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Abstract

In this work, we examine the effects of spatial dephasing of coherences on the transmission and

reflection probabilities for electrons with energy E incident to a one-dimensional rectangular barrier

of height V0. Statistical models are presented where the coherence between different scattering

pathways or “Feynman paths” undergo dephasing over a length scale, Lϕ. For incident waves with

E > V0, three different dephasing models that attenuate the contributions of spatial coherence

to the transmission and reflection probabilities while preserving unitarity (i.e., conserving charge)

were investigated. In the tunneling regime (incident waves with E < V0), however, preserving

unitarity requires Lϕ → ∞, suggesting that elastic tunneling through a rectangular barrier is 100%

spatially coherent for these dephasing models. However, wave absorption models are shown to

preserve unitarity in the tunneling regime, which is not the case for scattering above the barrier.
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I. INTRODUCTION

An important characteristic of mesoscopic and nanoscale electronic devices is the pres-

ence of phase-coherent electron transport due to the intrinsic wave-particle duality that

charge carriers possess. As a result of phase-coherence, a variety of quantum mechani-

cal interference phenomena can be observed in such devices, such as the Aharonov-Bohm

effect[1], Anderson[2] and weak[3] localization, and modulations of the local density of states

for quantum corrals formed on noble metal surfaces[4, 5] just to name a few. Such spatial

interference is observed when a quantum particle’s wave function can be represented by a

coherent superposition of different trajectories or pathways between two points in space, as

illustrated in Fig. 1(A). As long as the coherence between different pathways is preserved,

i.e., there is no “which way” information provided either through direct measurement by an

observer or due to interactions with the environment[6, 7], interference between pathways

can be observed. Transport can be considered phase-coherent or within the phase-coherent

regime over a length scale defined by the phase coherence length, Lϕ. Generally, coherence

between different pathways decays exponentially with the difference in path length relative

to Lϕ. If spatial coherences are completely dephased, then pathways between two points in

space no longer add coherently as illustrated in Fig. 1(B). This loss of coherence and/or

dephasing will also weaken many of the interference phenomenon listed above.

A variety of models have been proposed to describe dephasing in mesoscopic systems.

One of the earliest and still most widely used phenomenological method for modeling de-

phasing in electron transport was proposed by Buttiker[8] in which a fictitious dephasing

probe/reservoir is connected to the device[8]. In this model, electrons are effectively absorbed

and then reinjected with a random phase back into the device, resulting in dephasing. While

the dephasing probe model is consistent with microscopic pictures of decoherence[9–11], the

dephasing is localized to the region of the dephasing probe in the device. Modifications to

Buttiker’s model have included multiple dephasing probes so that dephasing occurs through-

out the device[12]. It should be noted that dephasing probes do not simply result in “pure”

dephasing but also cause some momentum randomization for the reinjected electrons, and

recent theoretical models[13] of dephasing have been proposed where the relative amounts

of momentum and phase randomization can be controlled.

Alternative models of for modeling dephasing in electron transport have also been pre-
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sented. These methods mostly rely on a scattering “pathway” picture in which dephasing

of spatial coherence can be understood by viewing transport in terms of multiple, one-

dimensional bouncing pathways or Feynman paths[14] that the electrons follow before ul-

timately being transmitted, analogous to optical Fabry-Perot resonances that occur be-

tween two interfaces[15, 16]. These models have mainly been used to describe dephasing

in Aharonov-Bohm experiments[17] or for resonant tunneling of electrons in double bar-

rier structures[18–23]. In wave or stochastic absorption models[24], the wave function is

exponentially attenuated with each successive bounce within the device. While analogous

models have been used in Fabry-Perot etalons to describe the change in photon numbers

due to absorption[25], the number of electrons is conserved in a closed system, and these

absorption models therefore do not conserve electron number, i.e., they violate unitarity as

discussed below. However, this absorption, which can be modeled using a complex scatter-

ing potential[19], is usually interpreted as the electrons undergoing inelastic scattering into

lower energy states.

Models for pure dephasing or phase randomization have also been presented[26–28]. In

these models, the various Feynman paths develop random phase factors as the particle

traverses the device. Averaging over different realizations of the phase factors leads to

an attenuation of the contributions of coherence to the observed transmission and reflection

probabilities while still preserving unitarity. Statistical methods were shown to be consistent

with experimentally observed Aharonov-Bohm oscillations in quantum rings[29]. However, it

has been pointed out[30] that in the limit of complete incoherence, larger transmission prob-

abilities in double-barrier structures are predicted using these phase randomization models

than would have been predicted using Ohm’s law; in contrast, Buttiker’s dephasing probe

model is consistent with Ohm’s law in the limit of complete incoherence, which suggests

that both complete phase and momentum randomization are required in the classical limit.

