+ei) . hy = gfp (@)
Here, p’(X) is as above, and «, 3, ¢; are random, and, most importantly, &; will
not necessarily equal e;. Now, every query j # ¢ can be answered as before. To
answer the i-th query, however, we first observe that

Ci =g,h = gilpl(w)($+€i) _gfpl(ff)mi _ g?P'(i)(IJrEiJrgmi) .

We are going to show that if we set e; = ; + gmi, not only we can compute

1
A; = C/°", but also, this e; has the right distribution. This last argument
is somewhat involved. For example, it turns out that if message m; is such
that  + ¢; + gml = 0, the distribution of e; is not correct. Luckily, however,
this is the only case, and moreover, if this indeed happened, this would mean
T =—c — gmi, and we could break ¢-SDH directly. If we then obtain a forgery
(A*,e*) with e* = e; for a message m*, we note that the discrete logarithm of
A*is
DLgl (A*) = ap/(x)(x et gm*) .

x+€i+§mi

However, one can show that X +¢; + gmi does not divide ap’(X)(X +¢&; + gm*)
if m; # m*.



696 S. Tessaro and C. Zhu

AGM SECURITY. In the AGM, we restrict our focus to algebraic adversaries,
and in the case of BBS, this means that the adversary outputs a forgery A*
and its representation in terms of g1, hq, ..., he, as well as the G;-part the prior
signatures Ai,...,A,. We note that the discrete logarithm of each A; equals
@Y, . (), where x is the secret key, y is the vectors of discrete logarithms of h,
relative to g1, and
oY (X) = 1+ ¢y, mi) )
o X+ e

Analogously, the discrete logarithm of A* for a forgery A*, e* for a message m*
equals @fn*’e* (x). Further, the algebraic adversary gives us a representation of
P+ e (x) as an affine combination of the ¥, .. (x)’s. Our key observation is that
unless some very specific properties are satisfied by y, the function ¢},. ..(X), as
opposed to its evaluation at x, cannot be expressed as an affine combination of
the functions ¢, . .. (X). Therefore, x must be a zero to a (known) polynomial
of degree at most ¢, and it can be recovered by factoring this polynomial. It
also turns out that whenever the choice of y does not allow this argument to
go through, we are going to be able to recover a non-trivial discrete-logarithm
relation, and break the discrete logarithm problem directly.

BBS SIGNATURES OF COMMITTED VALUES. Our AGM proof will enable us to
also study the scenario where the adversary can query an oracle on an arbi-
trary C' € G; and obtain C' 7 for a random e. We show that in the AGM it
is impossible, except with negligible probability, to come up with ¢ + 1 valid
BBS signatures upon querying this oracle g times. The main difficulty is that an
AGM adversary here can query this oracle with group elements which are com-
binations of the outputs of previous queries. However, we are going to show how
an algebraic adversary making ¢ oracle queries can be simulated by one making
queries to the actual BBS signing oracle. To do this, we rely on a property of our
AGM proof above, namely that the statement holds even if the values ey, ea, . ..
are known to the adversary beforehand, and we use this to give an inductive
argument which shows how to build these signing queries in order to emulate
the oracle signing a group element instead.

NEwW PROOFS OF KNOWLEDGE. We give new X-protocols to prove knowledge
of a message-signature pair for BBS, given, possibly, partial knowledge of the
message. Our basic observation is that valid signature (A4,e) for m satisfies
e(4, Xs) = e(B, g2), where B = C(m)A~¢, and C(m) = ¢, []_, h:nm. For the
case where m is fully known to the verifier, for example, our prover commits
to a randomized version of A, B, namely A = A” and B = B" = C(m)"4 °.
Then, the prover engages in a homomorphism proof [29] to show knowledge of
a representation (r,e) of B to the base C(m) and A.

2 Preliminaries

NoOTATION. We will use the shorthand [n] = {1,...,n}. We will denote formal
variables in polynomials with sans-serif letters X, Y, ..., and for any modulus p,



Revisiting BBS Signatures 697

we let Z,[X] be the ring of formal polynomials a(X) = Z?:o a; X* with coefficients
in Z,. As usual, d is the degree of a(X).

Throughout the paper, we adopt as far as possible the concrete security and
efficiency approach, and avoid qualitative statements. We refer to “efficient”
informally to stress that an algorithm is meant to be as efficient as possible, but
make theorems precise by giving explicit reductions in their proofs.

GROUPS AND PAIRINGS. We work with prime-order groups. For such a group
G, we denote by 1g the identity element, and let G* = G \ {1g} be the set
of p — 1 generators. We use multiplicative notation, and generally denote group
elements with upper case letters, scalars with lower case ones, with the exception
of generators. For a generator g € G* and a group element X € G, we also let
DL, (X) be the discrete logarithm x € Z,, of X to the base g, i.e., ¢ = X.

For prime-order groups Gi,Gs, Gr, a bilinear map is an efficiently com-
putable function e : G; x Gy — Gp which satisfies both (1) bi-linearity, i.e.,
e(A*,BY) = e(A,B)" for all A € Gy, B € Ga, and x,y € Z,, and (2) non-
triviality, i.e., e (g1, g2) € G for all generators g1 € G} and g, € G5. We normally
consider a group parameters generation algorithm GGen such that GGen(1*) out-
puts a description (p, G1, Go, Gr,e) such that G1, G, Gr are groups of order p,
e: Gy x Gy — Gr is a bilinear map, and p is a A-bit prime.

Our treatment is compatible with type-3 pairings (cf. e.g. [24]) like BLS
curves [7] which allow for some of the most efficient implementations, e.g., using
BLS12-381 [11]. The most relevant property is that G; # Go and no efficiently
computable homomorphism Gy — G exists.

SIGNATURE SCHEMES. A signature scheme SS consists of a setup algorithm
SS.Setup, a key generation algorithm SS.KG, a (possibly randomized) signing
algorithm SS.Sign, and a deterministic verification algorithm SS.Ver, satisfying
the usual syntax and correctness requirement. In particular, SS.Setup outputs
parameters par, upon which all algorithms depend. We also let the message space
SS.M = SS.M(par) depend on par. (We implicitly assume that the signing algo-
rithm returns an error symbol 1, which is not a valid signature, if the message
is not in the message space.) We target strong unforgeability, which is defined
by Game SU Fg‘s()\) in Fig. 1. The corresponding advantage metric is

AdVES (A, \) = Pr [SUFE (V)| -

THE SECURITY ASSUMPTIONS. We will use the following variant of the ¢-Strong
Diffie-Hellman (¢-SDH) assumption, as defined by Boneh and Boyen [9] in a
format meant to support type-3 pairings. It is formalized by Game q_SDHéGen (N
on the left of Fig.2. We also consider the related ¢-Discrete Logarithm (g-DL)
assumption, as formulated on the right of Fig. 2 by Game q—DLéGen (M), which only
differs in the winning condition. We associate with these games the corresponding
advantage metrics

AQVEE (A A) = Pr [¢-SDHgloen (V)] 5 AdvEEL (A N) = Pr |¢-DLEG, (V)] - (1)



698 S. Tessaro and C. Zhu

Game SUFZ5()): Oracle SIGN(M):

S «— 0, par <s SS.Setup(1?) o s 5S.Sign(par, sk, M)
(vk, sk) «s SS.KG(par) If o # L then S < {(M,0)}
(M*,0") s A5 (par, vk) Return o

If (M*,0%) ¢ S A SS.Ver(par,vk, M*, o) then
Return true
Return false

Fig. 1. Strong unforgeability.

Game ¢-SDHZcen (M) Game ¢-DLZ..,(\):

par = (p,G1,Gz,Gr,e) — GGen(17) par = (p,G1,Gz,Gr,e) — GGen(1*)
g1 s G, g2 s Gh g1 s G, g2 3 G5

T s Zp T s ZLp

(¢, Z) —s A(par, g1, (gF )iclq) 92, 93)  |&' —s A(par, g1, (91 )iclq) 92, 95)
Return Z = gi/(ﬁc) Return o’ = z

Fig. 2. Assumptions. The assumptions could also be defined with respect to fixed
generators, but this would invalidate some of our security proofs.

