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Abstract

In this work, we examine the effects of spatial dephasing of coherences on the transmission and
reflection probabilities for electrons with energy F incident to a one-dimensional rectangular barrier
of height V. Statistical models are presented where the coherence between different scattering
pathways or “Feynman paths” undergo dephasing over a length scale, Ly. For incident waves with
E > Vp, three different dephasing models that attenuate the contributions of spatial coherence
to the transmission and reflection probabilities while preserving unitarity (i.e., conserving charge)
were investigated. In the tunneling regime (incident waves with E < V}), however, preserving
unitarity requires Ly — 00, suggesting that elastic tunneling through a rectangular barrier is 100%
spatially coherent for these dephasing models. However, wave absorption models are shown to

preserve unitarity in the tunneling regime, which is not the case for scattering above the barrier.
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I. INTRODUCTION

An important characteristic of mesoscopic and nanoscale electronic devices is the pres-
ence of phase-coherent electron transport due to the intrinsic wave-particle duality that
charge carriers possess. As a result of phase-coherence, a variety of quantum mechani-
cal interference phenomena can be observed in such devices, such as the Aharonov-Bohm
effect[1], Anderson[2] and weak|3] localization, and modulations of the local density of states
for quantum corrals formed on noble metal surfaces[4, 5] just to name a few. Such spatial
interference is observed when a quantum particle’s wave function can be represented by a
coherent superposition of different trajectories or pathways between two points in space, as
illustrated in Fig. 1(A). As long as the coherence between different pathways is preserved,
i.e., there is no “which way” information provided either through direct measurement by an
observer or due to interactions with the environment[6, 7], interference between pathways
can be observed. Transport can be considered phase-coherent or within the phase-coherent
regime over a length scale defined by the phase coherence length, L,. Generally, coherence
between different pathways decays exponentially with the difference in path length relative
to Lg. If spatial coherences are completely dephased, then pathways between two points in
space no longer add coherently as illustrated in Fig. 1(B). This loss of coherence and/or

dephasing will also weaken many of the interference phenomenon listed above.

A variety of models have been proposed to describe dephasing in mesoscopic systems.
One of the earliest and still most widely used phenomenological method for modeling de-
phasing in electron transport was proposed by Buttiker[8] in which a fictitious dephasing
probe/reservoir is connected to the device[8]. In this model, electrons are effectively absorbed
and then reinjected with a random phase back into the device, resulting in dephasing. While
the dephasing probe model is consistent with microscopic pictures of decoherence[9-11], the
dephasing is localized to the region of the dephasing probe in the device. Modifications to
Buttiker’s model have included multiple dephasing probes so that dephasing occurs through-
out the device[12]. It should be noted that dephasing probes do not simply result in “pure”
dephasing but also cause some momentum randomization for the reinjected electrons, and
recent theoretical models[13] of dephasing have been proposed where the relative amounts

of momentum and phase randomization can be controlled.

Alternative models of for modeling dephasing in electron transport have also been pre-



sented. These methods mostly rely on a scattering “pathway” picture in which dephasing
of spatial coherence can be understood by viewing transport in terms of multiple, one-
dimensional bouncing pathways or Feynman paths[14] that the electrons follow before ul-
timately being transmitted, analogous to optical Fabry-Perot resonances that occur be-
tween two interfaces[15, 16]. These models have mainly been used to describe dephasing
in Aharonov-Bohm experiments[17] or for resonant tunneling of electrons in double bar-
rier structures[18-23]. In wave or stochastic absorption models[24], the wave function is
exponentially attenuated with each successive bounce within the device. While analogous
models have been used in Fabry-Perot etalons to describe the change in photon numbers
due to absorption[25], the number of electrons is conserved in a closed system, and these
absorption models therefore do not conserve electron number, i.e., they violate unitarity as
discussed below. However, this absorption, which can be modeled using a complex scatter-
ing potential[19], is usually interpreted as the electrons undergoing inelastic scattering into

lower energy states.

Models for pure dephasing or phase randomization have also been presented[26-28]. In
these models, the various Feynman paths develop random phase factors as the particle
traverses the device. Averaging over different realizations of the phase factors leads to
an attenuation of the contributions of coherence to the observed transmission and reflection
probabilities while still preserving unitarity. Statistical methods were shown to be consistent
with experimentally observed Aharonov-Bohm oscillations in quantum rings[29]. However, it
has been pointed out[30] that in the limit of complete incoherence, larger transmission prob-
abilities in double-barrier structures are predicted using these phase randomization models
than would have been predicted using Ohm’s law; in contrast, Buttiker’s dephasing probe
model is consistent with Ohm’s law in the limit of complete incoherence, which suggests

that both complete phase and momentum randomization are required in the classical limit.