While the vast majority of research into dephasing of electron transport has focused

on double barrier structures, less attention has been given to the problem of dephasing

of spatial coherences on the transmission and reflection spectra above or within a single

barrier and within the tunneling regime. In this work, different statistical models for the

dephasing of spatial coherence for a one-dimensional rectangular barrier and using single

particle Feynman paths are presented. The paper is organized as follows: after presenting

the basic formulae for the transmission and reflection coefficients for transmission through a
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FIG. 1. Illustration of (A) coherent and (B) incoherent transport. (A) For coherent transport, the

wave function at x = xf , Ψ(xf ), can be thought of as arising from a coherent superposition of all

possible trajectories starting from the wave function at x = xi, Ψ(xi), i.e., Ψ(xf ) =
∑

nΨn(xf ).

(B) For fully incoherent transport, the coherence between all trajectories vanishes, and the various

pathways add incoherently.

rectangular barrier of height V0 in Section II, a Feynman pathway description of transmission

and reflection above a rectangular barrier (E > V0) is presented in Section III. Three models

of spatial dephasing that preserve unitarity are considered in Section IV. In Section V,

it is demonstrated that in order to preserve unitarity in the tunneling regime (E < V0),

a superposition of evanescent waves that represent the various Feynman paths for both

transmitted and reflected wave functions cannot spatially dephase, i.e., Lϕ → ∞ in the

tunneling regime. Unlike for transmission above the barrier, however, wave absorption

models for electrons within the barrier are shown to preserve unitarity. It should be noted

that decoherence models where the environment changes state as a result of the scattering

processes[31] are not considered in this work.
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II. THE TRANSMISSION AND REFLECTION COEFFICIENTS FOR A 1D

RECTANGULAR POTENTIAL BARRIER

First, we present the standard results for the transmission (T0) and reflection (R0) coeffi-

cients of a flux-normalized wave of energy E incident from the left to a 1D potential barrier

of height V0 and width LB located between x = L0 and x = L0 + LB. Experimentally, such

a setup could be realized either in gated single tunnel junctions in either vertical or lateral

quantum dots, or in quantum wires with an artificial barrier placed along the wire that acts

as a barrier.

The wave function to the left of the barrier (x < L0) is given by:

Ψ(x) =
eikx√

ℏk
m

+R0
e−ikx√

ℏk
m

≡ eikx√
ℏk
m

+ΨR(x) (1)

where ΨR(x) is the reflected wave function, and k =
√

2mE
ℏ2 is the wave vector magnitude.

The wave function to the right of the barrier (x > L0 + LB) is given by:

Ψ(x) = T0
eikx√

ℏk
m

≡ ΨT (x) (2)

where ΨT (x) is the transmitted wave function.

The determination of R0 and T0 in Eqs.(1) and (2), which is a standard textbook problem

in quantum mechanics[32], is typically accomplished by matching the wave function and its

spatial derivative at x = L0 and x = L0 + LB. For E > V0, this procedure gives:

T0 =
e−ikLB

cos(k1LB)− i
k21+k2

2kk1
sin(k1LB)

(3)

R0 = i

k21−k2

2k1k
sin(k1LB)e

2ikL0

cos(k1LB)− i
k21+k2

2kk1
sin(k1LB)

= i
k2
1 − k2

2k1k
sin(k1LB)e

ik(2L0+LB)T0 (4)

where k1 =
√

2m(E−V0)
ℏ2 is the wave vector magnitude above the barrier.

In the tunneling regime, i.e., E < V0, T0 and R0 are given by:

T0 =
e−ikLB

cosh(κLB) + iκ
2−k2

2κkB
sinh(κLB)

(5)

R0 = −i
κ2+k2

2κk
sinh(κLB)e

2ikL0

cosh(κLB) + iκ
2−k2

2κk
sinh(κLB)

= −i
κ2 + k2

2κk
sinh (κLB) e

ik(2L0+LB)T0 (6)
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where κ =
√

2m(V0−E)
ℏ2 is the magnitude of the complex wave vector within the barrier.