We note that the ¢-SDH assumption implies the ¢-DL assumption for any ¢, as
finding x implies finding gi/ @) for any c¢. The converse is not known to be true
in general, but it is true for algebraic adversaries [8]. Notation-wise, we drop ¢
whenever it equals one, and refer to the resulting assumption as the Discrete

Logarithm (DL) assumption.

Remark 1. Our security proofs will repeatedly rely on the observation (due to
Boneh and Boyen [9]) that, given g1, gf,gj”z, ..., g%, computing A = gf(x)/(ke),
for any known non-zero polynomial p(X) € Z,[X] with degree at most ¢ such that
p(e) # 0, leads to a break ¢-SDH. This is because, by the polynomial remainder
theorem, we can write p(X) = d(X)(X —e)+r, where the remainder r = p(e) € Z,,
is a non-zero integer mod p, whereas d(X) has degree at most ¢ — 1. Therefore,

A= gf(z)”/(z*e), and also,

—d(x T Tlp
(Agy ())1/ =0

/(rfe))

can be efficiently computed, and (—e, gi is a ¢-SDH solution.

3 New Proof for (Short) BBS Signatures

3.1 Description and Implementation Details

Figure 3 describes a version of BBS with shorter signatures than BBS+ [6]. We
refer formally to this scheme as BBS = BBS[GGen, D,, ], where GGen is a group
parameter generator, D, is a distribution over Z,, and ¢ > 1 a parameter. We



Revisiting BBS Signatures 699

Algorithm BBS.Setup(1?) : Algorithm BBS.Sign(sk = z,m) :
(p,G1,Ga,Gr,e) — GGen(1) C «— g1 1, hali]™

g1 s G, h1 —sGi, g —s G} e s D,

par < (p, g1, h1,92,G1,G2,Gr,e) A« Cwe

Return par Return o = (A, e)

Algorithm BBS.KG(par) : Algorithm BBS.Ver(vk,m,o = (A4,¢)) :
(P91, P1,92,G1,G2,Gr,€) — par | ¢ g, TT, ha[i]™

T s Lp; Xo — g5 Return e(A, g5vk) = e(C, g2)

sk — z; vk «— X3

Return (sk, vk)

Fig. 3. BBS signature. The scheme is parameterized by GGen, D., and the message
length ¢ = £(\) > 1. Here, group operations are in the groups G; and G2 determined
by the parameters.

omit D, whenever it is understood to be the uniform distribution over Z,, and
{ whenever it is clear from the context. Here, the message space is BBS.M = Zf,,
and it depends on the parameters in that the modulus p is determined by GGen
via BBS.Setup. There is an unlikely event that the inversion to compute 1/(z+e)
during signature issuance fails because x + e = 0—for ease of syntax, we use the
convention that 1/0 = 0. The BBS" scheme is a special case where each signed
message m is such that its first component, m/[1], is randomly chosen. (And,
therefore, needs to be made part of the signature.)

MODELING CHOICES. Our modeling is similar to that of [6,10,15], in that in par-
ticular we fix the message length via £. One can easily accommodate unbounded-
length messages, as in practice, the generators in hy do not need to be fixed
beforehand, and h;[i] can be the output of a hash function (modeled as a ran-
dom oracle) on some input that depends on ¢. This allows us to also sign messages
in Z, given a suitable encoding. (The RFC draft [28] suggests hashing a length-
dependent set of parameters into the first message block, although more efficient
encodings certainly exist.)

We also model BBS as randomized, as this feature may be useful in some
contexts, but we can de-randomize the scheme by applying a PRF to m, or
(more efficiently) to C, to derive e.

3.2 Security Analysis

We show security of BBS in the standard model, under the ¢-SDH assumption, for
the setting where D, is the uniform distribution over Z,,. Here, ¢ is the number of
signing queries issued by the signer. Note that this theorem also implies security
of BBS+, as it corresponds to a special case of BBS where the first block of each
signed message is randomly chosen, and included in the signature.

Theorem 1 (Security of BBS). Let GGen be a group parameter generator,
producing groups of order p = p(X\). For every SUF adversary A issuing at most



700 S. Tessaro and C. Zhu

q = q()\) signing queries, there exist adversaries By, Ba, and Bz such that

AdvaiEsiceen (A, A) < g AdVEE (B, A) + Advcen (B2, )

2
- +2
+ AVEN (B3, ) + g—p + QT .
The adversaries By, By and Bs are given explicitly in the proof, and run in time
roughly comparable to that of A.

The proof of the theorem is given in Sect. 3.3 below. The concrete bound is
essentially the same as prior analyses of BBS+ [6,15], and we incur a factor ¢
loss in the reduction. Below, in Theorem 2, we give a tight reduction to ¢-DL in
the algebraic group model, which suggests this loss may be artificial.

DISCUSSION OF CONCRETE PARAMETERS. Even assuming the tight bound as
the correct one, the reliance on ¢-SDH raises the question of the extent to which
parameters should accommodate for Cheon’s attack [20] on ¢-SDH/¢-DL, which
achieves complexity (roughly) O(+/p/q) for certain choices of g. The RFC [28]
suggests the use of BLS12-381 [11], which gives (roughly) a 256-bit group order.
We could accommodate for roughly ¢ = 236, for example, while still having
110-bit security. (This type of reasoning was for example adopted to justify
BLS12-381 in zkSNARKs [4].) But even then, we observe that the only way we
know to actually break BBS via Cheon’s attack is the reduction by Jao and
Yoshida [27], which requires all signatures to be on the same message, with
different e-values.! Not only this situation is unlikely to arise, but it does not
occur if we de-randomize BBS, which is the choice the RFC also adopted for
BBS+. It is an excellent question to see whether a similar attack exists even for
de-randomized BBS.

3.3 Proof of Theorem 1

Let us consider an interaction of the adversary 4 in the SUF game, where the
adversary finally outputs a forgery (m*,o*), where o* = (A* e*). We define
three events, depending on the specific format of the forgery:

— Forge;: This is the event where ¢* is a valid forgery, and a prior SIGN query
has output a signature o; = (A;,e;) for A; # A*, e; = e}, and some message
m; = m*.

— Forge,: This is the event where o* is a valid forgery, and a prior SIGN query
output the same signature o; = o* for a message m; # m?*, or the forgery
A* equals 1g, .

— Forge,: This is the event where o* is a valid forgery and completely fresh, i.e.,
neither of Forge,; or Forge, occurs.

1
! Roughly, their attack considers the setting where g#+¢: is obtained for multiple e;’s.



Revisiting BBS Signatures 701

As the union of these three events equal the event that (m*, o*) is a valid forgery,
the union bound yields

Adviits(A, A) < Pr[Forge,] + Pr[Forge,] + Pr[Forges] .

We will proceed in upper bounding these three probabilities via separate reduc-
tions. The hardest case is the analysis of Forge;, and this is where out proof
differs from prior work. The analyses of Forge, and Forge; are essentially the
same as in the original analysis of BBS+. The theorem statement then follows
by combining Lemmas 1, 2, and 3, which we state next. The proof of Lemma 1
is given below in Sect. 3.4, whereas the proofs of Lemmas 2 and 3, which are
more standard, are deferred to the full version.

Lemma 1 (Analysis of Forge,). There exists a q-sdh adversary By such that

2
1

Pr[F <q AV B )+ L2
" [Forge,] < ¢ V6Gen (B )+2p+p

Lemma 2 (Analysis of Forge,). There exists a dl adversary By such that

1
Pr [Forge,] < Adv@cen (B2, ) + o

Lemma 3 (Analysis of Forge;). There exists a q-sdh adversary Bs such that

Pr [Forge;] < Adqu'ng:(Bg, A)+ ]% .

3.4 Proof of Lemma 1

We give an overview of the adversary B; that underlies the reduction to ¢-SDH
for Forge,. The formal pseudocode description is in Fig. 4, although we omit there
some lengthier and tedious descriptions of how to compute certain elements, and
give them here in the text instead. Recall that ¢ is a bound on the number of
generated signatures, i.e., the number of queries to SIGN issued by the adversary
A. We assume here that exactly ¢ queries are made, without loss of generality.

