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We consider the problem of optimal control of district cool-
ing energy plants (DCEPs) consisting of multiple chillers, a
cooling tower, and a thermal energy storage (TES), in the
presence of time-varying electricity price. A straightforward
application of model predictive control (MPC) requires solv-
ing a challenging mixed-integer nonlinear program (MINLP)
because of the on/off of chillers and the complexity of the
DCEP model. Reinforcement learning (RL) is an attractive
alternative since its real-time control computation is much
simpler. But designing an RL controller is challenging due to
myriad design choices and computationally intensive train-

ing.

*Corresponding author. The research reported here has been partially
supported by the NSF through award 1934322 (CMMI) and 2122313
(ECCS).

In this paper, we propose an RL controller and an MPC
controller for minimizing the electricity cost of a DCEP, and
compare them via simulations. The two controllers are de-
signed to be comparable in terms of objective and informa-
tion requirements. The RL controller uses a novel Q-learning
algorithm that is based on least-squares policy iteration. We
describe the design choices for the RL controller, including
the choice of state space and basis functions, that are found
to be effective. The proposed MPC controller does not need
a mixed integer solver for implementation, but only a nonlin-
ear program (NLP) solver. A rule-based baseline controller
is also proposed to aid in comparison. — Simulation results
show that the proposed RL and MPC controllers achieve sim-
ilar savings over the baseline controller, about 17%.



1 Introduction

In the U.S., 75% of the electricity is consumed by build-
ings, and a large part of that is due to heating, ventilation,
and air conditioning (HVAC) systems [ 1]. In university cam-
puses and large hotels, a large portion of the HVAC’s share
of electricity is consumed by District Cooling Energy Plants
(DCEPs), especially in hot and humid climates. A DCEP
produces and supplies chilled water to a group of buildings
it serves (hence the moniker “district”), and the air handling
units in those buildings use the chilled water to cool and de-
humidify air before supplying it to building interiors. Fig-
ure 1 shows a schematic of such a plant, which consists of
multiple chillers that produce chilled water, a cooling tower
that rejects the heat extracted from chillers to the environ-
ment, and a thermal energy storage system (TES) for storing
chilled water. Chillers - the most electricity-intensive equip-
ment in the DCEP - can produce more chilled water than
buildings’ needs when the electricity price is low. The ex-
tra chilled water is stored in the TES, and then used during
periods of high electricity price to reduce the total electric-
ity cost. The District Cooling Energy Plants are also called
central plants or chiller plants.

DCEPs are traditionally operated with rule-based con-
trol algorithms that use heuristics to reduce electricity cost
while meeting the load, such as “chiller priority”, “storage
priority”, and additional control sequencing for the cooling
tower operation [2—8]. But making the best use of the chillers
and the TES to keep the electricity cost at the minimum re-
quires non-trivial decision making due to the discrete nature
of some control commands, such as chiller on/off actuation,
and highly nonlinear dynamics of the equipment in DCEPs.
A growing body of work has proposed algorithms for optimal
real-time control of DCEPs. Both Model Predictive Control
(MPC) [9-17] and Reinforcement Learning (RL) [18-26]
have been studied.

For MPC, adirect implementation requires solving a
high dimension mixed-integer linear program (MINLP) that
is quite challenging to solve. Various substitutive approaches
are thus used, which can be categorized into two groups:
NLP approximations [9-12] and MILP approximations [ 13—
17]. NLP approximations generally leave the discrete com-
mands for some predetermined control logic and only deal
with continuous control commands, which may limit the po-
tential of their savings. MILP approximations mostly adopt
a linear DCEP model so that the problem is tractable, though
solving large MILPs is also challenging.

An alternative to MPC is Reinforcement Learning (RL):
an umbrella term for a set of tools used to approximate an
optimal policy using data collected from a physical system,
or more frequently, its simulation. Despite a burdensome de-
sign and learning phase, real-time control is simpler since
control computation is an evaluation of a state-feedback pol-
icy. However, designing an RL controller for a DCEP is quite
challenging. The performance of an RL controller depends
on many design choices and training an RL controller is com-
putationally onerous.

In this paper, we propose an RL controller and an MPC
controller for a DCEP, and compare their performances with

that of a rule-based baseline (BL) controller through simula-
tions. All three controllers are designed to minimize total en-
ergy cost while meeting the required cooling load. The main
source of flexibility is the TES, which allows a well-designed
controller to charge the TES in periods of low electricity
price. The proposed RL controller is based on a new learn-
ing algorithm that is inspired by the “convex Q-learning”
proposed in recent work [27] and the classical least squares
policy iteration (LSPI) algorithm [28]. Basis functions are
carefully designed to reduce the computational  burden in
training the RL controller. The proposed MPC controller
solves a two-fold non-linear program (NLP) that is trans-
formed from the original MINLP via heuristics. Hence the
MPC controller is “stand-in” for a true optimal controller and
provides a sub-optimal solution to the original MINLP. The
baseline controller that is used for comparison is designed
to utilize the TES and time-varying electricity prices (to the
extent possible with heuristics) to reduce energy costs. The
RL controller and baseline controller have the same informa-
tion about electricity price: the current price and a backward
moving average.

The objective behind this work is to compare the per-
formance of the two complementary approaches, MPC and
RL, for the optimal control of all the principal actuators in a
DCEP. The two controllers are designed to be comparable, in
terms of objective and information requirements. We are not
aware of many works that have performed such a compari-
son; the only exceptions are [25,26], but the decision-making
is limited to a TES or temperature setpoints. Since both RL
and MPC approaches have merits and weaknesses, designing
a controller with one approach and showing it performs well
leaves open the question: would the other have performed
better? This paper takes a first step in addressing such ques-
tions. To aid in this comparison, both the controllers are de-
signed to be approximations of the same intractable infinite
horizon optimal control problem. Due to the large difference
in the respective approaches (MPC and RL), it is not possible
to ensure exact parallels for an“apples—to—apples” compari-
son. But the design problems for RL and MPC controllers
have been formulated to be similar to the possible extent.

Simulation results show that both the controllers, RL
and MPC, lead to significant and similar cost savings (16-
18%) over a rule-based baseline controller. These values are
comparable to that of MPC controllers with mixed-integer
formulation reported in the literature, which vary from 10%
to 17% [13—17]. The cooling load tracking performance is
similar between them. The real-time computation burden of
the RL controller is trivial compared to that of the MPC con-
troller, but the RL controller leads to higher chiller switches
(from off to on and vice versa). However, the MPC controller
enjoys the advantage of error-free forecasts in the simula-
tions, something the RL controller does not.