Given that the 1D flux operator is ĴX = p̂X
m

= − iℏ
m

∂
∂x
, conservation of flux requires that

the sum of the magnitudes of the transmitted and reflected fluxes equals the total magnitude

of the incident flux (which is taken to be unity due to flux-normalization):

⟨ΨT |ĴX |ΨT ⟩ − ⟨ΨR|ĴX |ΨR⟩ = ⟨ΨT |ĴX |ΨT ⟩+
∣∣∣⟨ΨR|ĴX |ΨR⟩

∣∣∣ = 1 (7)

Since ⟨ΨT |ĴX |ΨT ⟩ = |T0|2 ≡ T represents the total transmission probability, and−⟨ΨR|ĴX |ΨR⟩ =

|R0|2 ≡ R represents the total reflection probability, the conservation of flux in Eq. (7) can

be simply written as:

T +R = 1 (8)

Eq. (8) is often referred to as the unitarity condition. For incident waves comprised of

charge carriers such as electrons, Eq. (8) ensures that total charge (i.e., electron number) is

conserved under the scattering process.

III. FEYNMAN PATHWAY DESCRIPTION OF TRANSMISSION ABOVE A

RECTANGULAR POTENTIAL BARRIER

An alternative method to calculate the transmission and reflection coefficients for scat-

tering from a rectangular potential barrier is to consider all Feynman pathways[14, 20–23]

a quantum particle can follow due to scattering from the barrier. As illustrated in Fig.

2(A), ΨT (x) can be written in terms of Feynman paths that are transmitted over the barrier

(for x > L0 + LB):

ΨT (x) = ⟨x|ΨT ⟩ = ΨT,0(x) + ΨT,2(x) + ΨT,4(x) + · · · =
∞∑
n=0

ΨT,2n(x) (9)

where ΨT,2n(x), which represents a Feynman path corresponding to a transmitted wave that

has undergone 2n bounces above the barrier, is given by:

ΨT,2n(x) = ⟨x|ΨT,2n⟩ = |tk,k1 |2e−ikLBeik1LB
(
|rk,k1 |2e2ik1LB

)n eikx√
ℏk
m

≡ t̃n
eikx√

ℏk
m

(10)

where
∣∣t̃n∣∣ is the transmission probability amplitude associated with the Feynman path

|ΨT,2n⟩, and |tk,k1 | = 2
√
kk1

k+k1
, |rk,k1 | =

∣∣∣k−k1
k+k1

∣∣∣ (see Appendix VIIA for more details). These
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ΨT  =    ΨT,0    +     ΨT,2    +   ΨT,4 + ...

ΨR  =    ΨR,i    +     ΨR,1    +   ΨR,3 + ...

(A)

(B)

FIG. 2. Feynman paths for elastic scattering from a 1D potential barrier for E > V0. (A) The

transmitted wave function, ΨT [Eq. (9)], and (B) the reflected wave function, ΨR [Eq. (12)], can

be interpreted as a coherent superposition of Feynman paths. In this case, the Feynman paths are

analogous to light scattering found in Fabry-Perot scattering, where the barrier edges behave like

semitransparent mirrors. All illustrated Feynman paths correspond to the same energy E (i.e., the

vertical scale does not represent energy).

bouncing trajectories are analogous the the scattering pathways found in Fabry-Perot etalons

where the barrier edges act like leaky or semitransparent mirrors.

In Eq. (9), the Feynman paths can be explicitly summed to give:

ΨT (x) =
∞∑
n=0

t̃n
eikx√

ℏk
m

= T0
eikx√

ℏk
m

(11)

where T0 is given in Eq. (3).

Similarly, ΨR(x) can be written as a sum of all Feynman paths corresponding to an

incident wave being reflected from the barrier (for x < L0):

ΨR(x) = ⟨x|ΨR⟩ = ΨR,i(x) + ΨR,1(x) + ΨR,3(x) + · · · = ΨR,i(x) +
∞∑
n=0

ΨR,2n+1(x) (12)

where ΨR,i(x) = ⟨x|ΨR,i⟩ = |rk,k1 |e2ikL0 e−ikx√
ℏk
m

represents the Feynman path for a wave that

is directly reflected from the potential barrier’s left edge while ΨR,2n+1(x), which represents
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a Feynman path for a wave that has undergone 2n + 1 bounces above the barrier before

ultimately being reflected, is given by:

ΨR,2n+1(x) = ⟨x|ΨR,2n+1⟩ = −|tk,k1 |2|rk,k1 |e2ikL0e2ik1LB
(
|rk,k1 |2e2ik1LB

)n e−ikx√
ℏk
m

= r̃n
e−ikx√

ℏk
m

(13)

where |r̃n| is the reflection probability amplitude associated with the Feynman path

|ΨR,2n+1⟩.

The various Feynman paths in Eq. (12) can be explicitly summed to give:

ΨR(x) = |rk,k1 |e2ikL0

(
1− |tk,k1 |2e2ik1LB

1− |rk,k1 |2e2ik1LB

)
e−ikx√

ℏk
m

= R0
e−ikx√

ℏk
m

(14)

where R0 is given in Eq. (4).