Given the ¢-SDH setup g1, X1,1 = ¢7,..., X1,¢ = %", g2, X2 = g%, the adver-
sary B; first generates a suitable setup to run A. In particular, it picks random
values €1,...,&, < Zy, as well as randomizers o «s Z; and i, ..., B, <3 Z,.
Then, the generators g; € Gi and h; € G{ are set to

g1 = Q?'p(w)‘(wﬁi*) . hqli] < gf’i‘p(m) for all i € [¢],

where i* «s [¢] and

pX)= ] X+e).
ielg]\{i"}



702 S. Tessaro and C. Zhu

Adversary Bi(par, g1, (X1,i)ic[q), 92, X2,1) Oracle SIGN(m) :
(p’Gth’GT’e) < par cnt «—cnt + 1, ment «m
i* s [q]; cnt < 0; Sigs < 0; 2" « L Cons < 7, [174 By i)™
E1y.vnyEq 5Ly If cnt # i* then
o —s Zps B1,B2,. .., 00 3 Ly €cnt <= Ecnt
_ a-p(z)-(z+e) Else
91 < 91 L B ;
For i = 1 to £ do ha[i] < g/ "® Com S b Zﬁzl amli]
Xy «— Xo1; par < (p,gq, h1,92,G1,G2,Gr, €) I Cf"t - 161, then
(m*,A*,e*) —s ASIGN(W’ X2) T <*w/ {l‘ € {76(:11[:} U
Cr—7g, 11, hlmm*[i] {eitize | g7 = X121}
If e;r = € A e(A*, Xag5 ) = e(C*, g2) A Cont < Font
(A*,e") ¢ Sigs then Acnt — Cot™
If 2 # 1 then . Ocnt <— (Acnh ecnt)
Return (0, g1/") // direct break |Sigs < {oent }
If eix ¢ {ei}ic[q)\{iry then Return ocng

v = i Bi(m’[i] - mi])
Return (e;+, [A"- (4] 7)

i*

Fig.4. Adversary B; in the proof of Lemma 1. Recall that once €1,...,¢4 are
fixed and understood from the context, we use the shorthand p(X) = [T, sy (X +¢3)
for convenience. In the pseudo-code, we omit the explicit computations of g, hi, and
Acnt from Cent, which are detailed in the text.

It is not hard to see that g; and hy can be computed efficiently from part of the
g-SDH setup g1, X1,1,...,X1,4. Moreover, at least informally, it should be clear
that as long as « ¢ {—¢1,...,—&4}, the distributions of §; and h, are correct,
i.e., they are uniform in G% and Gf, respectively, since g; € G%. (The formal
argument about the correctness of distributions is given below, and this is only
meant to serve as some intuition.) We stress that our simulation will not be
correct if z € {—e1,...,—¢4}, S0 it is easiest to assume that this is not the case
to understand the rest of the reduction.

HANDLING SIGNING QUERIES. The oracle SIGN then simulates the correct signing
oracle, keeping a query counter cnt. Whenever cnt # ¢*, it is not hard to see that
SIGN can easily answer the query using ecnt = €cnt. Indeed, if x + .y # 0, on
input m, the simulate SIGN can compute

4 T+ecnt
_ am i i(x)|a(z+es )+ f: Bim i
Acng = (gl | Ihl[’&] M) =gf( )[ € 2o m[]] ’
=1

where p;(z) = Hiez{cm’i*}(x +¢;). It is easy to detect & + e¢ny = 0, and in that
case, Acnt = lg, by definition.



Revisiting BBS Signatures 703

Crucially, when cnt = ¢ the adversary 15, answers the signing query differ-
ently. We observe first that, with Ceny < g4 [[1_; h1 [i]™ 0,

DLy, (Cent) = - p(z) - (x4 €5+) + Z@m[z]p(m)
. (2)
a-p(x) (m + &0 + Z %m[z]) :

Here, there are two cases. Either Cen, = 1g,, and then we return Acny = lg,,
along with a ecpy = scnt Alternatively, and more interestingly, if Cent # 1g,, we

set e = g0 + 0, Zimli], and

i=1 «
z (z)
re; __ap(x

Ay = O = gorl@)

which can be efficiently computed. The bulk of our analysis below will show that

if C4» # 1g,, then we indeed generate a random e;- in this way.

Note that by equation (2) if C = 1g,, then z = —e; — Zf 1 % [i] or
x € {€;}irir, and hence we can directly break of ¢-SDH. (The variable z* here
stores the recovered discrete logarithm.) To simplify the analysis below, in this
case, it is convenient for the reduction By to defer breaking ¢-SDH to end, and

return the signature (1g,,&;+) instead.

EXTRACTING A SOLUTION. Assume now that A outputs a valid forgery m*, o*,
where o* = (A%, e*), e* = ¢;-, and A* # A;-. Further, assume that C; # lg,,
which implies that x 4+ e;» # 0 and p(x) # 0. (If this was not true, as highlighted
above, we would have extracted = already.) Then,

T+ g4 +ZZ 1a
T+ g4 +ZZ 1 o

:a-p(x) ( )Zz 161( H m[lD .

T+ ep

DL, (4%)

ap(x

Further, because A;- # A* but e* = e;-, we also have y = Zle Bi(m*[i]—mli]) #
0, and then

(A7 (4] = g

If ei ¢ {€i}ie[q)\{i}> X + €i- does not divide p(X). We can then compute gl”T
using Remark 1 and break ¢-SDH.

FORMAL ANALYSIS. We now proceed with a formal analysis to show that the
probability guarantees for By as stated in the lemma indeed hold. To this end,
we use Pro[-] to denote probabilities in the experiment SUF4gs (), where A plays
the SUF game against BBS. Similarly, we use Pri[-] to denote probabilities in
the simulated experiment where A is run within B; in Game q—SDHgéen(/\).



704 S. Tessaro and C. Zhu

In both experiments, we can define the event Forge;, as it only depends
on the output of the adversary and the property of this output relative to its
earlier signing query. Moreover, let Forge1 for i € [g] be the event that Forge,
happens and the i-th query is the first signing query that satisfies the condition
for Forge, to happen. Let GoodE be the event that all e;’s are distinct. Note that
B; is guaranteed to output a ¢-SDH solution if Forge(lz) happens and 7 = ¢* and,
moreover, GoodE also occurs. Also, note that the probability that GoodE and

Forgegi) occurs is independent of whether ¢ = ¢* or not, and therefore

q
AdVEEN (B1,A) = > Pry {GoodE A Forgegﬂ Pry [i* =]

i=1

rQ\'—‘

q
i 1
Z [GoodE A Forge(l')} = — - Pry [GoodE A Forge, | .
q
i=1

We rely on the following central lemma, which in particular shows that
the simulation of A’s execution within B is nearly correct. While the intuition
has been given above, the formal proof is rather subtle and we rely on the H-
coefficient method [19,30] to prove the following.

Lemma 4. Prq [GoodE A Forge,| — Pry [GoodE A Forge, | < 1.

Before turning to a proof of the lemma in Sect.3.5 below, we observe that

plugging the inequality of the lemma into the above yields

AdvEEN (B, \) = = - Prg [GoodE A Forge,] — -

(Pro [Forge,] — Pro [GoodE]) — =

On the other hand, Pry [GoodE| < ({ )% < L. and thus we obtain the bound in

2p?
Lemma 1 by re-arranging terms.

»QM—‘»QM—*

3.5 Proof of Lemma 4

We assume A to be deterministic without loss of generality. We describe the
transcripts of the interaction of A in the SUF and within B; as part of the
g¢-SDH experiment, respectively, via the following two random variables

TO = (gl»gQ;hla‘rai*v (mlvel)a sy (mqveq)) )

Tl = (517927}7‘171‘71'*’ (m1761)7 RN (mqaeq))

where in T, i* is sampled uniformly from [¢], independently of everything else.
We do not include X3, as Xy = ¢35 in both experiments. Moreover, in both
experiments, the first component A;, As, ... of the the answer to each signature
query is removed, as it is also a deterministic function of the rest of the transcript.



Revisiting BBS Signatures 705

Similarly, the final forgery (A*, e*) is also a function of Tp/Ty. For this reason,
we note that that the event GoodE A Forge; is deterministically determined from
To and T7, in their respective experiments, i.e., there exists a Boolean function
¢ such that ¢(7,) = 1 if and only if the event happens in the corresponding
experiment. Therefore,

Pro [GoodE A Forge;| — Pry [GoodE A Forge,| < SD(Ty,T1) ,

where SD(Ty,T1) = 3>, |Pr[Ty = 7] — Pr[Ty = 7]| is the total variation dis-
tance, which we upper bound by a special case of Patarin’s H-coefficient
method [30], which we introduce on the way. (We use the formalism from [26]
here.)