While the vast majority of research into dephasing of electron transport has focused
on double barrier structures, less attention has been given to the problem of dephasing
of spatial coherences on the transmission and reflection spectra above or within a single
barrier and within the tunneling regime. In this work, different statistical models for the
dephasing of spatial coherence for a one-dimensional rectangular barrier and using single
particle Feynman paths are presented. The paper is organized as follows: after presenting

the basic formulae for the transmission and reflection coefficients for transmission through a



FIG. 1. Tllustration of (A) coherent and (B) incoherent transport. (A) For coherent transport, the
wave function at = xf, W(xf), can be thought of as arising from a coherent superposition of all
possible trajectories starting from the wave function at z = z;, V(x;), i.e., Y(zy) = >, Yp(xy).
(B) For fully incoherent transport, the coherence between all trajectories vanishes, and the various

pathways add incoherently.

rectangular barrier of height V4 in Section II, a Feynman pathway description of transmission
and reflection above a rectangular barrier (£ > ;) is presented in Section III. Three models
of spatial dephasing that preserve unitarity are considered in Section IV. In Section V,
it is demonstrated that in order to preserve unitarity in the tunneling regime (E < Vj),
a superposition of evanescent waves that represent the various Feynman paths for both
transmitted and reflected wave functions cannot spatially dephase, i.e., L, — oo in the
tunneling regime. Unlike for transmission above the barrier, however, wave absorption
models for electrons within the barrier are shown to preserve unitarity. It should be noted
that decoherence models where the environment changes state as a result of the scattering

processes[31] are not considered in this work.
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II. THE TRANSMISSION AND REFLECTION COEFFICIENTS FOR A 1D
RECTANGULAR POTENTIAL BARRIER

First, we present the standard results for the transmission (7p) and reflection (Ry) coeffi-
cients of a flux-normalized wave of energy E incident from the left to a 1D potential barrier
of height V; and width Lp located between x = Ly and x = Ly + L. Experimentally, such
a setup could be realized either in gated single tunnel junctions in either vertical or lateral
quantum dots, or in quantum wires with an artificial barrier placed along the wire that acts
as a barrier.

The wave function to the left of the barrier (z < Ly) is given by:

eikm efik:p eik:}:
U(r) = S=+ Ry = S+ Up(a) (1)
Ik Ik Ik
2mE

where Wg(x) is the reflected wave function, and k = is the wave vector magnitude.

h2

The wave function to the right of the barrier (x > Lo + Lp) is given by:

eikw
U(z) =T, — = Up(x) (2)

where Wr(z) is the transmitted wave function.
The determination of Ry and T} in Eqs.(1) and (2), which is a standard textbook problem
in quantum mechanics[32], is typically accomplished by matching the wave function and its

spatial derivative at * = Ly and x = Ly + Lg. For E > Vj, this procedure gives:

e—ikLp
fo = cos(k1Lp) — zkglz;k sin(k,Lg) @)
Ry — i ;k ]Z sm(lj:;LBQ) e2ikLo _ zk% —k? sin(ky L )e* Lot Lo) Ty (4)
cos(kiLp) — Z% sin(k1Lp) 2k k
where k; = w is the wave vector magnitude above the barrier.

In the tunneling regime, i.e., £ <V}, T and Ry are given by:

o—ikLp
Ty = (5)
cosh(kLp) + 1% k2 sinh(kLp)

k:
K +k h 2ikLg 2 L2 ‘
Ry = —i_zek Sinh(rLp)e — N G (kL) R ERT, (6)
COSh(I{LB) + it ot K sinh(kLp) 2kk
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where Kk = W is the magnitude of the complex wave vector within the barrier.
Given that the 1D flux operator is 7 X = %‘ = —ﬁaﬁ, conservation of flux requires that
m Ox

the sum of the magnitudes of the transmitted and reflected fluxes equals the total magnitude

of the incident flux (which is taken to be unity due to flux-normalization):
(Wl Tx[Wr) = (Wrl Tx[Wn) = (Ur|Tx|¥r) + (UalTx|Wr)| = 1 (7)

Since (\IJT]jX|\IJT) = |Ty|?> = T represents the total transmission probability, and —(\IJR|jX\\IJR> =
|Ro|?> = R represents the total reflection probability, the conservation of flux in Eq. (7) can

be simply written as:
T+R =1 (8)

Eq. (8) is often referred to as the unitarity condition. For incident waves comprised of
charge carriers such as electrons, Eq. (8) ensures that total charge (i.e., electron number) is

conserved under the scattering process.

III. FEYNMAN PATHWAY DESCRIPTION OF TRANSMISSION ABOVE A
RECTANGULAR POTENTIAL BARRIER

An alternative method to calculate the transmission and reflection coefficients for scat-
tering from a rectangular potential barrier is to consider all Feynman pathways[14, 20-23]
a quantum particle can follow due to scattering from the barrier. As illustrated in Fig.
2(A), ¥p(x) can be written in terms of Feynman paths that are transmitted over the barrier

(forx > Lo+ Lp):
Ur(z) = (@|Ur) = Upo(z) + Upa(@) + Ura(z) + - = > Upo(z) (9)

where W, (), which represents a Feynman path corresponding to a transmitted wave that

has undergone 2n bounces above the barrier, is given by:

i} — U _ 2 —ikLp ikiLp 2 2k Lp\" etk _ gtk |
T,Qn(x) = <x‘ T,2n> = ‘tk,m’ e e (’rk,lﬂ‘ e ) — = tn = ( O)
‘m m

where |7§n‘ is the transmission probability amplitude associated with the Feynman path

|Uron), and [ty | = 2]4—\/+kkkll’ [Tek | = ‘z;zi (see Appendix VII'A for more details). These
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FIG. 2. Feynman paths for elastic scattering from a 1D potential barrier for £ > Vj. (A) The
transmitted wave function, Ur [Eq. (9)], and (B) the reflected wave function, ¥ [Eq. (12)], can
be interpreted as a coherent superposition of Feynman paths. In this case, the Feynman paths are
analogous to light scattering found in Fabry-Perot scattering, where the barrier edges behave like
semitransparent mirrors. All illustrated Feynman paths correspond to the same energy E (i.e., the

vertical scale does not represent energy).

bouncing trajectories are analogous the the scattering pathways found in Fabry-Perot etalons
where the barrier edges act like leaky or semitransparent mirrors.