From Eq. (9) and Eq. (14), both |ΨT ⟩ and |ΨR⟩ can be interpreted as being a coherent

superposition of all Feynman paths above the barrier. One consequence of |ΨT ⟩ and |ΨR⟩

being a superposition of Feynman paths is that the total transmission and reflection prob-

abilities will contain contributions from the interference between different Feynman paths.

For example, the total transmission probability is given by:

T = ⟨ΨT |ĴX |ΨT ⟩ =
∞∑
n=0

⟨ΨT,2n|ĴX |ΨT,2n⟩+

interference terms︷ ︸︸ ︷∑
m<n

⟨ΨT,2m|ĴX |ΨT,2n⟩+ ⟨ΨT,2n|ĴX |ΨT,2m⟩

=
∞∑
n=0

|t̃n|2 +

interference terms︷ ︸︸ ︷∑
m<n

((
t̃m
)∗

t̃n + t̃m
(
t̃n
)∗)

= Tincoherent + Tcoherent (15)

where

Tcoherent = |tk,k1 |4
∑
m<n

|rk,k1 |2(n+m)
(
ei2(n−m)k1LB + e−i2(n−m)k1LB

)
=

2|rk,k1 |2 (cos (2k1LB)− |rk,k1 |2)
1 + |rk,k1 |4 − 2|rk,k1 |2 cos (2k1LB)

Tincoherent (16)

is the contribution to T due to the interference between different Feynman paths that make

up |ΨT ⟩ in Eq. (9), and

Tincoherent = |tk,k1 |4
∞∑
n=0

|rk,k1 |4n =
|tk,k1 |4

1− |rk,k1 |4
=

|tk,k1 |2

1 + |rk,k1 |2

(17)
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is the incoherent contribution to the transmission probability.

Using Eq. (12), a similar calculation of the total reflection probability, R, gives:

R = −⟨ΨR,i|ĴX |ΨR,i⟩ −
∞∑
n=0

⟨ΨR,2n+1|ĴX |ΨR,2n+1⟩ −

interference terms︷ ︸︸ ︷
∞∑
n=0

⟨ΨR,i|ĴX |ΨR,2n+1⟩+ ⟨ΨR,2n+1|ĴX |ΨR,i⟩

−

interference terms︷ ︸︸ ︷∑
m<n

⟨ΨR,2m+1|ĴX |ΨR,2n+1⟩+ ⟨ΨR,2n+1|ĴX |ΨR,2m+1⟩

= |rk,k1 |2 +
∞∑
n=0

|r̃n|2n +

interference terms︷ ︸︸ ︷∑
m<n

(r̃m)
∗ r̃n + r̃m (r̃n)

∗ +
∞∑
n=0

rk,k1 (r̃n)
∗ + (rk,k1)

∗ r̃n

= Rincoherent +Rcoherent (18)

where

Rcoherent = −2|tk,k1 |2
∑
n=1

|rk,k1 |2n cos (2nk1LB)

+ 2|tk,k1 |4|rk,k1 |2
∑
m<n

|rk,k1 |2(n+m) cos (2(n−m)(k1LB)

= −2|rk,k1 |2
cos (2k1LB)− |rk,k1 |2

1 + |rk,k1 |4 − 2|rk,k1 |2 cos (2k1LB)
Tincoherent

= −Tcoherent (19)

is the contribution to R due to the interference between different Feynman paths that make

up |ΨR⟩ in Eq. (12), and

Rincoherent = |rk,k1 |2 +
∞∑
n=0

|r̃n|2n =
2|rk,k1 |2

1 + |rk1,k|2
(20)

is the incoherent contribution to R.

As can be seen from Eq. (17), Eq. (16), Eq. (20), and Eq. (19), T and R satisfy the

unitarity condition in Eq. (8):

T +R = Tincoherent +Rincoherent + Tcoherent +Rcoherent

= Tincoherent +Rincoherent =
|tk,k1 |2 + 2|rk,k1 |2

1 + |rk,k1 |2
= 1 (21)

IV. STATISTICAL MODEL OF DEPHASING USING FEYNMAN PATHWAYS

As discussed in the Introduction, statistical models have been used to estimate the effects

of dephasing on the transmission probabilities in mesoscopic devices[26–28]. In the statistical
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model of dephasing, phase factors are introduced between different electron pathways as a

way to model the effects of scattering by impurities throughout the device. While in such

models a single electron wave function is still fully phase-coherent, i.e., it can always be

written as a linear superposition of pathways, averaging over different realization of electron

wave functions results in an attenuation of the contribution of coherence to the transport

properties in the device. Again, it should be noted that this contrasts with the Buttiker

dephasing probe model in which the electron wave functions are truly decohered by effectively

removing an electron and then putting it back into the device leading to both phase and

momentum randomization.