INTERPOLATION PROBABILITIES. Concretely, for any potential value 7 of T}, for
be {0,1}, which we denote as

T = (£17g27h17£71*7 (mhgl)a L) (mq&q)) 9

we let po(7) and p1(7) be its interpolation probabilities, i.e., the probabilities
that we pick randomness in the respective experiment that would lead to tran-
script 7 if queries m,, ..., m, are fixed ahead of time. (These probabilities are
independent of A, and only depend on 7 and the randomness of the experiment.)
We want to isolate the following type of good transcript.

Definition 1 (Good transcript). We call T good if x ¢ {—ey,...,—¢,}. Oth-
erwise, T is bad.

We are then going to prove that for all good transcripts 7, po(7) = p1(7). This
is enough to conclude the proof, as it implies that

SD(Ty,Th) < Pr[Ty is bad] = Prg [z € {—e1,...,—¢eq}] < 4,
D

To compute p; (7) for a good transcript 7, we assume that the generator ¢g; given
to By is fixed. (Of course, it is actually sampled randomly from G} as part of the
¢-SDH instance, but the interpolation probability is the same conditioned on any
particular choice, and thus we fix it.) The randomness then consists of i* «s [q],
X s Ly, s Ly, €1, ... ,€q < Ly, and g <3 G5. To generate the transcript T,
we need in particular

S

T =1 92 = g, T =2, (E)ielg)\ iy = (€)icl)\ (i)
and as these values are chosen independently, this is true with probability
1 1 1 1 1

qg p—1 p pr 1 q(p—1)pt

over the choice of i*, g2, 2, {€; }ie[q\(ir}- Let us assume this initial part of the
transcript is consistent. We also need 1, ..., 0 to ensure hy = hy, which, con-
ditioned on z = T, is equivalent to the fact that

p(z) - B; = DLy, (hy[i]) for all i € [£].



706 S. Tessaro and C. Zhu

Because 7 is good, p(z) # 0, and therefore the £ equalities hold with probability
1/p* over the choice of 31, ..., Be.

Finally, conditioned on i*, g2, x, {€i }e[q)\{s}+ {8} icjq satisfying all above con-
straints, we need ;- and « to ensure that

+e;%
G= gt _ g =gy

There are two cases here, depending on m = m,. and the associated value

14
=9 th Ui
i=1

Case 1: C = 1g,. Then, in this case, By ensures e;+ = €;-, and this value, which
is uniform, equals e, with probability 1/p. Conditioned on this,

’L

p(z)(z+eir) = plz)(z+¢) #0

because 7 is good. Thus g, = g?p(z) ) holds with probability 1/(p — 1)
over the choice of a from Zj,.

Case 2: C # 1g, . For convenience, we write e = ¢;., € = &;+, a = DLy, (g,), and
y = >_; Bimli]. Here, o < Zy and ¢ «sZ, need to satisfy

The second equation directly implies that

Y- (3)

1
e=e— —
o

Substituting this into the first equation yields

a-p(z) (l’+6i~y> =p)(a(z+e)—y) =a.

Re-arranging terms we get

a/p(x) +
@ty "
x+e
This is indeed a value in Z; for two reasons. First off, z + e # 0 as 7 is good.
Second, a/p(x) +y # 0. Indeed, if instead a/p(z) +y = 0 were true, we would
have

¢ L
mli a x)-Bi-m[i a+p(z)s
P (YU | PR L
i=1 i

a contradiction with the fact that we are in Case 2. Therefore, the probability

over the choice of a, ¢ that (3) and (4) are both satisfied is —1—.
p(p-1)




Revisiting BBS Signatures 707

Game SUF+éGen,eG,es()\)3 Oracle SIGN(m):
Sigs < 0; cnt < 0 cnt < cnt + 1
(p,G1, G2, Gr,e) «s GGen(1*) €ent — €S(st, cnt)
B i ¢ i1m ld]
g1 <3 Gl? hl «—$ Gl, g2 <3 G2 Ccnt «— g1 Hizl hl[Z]
par < (p7 gi, hl, gz, Gl7 G?: GT> e) Acnt <« Ccllé(terecnt)
Ste «— eG(p, Gl, G27 GT7 e) SIgS (i {(m, (Acnh e(:nt))}
@ —s Lp; Xo — g3; sk — x5 vk — X5 Return Acng

(m*, (A", ")) «—s A5 (par, ste, vk)
If (m”, (A%, ¢e")) ¢ Sigs then
C* s g [10, hafi]™ 10
If e (A*,ngg*) = e(C",g2) then return
true
Return false

Fig. 5. Stronger security for BBS. Stronger ad-hoc unforgeability achieved by BBS
in the AGM, where the e;’s are sampled deterministically from an algorithm that uses
an initially generated state ste, known to the adversary.

Therefore, in summary, we have

1 1 1 1

SR T i iy R

It is not hard to observe that we also have

1
P = =T

because g1, go are uniform over G, h; is uniform over G¢, and xz, e, ... ,€q are
uniform in in Z,, and ¢* is uniform in [g].

4 Tighter Proofs for BBS in the AGM

This section complements the above standard-model analysis with a tight anal-
ysis of BBS in the algebraic group model (AGM) [23]. In addition, we prove here
that security holds even if the attacker is given the values ey, es,... ahead of
time, and we allow these values to be sampled from a more general distribution.
The former fact will be helpful later in Sect.6. The latter fact will allow for
instantiations of BBS with shorter signatures in some contexts, as we explain
further below.

STRONGER SECURITY. We formalize our security goal in terms of Game SUF+
in Fig. 5. This is not a generic security game, as it is specific to BBS, but clearly,
it does imply its strong unforgeability in a number of settings when the scheme
instantiation corresponds to a particular pick to eG and eS. The ad-hoc feature
is that we allow part of the signature (namely, the e value in a pair (4,e))
to be generated initially. To model this, in addition to the group parameter



708 S. Tessaro and C. Zhu

generator GGen, the game is parameterized by a pair of algorithms, eG and eS,
where eG, on input the group parameters, outputs a state ste, and then eS(st,, 1)
(deterministically) outputs the value e; used for the i-th signature. The initial
state st. is given to the adversary, who can run eS to pre-compute the ¢;’s. It
will be convenient to define the collision probability

par «s GGen(1?*)

deG,es(q; A) = Pr st. «s eG(par)

: 31 < i< j < q:eS(ste,i) = eS(ste, )

We also define the advantage metric

AdVSGqu:n,eG,eS(A> A) =Pr [SUF+éGen,eG,eS(A)] .

ALGEBRAIC SECURITY. We are now ready to state our main theorem, which is
proved below in Sect. 4.1. We dispense with a full formalization of the AGM [23],
as its use is relatively straightforward here. Namely, we consider algebraic adver-
saries that provide an explanation of the element A* € G; contained in the
forgery in terms of all previously seen group elements in Gi, which include the
generators g1, hy, as well as the issued signatures. (Because we consider type-3
pairings, we do not include Gy elements in these representations.) We also give
our reduction here to ¢-DL, as opposed to ¢-SDH as in the case of Theorem 1,
but note that the assumptions are equivalent in the AGM.

Theorem 2 (AGM Security of BBS). Let GGen be a group parameter gener-
ator, producing groups of order p(\), and let eG, €S as above. For every algebraic
SUF+ adversary A issuing at most q signing queries, there exist adversaries By
and By such that

, ) 1
AdVEGan.5(A A) < AdVEGen (B, ) + Advigen (B2, M) + duces(@: ) + 5
The adversaries By and By are given explicitly in the proof, and have running
times comparable to that of A. The adversary By need to additionally factor a

polynomial of degree (at most) q.

The only property required from eG and eS is that deges(g, A) is small. We
note that the lack of collisions is a necessary condition. Indeed, if we generate
two signatures (A4, e), (A’,e) for messages m and m/, respectively, it is easy to
verify that ((A- A’)2,e) is a signature for 1(m + m/), where 1 is the inverse of
2 mod p.

The above theorem supports the security (in the AGM) of some interesting
and natural instantiations of BBS with shorter signatures, which we discuss next.