The rest of the manuscript is organized as follows. The
contribution of the paper over the related literature is dis-
cussed in detail in Section 1.1. Section 2 describes the Dis-
trict Cooling Energy Plant and its simulation model as well
as the control problem. Section 3 describes the proposed RL
controller, Section 4 presents the proposed MPC controller,
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Fig. 1: Layout of District Cooling Energy Plant.

and Section 5 describes the baseline controller.  Section 6
provides a simulation evaluation of the controllers. Section 7
provides an “under-the-hood” view of the design choices for
the RL controller. Section 8 concludes the paper.

1.1 Literature Review and Contributions
1.1.1 Prior work on RL for DCEP

There is a large and growing body of work in this area,
e.g. [18-26]. Most of these papers limit the problem to con-
trolling part of a DCEP. For instance, the DCEPs considered
in [18-21, 23] do not have a TES. Refs. [18-22] optimize
only the chilled water loop but not the cooling water loop
(at the cooling tower), while [24] only optimize the cool-
ing water loop. The reported energy savings are in the 10-
20% range over rule-based baseline controllers; e.g. 15.7%
in [23], 11.5% in [18] and around 17% in [21].

The ref. [25] considers a complete DCEP, but the control
command computed by the RL agent is limited to TES charg-
ing and discharging. It is not clear what control law is used
to decide chiller commands and cooling water loop setpoints.
The work [26] also considers a complete DCEP, with two
chillers, a TES, and a large building with an air handling unit.
The RL controller is tasked with commanding only the zone
temperature setpoint and TES charging/discharging flowrate
whilst the control of the chillers or the cooling tower is not
considered. Besides, trajectories of external inputs, e.g., out-
side air temperature and electricity price, are the same for
all training days in [26]. Another similarity of [25, 26] with
this paper is that these references compare the performance
of RL with that of a model-based predictive control.

1.1.2 Prior work on MPC for DCEP

The works that are closest to us in terms of problem set-
ting are [13—15], which all reported MILP relaxation-based
MPC schemes to optimally operate a DCEP with TES in
presence of time-varying electricity prices. The paper [13]
reports an energy cost savings with MPC of about 10% over
a baseline strategy that uses a common heuristic (charge TES
all night) with some decisions made by optimization. In [14],
around 15% savings over the currently installed rule-based

help of the TES in a week-long simulation. The paper [16]
also proposes an MILP relaxation-based MPC scheme for
controlling a DCEP and approximately 10% savings in elec-
tricity cost over a baseline controller over a one-day long
simulation is reported. But the DCEP model in [16] ignores
the effect of weather condition on plant efficiency, and the
baseline controller is not purely rule-based; it makes TES
and chiller decisions based on a greedy search. The recent
paper [17] deserves special mention since it reports an ex-
perimental demonstration of MPC applied to a large DCEP;
the control objective being the manipulation of demand to
help with renewable integration and decarbonization. It too
uses an MILP relaxation.  The decision variables include
plant mode (combination of chillers on) and TES operation,
but cooling water loop decisions are left to legacy rule-based
controllers.

There is another body of work applying MPC to the con-
trol a DCEP, such as [9—12]. But they either ignore the on/off
nature of the chiller control [9, 10] or reformulate the prob-
lem using some heuristics [ 11, 12] so that the underlying op-
timization problem is naturally an NLP.

1.2 Contribution over Priori Arts
1.2.1 Contribution over “RL for DCEP” literature:
Unlike most prior works on RL for DCEPs that  only
deal with a part of DCEP [18-24], the control commands
in this work consist of all the available commands (five in
total) of both the chilled and cooling water loops in a full
DCEP. To the best of our knowledge, no prior work has used
RL to command both the water loops and a TES.  Second,
unlike some of the closely related work such as [26],  we
treat external inputs such as weather and electricity price
as RL states, making the proposed RL controller applicable
for any time-varying disturbances that can be measured in
real time. Otherwise the controller is likely to work well
only for disturbances seen during training. Third, the pro-
posed RL controller commands the on/off status of chillers
directly rather than the chilled/cooling water temperature set-
points [19, 21, 23] or zone temperature setpoints [26], which
eliminates the need for another control system to translate
those setpoints to chiller commands. Fourth, all the works
cited above rely on discretizing the state and/or action spaces
in order to use the classical tabular learning algorithms with
the exception of [22]. The size of the table will become pro-
hibitively large if the number of states and control commands
becomes large and a fine-resolution discretization is used.
Training a such controller and using it in real time, which
will require searching over this table, will become compu-
tationally challenging. That is perhaps why only a small
number of inputs are chosen as control commands in prior
work even though several more setpoints can be manipulated
in a real DCEP. Although [22] considers continuous states,
its proposed method only controls part of a DCEP with sim-
plified linear plant models, which may significantly limit its
potential of cost savings in reality. In contrast, the RL con-

controller is achieved in a real DCEP. The study [ 15] reported troller proposed in this paper is for a DCEP model consisting

a cost savings of 17% over “without load shifting” with the

of highly nonlinear equations, and the states and actions are



kept as continuous except for the one command that is natu-
rally discrete (number of chillers that are on).

While there is an extensive literature on learning al-
gorithms and on designing RL controllers,  the design of
an RL controller for practically relevant applications with
non-trivial dynamics is quite challenging. RL’s performance
depends on myriad design choices, not only on the stage
cost/reward, function approximation architecture and basis
functions, learning algorithm and method of exploration, but
also on the choice of the state space itself. A second chal-
lenge is that training an RL controller is computationally in-
tensive and brute force training is beyond the computational
means of most researchers. For instance, The hardware cost
for a single AlphaGo Zero system in 2017 by DeepMind has
been quoted to be around $25 million [29].  Careful selec-
tion of the design choices mentioned above is thus required,
which leads to the third challenge: if a particular set of de-
sign choices leads to a policy that does not perform well,
there is no principled method to look for improvement. Al-
though RL is being extensively studied in the control com-
munity, most works demonstrate their algorithms on plants
with simple dynamics with a small number of states and in-
puts; e.g. [30, 31]. The model for a DCEP used in this paper,
arguably still simple compared to available simulation mod-
els (e.g. [32]), is quite complex: it has 8 states, 5 control
inputs, 3 disturbance inputs, and requires solving an opti-
mization problem to compute the next state given the current
state, control, and disturbance.

1.2.2 Contribution over “MPC for DCEP” literature:

The MPC controller proposed here uses a combination
of relaxation and heuristics to avoid the MINLP formulation.
In contrast to [13—17], the MPC controller does not use a
MILP relaxation. The controller does compute discrete de-
cisions (number chillers to be on, TES charge/discharge) di-
rectly, but it does so by using NLP solvers in conjunction
with heuristics. The cost saving obtained is similar to those
reported in earlier works that use MILP relaxation. Compar-
ing other NLP formulations [9-12], our MPC controller de-
termines the on/off actuation of equipments and TES charg-
ing/discharging operation directly.