In Eq. (9), the Feynman paths can be explicitly summed to give:

> R eikac eik;t
Up(z) = Y i =T (11)

where T is given in Eq. (3).
Similarly, Wg(x) can be written as a sum of all Feynman paths corresponding to an

incident wave being reflected from the barrier (for z < Lg):
Vp(r) = ([Vr) = Wri(r) + Ura(2) + Vra(x) + - = Vpi(2) + > Vroni () (12)
n=0

2ik Ly e~ k=

— represents the Feynman path for a wave that

where Vg, (x) = (|Vg:) = |Tkrle

is directly reflected from the potential barrier’s left edge while W g 5,41 (), which represents
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a Feynman path for a wave that has undergone 2n + 1 bounces above the barrier before

ultimately being reflected, is given by:

o — (2| TR 2ikLo ,2ik1 L 2 giLp\n € 8 e
R,2n+1(13) = <SL’| R,2n+1> = ‘tk,h’ |7’k’k1|e (& (|Tk,k1’ e ) — =7, =
m \Vom

(13)

where |7,| is the reflection probability amplitude associated with the Feynman path
WRont1)-
The various Feynman paths in Eq. (12) can be explicitly summed to give:

2 2ik1L —ikx —ikx
|tk g, |2€2F1 0B )e e

A = Ry
1 — |re |2e2ifils Ik e

Up(z) = |rpp | <1 —
m m
(14)
where Ry is given in Eq. (4).

From Eq. (9) and Eq. (14), both |¥7) and |¥g) can be interpreted as being a coherent
superposition of all Feynman paths above the barrier. One consequence of |Wr) and |Ug)
being a superposition of Feynman paths is that the total transmission and reflection prob-
abilities will contain contributions from the interference between different Feynman paths.

For example, the total transmission probability is given by:

interference terms

T = (gl x| 0r) = S (Wrnl Tl 0ron) + 5 (Uraml Tx [ W) + (Ugionl T [ Wrmm)
- Z ’E”P +rz ((Em)* tn +tm (gn)*) = Tincoherent + Tcoherent (15)
n=0 m<n
where
Teoherent = [t |* Z |7y |2 ™) (eiQ(”—m)leB + e—i2(n—m)k1LB)
m<n

_ 2fri | (cos (2k1 L) — [ri )
L+ |rpp [* — 2|7 |2 cos (2k1 L

) ﬁncoherent ( 1 6)

is the contribution to 7 due to the interference between different Feynman paths that make

up |¥7) in Eq. (9), and

L . Y
L= |rppe |t 1+ e [?

00
7i-nc0herent - |tk,k1 ‘4 Z ‘rk,kl |4n =

n=0




is the incoherent contribution to the transmission probability.

Using Eq. (12), a similar calculation of the total reflection probability, R, gives:

interference terms
7\

R = —(UralJx|Uri) = > (Vroni | Jx|Pronir) = Y (Vral Tx|[Wr2ni1) + (Pronit | Tx | Ur)
n=0 n=0
interference terms
- Z<‘I/R,2m+1’j\X|\IJR,2n+1> + <‘I’R,2n+1\jx|‘I’R,2m+1>

m<n

lnterference terms

|rkk1| +Z|rn|2n+z Tm Tn_’_rm Tn +Z7nkk1 Tn Tk,lﬂ)*?:n

m<n

= 7z'incoheren‘c + 72'(:0herent (18)

where

Rcoherent = _2|tk,k1 |2 Z |Tk:,k:1 |2n COS (271]{31[/3)

n=1
+ 2t [rin P D 1k [P cos (2(n — m) (ky Lg)
m<n
2k1Lp) — 2
_ _2|rk,k1’2 COS( 1 B) |Tk,k1|

7i-nco eren
1+ |7 [* = 2[r |2 cos (2k L) e
_%oherent (19)

is the contribution to R due to the interference between different Feynman paths that make
up |Ug) in Eq. (12), and
Rincoherent = [Tk ks |” + Z |7 = 12|m sl (20)
+ kil

is the incoherent contribution to R.

As can be seen from Eq. (17), Eq. (16), Eq. (20), and Eq. (19), 7 and R satisfy the
unitarity condition in Eq. (8):

T +R = Tincoherent + Rincoherent + Teoherent + Recoherent

thoger |2 4 2|7k, |
1+ |7”k,k1‘2

= 7:ncoherent + Rlncoherent =1 (21)

IV. STATISTICAL MODEL OF DEPHASING USING FEYNMAN PATHWAYS

As discussed in the Introduction, statistical models have been used to estimate the effects

of dephasing on the transmission probabilities in mesoscopic devices[26-28]. In the statistical
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model of dephasing, phase factors are introduced between different electron pathways as a
way to model the effects of scattering by impurities throughout the device. While in such
models a single electron wave function is still fully phase-coherent, i.e., it can always be
written as a linear superposition of pathways, averaging over different realization of electron
wave functions results in an attenuation of the contribution of coherence to the transport
properties in the device. Again, it should be noted that this contrasts with the Buttiker
dephasing probe model in which the electron wave functions are truly decohered by effectively
removing an electron and then putting it back into the device leading to both phase and
momentum randomization.