In statistical dephasing models, the transmitted and reflected wave functions can be

written as:

|ΨT ⟩ = eiϕ
T
0 |ΨT,0⟩+ eiϕ

T
2 |ΨT,2⟩+ eiϕ

T
4 |ΨT,4⟩+ · · · =

∑
n=0

eiϕ
T
2n |ΨT,2n⟩

|ΨR⟩ = eiϕ
R
i |ΨR,i⟩+ eiϕ

R
1 |ΨR,1⟩+ eiϕ

R
3 |ΨR,3⟩+ · · · = eiϕ

R
i |ΨR,i⟩+

∑
n=0

eiϕ
R
2n+1 |ΨR,2n+1⟩

(22)

where eiϕ
T
n and eϕ

R
m are random phase factors for the nth transmission [Eq. (9)] and mth

reflection [Eq. (12)] Feynman pathways above the barrier as illustrated in Fig. 2. Averaging

the total transmission and reflection probabilities for different realization of electron wave

functions in Eq. (22) gives the average transmission and reflection probabilities, ⟨T ⟩ and

⟨R⟩, respectively:

⟨T ⟩ = Tincoherent +
∑
m<n

t̃mt̃
∗
n

〈
ei(ϕ

T
2m−ϕT

2n)
〉
+ t̃nt̃

∗
m

〈
ei(ϕ

T
2n−ϕT

2m)
〉

⟨R⟩ = Rincoherent +
∞∑
n=0

r̃nr
∗
k,k1

〈
ei(ϕ

R
2n+1−ϕR

i )
〉
+ r̃∗nrk,k1

〈
e−i(ϕR

2n+1−ϕR
i )
〉

+
∑
m<n

r̃mr̃
∗
n

〈
ei(ϕ

R
2m+1−ϕR

2n+1)
〉
+ r̃nr̃

∗
m

〈
ei(ϕ

R
2n+1−ϕR

2m+1)
〉

(23)

Where ⟨. . .⟩ denotes an average over the distribution of phases. For example,〈
ei(ϕ

T
2n−ϕT

2m)
〉
=

∫
dϕT

2n

∫
dϕT

2mg
T
2n,2m(ϕ

T
2n, ϕ

T
2m)e

i(ϕT
2n−ϕT

2m) (24)

where gT2n,2m(ϕ
T
2n, ϕ

T
2m) is a joint probability distribution for the phases ϕT

2n and ϕT
2m.
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In the following, three different ways in which the relative phases between Feynman paths

are modeled are presented: Model I: uncorrelated phases, Model II: partially correlated

phases, and Model III: correlated phases.

A. Model I: uncorrelated phases

If the phases in Eq. (22) between different Feynman paths are completely uncorre-

lated, i.e., ⟨ϕT
2nϕ

T
2m⟩ = ⟨ϕT

2n⟩⟨ϕT
2m⟩ and ⟨ϕR

2n+1ϕ
R
2m+1⟩ = ⟨ϕR

2n+1⟩⟨ϕR
2m+1⟩ for all n ̸= m, then

the joint probability distributions are also completely uncorrelated, i.e., gT2n,2m(ϕ
T
2n, ϕ

T
2m) =

gT2n(ϕ
T
2n)g

T
2m(ϕ

T
2m) and gR2n+1,2m+1(ϕ

R
2n+1, ϕ

R
2m+1) = gR2n+1(ϕ

R
2n+1)g

R
2m+1(ϕ

R
2m+1) for all n and

m. It is further assumed that the phase distributions are identical for all Feynman paths

since these trajectories occur over the same barrier [Fig. 2], i.e., gR2m+1(ϕ) = gT2m(ϕ) = g(ϕ)

for all m. We will also assume that the phases are normally distributed about ϕ = 0,

g(ϕ) = 1√
2π

LB
Lϕ

e
− ϕ2

2
LB
Lϕ . It has been pointed out[30] that the use of normally distributed phase

distributions give essentially identical results to periodic phase distributions when LB

Lϕ
< π2

32
.

For larger LB

Lϕ
, periodic phase distributions should be used. In this case, a periodic phase dis-

tribution was shown to given the same predicted conductance values for a Buttiker dephasing

probe in a single channel[33]. Note that ϕ = 0 corresponds to no extraneous phase factors

due to scattering from impurities within the barrier. Using g(ϕ), ⟨ϕ⟩ = 0 and ⟨ϕ2⟩ = LB

Lϕ
.