Closed-loop simulations are provided for all three con-
trollers, RL, MPC, and baseline, to assess the trade-offs
among these controllers, especially between the model-based
MPC controller and the “model-free” RL controller.

1.2.3 Contribution over a preliminary version:

The RL controller described here was presented in a pre-
liminary version of this paper [33]. There are three improve-
ments. Firstly, an MPC controller, which is not presented
in [33], was designed, evaluated, and compared with our RL
controller. Therefore, the optimality of our control with RL
is better assessed. Another difference is that the baseline
controller described here is improved over that in [33] so
that the frequency of on/off switching of chillers is reduced.

Lastly, a much more thorough discussion of the RL controller

design choices and their observed impacts are included here

than in [33]. Given the main challenge with designing RL
controllers for complex physical systems discussed above,
namely, “what knob to tweak when it doesn’t work?”, we
believe this information will be valuable to other researchers.

2 System description and control problem

The DCEP contains a TES, multiple chillers and chilled
water pumps, a cooling tower and cooling water pumps, and
finally a collection of buildings that uses the chilled water to
provide air conditioning; see Figure 2. The heat load from
the buildings is absorbed by the cold chilled water supplied
by the DCEP, and thus the return chilled water temperature
is warmer. This part of the water is called load water, and
the related variables are denoted by superscript Iw for “load
water”. The chilled water loop (subscript chw) removes this
heat and transmits it to the cooling water loop (subscript cw).
The cooling water loop absorbs this heat and sends it to the
cooling tower, where this heat is then rejected to the ambient.
The cooling tower cools down the cooling water returned
from the chiller by passing both the sprayed cooling water
and ambient air through a fill. During this process, a small
amount of water spray will evaporate into the air, removing
heat from the cooling water. The cooling water loss due to its
evaporation is replenished by fresh water, thus we assume the
supply water flow rate equals to the return water flow rate at
the cooling tower. A fan or a set of fans is used to maintain
the ambient airflow at the cooling tower. Connected to the
chilled water loop is a TES tank that stores water (subscript
tw). The total volume of the water in the TES tank is con-
stant, but a thermocline separates two volumes: cold water
that is supplied by the chiller (subscript twe for “tank water,
cold”) and warm water returned from the load (subscript tww
for “tank water, warm”).

2.1 DCEP dynamics

Assuming time is discretized with a sampling period ¢ ¢
with a counter £ = 0, 1, --- denoting the time step. With the
consideration of hardware limits and ease of implementation,
the control commands are chosen as follows:

1. 17'1}{‘”, the chilled water flowrate going through the cooling
coil, to ensure the required cooling load is met.

2. "™, charging/discharging flowrate of the TES, to take
advantage of load shifting.

3. n*", the number of active chillers to ensure the amount
of chilled water required is met and the coldness of the
chilled water is maintained.

4. m®v, the flowrate of cooling water going through the
condenser of chillers to absorb the heat from the chilled
water loop.

5. m°, the flowrate of ambient air that cools down the cool-
ing water to maintain its temperature within the desired
range.

Therefore, the control command  is:

Ui .= [nh}{w) }’i’l}cwy I’l](éh: I’I"lzw) n./lza]T eu.

(M
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Fig. 2: Detailed description of District Cooling Energy Plant.

Each of these variables can be independently chosen as set-
points since lower level PI-control loops maintain them.
There are limits to these setpoints which determine the ad-

missible input set U C {0, - - - » } x R*:
U:A{(),.. }x[m ]>< it ]
max mm mm maX A
X[mmm’mmax] x ?r?in max] - RS (2)
Since the TES can be charged and discharged, we declare

m™ > 0 for charging and m™ < 0 for discharging as a con-
vention.
The state of the DCEP x” is:

=A [ ler Stww Stwc’ Tktwc Tktww Tchw S Tcwr TCW S]T )

where SV, S™ are the fractions of the warm water and cold
water in the TES tank, S™% + S™° = [, The other state
variables are temperatures at various locations - supply (sub-
script “»s”) and return (subscript “,7”) - in each water loop:
load water, cooling water, tank water, and chiller; see Fig-
ure 2 for details. All the plant state variables x” can be mea-
sured with sensors. The superscript “p” of x emphasizes that
x? is the state of the “plant”, not the state in the reinforcement
learning method that will be introduced in Section 3.3.

The plant state x” is affected by exogenous disturbances
wl = [T, g™ € R, where g™ is the required cool-
ing load, the rate at which heat needs to be removed from
buildings, and 7 k"a"’b is the ambient wet bulb temperature.
The disturbance wf cannot be ignored, e.g., ambient wet-
bulb temperature plays a critical role in cooling tower dy-
namics.

The control command and disturbances affect the state
through a highly nonlinear dynamic model:

= fupwy), “)

k+1

that is described in detail in [34]. The dynamics (4) are im-
plicit: there is no explicit function f'(-) that can be evaluated
to obtain x4+ 1. The reason is that all the heat exchangers (in
the building cooling coils, in each chiller, and in the cool-
ing tower) have limited capacities. Depending on the cool-
ing load, number of active chillers, and the outdoor air wet-
bulb temperature, one of the heat exchangers might saturate.
Meaning, it will then only deliver as much exchange as its
capacity, less than what is desired due to the load. =~ Which
heat exchanger will saturate first depends on the current state
and disturbance and control in a complex manner. Hence,
some form of iterative computation is required to simulate
the dynamics, e.g., the method developed in [35]. A gener-
alized way to perform the iterative update to account for the
limits of heat exchange capacities is by solving a constrained
optimization problem, which is the method used in this work.
The method is described in detail in [34].

Here we provide an outline for use in the sequel. First,
define the decision variable z as:
A T
= R0 g i a (5)

where x” is defined in (3), ¢" is the cooling load met by the
DCEP, ¢ and g are the cooling provided by chillers and

cooling towers. Then the value of z; is computed by solving
the following optimization problem:

z;=arg  min rlgk = qL’rEf"
k~ k k
2, EQ( p,wp:uk)
chw,s — -chw,s CW,S — CW,S
t Rl T T T 1+ il LT~ T ™l (6)

where TS and TS are pre-specified setpoints that reflect
DCEP nominal working conditions and #, 7>, and 73 are pos-
itive design choices, with r| > r;,r3 to promote load track-
ing. The set Q(x{>w?>uy) is defined by the dynamics and

constraints of the DCEP system, including the dynamics of



the various heat exchangers and the TES, and the capacity
limits of the heat exchangers in the buildings’ air handling
units, chillers, and the cooling tower. Please refer to [34]

for the derivation of Q(x{>w?>u). When the required cool-

ing lo 'qk’ref is within the capacity of all the heat exchangers,

then the solution to (6) yieldsg} = qk’ref. When the required

load exceeds the capacity of the DCEP, then (6) will lead to
a solution that trades off maintaining nominal setpoints and

meeting the cooling load, while respecting the limits of the

heat exchangers. The solution leads to the next state )€+ | (as
the first component of z,t), and thus (6) implicitly defines the
model f(+). In this paper, we use CasADi/IPOPT [36, 37] to
solve (6) for simulating the plant.