In statistical dephasing models, the transmitted and reflected wave functions can be

written as:
|\I/T> = €i¢0T|\I/T’0> + €i¢g|\I/T72> + 6i¢z|\I/T74> + o= Z Gid)g" \IJT,2n>
n=0
|Ug) = € i)+ €i¢{2|\PR71> + €i¢§|\PR,3> + 6i¢§n+1|‘1;R72n+1>

" (22)

where e and em are random phase factors for the n* transmission [Eq. (9)] and m™
reflection [Eq. (12)] Feynman pathways above the barrier as illustrated in Fig. 2. Averaging
the total transmission and reflection probabilities for different realization of electron wave
functions in Eq. (22) gives the average transmission and reflection probabilities, (7) and
(R), respectively:

<T> = Tincoherent + Z tm t < (2m— ")> + £n~:<n <ei(¢gn_¢gm)>

m<n

e
Z . (GR _oR 8 _i(6R R

<R> = 7?'incoherent + anlj,lﬁ <6Z(¢2"+1 i )> + T;rk,]ﬂ <€ W(b2n 11— )>
n=0

+ Z fmf; <ei(¢§m+1*¢§n+1)> + fnle <ei(¢§n+1*¢§én+1)>

m<n
(23)
Where (...) denotes an average over the distribution of phases. For example,
i T i T _ T
<€ (@2n ¢2m /d(b /d¢2mg2n 2m ¢2n7 ¢gm)e (¢2n d)Qm) (24)

where g3, 5,,(03,,, #3,,) is a joint probability distribution for the phases ¢3, and ¢3,,
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In the following, three different ways in which the relative phases between Feynman paths
are modeled are presented: Model I: uncorrelated phases, Model 1I: partially correlated

phases, and Model III: correlated phases.

A. Model I: uncorrelated phases

If the phases in Eq. (22) between different Feynman paths are completely uncorre-

la’teda i'e‘a < gn gm> = <¢gn>< gm> and <¢§n+1¢§m+1> = <¢§n+1><¢§m+l> for all n 7& m, then

the joint probability distributions are also completely uncorrelated, i.e., gQTn,Qm( T ol ) =

ggn( gn)ggm( gm) and 92R;1+1,2m+1(¢§n+17¢§m+1) = gﬁz+l(¢§n+l)g§m+l(¢§m+l) fOI‘ au n and

m. It is further assumed that the phase distributions are identical for all Feynman paths
since these trajectories occur over the same barrier [Fig. 2], i.e., g5, 1 (¢) = g2.,,(¢) = (o)

for all m. We will also assume that the phases are normally distributed about ¢ = 0,
¢2
4

9(¢) = 1LB e “Ts . It has been pointed out[30] that the use of normally distributed phase
\ /Qﬂq
L

distributions give essentially identical results to periodic phase distributions when L—: < ’;—;

For larger ﬁ—f, periodic phase distributions should be used. In this case, a periodic phase dis-
tribution was shown to given the same predicted conductance values for a Buttiker dephasing
probe in a single channel[33]. Note that ¢ = 0 corresponds to no extraneous phase factors
due to scattering from impurities within the barrier. Using g(¢), (¢) = 0 and (¢?) = Ii_i'

(
In this case, the average of product of phase factors in Eq. (23) is given by:
<eiu¢5“”—¢ﬂR5> _ <€iw$““> <6¢M%V”> 2267%§VEEA¢ (25)
Using Eq. (25), (T) and (R) in Eq. (23) become:

<T> - 7;nc0herent + )\qﬁ Z t~mt~; + th :;1

m<n
00
E : 2
= ﬁncoherent + 27;ncoherent)\¢> |rk,k1| " COS<2nk1LB)
n=1

(R) = Rincoherent + Ao D (FaThpy + Tahts) + g D (Fraiy + Ty,

n=0 m<n
00
2n
= Rincoherent - 27;ncoherent)\¢ E ’rk,kl‘ COS<2nk1LB)
n=1
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where (T) + (R) = 1. In Model I, which has been previously considered[26], the contribu-
tions of the coherence terms to (7)) and (R) in Eq. (26) are simply attenuated by a common

factor of Ay < 1.

B. Model II: partially correlated phase shifts

In Model 1II, it is assumed that that each traversal of the barrier is associated with
a random phase. That is, taking ¢ = ¢F + ¢1 ; + @14, where the subscripts “f” and
“b” denote forward (left to right) and backward (right to left) paths above the barrier,

oF = ¢F + 1,5+ Q1p + P2 + P2, and in general:

n+1

¢§n+1 = QS? + Z (qu,f + ¢m,b) = Ont1,f + Pni1p + gbé%n—l (27)
m=1

Similarly, ¢f = ¢ + é15, ¢35 = Off + d1.5 + P14 + G2,r, and in general:

n—1
o = OF A bnirs+ Y (Bmg + Pmb) = Pnyrs + np+ 05 s (28)
m=1

If all the various phases, ¢; y and ¢,;, are normally distributed and uncorrelated with each
other (i.e, (¢ndm) = (¢Pn){dm) for n # m), then the average phase factors in Eq. (23)

become:

<€i(¢2Tn*¢2Tm> > — <ei(¢n+l,f+¢m+l,b+zgzm+2 (¢P7f+¢’p,b)) >

_ <ei¢n+1,f><ei¢m+1,b> ﬁ <ei¢p,f><ei¢p,b>

p=m+2

= () = < g (29)

As such, (7) and (R) in Eq. (23) become:

<T> = 7iincoherent <1 + 2 Z |Tk,k‘1 ’2n COS<2nk1LB) ()\¢)n>

n=1

<R> = Rincoherent - 27;ncoherent Z ’rk,kl ‘277, COS(2nk1LB) <)\q§)n

n=1

(30)
in which case (7)+(R) = 1. This model is similar to the model developed by Pala et al.[27].
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C. Model III: Completely correlated phases