In this case, the average of product of phase factors in Eq. (23) is given by:〈
e±i(ϕ

T (R)
n −ϕ

T (R)
m )

〉
=
〈
e±iϕ

T (R)
n

〉〈
e∓iϕ

T (R)
m

〉
= e

−LB
Lϕ ≡ λϕ (25)

Using Eq. (25), ⟨T ⟩ and ⟨R⟩ in Eq. (23) become:

⟨T ⟩ = Tincoherent + λϕ

∑
m<n

t̃mt̃
∗
n + t̃nt̃

∗
m

= Tincoherent + 2Tincoherentλϕ

∞∑
n=1

|rk,k1 |2n cos(2nk1LB)

⟨R⟩ = Rincoherent + λϕ

∞∑
n=0

(
r̃nr

∗
k,k1

+ r̃∗nrk,k1
)
+ λϕ

∑
m<n

(r̃mr̃
∗
n + r̃nr̃

∗
m)

= Rincoherent − 2Tincoherentλϕ

∞∑
n=1

|rk,k1 |2n cos(2nk1LB)

(26)
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where ⟨T ⟩+ ⟨R⟩ = 1. In Model I, which has been previously considered[26], the contribu-

tions of the coherence terms to ⟨T ⟩ and ⟨R⟩ in Eq. (26) are simply attenuated by a common

factor of λϕ < 1.

B. Model II: partially correlated phase shifts

In Model II, it is assumed that that each traversal of the barrier is associated with

a random phase. That is, taking ϕR
1 = ϕR

i + ϕ1,f + ϕ1,b, where the subscripts “f” and

“b” denote forward (left to right) and backward (right to left) paths above the barrier,

ϕR
3 = ϕR

i + ϕ1,f + ϕ1,b + ϕ2,f + ϕ2,b, and in general:

ϕR
2n+1 = ϕR

i +
n+1∑
m=1

(ϕm,f + ϕm,b) = ϕn+1,f + ϕn+1,b + ϕR
2n−1 (27)

Similarly, ϕT
0 = ϕR

i + ϕ1,f , ϕ
T
2 = ϕR

i + ϕ1,f + ϕ1,b + ϕ2,f , and in general:

ϕT
2n = ϕR

i + ϕn+1,f +
n−1∑
m=1

(ϕm,f + ϕm,b) = ϕn+1,f + ϕn,b + ϕT
2n−2 (28)

If all the various phases, ϕj,f and ϕj,b, are normally distributed and uncorrelated with each

other (i.e, ⟨ϕnϕm⟩ = ⟨ϕn⟩⟨ϕm⟩ for n ̸= m), then the average phase factors in Eq. (23)

become: 〈
ei(ϕ

T
2n−ϕT

2m)
〉

=
〈
ei(ϕn+1,f+ϕm+1,b+

∑n
p=m+2(ϕp,f+ϕp,b))

〉
=
〈
eiϕn+1,f

〉 〈
eiϕm+1,b

〉 n∏
p=m+2

〈
eiϕp,f

〉 〈
eiϕp,b

〉
=
(〈
eiϕ
〉)2(n−m)

= e
−(n−m)

LB
Lϕ = (λϕ)

n−m (29)

As such, ⟨T ⟩ and ⟨R⟩ in Eq. (23) become:

⟨T ⟩ = Tincoherent

(
1 + 2

∞∑
n=1

|rk,k1 |2n cos(2nk1LB) (λϕ)
n

)

⟨R⟩ = Rincoherent − 2Tincoherent

∞∑
n=1

|rk,k1 |2n cos(2nk1LB) (λϕ)
n

(30)

in which case ⟨T ⟩+⟨R⟩ = 1. This model is similar to the model developed by Pala et al.[27].
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C. Model III: Completely correlated phases

As with Model II, the various Feynman paths still develop a phase factor over each

round trip above the barrier. However, in Model III, the increment in phase factor is taken

to be the same for each round trip above the barrier, which can be justified if the electron

wave experiences the same scattering configuration for each round trip above the barrier. In

this case, the phases are given by ϕT
2n = ϕ0 + 2nϕ and ϕR

2n+1 = ϕR
i + 2(n+ 1)ϕ. This results

in an average phase factor of:〈
ei(ϕ

T
2n−ϕT

2m)
〉

= ⟨ei2(n−m)ϕ⟩ = e
− (n−m)2LB

Lϕ = (λϕ)
(n−m)2 (31)

In this case, ⟨T ⟩ and ⟨R⟩ in Eq. (23) are given by:

⟨T ⟩ = Tincoherent +
4kk1

k2 + k2
1

∞∑
n=1

cos(2nk1LB)