2.2 Electrical demand and electricity cost

In the DCEP considered, the only energy used is elec-
tricity. The relationship between the thermal quantities and
the electricity consumption in chillers and cooling tower are
complex. We model the chillers power consumption P
as [38]:

CW,8

h — k
P]: - ( Tchw,s
k

cW,S

TG Bt BT B
k

(7

Power consumption of water pumps is modeled using the
black-box model in [13]:

chw’pump = oy In(1+ cpmf™) + azmi™ + our  (8)
P]:w,pump =y ln(l + YZsz) + Y3mlccw+ Y4 (9)

Finally, the electrical power consumption of the cooling
tower mainly comes from its fan and is modeled as [39]:

Pt = Mii?)>- (10)
The constants o> 3;>¥;, and A are empirical parameters. The
total electric power consumption of the DCEP is:

tot _ pch ct chw,pump CW>pump
Pt= P+ pt+ pf + P :

(11)

2.3 Model calibration and validation

The parameters of the simulation model in Section 2.1
and electrical demand model in Section 2.2 are calibrated
using data from the energy management system in United
World College (UWC) of South East Asia Tampines Cam-
pus in Singapore, shown in Figure 3b. The data is publicly

available in [40], and details of the data are discussed in [41].
There are three chillers and nine cooling towers in the DCEP.

The data from chiller one and cooling tower one are used for
model calibration. We use 80% of data for model identifi-
cation and 20% of data for verification. The out-of-sample
prediction results for the total electrical demand are shown in
Figure 3. Comparison between data and prediction for other
variables are not shown in the interest of space.
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prediction for P using the calibrated model (7). 7% is
the ambient dry-bulb temperature.

2.4 The (ideal) control problem
The electricity cost incurred during the k-th time step is:

CIIE = tskatOtx

(12)

where P/ is the total electric power consumed in k and is

defined in (11). The goal of operating the DCEP to minimize
electricity cost while meeting the required cooling loadq'k’ref
can be posed as the following infinite horizon optimal control

problem.

o

i E 13
s.t. X£+1 = f(xf’uk:wf), xg =X

xf € Xp(wf), ur € U(xi)wk) (14)

Gkl u) = ™" (15)

where py (%) is the electricity price. The state X, input u,

and disturbance wi of the DCEP are defined in Section 2.1;
qk (“L” stands for “load”) represents the actual cooling load
met by the DCEP, which is a function of x # and uy. The
bounds for x? and u; are XP(wy) and U(x{>wy). The reason



these sets are dependent on the state or disturbance can be
found in the description of the dynamic model of the plant
in [34].

Even when truncated to a finite planning horizon con-
sidered, Problem (13) is an MINLP due to n zh being an in-
teger and the nonlinear dynamics (4). In the sequel, we pro-
pose two controllers to solve approximations of this idealized
problem.

3 RL basics and proposed RL controller
3.1 RL basics

For the following construction, let x represent the state
with state space X and u the input with input space U(x).
Now consider the following infinite horizon discounted opti-
mal control problem:

o

J(x) = mUin ; vee(xe we),

=0

(16)

X()=)B

st xpe1 = Fxpug), ur € Ulxg),

where U =A{ up e XxU S R0 s the stage cost,
¥ € (0, 1) is the discount factor, F(-, -) defines the dynam-
ics, andJ" : X = R* is the optimal value function. The
goal of the RL framework is to learn an approximate opti-
mal policy ¢ : X — U for the problem (16) without requiring
explicit knowledge of the model F (-, ©). The learning pro-
cess is based on the Q function.  Given a policy ¢ for the
problem (16), the O function associated with this policy is
defined as

Op(xou) = ; vee(xpur), xo=x up= w 17
=0

where for k 2 0 we have x4+ = F(xpuy) and for k 2 1 we
have u, = ¢(xz). A well-known fact is that the optimal policy
satisfies [42]:

¢ (x) = argmin QO (wu), forall xEX, (18)
u€U(x)

where O 4 Oy is the O function for the optimal policy. Fur-
ther, for any policy ¢ the QO function satisfies the following
fixed point relation:

Oylv) = (o) +70p x0(") + (19)

forallu € U(x), x € X, and x™ = F(x-u). The above rela-
tion is termed here as the fixed-policy Bellman equation. If

the optimal Q-function can be learned, the optimal control
command uz is computed from the Q-function as:

O (xpu), (20)

= ¢ (x) = arg min
k

3.2 Proposed RL algorithm

The proposed learning algorithm has two parts: policy
evaluation and policy improvement. First, in policy eval-
uation, a parametric approximation to the fixed policy Q-
function is learned by constructing a residual term from (19)
as an error to minimize. Second, in policy improvement, the
learned approximation is used to define a new policy based
on (18). For policy evaluation, suppose for a policy ¢ the O
function is approximated as:

Op(x>u) ~ Of (x> u) 1)

where Q$(~, -) is the function approximator (e.g., a neural

network) and 8 € R? is the parameter vector (e.g., weights
of the network). To fit the approximator, suppose that the
system is simulated for Tg, time so that T, tuples of
(x> ugr x4+ 1) are collected to produce T, values of:

d(8) = c(xp ur) +yO) (xer 1 Ok 1)) — Of (o i), (22)

which is the temporal difference error for the approxima-
tor. We then obtain 8" by solving the following optimization
problem:

0" 4 arg minl D(O)I ,+ al 6~ ol 2
0 (23)
0
st. Qp= 0

where D(6) 4 [do(B),...dr,,-1(0)]. The term 16~ 615 is
aregularizer and o isagain. The values of 0 and a are
specified in step 3) of Algorithm 1. The non-negativity con-
straint on the approximate Q-function is imposed since the
Q-function is a discounted sum of non-negative terms (17).
How it is enforced is described in Section 3.3.3. The solu-

tion to (23) results in Qg*, which is an approximation to Q.
The quantity Qg* can be used to obtain an improved policy,
denoted ¢*, through

¢" (x) = arg min ) Qg* (xou), forall xeX 24)

uCU(x

This process of policy evaluation (23) and policy improve-
ment (24) are repeated. This iterative procedure is described
formally in Algorithm 1, with N, denoting the number of
policy improvements.