As with Model II, the various Feynman paths still develop a phase factor over each
round trip above the barrier. However, in Model III, the increment in phase factor is taken
to be the same for each round trip above the barrier, which can be justified if the electron
wave experiences the same scattering configuration for each round trip above the barrier. In
this case, the phases are given by ¢2, = ¢o + 2n¢ and ¢, ,, = ¢ff + 2(n + 1)¢. This results

in an average phase factor of:
- o _(n=m)’Lp (n—m)?
e I e (31)

In this case, (T) and (R) in Eq. (23) are given by:

4kk, - k—ky 2 n?
<T> = 7idncoherent + m ; COS(anlLB) (k i ]ﬁ) ()\¢>
Akl & E—k "
<R> - Rincoherent - W}f% Z COS(an‘lLB> (I{i + ki) (/\¢) (32)
n=1

D. Comparison of Models I-11I for transmission above a rectangular barrier

In Fig. 3, calculations of (7)) and (R) for a rectangular barrier with /2752 Ly = 10 in

the presence of dephasing and evaluated using either Model I [red, Eq. (26)], Model II
[yellow, Eq. (30)], or Model III [green, Eq. (32)] are shown for [Fig. 3(A)] i—i = 1 and
[Fig. 3(B)] g_g =1
Compared with the transmission spectrum for fully coherent transport [black, calculated
n2h?r2

using Eqgs. (3) and (4)], 7 at the resonance conditions % = Snizvy Was smaller due to

the attenuation of Teoperent i (7). This difference became more noticeable as L, became
smaller [Fig. 3(B) vs Fig. 3(A)]. For Vﬁo > 1, all three models gave similar results. However,
for E = Vj, noticeable differences between the three models were evident [Fig. 3, right].
These differences were due to the fact that for E ~ V;, multiple Feynman paths contribute
significantly to both |Ug) and |¥7), and thus Reonerent a0d Teonerens Mmake up a larger fraction
of (R) and (T), respectively. Attenuation of Tconerent for £ & Vj resulted in an increase of
7T and a decrease of (R) with increasing %

Note that Teonerens involves a sum over interference terms between Feynman paths with

path length differences ranging from 2Lp to oco. For 2kiLp > 2w, the various cos(2nk;Lp)
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terms in Teonerent add destructively except near the resonance condition 2k Lg ~ 2nm for
integer n, in which case cos(2nk;Lg) ~ 1 and the terms add constructively leading to
increased transmission. Since the interference terms in Model III are attenuated as ()\¢)"2
compared with being attenuated by only \; or (A\s)" for Models I and II, respectively,
Teonerent for Model IIT will mainly be dominated by the interference of Feynman paths that
don’t appreciably differ in path length (i.e., small n). For example, Tconerens for Model II1

in Eq. (32) can be approximated under the condition that i—i > 1 by:

Akky N (k—k " e
7Zoherent = : Z( 1) ()\¢) cos(2nk1LB)

K2+ ki = \k+
dkky (kK —F
el = (k " lﬁ) Ay cos(2k1 L) (33)

The origin of the negative differential resistance (NDR) observed at low % for Model III
in Fig. 3 is due to the fact that Teoperent in Eq. (33) is dominated by a single, oscillatory
term when f\—f > 1. Note that an NDR was not observed for Model I since the sum in Eq.
(26) was not truncated. However, there appeared to be a small NDR observed for Model
IT due to the fact that interference terms corresponding to larger path length differences
were attenuated more relative to those corresponding to smaller path length differences,
albeit to a lesser degree than in Model III. It should be further noted that an NDR was
also observed in prior theoretical studies of the effects of electron-electron interactions on

decoherence[34].
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FIG. 3. Calculation of (7) and (R) in the presence of spatial decoherence using Model I [red,
Eq. (26)], Model II [yellow, Eq. (30)], and Model IIT [green, Eq. (32)] as a function of %

with 27}?2‘/ 0L p = 10. The fully coherent 7 and R are also shown for comparison [black curves
calculated using Eqgs. (3) and (4)]. In (A), i—i = I was used. While all three models resulted
in similar attenuation of the resonances in T at k1 Lp = nm, the models exhibited very different
behavior for 1 < % < 1.04 due to differences in how the models attenuate interference contributions
to (T) and (R). (B) Calculations using Ii—i = 1. Compared to (A), oscillations in 7 were more

attenuated as a result of increased spatial dephasing.
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V. FEYNMAN PATHWAY DESCRIPTION IN THE TUNNELING REGIME

L = =

VY= Yy + W, + Wt

R R,i R, 1

FIG. 4. Feynman paths for elastic scattering from a 1D potential barrier for £ < V. (A) The
transmitted wave function, ¥p [Eq. (34)], and (B) the reflected wave function, U [Eq. (37)],
can be interpreted as a coherent superposition of evanescent waves. In was the case in Fig. 2, the
Feynman paths can be interpreted as evanescent analogues of Fabry-Perot scattering, where the
barrier edges behave like semitransparent mirrors. All illustrated Feynman paths correspond to

the same energy E (i.e., the vertical scale does not represent energy).