CoUNTER BBS. One natural instantiation, which we refer to as Counter BBS,
generates the e;’s from a counter, i.e., eS(st., ) = i. This can be advantageous if
the signer can reliably maintain such a counter. Signatures then would consist of
a group element in Gy and then log ¢ additional bits, where ¢ is an upper bound
on the number of issued signatures. In particular, one could safely set g = 250
in many applications, leading to very short signatures.



Revisiting BBS Signatures 709

TRUNCATED BBS. A different application scenario considers a conservative
instantiation that uses a 384-bit group G to prevents Cheon’s attack [20]. Then,
the above bound allows us to choose the e;’s from Zs2s6, as opposed to Zj, for a
384-bit prime p, hence saving 128-bit of signature length. We refer to the result-
ing scheme as Truncated BBS. While we need to rely on the AGM to trust this
optimization, we do note that the uniformity of the e;’s needed by Theorem 1
appears to be an artifact of the proof, and does not appear to prevent actual
attacks.

4.1 Proof of Theorem 2

Before we turn to the construction of the adversaries By and Bs, and their formal
analysis, we introduce the algebraic framework that will guide their construction.

ALGEBRAIC FRAMEWORK. To start with, in an execution of SUF+¢g., og.es(A)
it is convenient to associate the discrete logarithms of group elements in Gy with
formal rational functions (which are then evaluated in the actual execution to
obtain the discrete logarithm). In particular, let us denote the discrete logarithms
of hy to the base g; by the vector y € Zf,. Then, the i-th SIGN query for m € Zf),
where e; = e, returns a value with discrete logarithm ¢}, .(x), where

_ 1—|—<y,m>.

Y (X
me,e( ) X+el

Here, (x,y) denotes inner product in Z,. It turns out that these functions are
essentially linearly independent, except for some unfortunate configurations for
y. This is captured by the following central lemma.

Lemma 5. Let ey,...,eq € Zy be distinct, let y € Zf;, and let my,...,my €
ZL. Further, let (m*,e*) ¢ {(mi ei)}icq. Then, assume that there exist
Ay Agy Y € Zy such that

q
Pl e (X) =D il LX)+ (5)
=1

Then, one of the following two conditions must be true:

(i) There exists i € [q] such that €* = e; and 1 — \; + {y,m* — X\; -m;) = 0.
(ii) We have e* ¢ {e1,...,eq}, but 1 + {y,m*) = 0.

Proof. To verify (i), assume indeed that e* € {e1,...,e,}, and wlog, let e* = e;.
We multiply both sides of (5) by p(X) = Hle(X + e;), and after re-arranging
terms, we get

(1= +{y,m" =X -my))-pi(X) = 7-p(X) + ZM e (X) - pi(X) , (6)

where we have used the shorthand p;(X) = [T;c/g\ (i3 (X + €5) = p(X)/(X + ;).
We claim that the LHS and RHS of (6) cannot be identical functions, unless



710 S. Tessaro and C. Zhu

1 =X +<{y,m* — Ay - my) = 0. Indeed, the RHS is always divisible by X + €1,
because either A, ..., A, are all 0, in which case this is vacuously true, or p(X)
and p;(X) for ¢ > 2 are divisible by (X + e1). In contrast, if 1 — X\; + {y,m* —
A1 -my) # 0, then the RHS is not divisible by X + e; because py(e1) # 0.

Let us consider instead the case e* ¢ {eq, ..., e, }. For notational convenience,
welet egi1 = €, p'(X) = [Licjqen) (X+e€i), and pj(X) = TLicgap g1y (X+6€5)- Then,
multiplying both sides of (5) by p/(X) yields

(14 ym™) - (X) = 7P X) + Y Xi @, e, (X) - Di(X) .
i=2

We notice that if 1 4+ {(y,m*) # 0 the LHS is non-zero, and not divisible by
X+egi1, as pyii(eqe1) # 0. In contrast, the RHS is always divisible by X+ e411.
A contradiction. O

OVERVIEW OF THE REDUCTION. Let A be an algebraic adversary in Game
SUF+éGen,eG,eS()‘)' It initially receives group elements g; € G, hy € G, along
with Go elements go, Xo = g§. For each signing query, she also gets A; € G;.
Finally, when producing a forgery (m*, (A*, e*)), by virtue of being algebraic, the
adversary A also provides a representation (Yo, V1,...,Ye, AM,--.,Aq) € Zg*“l
of A* such that

£ q
" s P ) —L o P+ e*
A =gl [Tl [T AN = (€)== = ¢ ;
i=1 i=1

where y[i] = DLy, (hq[d]) for all ¢ € [¢]. Further, we have A; = gf"”’c'i “) There-

fore, setting v = o + Ziem ~; - y[i], this implies in particular that

q
YAD i Gl (@) = Pl (2) = 0.
i=1

Let us now assume that the two conditions in Lemma 5 do not hold, and that
€1,...,eq are distinct. Then, Lemma 5 implies that

q
PX) =7+ D il o (X) =¥ (X) #0,
=1

and therefore z is one of its zeros. Assuming that = ¢ {—e1,..., —eq, —€*}, such
zeros can be obtained by factoring the non-zero polynomial

«=p-  J[  X+o),

ec{eq,...,eq,e*}

which has degree at most ¢ + 1. One of the zeros has to equal z.

We still need to handle the case where either 1 + (y,m*y = 0or 1 — \; +
{y,m* — X\; - m;y = 0. It is however not hard to see that this gives us non-
trivial discrete logarithm relation, and we can use this to compute the discrete
logarithm directly.



Revisiting BBS Signatures 711

FORMAL REDUCTION. To formalize the above analysis, we consider three events
during the execution of Game SU FJFéGen,eG,es()\):

— Forge: This is the event that A4 outputs a successful forgery and wins the
game.

— Rel: This is the event that the forgery is for a message m* such that either
Condition (i) or (ii) of Lemma 5 holds.

— Col: Is the event that there exist distinct ¢, j € [¢] with e; = e;.

Then, by the law of total probability,

AdvEts, cc.es(A, ) = Pr [Forge A Rel] + Pr[Forge A Rell
< Pr [Forge A Rel A Col] + Pr [Forge A Rel A m + Pr[Rel]
< Pr[Col] + Pr [Forge A Rel A Col| + Pr[Rel] .

By definition, we know that Pr[Col] = deges(g, A). We now give adversaries By
and By such that

_ 1
Pr [Forge A Rel A Col] < Adqu'gLn (By), Pr[Rel] < Advic., (B2) + .

THE ADVERSARY Bq. If © ¢ {—eq,...,—e4} (which can be checked right away,

and gives z), the reduction simulates the original generator g; as g, = g;* (“T>,

where p(z) = [[,c(2 + €;). (This can be computed given the inputs X ; = e
for i € [q].) Since a € Z; and p(x) # 0, the simulation is perfect. Also, we
can easily compute the answers to SIGN queries due to our choice of g;. The
adversary then checks that ¢(X) is non-zero (which is implied by Rel), and if so,
proceeds to compute its zeros. It is easy to verify that the adversary succeeds
with probability at least Pr [Forge A Rel A @.

THE ADVERSARY B5. The construction is somewhat standard. Let us assume one
of the two conditions leading to Rel occurs in Game SUF+{¢,, og.es(A)- First, if
(i) occurs for some i € [g], then

¢
g}—M HhT [F1-Xim ;4] _ 1G1 . (7)
j=1
In contrast, if (ii) occurs, then
Z .
g [Trr " =1e, ®)

j=1

Therefore, in both cases, we obtain a non-zero vector (a,b) € Zf;“ such that
91 ILicpg P [i]°l] = 1g,. Given the DL instance X;; = g7 € Gy, the adversary
B, simulates the generator by picking «;, 8; «s Z,, for ¢ € [¢], and lets

G1=X11=97, hili] = X{ig," = g0 forie ().