This algorithm is inspired by: (i) the Batch Convex-
Q learning algorithm found in [27, Section III] and (ii) the
least squares policy evaluation (LSPI) algorithm [28]. The
approach here is simpler than the batch optimization prob-
lem that underlies the algorithm in [27, section III], which
has an objective function that itself contains an optimization
problem. In comparison to [28] we include a regularization
term that is inspired by proximal methods in optimization
that aids convergence, and a constraint to ensure the learned
Q-function is non-negative.



Algorithm 1: Data Driven Policy Iteration: Batch
mode and off-policy

Result: An approximate optimal policy ¢pNeol (x).
Input: Tgim, 6%, Npol, B > 1
forj=0,...,0;" 1do

1) Follow an exploration stategy and obtain
input sequence { ui} I;i‘(;ﬁ 1, initial state xé, and
state sequence {x/} s,

2)Fork=1,..., §m, obtain:
¢/ (x) = arg minueU(x}{.) Qg~/(x£, u).

3) Set 0=0 anda= é appearing in (23).

4) Use the samples {ui}zzsi‘g_ r {x,’;};;“g;, and
{o/(x0)} Z;“? to construct and solve (23) for8”.

5)Set®/*1 = 9"

end

3.3 Proposed RL controller for DCEP

We now specify the ingredients required to apply Al-
gorithm 1 to obtain an RL controller (i.e., a state feedback
policy) for the DCEP from simulation data. Namely, (1) the
state description, (2) the cost function design, (3) the approx-
imation architecture, and (4) the exploration strategy. Parts
(1), (2), and (3) refer to the setup of the optimal control prob-
lem that the RL algorithm is attempting to approximately
solve. Part (4) refers to the selection of how the state/input
space is explored (step 1 in Algorithm 1).

3.3.1 State space description

In RL, the construction of the state space is an important
feature, and the state is not necessarily the same as the plant
state. To define the state space for RL, we first denote wy, as
the vector of exogenous variables:

we = [(w)) s ppl € R 25)

where py = % Efz Pt 1s a backwards moving average of
the electricity price. The expanded state for RL is:

2 (26)

2wl EXEC R

Note that with the state defined by (26),a state feedback pol-
icy is implementable since all entries of x ; can be measured
with commercially available sensors (e.g., outside wet-bulb
temperature, 7,,,p), or estimated from measurements (e.g.,
the thermal load from buildings, ¢“'"), or known via real-
time communication (e.g., the electricity prices, p; and py).

3.3.2 Design of stage cost

The design of the stage cost is also an important aspect

of RL. We wish to obtain a policy that tracks the load 'q,];’ref

whilst spending a minimal amount of money, as described in
section 2.4. Therefore we choose:

.Loref 2

Lo—
qx ’

A
clxpur) = cE+x gk 27

where x is a design parameter; ¥ > 1 will prefer load track-
ing over energy cost.

3.3.3 Approximation architecture

We choose the following linear-in-the-parameter  ap-
proximation of the O function:
d
Qg(x, u) = E Pe(xu)0es (28)
=1

where ¢(x>u) are nonlinear basis functions and 6 € RY is
the parameter vector. We elect a quadratic basis, so that each
Pe(x>u) is of the form xu, X%, oru?. Specifically, a subset
of all possible quadratic terms is chosen as the basis. More
on this subset is provided in Section 7. We can equivalently
express the approximation (28) as:

04 u) =[x u] Pyl u]” (29)
for appropriately chosen Pg. In this form, it is straightfor-

ward to enforce the constraint in (23) by enforcing the con-
vex constraint B = 0.

3.3.4 Exploration strategy

Exploration refers to how the state/input sequences ap-
pearing in step 1) of Algorithm 1 are simulated. We utilize
a modified ¢~ greedy exploration scheme. At time step & of
iteration j, we obtain the input u fc from one of three meth-
ods: (i) by using the policy in step 2) of Algorithm 1,  (ii)
electing uniformly random feasible inputs, and (iii) using a
rule-based baseline controller (described in Section 5). The
states are obtained sequentially through simulation, starting
from state x(’) for each j. The choice to use either of the three
controllers is determined by the probability mass function
Vixp € R®, which depends on the iteration index of the policy
iteration loop:

[050-1,0-9]
[0-5,0-25,0.25]

forj < 5.
forj > 5.

J =
exp

(30)

The entries correspond to the probability of using the corre-
sponding control strategy, which appears in the (i)-(iii) order
as just introduced. The rationale for this choice is that the
BL controller provides “reasonable” state input examples for
the RL algorithm in the early learning iterations to steer the
parameter values in the correct direction. After this early
learning phase, weight is shifted towards the current working
policy to force the learning algorithm to update the parameter
vector in response to its actions.



3.3.5 Training settings

The policy evaluation problem (23) during training is
solved using CVX [43]. The simulation model (4) to gener-
ate state updates, which requires solving a non-convex NLP,
is solved using CasADi and IPOPT [36, 37].

The parameters used for RL training are y= 0-97,d =
36, k = 500, B = 100, Tim = 432 and Ny = 50. The pa-
rameter T for the backward moving average filter on the elec-
tricity price is chosen to represent 4 hours. The choice of
the 36 basis functions is a bit involved; they are discussed in
Section 7. Because a simulation time step, kto k + 1, cor-
responds to a time interval of 10 minutes, T, = 432 corre-
sponds to 3 days. The controller was trained with weather
and load data for the three days Oct. 10-12, 2011, from the
Singapore UWC campus dataset described in Section 2.3.
The electricity price data used for training was taken as a
scaled version of the locational marginal price from PJM [44]
for the three days Aug. 30 - Sept. 1, 2021.

3.4 Real time implementation
Once the RL controller is trained, it computes the con-
trol command u; in real-time as:

€2))

- 0" () = aremin O
= = arg min su),
ue = ¢ (xk) gmin | Oy (ko )

where 0 is the parameter vector learned in Algorithm 1. This
6 needs not to be ONrel but the one with the best closed-loop
performance, which is explained later in Section 6.2.

Due to the non-convexity of the setJ(x;) and the integer
nature of n ,ih, the problem (31) is non-convex and integer-
valued. We solve it using exhaustive search: for each possi-
ble value of rt,ih, we solve the corresponding continuous vari-
able non-linear program using CasADi/IPOPT [36, 37], and
then choose the minimum out of (5. +1) solutions by direct
search. Direct search is feasible because n & for DCEPs is

a small number in practice (7£1,, = 7 in our simulated exam-
ple).