As illustrated in Fig. 4, the transmitted wave function for £ < V; can still be written as

a superposition of Feynman paths (forz > Lo+ Lp):
Ur(z) = Uro(r) + Ura(r) + =Y Uron(2) (34)
n=0

where Wro,(x), which represents a Feynman path where an evanescent wave has undergone

2n bounces within the barrier before ultimately being transmitted, is given by:

ik ikx
. L _ R n e - €
Uron(z) = (2|¥Ur2n,) :Z|t/§7,€|2621¢’“"€ kLpe—rLp (eM)Me 2”L3> =t, (35)
1k hk
m m
2 Vo—F v/ i 1k i .k, o .
where k = %, [th| = %, T = \/’;2—%, PR = Z+Z: [see Appendix VITA].
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Eq. (34) can be explicitly summed to give:

e & R eik:z eikz
Up(z) = Y Uron(z) =Y 1y =T (36)
n=0 n=0 Zn_k Z,L—k

where T is given in Eq. (5).
Similarly, the reflected wave function can still be written as a superposition of Feynman

paths (forx < Lo):

Up(r) = Wpi(x) + Vpa(2) + Upa(@) + - =T+ Y Vpopi(x) (37)

n=0

where Vg ;(z) = (z|Ug,) = ei‘z’%ﬂe%“o\e/i—% again represents the initial reflected wave while
U R ont1(x), which represents a Feynman path where an evanescent wave has undergone
2n + 1 bounces within the barrier before ultimately being reflected, is given by:

. 2 27;(;516’& i¢k,n %ikLo  —2kL 2i¢k”{ okl n 6*’”&1‘
\PR,2n+1(l’) = <$|‘I’R,2n+1> = —Z|tk’,£| 20T 1R p2tkLo o B (e B e B)

e

—ikx
= P (38)
Ik

Eq. (37) can be be explicitly summed to give:

i kL - 2 _2ipM" ighr 2ikLo —2kL 2" _onxLp\" ek
\I’R(I):<6 R X0 — gty | 7eTOT e'PR e 0e B(e R e B))—
hk
m
—ikx
e 1
Ry (39)

where Ry is given in Eq. (6). From Eqs. (36) and (39), the transmitted and reflected waves
can be interpreted as arising from all possible scattering paths within the barrier.
Performing calculations similar to those in Section III, the total transmission probability

in the absence of dephasing is given by:
interference of evanescent waves

o
T = (Upldx|Wr) =Y [El+ Y Ealiy +imdy,
n=0

m<n

interference of evanescent waves

8/{2,@2 8]?2,%2 ((k‘ 4 i/ﬁ)4 4 (k _ Z'H)4 _ 2(16‘2 + R2)2672/{LB)

= "Jincoherent 1+ 7;oherent

17

~ sinh(2xLp) (k2 + K2)2 + sinh(2kLg) (k% + 2)2 (2(k2 + k2)2cosh(2kLg) — ((k +ix)* + (k —ir)?))

(40)



where

8k?K?
incoherent — . 41
Tincoherent sinh(2kLp)(k? + Kk?2)? (41)

Similarly, the total reflection probability is given by:

interference of evanescent waves

~

oo rOO a
R = —(Ua|Jx|UR) = [renl® + D [Fal® + D> rhnfs + 15 Fn + > Tl + Tl
n=0 n=0 m<n

interference of evanescent waves
7\

8k?K2e2rls 32k?k?cosh(kLp)e ke

T (2Rl (2 + 722 20k + r2)%cosh(2rLn) — ((k + im)t + (k — im)1)

interference of evanescent waves
o\

8k%K2e2rls ((k +ik)r + (k —ir)* — 2(k* + li2)2e*2"‘LB)
sinh(2kLp)(k? + k2)2 (2(k% 4+ k?)2cosh(2kLg) — (k +ik)* — (k — ik)*)
Rincoherent + 7z'coherent (42)

-~

where

8k2k2e—2xLn
Rinco erent — 1 . 43
herent * sinh(2kLp)(k? + Kk?)? (43)

From Eq. (40) and Eq. (42), T+ R = 1.
We now wish to consider the affects of dephasing on 7 and R in the tunneling regime.

For simplicity, consider the application of Model I. In this case, the interference terms in
_Le
Eqgs. (40) and (42) are attenuated by a factor of e “¢ = Ay < 1, which gives:
8k%K2 ((k + ir) + (k —ix)* — 2(k* + k2)2e~2rLE)
sinh(26Lg) (k% + k2)2 (2(k? + k2)%2cosh(2kLp) — ((k + ik)* + (k — ik)%))

32k2k2cosh(kLg)e "Lls
<R> - Rincoherent - )\qﬁ B) 22 ( B) RV V]
2(k? + k?)?cosh(2kLp) — ((k + ik)* + (k —ir)*)

<T> — 7;ncoherent + A(Z)

b Sk2kPe b ((k +in)" + (k — ir)! — 2(K® + 12)%e20)
¢ sinh(2kLp) (k2 + k2)2 (2(k2? 4 w2)2cosh(2kLp) — (k + ik)d — (k — ir)?)

(44)

In Figure 5, the transmission and reflection spectra in the tunneling regime are shown for
both the fully coherent case [Fig. 5(A) and calculated using Eqgs. (5) and (6)] and for Model
I [calculated using Eq. (44) for [Fig. 5(B)] i—’j =1 and for [Fig. 5(C)] jz—j = 5]. Attenuating
the contributions of the interference terms led to a violation of unitarity with (7) 4+ (R) > 1

as seen in Fig. 5(B) and 5(C) [purple, dotted curves]. Violation of the unitarity condition
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in Eq. (8) is due to the fact that [Eq. (43)] Rincoherens and [Eq. (41)] Tincoherent do not
themselves satisfy the unitarity condition:

8k%k2(1 + e*QKLB)

1 4
sinh(2kLp)(k? + k2)? ” (45)

Wncoherent + 7?fincoherent =1 +

As such, the condition that A\, — 1 (i.e., L, — 00) in Eq. (44) for dephasing models must

be satisfied in order to maintain unitarity in the tunneling regime.