712 S. Tessaro and C. Zhu

This simulates the right distribution if X ; # 1g,, which is ensured beforehand.
Then, as outlined above, the adversary simulates a correct execution with A,
and checks if we obtain a non-trivial relation as above. If so, we are given a
non-zero (a,b) € Z4™ such that

¢
am—l—Zb[i] (=) =0,
i1

and, in turn, we get
’ .
21:1 ﬂib[l] )
a+ Zle a;bli]

Note that this is well defined, unless a + Ele a;b[i] = 0. However, because
(a,b) # 0, and the fact that the «;’s are uniform and independent given the
adversary’s view, this happens with probability at most 1/p. This concludes the
proof. O

xTr =

5 Efficient Proofs of Knowledge for BBS Signatures

We discuss zero-knowledge proofs of knowledge (zkPoK) of a BBS message-
signature pair (m, o) that are shorter than those from [15] adopted by the RFC
draft [28]. If we do not want to reveal k of the components of m, our proof (when
compiled as a NIZK via the Fiat-Shamir transform) consists of 2 elements in Gy,
as well as k + 3 scalars in Z,. The prior proof, in contrast, consists of 3 elements
in G1, and k + 5 scalars. The benefit of our new proofs is also computational: We
save 4 group exponentiations in G; and 3 scalar multiplications for the prover,
and save 3 group exponentiations in G for the verifier. We note that the CDL
proofs are tailored at BBS+, but even for the latter scheme, we can achieve
savings, as we can think of a BBS+ signature for m as a BBS signature for
(s,m), for a secret s, and merely increase k by one.

5.1 Proofs of Knowledge for Signatures

We consider zkPoKs associated with a signature scheme SS with message space
SS.M(par) = M (par)* for some set M that can depend on the public parameters
par, and some understood vector length ¢ = £(\). We give proofs of knowledge
of a signature consistent with a partial message vector m € (M U {x})*. For any
two such partial messages m, m’, we denote m C m/ if for all i € [{], m[i] # x
implies m[i] = m/[i].

We only consider three-move public-coin protocols between a prover and a
verifier, described by a tuple PoK = (PoK.Py, PoK.Ps, PoK.C, PoK.V). Informally,
we think of running the protocol in settings where the parameters for SS are
available, i.e., par «—s SS.Setup(1%), (sk,vk) «<—s SS.KG(par), and the protocol is
run as follows, on private input (m, o), where m € M, and public input m’ €

(MU {x)":



Revisiting BBS Signatures 713

Distribution Realfg ss()): Distribution Idealsc 5g()):
par «s SS.Setup(1*) par «s SS.Setup(1*)

(sk, vk) «—s SS.KG(par) (sk, vk) «—s SS.KG(par)
(m',m, o) s A(par, sk, vk) (m',m, o) «s A(par, sk, vk)

If m’ C m A SS.Ver(par,vk, (m, o)) then |If m' C m A SS.Ver(par,vk, (m, o))
(a,stp) «—s PoK.P1(par,vk,m’, (m, o)) |then

¢ «s PoK.C(par, vk) z «s L(par, sk)

s +s PoK.P2(stp, ¢) (a,c,s) «s S(par, vk, m’, 2)

Return (sk,vk, m’, (a,c,s)) Return (sk,vk, m’, (a,c, s))
Return L Return L

Fig. 6. Distributions for the definition of HVZK

(1) The prover initially takes inputs par, vk, and a candidate signature-
message pair (m,o), and outputs (a,stp) s PoK.Py(par, vk, m’,
(m,0)). The message a is sent to the verifier.

(2) The verifier outputs ¢ «s PoK.C(par,vk), and the challenge ¢ is sent
to the prover.

(3) The prover outputs s <s PoK.Py(stp, ¢), and sends s to the verifier.

(4) Finally, the verifier outputs a Boolean value PoK.V(par, vk, m’, a, ¢, s) €
{true, false}.

We say that PoK is correct if, whenever SS.Ver(par,vk,(m,c)) = true and
m’ C m, then the verifier also outputs true.

SPECIAL SOUNDNESS. We target special soundness. To this end, we say that
(par,vk,m/ a,c, s) is an accepting transcript if par is a valid output of SS.Setup,
vk is a valid output of SS.KG(par), ¢ is a valid output of PoK.C(par,vk), and
PoK.V(par,vk,m’,a,c,s) is true.

Definition 2. We say that PoK as above is special-sound if there exists an effi-
cient algorithm Extract which, given any two valid transcripts (par,vk,m’; a, c, s),
(par,vk,m/,a,c,s') such that ¢ # ¢, then (m,o) <« Extract(par,vk,a,
(¢, ), (c,s") is such that SS.Ver(par, vk, (m, o)) = true and m’ C m.

We do not specify more general soundness goals further, as the use of spe-
cial soundness will largely depend on the concrete security game modeling the
security of the system using the PoK.

HONEST-VERIFIER ZERO-KNOWLEDGE. The protocols we give will be shown to
be honest-verifier zero-knowledge, which suffices for their use as NIZKs via the
Fiat-Shamir transform. We will in fact weaken the notion to allow for some leak-
age of the parameters given to the simulator. In particular, we model such leakage
as a (possibly randomized) function L(par,sk) taking as input the parameters
and the signing key.

Definition 3 (HVZK). The protocol PoK for SS as above is perfectly L-honest-
verifier zero-knowledge (L-HVZK) if there exists an efficient simulator S such



714 S. Tessaro and C. Zhu

that for all A and X € N, the distributions Real“,foK,SS (A) and Ideal’é(;lf”sﬁs(/\) given
in Fig. 6 are identical.

5.2 Protocols

FULL DISCLOSURE. We start with the protocol for the case m = m/, i.e., the full-
disclosure case. Recall that a BBS signature for a message m € Zf) takes form
o = (A = C(m)Y=+9) ¢), where C(m) = ¢, Hle hi[i|™l]. We assume from
now on that A # 1g,, and this assumption is almost without loss of generality,
as a valid signature with A = 1g, implies finding a non-trivial DLOG relation,
as C(m) = 1g, would be true as well. Recall that the signature is valid if

e(4,95X2) = e(C(m), g2) ,
where Xy = ¢3 is the verification key. However, by bilinearity,
e(A, g5 Xs) = e(A, g3) - e(A, X3) = (A%, g2) - e(4, X) .
And therefore, one can equivalently check that
e(A, Xs) =e(C(m)- A% g2) . (9)

The main idea is to provide suitably randomized versions of A and B = C(m) -
A~¢, which can be computed from a signature (A,e), and extend this with a
proof of correctness attesting to the format of these values. In particular, we use

A= A" and B = (C(m) - A=¢)", for which we still have e(4, X3) = e(B, g2).
ProToCOL DESCRIPTION. Concretely, we consider the following X-protocol:

— Given a signature (A, e) for the message m with A # 1g,, the prover picks
r < Z,, and computes

A— A", B« (CmA ) =C(m)"A
It also picks «, 8 «s Z,,, and computes U «— C(m)azﬁ. It sends (A4, B,U) to
the verifier.

— The verifier picks a random challenge ¢ <s Z,,, and sends it to the prover
— The prover responds with (s,t), where

s—a+r-c, t—fF—e-c.
— The verifier accepts if and only if

e(4,X5) =e(B,gs), U-B°=C(m)*A".



Revisiting BBS Signatures 715

SPECTIAL-SOUNDNESS. It is not hard to see that the protocol is special sound.
Indeed, given A, B,U, as well as ¢; # ¢o, and (s, s1,t1,t2) such that

e(A,X5) =e(B,g2), U-B" =C(m)"A" fori=1,2,

we can first extract 7 and e such that B = C(m)"4 °, because

ECI*Q _ C(m)t17t2251752 )

and thus we can set r = (t1 —t2)/(c1 —c2) and e = (s3 — 51)/(c1 — ¢2). If
r # 0, then (A = A ,e) is a valid signature on m, because e(4, X») = e(B, g2)
implies that e(A" ,XQ) = e(ETﬁl,gg), and Eril = C(m)A=°. If r = 0, then
e(4,X3) = e(A°, g2), which means 2 = —e, and this gives us a signature on m.
ZERO-KNOWLEDGE. The protocol is £L-HVZK, for £ which, on input g1, z, out-

puts (g7, g1%) for r «=s Zj, i.e., a random pair of form (U, U®). The simulator then

computes A «—s G}, and set C = A" € Gy — this can be done by re-randomizing
the leakage (U,U®). Then, the simulator picks a random challenge ¢ «s Z,, as

well as random s,t <s Z,,, and sets U = C(m)sztgic

The fact that the simulator needs a sample (U,U?"), and cannot simulate
solely given the parameters and the verification key Xo = g5 is a technical
oddity inherited from the use of type-3 pairings, and was also present in prior
protocols [15]. Indeed, it is hard to compute g7 from the verification key ¢%.
However, this additional leakage is not really harmful. For example, any signature
(A, e) on a message m already satisfies A” = C'(m)- A™¢, and thus the protocol
leaks no more than any valid message-signature pair. In particular, BBS remains
secure given such leakage.