4 Proposed Model Predictive Controller

Recall that a straightforward translation of (13) to MPC
will require solving the following problem at every time in-
dex k (here we only describe the one at £ = 0 to avoid cum-
bersome notation):

Tplan—
min ; b, (32)
L
s.t. xiﬂ = f(xf;uk,wi), xg =X
Xy EXP(wY),  ux € UG wy)
. .Loref
Q%(xi’ ur) = gy “

where c% is defined in (12), andTP!¥" is the planning horizon.
Even for a moderate planning horizon TP the optimization

problem (32) will be a large MINLP. We now describe an
algorithm that uses a dynamic model of the DCEP to ap-
proximately solve (32) without needing to solve an MINLP
or even an MILP. This algorithm, which we call MBOC, for
Model Based (sub) Optimal Controller, is then used to im-
plement MPC by repeatedly applying it in a receding hori-
zon setting as new forecasts of external disturbances become
available.

The first challenge we have to overcome is not related
to the mixed-integer nature of the problem but is related to
the complex nature of the dynamics. Recall from Section 2.1
that the dynamic model, i.e., the function /' in the equality
constraint xz+ 1 = f() in (4) is not available in explicit form;
rather the state is propagated in the simulation by solving an
optimization problem. Without an explicit form for the func-
tion £ (+), modern software tools that reduce the drudgery in
nonlinear programming, namely numerical solvers with au-
tomatic differentiation, cannot be used.

We address this challenge by substituting the implicit
equality constraint x?, = f(x}>up> w¥) in (32) with the un-
derlying constraints Qx(-) in (6), and add the objective of (6)
to the objective of (32). The modified problem becomes:

Tplan -1

kz ol
=0

bR TN - TS,
xZH € Qk(xz:uk: Wi), Xg =X
xp EXP(WY),  ux € U(ds wy).

.L — .L.refy 2 chw,s —
o =+ I I Tk+l

qr g Tchw,s |2

min set

U

(33)

s.t.

Since the input nzh

{01, nSh J,
MINLP.

The proposed algorithm to approximately solve (33)
without using an MINLP solver or an MILP relaxation con-
sists of three steps. These are listed below in brief, with more
details provided subsequently.

takes integer value in the set
the problem (33) is still a high-dimensional

1. The integer variable n " € [0, 1, - - - <" ] is relaxed to
a continuous one n°"¢ € [0, nh 1. The relaxed problem,
an NLP, is solved using an NLP solver to obtain a locally
optimal solution. In this paper, we use IPOPT (through
CasADi) to solve this relaxed NLP.

2. The continuous solution { n,cch’c}lflgn_l ER™", result-
ing from Step 1, is processed by using Algorithms 2
and 3 to produce a transformed solution that is integer-

valued, which is denoted by { nzh’d }If‘g"— I

3. In Problem (33), the input { nSh}T2" ™1 = ¢ nS)TE 1
is fixed at the values obtained in Step 2, and the resulting
NLP is solved again. The resulting solution is called the
model-based sub-optimal solution (MBOC).

In the sequel, we will refer to a vector with non-negative
integer components, x € Z", as an n-length discrete signal.
For a discrete signal x € Z", the number of switches, Nywitch,



is defined as the number of times two consecutive entries
differ: Ngwitch := E?z_ll I(x; ~ x;+1), where I(*) is the indicator
function: 7(0) = 0 and I(y) = 1 for y & 0.

The continuous relaxation in Step 1 is inspired by branch
and bound algorithms for solving MINLPs, since such a re-
laxation is the first step in branch and bound algorithms.
However, a simple round-off-based method to convert the
continuous variable 7 "¢ to a discrete one leads to a high
number of oscillations in the solution. This corresponds to
frequent turning on and off of one or more chillers, which is
detrimental to them.

Step 2 converts the continuous solution from Step 1 to
a discrete signal, and involves multiple steps in itself. The
first step is Algorithm 2, which filters the signal n *¢ with
a modified moving average filter with a two-hour window
(corresponding to 12 samples with a 10-minute sampling pe-
riod) and then rounding up the filtered value to the near-
est integer. Thus by operating the moving average filter on
nt¢ one obtains a discrete signal for the chiller command
n"/ = moving average round(n"*°).

Algorithm 2: x4 = moving.average round (x)
Input: Signal x € Z", w € Z* (window length)

fori=1:w

x4[i] = Imean(x[1 : i+ w/2])]
end
fori= w2+ 1:n" w2

xqli] = mean(x[i = w/2 : i+ w/2])]
end
fori=n=-w/2+1:n

x4[i] = Imean(x[i = w/2 : end])]
end

Output: Discrete signal x4

The rounding moving average filter typically does not
reduce the switching frequency sufficiently.  This is why
an additional step, Algorithm 3, described below, is used
to operate on this signal ~and produce the output M7 ;=
reduce_switching(n"/) that has fewer switches.

The need for Step 3 is that the chiller command { n"?}
at the end of the second step, together with other variables
in the solution vector from Step 1, may violate some con-
straints of the optimization problem (33). Even iff xi + 1} and

{n°™?} are feasible, the resulting control commands may not
track the cooling load adequately. Step 3 ensures a feasible
solution and improves tracking.

Forecasts: Implementation requires the availability of
the forecasts of disturbance w f , 1.e., cooling load reference
and electricity price, over the next planning horizon. There
is a large literature on estimating and/or forecasting loads
for buildings and for real-time electricity prices; see [45—47]
and references therein. The forecast of T’ k"aWb is available
from National Weather Service [48]. We therefore assume

the forecasts of the three disturbance signals, q,];’ref, T, kOaWb,

Algorithm 3: x,; = reduce switching(x)

Input: Discrete signal x € 2" and w € Z* (window
length)
1: Obtain indices of the entries of x that are not to
be changed, index freezed, as follows:
Initialize index freezed = zeros(n,1) # Array of
dimension n with all entries zero
fori=1:n
if Nywitch (X[ = w:1]) =0
index freezed[i] — 1
end

2: Initialize X,s: X,5[i] = x[i] for each i such that
index freezed[i]=1.
3: For each i in index _freezed which is 0:

Find all the consecutive 0 entries till the next 1. Let
these indices be 7/, and define y; = [ mean(x[I])].
Set x,5[/] « y; for every i€ IL.

Set index freezed[[!] — 1

end
Output: X,

and pg, are available to the MPC controller at each k.

5 Rule-based Baseline Controller

In order to evaluate the performances of the RL and
MPC controllers, we will compare them to a rule-based
baseline controller (BL). The proposed baseline controller
is designed to utilize the TES and time-varying electricity
prices (to the extent possible with heuristics) to reduce en-
ergy costs. The RL controller and baseline controller have
the same information about the price: the current price py
and a backward moving average p;. At each timestep &,
the baseline controller determines the control command ¢ =
[l s néh, i, @7 following the procedure shown in
Figure 4. The flowcharts are elaborated in [34] and briefly
explained in Section 5.1 and 5.2. The subscript “sat” indi-
cates the variable is saturated at its upper or lower bounds;
the numerical values of the bounds used in simulations are
shown in Table 1. For estimating the outputs under nomi-
nal conditions and the time-dependent bounds, please refer
to [34].