(A) -

0.4
0.2

0 02 04—-06 08 1

(B) 12 " T*R
0.8 R

0.6

04 T

0.2

(C) 14 0 T+ R

1.2 |
1 e

0.8 R

0.6

0.4

0.2 T

0 02 04 E 06 0.8 1

\Y

0

FIG. 5. Plots of (blue) (R) and (red) (7)) wvs % in the tunneling regime for 2Tg—ZVOLB =3. (A)
Fully coherent case, calculated using Eqs. (40) and (42), where unitarity is demonstrated from
(R) + (T) =1 (purple, dotted line). Plots of (R) and (T) calculated using Model I [Eq. (44)] for
(B) ££ =1 and (C % = 5. Note that in both cases, the unitarity condition in Eq. (8) is violated

p )
since (R) + (T) > 1 (purple, dotted curve) in the presence of dephasing.

While the above arguments suggest that transport through a barrier must be fully phase

coherent in order to preserve unitarity, this statement has meaning only if there are Feynman
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paths besides Uy, and Wg; that significantly contribute to |[¥7) [Eq. (34)] and |Vg) [Eq.
(37)], respectively. This requires:

X = @ — |1 — 29" e2Lp i <1 (46)
where x represents the fraction of transmitted Feynman paths in |¥r) corresponding to
|Wrp). In Fig. 3, x < 0.75 for VEO > 0.777. Note in general, Eq. (46) will be satisfied as
E — V, meaning that as the energy of the incident wave approaches the barrier height,
more Feynman paths other than |[Wr ) and |Ug;) will significantly contribute to |¥7) and

|WR), respectively.

A. Partial absorption of evanescent waves preserves unitarity

While it was shown that dephasing of the coherence of evanescent waves within the barrier
does not preserve unitarity, partial absorption of the evanescent waves within the barrier
does. To see this, consider again Ur(z) in Eq. (34) and Wg(z) in Eq. (37). In the following,
we will assume that the electron carriers can be “absorbed”, i.e., inelastically scattered,
as the electron travels through the barrier. In this case, the attenuation factor for going
from the left to right barrier edge is given by e~**# where we take a > 0 in order that the
evanescent wave is attenuated. In the wave absorption model, the attenuated ¥ pg(z) and

Ur(z) can be written as:

e —ikx
_ e
Ur(r) = Upi(r)+e 2 8Up (1) 4 e 28U ps(x) + - = Upy(x) + Z e 2nalng
n=1 %
. e*ikx
= Upi(z)+ Y Fn
— hk
n=1
m
s - eikw
Up(z) = G_O‘LB\Ift,o(:E) 4 e 3alp Uyo(z) 4= Z tne—(2n+1)aLB
n=0 irln_k
> ik
hk
where
%n = e2naLBfn — Z’|tk’n|262i¢>§4'€eid)’fé'fe%kLoeanLB(1+%) (eQid’gﬁe*Q”LB(H%))n
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.k kR . _ 7 ok, 7 n
_ z\tk,,fem% iR p2ikLo ,~2xLp (esz o 2/€LB>

1

_ ~ . T . 7 R _ =~ n
= (2n+1)aLBtn :Z|tk7,§|262z¢kx“€ ikLp ,~kLp <e2’¢kv~e 2,@L3> (48)

Thus, the effects of absorption/attenuation of the evanescent Feynman pathways within the
barrier is just to increase the effective barrier length from Lg to sz = Lp (1 + %) > Lpg.
As such, both 7 and R can be calculated from Eqs. (40) and (42), respectively, simply by
replacing Lg with Lp. Thus the transmission spectrum in the tunneling regime should be
identical to the case of fully phase-coherent tunneling in a barrier with an effective larger size
of L p. In this case, determining L p and knowing Lg could be used to determine the effective
absorption within the tunnel barrier (if any). It should be noted that while 7+7R = 1 within
the wave attenuation model for tunneling within a barrier, 7+ 7R # 1 for transmission above

a barrier using the wave attenuation model.

VI. CONCLUSIONS

In this work, a Feynman pathway picture was used to describe the transmission and
reflection probabilities for a 1D rectangular barrier in the presence of the dephasing of
spatial coherences. For energies above the barrier, dephasing models that preserve unitarity
require that the attenuation factors for the interference between any two Feynman paths
are either identical (Model I) or depend only upon the difference in path lengths (Models
IT and IIT). In the tunneling regime, however, the evanescent waves cannot dephase within
the barrier in order to preserve unitarity. While absorption models (without reinjection
of electrons) for above barrier transmission violate unitarity, the evanescent waves in the
tunneling regime can be absorbed within the barrier, which does satisfy unitarity. Wave
absorption within the barrier results in transmission spectra that are equivalent to purely
phase coherent tunneling in an effectively longer barrier. In this case, careful experimental
studies of the transmission spectra in tunnel junctions, gated quantum wires, and other
effective one-dimensional systems with a single barrier could be used to characterize the
amount of absorption (if any) within the barrier for these materials. If materials in which
the observed wave absorption is minimal inside the barrier are found, these materials can
be doped with scatterers that act like “0”-wells, in which case near unity phase-coherent

tunneling through a single barrier can be generated. The theory using Feynman paths that
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was presented in this work could also be used to study transport in multibarrier systems
(an application to double barrier systems and resonant tunneling is given in Supplementary
Information). Though a single particle picture for the Feynman paths was used in this work,

the theory can in principle be extended to Feynman paths representing multiple particles.
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VII. APPENDIX