(
k − k1
k + k1

)2n

(λϕ)
n2

⟨R⟩ = Rincoherent −
4kk1

k2 + k2
1

∞∑
n=1

cos(2nk1LB)

(
k − k1
k + k1

)2n

(λϕ)
n2

(32)

D. Comparison of Models I-III for transmission above a rectangular barrier

In Fig. 3, calculations of ⟨T ⟩ and ⟨R⟩ for a rectangular barrier with
√

2mV0

ℏ2 LB = 10 in

the presence of dephasing and evaluated using either Model I [red, Eq. (26)], Model II

[yellow, Eq. (30)], or Model III [green, Eq. (32)] are shown for [Fig. 3(A)] LB

Lϕ
= 1

4
and

[Fig. 3(B)] LB

Lϕ
= 1.

Compared with the transmission spectrum for fully coherent transport [black, calculated

using Eqs. (3) and (4)], T at the resonance conditions E
V0

= n2ℏ2π2

2mL2
BV0

was smaller due to

the attenuation of Tcoherent in ⟨T ⟩. This difference became more noticeable as Lϕ became

smaller [Fig. 3(B) vs Fig. 3(A)]. For E
V0

≫ 1, all three models gave similar results. However,

for E ≈ V0, noticeable differences between the three models were evident [Fig. 3, right].

These differences were due to the fact that for E ≈ V0, multiple Feynman paths contribute

significantly to both |ΨR⟩ and |ΨT ⟩, and thus Rcoherent and Tcoherent make up a larger fraction

of ⟨R⟩ and ⟨T ⟩, respectively. Attenuation of Tcoherent for E ≈ V0 resulted in an increase of

T and a decrease of ⟨R⟩ with increasing E
V0
.

Note that Tcoherent involves a sum over interference terms between Feynman paths with

path length differences ranging from 2LB to ∞. For 2k1LB ≥ 2π, the various cos(2nk1LB)

13



terms in Tcoherent add destructively except near the resonance condition 2k1LB ≈ 2nπ for

integer n, in which case cos(2nk1LB) ≈ 1 and the terms add constructively leading to

increased transmission. Since the interference terms in Model III are attenuated as (λϕ)
n2

compared with being attenuated by only λϕ or (λϕ)
n for Models I and II, respectively,

Tcoherent for Model III will mainly be dominated by the interference of Feynman paths that

don’t appreciably differ in path length (i.e., small n). For example, Tcoherent for Model III

in Eq. (32) can be approximated under the condition that LB

Lϕ
≫ 1 by:

Tcoherent =
4kk1

k2 + k2
1

∞∑
n=1

(
k − k1
k + k1

)2n

(λϕ)
n2

cos(2nk1LB)

≈ 4kk1
k2 + k2

1

(
k − k1
k + k1

)
λϕ cos(2k1LB) (33)

The origin of the negative differential resistance (NDR) observed at low E
V0

for Model III

in Fig. 3 is due to the fact that Tcoherent in Eq. (33) is dominated by a single, oscillatory

term when LB

λϕ
≫ 1. Note that an NDR was not observed for Model I since the sum in Eq.

(26) was not truncated. However, there appeared to be a small NDR observed for Model

II due to the fact that interference terms corresponding to larger path length differences

were attenuated more relative to those corresponding to smaller path length differences,

albeit to a lesser degree than in Model III. It should be further noted that an NDR was

also observed in prior theoretical studies of the effects of electron-electron interactions on

decoherence[34].
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FIG. 3. Calculation of ⟨T ⟩ and ⟨R⟩ in the presence of spatial decoherence using Model I [red,

Eq. (26)], Model II [yellow, Eq. (30)], and Model III [green, Eq. (32)] as a function of E
V0

with
√

2mV0
ℏ2 LB = 10. The fully coherent T and R are also shown for comparison [black curves

calculated using Eqs. (3) and (4)]. In (A), LB
Lϕ

= 1
4 was used. While all three models resulted

in similar attenuation of the resonances in T at k1LB = nπ, the models exhibited very different

behavior for 1 < E
V0

< 1.04 due to differences in how the models attenuate interference contributions

to ⟨T ⟩ and ⟨R⟩. (B) Calculations using LB
Lϕ

= 1. Compared to (A), oscillations in T were more

attenuated as a result of increased spatial dephasing.
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V. FEYNMAN PATHWAY DESCRIPTION IN THE TUNNELING REGIME

ΨT  =    ΨT,0    +     ΨT,2    +   ΨT,4 + ...

ΨR  =    ΨR,i    +     ΨR,1    +   ΨR,3 + ...