5.1 For chilled water loop

1. Attime step &, n ;h, m}{w and in}{“’ are initialized to n,i}l "
Y | and infY .

2. The BL controller increases or decreases in}cw by a fixed
amount (10 kg/sec.) if py is 5% lower or higher than
Py in order to take advantage of time-varying electricity
price.

3. The BL controller estimates 7

lw,l‘ ChW,S WC
T, SPS under

k10 A1 o
; sbp = ~ch — ch_.ch lw,r
the assumption of ™ = 0 and g}" = ny'¢5 Yy, Ty,
TEMS, S are within their bounds, the current control

command for the chilled water loop is executed. Other-



Table 1: Simulation Parameters
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wise, the controller repeatedly increases/decreases sy
and int™ by a fixed amount (10 kg/sec), and " by 1 un-
il 7,77, TS, and B¢ are within their bounds. Since
Y + ™ determines the minimum required 7", the fi-
nal nzh is readjusted to meet the minimum required nzh.

For cooling water loop

1. mg¥ and in}? are initialized to in{¥ | and in2 |.

2. The BL controller estimates 7',."; by assuming a fixed
fraction of electric power consumed by chillers is added
into the cooling water loop. This fraction is to be esti-
mated from historical data. If 7,3";" is above/below its
bound, 72{" is increased/decreased by a fixed amount
(20 kg/sec) repeatedly until 7;;" is within its bound.

3. Once m3" is determined, the capacity of cooling tower
¢, and the required cooling * ¢%, , that cools down

T to Tyt ™ is computed. If ¢, < ¢ < 1-16%,

then the current control command for the cooling water

loop is executed. If gfjp , < ¢, or ¢{ip = 1-165, 4

nip? is increased or decreased by a fixed amount (0.05

kg/sec.). Since g{iy , depends on the ambient wet-bulb

temperature 7T k°aWb (illustrated in [34]), there can be a
case that ¢{j . cannot satisfy ¢, , < ¢{ig, < 1-14%, ,
even when in?? is already at its bound. In this case, 7"
is varied by a fixed amount (20 kg/sec) repeatedly until

CW,I . ct e .
w1 and gig ; are within their bounds.

6 Performance evaluation
6.1 Simulation setup

Simulations for closed-loop control with RL, MPC, and
baseline controllers are performed for the week of Sept.  6-

12, 2021, which we refer to as the festing week in the sequel.

The weather data for the testing week is obtained from the

Singapore data set described in Section 2.3. The real-time
electricity price used is a scaled version of PJM’s locational
margin price for the same week [44]. Other relevant simu-
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Yes g2 out of the,_NO
bound ?

Fig. 4: Baseline Controller

lation parameters are located in Table 1. There is no plant-
model mismatch in the MPC simulations. In particular, since
the forecasts of disturbance signals are available in practice
(see the discussion at the end of Section 4), in the simulations
the MPC controller is provided with error-free forecasts in
the interest of simplicity.

We emphasize that the closed-loop results with the RL
controller presented here are “out-of-sample” results, mean-
ing the external disturbance wy (weather, cooling load, and
electricity price) used in the closed-loop simulations are dif-
ferent from those used in training the RL controller.

Four performance metrics are used to compare the three
controllers. The first is the energy cost incurred. The sec-
ond is the Root Mean Square Error (RMSE) in tracking the
cooling load reference:

'y

l Nsim " ’ 2
L, _ .
eruse = ———— S (g Tap)? . (34
Nmm 1:1

where Ngin is the duration for which closed-loop simulations
are carried out, which in this paper is 1008 (corresponding
to aweek: 7% 24 * 6). The third is the number of chiller



switches over the simulation period:

Ngim ™ 1

1m
h - h — _ch
ngwitch - AE |nl?r+1 I’l]i : (35)
=1

Fast cycling decreases the life expectancy of a chiller greatly.
The fourth is control computational time during closed-loop
simulations.

6.2 Numerical Results and Discussion

A summary of performance comparisons from the sim-
ulations is shown in Table 2. All three controllers meet the
cooling load adequately (more on this later), and both the RL
and MPC controllers reduce energy cost over the baseline by
about the same amount (16.8% for RL vs. 17.8% for MPC).
These savings are comparable with those reported in the lit-
erature for MPC with MILP relaxation and RL.

In terms of tracking the reference load, both RL and
MPC again perform similarly while the baseline controller
performs the best in terms of the standard deviation of track-
ing error; see Figure 5 and Table 2.  The worst tracking
RMSE is 61 kW, which is a small fraction of the mean load
(1313 kW). Thus the tracking performance is considered ac-
ceptable for all three controllers. The fact that the baseline
performs the best in tracking the cooling load is perhaps not
surprising since it is designed primarily to meet the required
load and keep chiller switching low, with energy cost a sec-
ondary consideration.

In terms of chiller switches, the RL controller performs
the worst; see Table 2. This is not surprising because no cost
was assigned to higher switching in its design. The MPC per-
forms the best in this metric, again most likely since keeping
switching frequency low was an explicit consideration in its
design. Ironically, this feature was introduced into the MPC
controller after an initial design attempt without it, which led
to a high switching frequency.

In terms of real-time computation cost, the baseline per-
forms the best, which is not surprising since no optimization
is involved. The RL controller has two orders of magnitude
lower computation cost compared to MPC. The computation
time for all controllers is well within the time budget since
control commands are updated every 10 minutes.

Deeper look: Simulations are done for a week, but the
plots below show only two days to avoid clutter. The cost
savings by RL and MPC controller come from their ability
to use the TES to shift the peak electric demand to periods of
low price better than that of the baseline controller; see Fig-
ure 6. The MPC controller has the knowledge of electricity
price along the whole planning horizon, and thus achieves
the most savings. The cause for the cost-saving differences
between BL and RL controllers is that ~ the RL controller
learns the variation in the electricity price well, or at least
better than the BL controller. This can be seen in Figure 7.
The RL controller always discharges the TES (S ™° drops)
during the peak electricity price while the baseline controller
sometimes cannot do so because the volume of cold water is

already at its minimum bound. The BL controller discharges
the TES as soon as the electricity price rises, which may re-
sult in insufficient cold water stored in the TES when the
electricity price reaches its maximum. While both the RL
and BL controllers are forced to use the same price informa-
tion (current and a backward moving average), the rule-based
logic in the baseline controller cannot use that information as
effectively as RL.
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Fig. 5: Load tracking performances of the MPC, RL, and BL

controllers: The “Ref” is cooling required 'qi’ref.
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Fig. 6: Power consumption vs. real-time electricity price for
the MPC, RL, and BL controllers.
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Fig. 7: TES cold water volume vs. real-time electricity price
for the MPC, RL, and BL controllers.