(A) (tLR )LO E>V,

— tRL
k. ki
’/'LR _ > kik L, AL
kki ) (r )
0 knk /i
«— 0)
l l

FIG. 6. Determination of scattering amplitudes from a step potential edge at x = Lg. For E > Vj,
illustration of scattering processes to determine (A) (tﬁﬁ)L and (r,ff;)L , and (B) (r,f#)L
’ 0 ’ 0 ’ 0

and <thlLk’>L . For E < Vj, illustration of the scattering processes to determine (C) (tﬁf)L and
’ ) O

(r,f’fj) e along with (C) (tﬁf) Lo and (T'gl’f) Lo

22



A. Determination of the reflection and transmission coefficients from a potential

step of height 1| for £ > 1}

Consider again the case of a particle scattering from a potential step of height Vj at

x = Lo. For an incident wave from the left with F = ZE > Vj as depicted in Fig. 6(A),

2m

the wave function for z < Lg is given by:

and for x > L

where ky = /22(E = Vp), and (¢£7) Lo and (rff) 1, Are the transmission and reflection

coefficients from a potential step at © = Ly, respectively. Continuity of the wave function

and its derivative at x = Ly gives:
ikLo LR —ikLo _ [N (LR ik1Lo
e+ (rn, ), € Vi (trk,) ., €
k

© (eikLo _ (rlg,lki)LO efikL()) _ \/]{;El (tilljl)Lo oik1Lo (51)

from which

k—ki o i
(T/ilk%l)Lo - k + kl 62 tho = Tk,kl 62 FEo
(tLR ) — 2 v kkl ei(k’—k‘l)Lo =t ei(k‘—kl)Lo (52)
k'J‘»'l LO k + kl — k7k1

For a wave incident from the right to a potential step at © = Lg as depicted in Fig. 6(B),

a similar calculation gives:

(1), = =ree i
(thl]?k)Lo = ),y eihR0) Lo (53)
From the above equations, we have
(Tiﬁ ) Lo (Tk]f%lf/k) Lol — |rrk,k1 |
(8 ] = |25 | = e (54)




In all cases, the reflection and transmission coefficients satisfy the unitarity condition in Eq.
(8):
LR 2 LR 2 RL 2 RL 2 2 2
‘(tk,h)Lo‘ + ’(Tk,kl)Lo‘ = ‘(tk1,k)L0’ + ‘(Tk:l,k)LO‘ = |7k "+ g [ =1 (55)

These scattering coefficients were used in Sec. III.

B. Determination of reflection and transmission coefficients from a potential step

of height V) for £ < 1}

For a wave that is incident to a step potential at x = Ly from the left with £ < Vj as

illustrated in Fig. 6(C), the wave function for z < Lg is given by:

\Ij( ) eikx N ( LR) efikx (56)
x) = r
W Lo [

where kK = 4/ %3—15)7 and (7“,%1:”) Lo is the reflection coefficient for a step potential at x = Lj.

The wave function for x > Ly is given by:

U(z) = (7). \ﬁ

where (¢£1) ., 18 the transmission amplitude into the barrier.

—RIT

(57)

Continuity of the wave function and its derivative at x = L gives:
: , k
kL LR —ikLo _ LR kL
etkLo + (rk,n)Lo e thlo — \/; (tk,R)LO e Lo
ik okr LR kLR —kL
(= 0E),,) = e (58)

K

which gives

k Z/i . . k,k .
(rlg,f)Lo = 2ikLo — Lidfi" 2ikLo
2\/ kK/ . .k, .
(tiﬁ)Lo = e ZAFLe’kLOe"LO = |tk7,.;|e“’5T etFLogrlo (59)

where
. 2V kK

i(ﬁk’n k - Zl‘f
e’’'T = —--
Vk? 4+ k?
i k,x k — ZK/
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Note that LR)

2
(rkﬁ Lo‘ = 1 since the transmitted wave in the barrier has imaginary flux.

Now consider a particle that exits a barrier step at x = Lo from the left as illustrated in

Fig. 6(D). In this case, the wave function for x < L is given by:

B e—lﬁx LR ena}
U(r) = - + (i) 1, - (61)
and for x > L
ikx
U(z) = (#B) © 62
(:U) ( H,k’)LO Tk ( )

2mE
K2 -

where k =

Continuity of the wave function and its derivative at x = L gives:
—kL LR Lo _  [F LR ik L
e rlo o (rﬁ,k)Lo efilo — \/%(tn,k)[lo etkLo
_ Kk (e—HLo _ (TLR) 6/{Lg> _ |k (tLR) oikLo (63)
ik Kk ) Lo k k.k) Lo
which gives
kK .
(), = il e b0t
. ks
(L), = e (o1

For completeness, similar calculations of the transmission and reflection coefficients for the

reverse processes depicted in Fig. 6(C) and 6(D) give:

(tF5), = [tule e kEoenlo
(Tﬁ{;)LO — iR" o—2ikLo

(tfﬁ)LO = i]tk%]ew?“eimoe%o

(7’2{;) Lo = _iPR" p2rLo -

These scattering coefficients were used in Section V.
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