PARTIAL DISCLOSURE. For the case m’ C m, the components m[i] for which
m/[i] = x become parts of the witness. We let [ := {i € [{] : m[i] = x} and

= [n]\ 1. We also let C;(m) = g1 [[;.; h1[i]™!), and note that C;;(m) can be
computed from the public input m’ by the verifier.

— Given a signature (A, e) for the message m with A # 1g,, the prover picks
r « Z, and computes

A—A", B (Cm)A™) =Cym)" - (H hy [z‘]m[i]> A C.

iel
It also picks «, 8 «s Z,, and also d; <s Z,, for every i € I and computes

U« Cy(m)* - A" T huli)®

el

It sends (A, B,U) to the verifier.
— The verifier picks a random challenge c «s Z,, and sends it to the prover



716 S. Tessaro and C. Zhu

— The prover responds with (s, ¢, (u;)r), where
s—a+r-c, t—f—e-c, uj—0o+r-mli]-c Viel.
— The verifier accepts if and only if

e(4,X2) = e(B,g2), U-B" = Cy(m)A [ hali]" .

el

One can easily adapt the arguments for the above protocols for full disclosure
to show special soundness and L-HVZK.

NIZKs. Our protocols can be transformed into NIZKs in the random ora-
cle model via the Fiat-Shamir transform [21] or Fischlin’s transform [22].
For the Fiat-Shamir version, the prover computes A, B,U as above, then lets
c <« H(m', A, B,U), and finally computes s,t, (u;)s; as above. The final proof
is

= (A,B,c,s,t, (U)icr) -
Verification checks that e(4, X5) = e(B, g2) and that ¢ = H(m/, A, B,U) with

U« B “Cy(m)*A [ rali]™ .

i€l

Note that we could include U instead of ¢, but this leads to longer proofs
for curves like BLS12-381, where elements in G; have longer descriptions than
scalars.

6 Signatures for Group Elements and Blind Issuance

One central property of BBS is its support of blind issuance, the setting where
a user sends a commitment C' € Gy to the signer to obtain a pair o = (4,¢)
with A = C7e—if C = ¢, Hf;l hi[i]™l for a message m, then o is a valid
signature on m, but crucially, the signer never learns m. In fact, the user could
make m[1] uniform, turning C into a perfectly-hiding (generalized) Pedersen
commitment [31]. This approach is particularly important when o acts as a
credential, and we want to hide the actual attributes from the issuer. Blind
issuance of BBS signatures is also part of an unofficial draft [3], which also
requires the addition of a proof of knowledge for a representation of C, which
consists of O(¢) scalars and can be expensive when ¢ is large. Here, we show
that in the AGM the scheme is already sufficiently secure without such a proof.
A suitable proof of knowledge is however still necessary if the user needs to
reveal part of the attributes to the issuer, to prove these are consistent with
the commitment. However, we note that this aspect would be orthogonal to our
analysis below.



Revisiting BBS Signatures 717

Game OMUF+éGen,eG,eS(>‘): Oracle SDH(C):
cnt «— 0 cnt «— cnt + 1
(p,G1,G2,Gr,e) s GGen(1*) €cnt < €S(ste, cnt)
g1 <$Gi, h G, g2 —s G Ao 8 C 7¥oamt
par < (p7gl>h1,g27Gl7G27GT7e) Return Acnt

ste < eG(p7 G17 G27 GT7 e)

T s Zp; X2 «— g5; sk — x; vk «— X>

{(m;, (A7, €) iepg) s A" (par, ste, vk)

For all i € [¢'] do C} <« ¢1 [ ha[j]™i0]

IfVield]: e (A:,ngf) =e(C},g2) then
Return (¢’ > cnt)

Return false

Fig. 7. One-more unforgeability of BBS. This game captures the one-more unforgeabil-
ity of BBS when given an SDH oracle which returns CY/(®*¢) for its i-th query, where e;
is generated via eS. We assume here that A returns a set of ¢’ distinct forgery attempts
(i.e., no double entry are present in the list returned by .A.)

ONE-MORE UNFORGEABILITY. BBS can be thought as a signature scheme signing
a group element C € Gy as 0 = (A = Cﬁ,e). However, it does not achieve
unforgeability when signing group elements (as in the case of structure-preserving
signatures (SPS) [5]). Indeed, the attacker, given o = (A, e), directly obtains
other valid signatures, such as o’ = (A?, e), which is a valid signature for C2 # C.
Nonetheless, if C = ¢; Hle hi[i)™ it is very unlikely that the attacker can
exhibit a message m’ such that C? = g, Hle hy[i]™'l ie., such that (A2, e) is
valid for m/’.

We formalize this by showing BBS satisfies one-more unforgeability (OMUF),
where given access ¢ times to an oracle SDH that signs group elements as above—
i.e.,, on input C € Gy it returns 0 = (A,e) with A = Cwe—it is impossible
for the attacker to come up with ¢ + 1 valid BBS signatures. This property is
defined via Game OMUF+éGen,eG,es()\) in Fig. 7. Similar to Sect. 4, the game is
parameterized by the group generator GGen and by a pair of algorithms eG, eS
used to generate the e;’s ahead of time. We also define

Adv%%:f:eG,eS(Av )‘) = Pr [OMUF+éGen,eG,eS(>‘)] .

We stress that we could define a general notion of signatures on commitment
values, and require that upon obtaining ¢ signatures on arbitrary elements from
the commitment space, the attacker cannot come up with ¢ + 1 valid signa-
tures on commitments, along with their openings. However, we prefer the rather
straightforward BBS-specific game as a better illustration of this property.

MAIN RESULT. We prove now that BBS satisfies one-more unforgeability in the
AGM, and we do so via a reduction to its SUF+ security as defined in Sect. 4.

Theorem 3 (One-more unforgeability). Let GGen be a group parameter
generator, producing groups of order p(\), and let eG, €S as above. For every



718 S. Tessaro and C. Zhu

algebraic OMUF+ adversary A issuing at most ¢ = q(\) SDH queries, there
exists an algebraic SUF+ adversary B such that

AdV%E:f];G,es (AN < Astéqu:n,eG,es(B7 A) + OeGes (45 A) -

The adversary B issues g SIGN queries, and runs in time equal that of running
A, plus the time needed to perform O(q3) operations in Z,.

The proof is deferred to the full version due to lack of space. The main challenge
in the proof is to show how the signing oracle can be used to simulate signing a
group element, given its representation. This is easy to do if the representation
is only in terms of g; and hj, but the challenge is that the representation can
also depend on prior signatures.

Theorem 3 yields the following corollary when combined with Theorem 2.

Corollary 1 (One-more unforgeability). Let GGen be a group parameter
generator, producing groups of order p(\), and let eG, €S as above. For every
algebraic OMUF+ adversary A issuing at most ¢ SDH queries, there exists a
q-DL adversary C1 and a DL adversary Co such that

1
p(A)
The adversaries C1 and Cy are obtained by using B from Theorem 3 within the
adversaries of Theorem 2.

AdvRert ¢ s (A, ) < AdVEEL (C1, A) + AdvEgen(C2, A) + 20eG.es(q, A) +

APPLICATIONS. As mentioned above, a typical application of BBS signatures
is in the context of credentials. The above result validates the security of the
canonical solution where the user obtains a credential for a vector of attributes
m by sending C = ¢, Hle hi[i]™ to the authority, which in turn responds
with the actual credential (C ﬁ,e) for a random e. The OMUF security from
Theorem 3 and Corollary 1 implies that a malicious user (or any set of multiple
such users) can only obtain ¢ credentials by interacting with the authority ¢
times. The user can then show the credential multiple times in an unlinkable
way by using the zk-PoKs from Sect. 5, typically compiled via the Fiat-Shamir
transform. These showings are then consistent with at most ¢ attribute vectors.
When issuing a credential, the user does not need to send any proof of knowledge
along with C', unless the credential issuing needs to enforce some format on the
values contained by C, in which case extra proofs need to be sent along.