An alternate view of this behavior can be obtained by
looking at the times when the chillers are turned on and off,



Table 2: Comparison of RL, MPC, and baseline controllers (for a week-long simulation).

Total cost ($) | eryse (kW) | No. of switches | Control computation time (sec, u* o)
Baseline 3308 4.14¢-4 45 8.9e-5+ 3.9¢e-4
RL 2752 1.85 114 0.32% 0.01
MPC 2719 61.38 65 27.33+ 599

since using chillers costs much more electricity than using
the TES, which only needs a few pumps. We can see from
Figure 8 that all controllers shift their peak electricity de-
mand to the times when electricity is cheap.  But the rule-
based logic of the BL controller is not able to line up electric
demand with the low price as well as the RL and MPC con-
trollers do.
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Fig. 8: Required cooling load vs. real-time electricity price
for the MPC, RL, and BL controllers.

Another benefit of the RL controller is that it typically
activates fewer chillers than the BL controller, though the
cost of running active chillers is not incorporated in the cost
function; see Figure 9. This effect may increase the life ex-

pectancy of the DCEP.
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Fig. 9: Number of active chillers vs.  real-time electricity
price for the MPC, RL, and BL controllers.

7 Under the hood of the RL controller
More insights about why the learned policy works under
various conditions can be obtained by taking a closer look

at the design choices made for the RL controller. All these
choices were the result of considerable trial and error.

Choice of basis functions The choice of basis to ap-
proximate the Q-function is essential to the success of the
RL controller. It defines the approximate Q-function, and
consequently the policy (31). Redundant basis functions can
lead to overfitting, which causes poor out-of-sample perfor-
mance of the policy. We avoid this effect by selecting a re-
duced quadratic basis, which are the 36 unique non-zero en-
tries shown in Figure 10. Another advantage of reducing the
number of basis functions is that it reduces the number of
parameters to learn, as training effort increases dramatically
with the number of parameters to learn.

The choices for the basis were based on physical intu-
ition about the DCEP. First, basis functions can be simplified
by dropping redundant states. One example is S™¥. Since
S™¢ and S™¥ are dual terms: S™¢+ S™V = 1, so one of
them can be dropped. Considering that the S™° reflects the
amount of cooling saved in the TES, we dropped S™V. An-
other example is the term T™", which is dropped since it is
bounded by 7™* which is already included in the basis func-
tion. Second, if two terms have a strong causal or depen-
dent relationship, e.g., m™ and 7™ then the corresponding
quadratic term m™ 7™ should be selected as an element of
the basis. Third, if two terms have minimal causal or de-
pendent relationship, e.g., 7m° and m™ (they are from dif-
ferent equipment and water loops), then the corresponding
quadratic term n°#i™ should not be selected as an element
of the basis.

Choice of States Exogenous disturbances have to be in-
cluded into the RL states to make the controller work under
various cooling load, electricity price, and weather trajecto-
ries that are distinct from what is seen during training. With-
out this feature, the RL controller will not be applicable in
the field.

Convergence of the learning algorithm: The learn-
ing algorithm appears to converge in training, —meaning,
16, — 041! is seen to reduce as the number of training epochs
k increases; see Figure 11. This convergence should not be
confused with convergence to any meaningful optimal pol-
icy. The policy learned in the 40th iteration can be a better-
performing controller than the policy obtained in 50th iter-
ation. We believe the proximal gradient type method used
in learning helps in the parameters not  diverging, but due
to the same reason it may prevent the parameters from con-
verging to a far away optima. This trade-off is necessary:
our initial attempts without the damping proximal term were
not successful in learning anything useful. As a result, after
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Fig. 10: Sparsity pattern of the matrix Py appearing in (29).

a few policy improvement iterations, every new policy ob-
tained had to be tested by running a closed-loop simulation
to assess its performance. The best performing one was se-
lected as “the RL controller”, which happened to be the 26th
one.
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Fig. 11: Values of 0 vs. policy iteration index. Only five 0’s
are shown to avoid clutter.

Numerical considerations for training: Training of
the RL controller is an iterative task that requires trying many
various configurations of the parameters appearing in Ta-
ble 1. In particular, we found the following considerations
useful.

1. If the value ofk is too small, the controller will not learn
to track the load 'q,];’ref. On the other hand, if x is too
large the controller will not save energy cost. The cho-
sen X in Section 3.3.5 is determined by trial-and-error.

2. The condition number of (23) significantly affects the
performance of Algorithm 1. However, the relative
magnitudes of state and input values are very differ-
ent, for example, ¢~ € [300,4000] (kW)and § 7"C €
[0-05,0-95], which makes the condition number of (23)
extremely large. Therefore, we normalize all magni-
tudes of state and input values with their average values.
With appropriate scaling of the states/inputs, we reduced
the magnitude of the condition number from 1% 10%° to

1% 103.

8 Conclusion

The proposed MPC and RL controllers are able to re-
duce energy cost significantly, around 17% in a week-long
simulation, over the rule-based baseline controller.  Apart
from the dramatically lower real-time computationally cost
of the RL controller compared to the MPC, load tracking and
energy cost-saving performances of the two controllers are
similar. This similarity in performance is somewhat surpris-
ing. Though both controllers are designed to be approxima-
tions of the same intractable infinite horizon problem, there
are nonetheless significant differences between them, espe-
cially the information the controllers have access to and the
objectives they are designed to minimize. It should be noted
that the MPC controller has a crucial advantage over the RL
controller in our simulations: the RL controller has to im-
plicitly learn to forecast disturbances while the MPC con-
troller is provided with error-free forecasts. How much will
MPC’s performance degrade in practice due to inevitable
plant-model mismatch is an open question.

Existing work on RL and on MPC tend to lie in their own
silos, with comparisons between them for the same applica-
tion being rare. This paper contributes to such comparisons
for a particular application: control of DCEPs. Much more
remains to be done, such as an examination of robustness to
uncertainties.

There are several other avenues for future work. One
is to explore non-linear bases, such as neural networks, for
designing an RL controller. Another is to augment the
state space with additional signals, especially with forecasts,
which might improve performance. Of course, such augmen-
tation will also increase the cost and complexity of training
the policy. Another avenue for improvement in the RL con-
troller is to reduce the number of chiller switches.  In this
paper, all the chillers are considered to be the same. An
area of improvement is to extend heterogeneous chillers with
distinct performance curves, for both RL and MPC. On the
MPC front, an MILP relaxation is a direction to pursue in the
future.
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