We note that analyzing the security of the entire credential system is non-
trivial, especially if we want to resort to PoKs compiled via the Fiat-Shamir
transform, which are not online extractable. We believe that a security analysis
of variants of this system is however possible, albeit very tedious, in the AGM,
where one can resort to the online-extractability of the proposed PoKs from
Sect. 5 in the AGM, along the lines of [25]. This goes however beyond the scope
of this paper.



Revisiting BBS Signatures 719

Acknowledgments. We wish to thank Christian Paquin and Greg Zaverucha for
extensive discussions around BBS and for providing feedback throughout this project.
We also thank the EUROCRYPT 2023 reviewers for their excellent comments and
suggestions. This research was partially supported by NSF grants CNS-2026774, CNS-
2154174, a JP Morgan Faculty Award, a CISCO Faculty Award, and a gift from
Microsoft.

References

1.

10.

11.

12.

13.

14.

BBS+ implementation. https://github.com/mattrglobal/bbs-signatures, Accessed
10 Apr 2022

BBS+ implementation. https://github.com/microsoft /bbs-node-
referenceAccessed 10 Apr 2022

Blind signatures extension of the BBS signature scheme. https://identity.
foundation/bbs-signature/draft-blind-bbs-signatures.txt Accessed 10 Apr 2022
Cheon’s attack and its effect on the security of big trusted setups. https://ethresear.
ch/t/cheons-attack-and-its-effect-on-the-security-of-big-trusted-setups /6692
Accessed 10 Apr 2022

Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209-236. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7_12

Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k-TAA. In: De Prisco, R.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111-125. Springer, Heidelberg
(2006). https://doi.org/10.1007/11832072_8

Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed
embedding degrees. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS,
vol. 2576, pp. 257-267. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36413-7_19

Bauer, B., Fuchsbauer, G., Loss, J.: A classification of computational assumptions
in the algebraic group model. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO
2020. LNCS, vol. 12171, pp. 121-151. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-56880-1_5

Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptol. 21(2), 149-177 (2007). https://doi.org/
10.1007/s00145-007-9005-7

Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41-55. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8_3

Bowe, S.: BLS12-381: New zk-SNARK elliptic curve construction. https://
electriccoin.co/blog/new-snark-curve/ (2017)

Brickell, E., Li, J.: A pairing-based DAA scheme further reducing TPM resources.
In: Acquisti, A., Smith, S.W., Sadeghi, A.-R. (eds.) Trust 2010. LNCS, vol.
6101, pp. 181-195. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13869-0_12

Brickell, E., Li, J.: Enhanced privacy ID from bilinear pairing for hardware authen-
tication and attestation. Int. J. Inf. Priv. Secur. Integr. 1(1), 3-33 (2011). https://
doi.org/10.1504/1JTPSI.2011.043729, https://doi.org/10.1504/1JTPSI.2011.043729
Brown, D.R.L., Gallant, R.P.: The static Diffie-Hellman problem. Cryptology
ePrint Archive, Report 2004/306 (2004), https://eprint.iacr.org/2004/306


https://github.com/mattrglobal/bbs-signatures
https://github.com/microsoft/bbs-node-reference
https://github.com/microsoft/bbs-node-reference
https://identity.foundation/bbs-signature/draft-blind-bbs-signatures.txt
https://identity.foundation/bbs-signature/draft-blind-bbs-signatures.txt
https://ethresear.ch/t/cheons-attack-and-its-effect-on-the-security-of-big-trusted-setups/6692
https://ethresear.ch/t/cheons-attack-and-its-effect-on-the-security-of-big-trusted-setups/6692
https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/11832072_8
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/978-3-030-56880-1_5
https://doi.org/10.1007/978-3-030-56880-1_5
https://doi.org/10.1007/s00145-007-9005-7
https://doi.org/10.1007/s00145-007-9005-7
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://electriccoin.co/blog/new-snark-curve/
https://electriccoin.co/blog/new-snark-curve/
https://doi.org/10.1007/978-3-642-13869-0_12
https://doi.org/10.1007/978-3-642-13869-0_12
https://doi.org/10.1504/IJIPSI.2011.043729
https://doi.org/10.1504/IJIPSI.2011.043729
https://doi.org/10.1504/IJIPSI.2011.043729
https://eprint.iacr.org/2004/306

720

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

S. Tessaro and C. Zhu

Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation using the strong
diffie hellman assumption revisited. In: Franz, M., Papadimitratos, P. (eds.) Trust
2016. LNCS, vol. 9824, pp. 1-20. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45572-3_1

Camenisch, J., Lysyanskaya, A.: A Signature Scheme with Efficient Protocols. In:
Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268—289.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7_20
Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56-72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_4
Chen, L.: A DAA scheme requiring less TPM resources. In: Bao, F., Yung, M.,
Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 350-365. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16342-5_26

Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327—
350. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_19
Cheon, J.H.: Security analysis of the strong diffie-hellman problem. In: Vaude-
nay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1-11. Springer, Heidelberg
(2006). https://doi.org/10.1007/11761679_1

Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186-194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with
online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152—
168. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_10
Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33-62.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_2

Galbraith, S., Paterson, K., Smart, N.: Pairings for cryptographers. Cryptology
ePrint Archive, Report 2006/165 (2006), https://eprint.iacr.org/2006,/165
Ghoshal, A., Tessaro, S.: Tight state-restoration soundness in the algebraic group
model. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp.
64-93. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9_3
Hoang, V.T., Tessaro, S.: Key-alternating ciphers and key-length extension: exact
bounds and multi-user security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 3-32. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53018-4_1

Jao, D., Yoshida, K.: Boneh-Boyen signatures and the strong Diffie-Hellman prob-
lem. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 1-16.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03298-1_1
Looker, T., Kalos, V., Whitehead, A., Lodder, M.. The BBS Signature
Scheme. Internet-Draft draft-irtf-cfrg-bbs-signatures-01, Internet Engineering Task
Force (Oct 2022), https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-signatures/
01/, work in Progress

Maurer, U.: Unifying zero-knowledge proofs of knowledge. In: Preneel, B. (ed.)
AFRICACRYPT 2009. LNCS, vol. 5580, pp. 272-286. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02384-2_17

Patarin, J.: A proof of security in O(2") for the Benes scheme. In: Vaudenay,
S. (ed.) AFRICACRYPT 08. LNCS, vol. 5023, pp. 209-220. Springer, Heidelberg
(Jun (2008)


https://doi.org/10.1007/978-3-319-45572-3_1
https://doi.org/10.1007/978-3-319-45572-3_1
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-642-16342-5_26
https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/11761679_1
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/978-3-319-96881-0_2
https://eprint.iacr.org/2006/165
https://doi.org/10.1007/978-3-030-84252-9_3
https://doi.org/10.1007/978-3-662-53018-4_1
https://doi.org/10.1007/978-3-662-53018-4_1
https://doi.org/10.1007/978-3-642-03298-1_1
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-signatures/01/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-signatures/01/
https://doi.org/10.1007/978-3-642-02384-2_17

31.

32.

33.

Revisiting BBS Signatures 721

Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129-140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9
Pointcheval, D., Sanders, O.: Short randomizable signatures. In: Sako, K. (ed.)
CT-RSA 2016. LNCS, vol. 9610, pp. 111-126. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-29485-8_7

Sonnino, A., Al-Bassam, M., Bano, S., Meiklejohn, S., Danezis, G.: Coconut:
Threshold issuance selective disclosure credentials with applications to distributed
ledgers. In: NDSS 2019. The Internet Society (Feb 2019)


https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/978-3-319-29485-8_7

	Revisiting BBS Signatures
	1 Introduction
	1.1 Technical Overview

	2 Preliminaries
	3 New Proof for (Short) BBS Signatures
	3.1 Description and Implementation Details
	3.2 Security Analysis
	3.3 Proof of Theorem 1
	3.4 Proof of Lemma 1
	3.5 Proof of Lemma 4

	4 Tighter Proofs for BBS in the AGM
	4.1 Proof of Theorem 2

	5 Efficient Proofs of Knowledge for BBS Signatures
	5.1 Proofs of Knowledge for Signatures
	5.2 Protocols

	6 Signatures for Group Elements and Blind Issuance
	References