(A)

(B)

FIG. 4. Feynman paths for elastic scattering from a 1D potential barrier for E < V0. (A) The

transmitted wave function, ΨT [Eq. (34)], and (B) the reflected wave function, ΨR [Eq. (37)],

can be interpreted as a coherent superposition of evanescent waves. In was the case in Fig. 2, the

Feynman paths can be interpreted as evanescent analogues of Fabry-Perot scattering, where the

barrier edges behave like semitransparent mirrors. All illustrated Feynman paths correspond to

the same energy E (i.e., the vertical scale does not represent energy).

As illustrated in Fig. 4, the transmitted wave function for E < V0 can still be written as

a superposition of Feynman paths (for x > L0 + LB):

ΨT (x) = ΨT,0(x) + ΨT,2(x) + · · · =
∞∑
n=0

ΨT,2n(x) (34)

where ΨT,2n(x), which represents a Feynman path where an evanescent wave has undergone

2n bounces within the barrier before ultimately being transmitted, is given by:

ΨT,2n(x) = ⟨x|ΨT,2n⟩ = i|tk,κ|2e2iϕ
T
k,κe−ikLBe−κLB

(
e2iϕ

R
k,κe−2κLB

)n eikx√
ℏk
m

≡ t̃n
eikx√

ℏk
m

(35)

where κ =
√

2m(V0−E)
ℏ2 , |tk,κ| = 2

√
kκ√

k2+κ2 , e
iϕk,κ

T = k−iκ√
k2+κ2 , e

iϕk,κ
R = k−iκ

k+iκ
[see Appendix VIIA].
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Eq. (34) can be explicitly summed to give:

ΨT (x) =
∞∑
n=0

ΨT,2n(x) =
∞∑
n=0

t̃n
eikx√

ℏk
m

= T0
eikx√

ℏk
m

(36)

where T0 is given in Eq. (5).

Similarly, the reflected wave function can still be written as a superposition of Feynman

paths (for x < L0)::

ΨR(x) = ΨR,i(x) + ΨR,1(x) + ΨR,3(x) + · · · = ΨR,i +
∞∑
n=0

ΨR,2n+1(x) (37)

where ΨR,i(x) = ⟨x|ΨR,i⟩ = eiϕ
k,κ
R e2ikL0 eikx√

ℏk
m

again represents the initial reflected wave while

ΨR,2n+1(x), which represents a Feynman path where an evanescent wave has undergone

2n+ 1 bounces within the barrier before ultimately being reflected, is given by:

ΨR,2n+1(x) = ⟨x|ΨR,2n+1⟩ = −i|tk,κ|2e2iϕ
k,κ
T eiϕ

k,κ
R e2ikL0e−2κLB

(
e2iϕ

k,κ
R e−2κLB

)n e−ikx√
ℏk
m

= r̃n
e−ikx√

ℏk
m

(38)

Eq. (37) can be be explicitly summed to give:

ΨR(x) =
(
eiϕ

k,κ
R e2ikL0 − i|tk,κ|2e2iϕ

k,κ
T eiϕ

k,κ
R e2ikL0e−2κLB

(
e2iϕ

k,κ
R e−2κLB

)n) e−ikx√
ℏk
m

= R0
e−ikx√

ℏk
m

(39)

where R0 is given in Eq. (6). From Eqs. (36) and (39), the transmitted and reflected waves

can be interpreted as arising from all possible scattering paths within the barrier.

Performing calculations similar to those in Section III, the total transmission probability

in the absence of dephasing is given by:

T = ⟨ΨT |ĴX |ΨT ⟩ =
∞∑
n=0

|t̃n|2 +

interference of evanescent waves︷ ︸︸ ︷∑
m<n

t̃nt̃
∗
m + t̃mt̃∗n

=
8k2κ2

sinh(2κLB)(k2 + κ2)2
+

interference of evanescent waves︷ ︸︸ ︷
8k2κ2

(
(k + iκ)4 + (k − iκ)4 − 2(k2 + κ2)2e−2κLB

)
sinh(2κLB)(k2 + κ2)2 (2(k2 + κ2)2cosh(2κLB)− ((k + iκ)4 + (k − iκ)4))

≡ Tincoherent + Tcoherent (40)
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where

Tincoherent =
8k2κ2

sinh(2κLB)(k2 + κ2)2
(41)

Similarly, the total reflection probability is given by:

R = −⟨ΨR|ĴX |ΨR⟩ = |rk,κ|2 +
∞∑
n=0

|r̃n|2 +

interference of evanescent waves︷ ︸︸ ︷
∞∑
n=0

rk,κr̃
∗
n + r∗k,κr̃n +

∑
m<n

r̃mr̃
∗
n + r̃nr̃

∗
m

= 1 +
8k2κ2e−2κLB

sinh(2κLB)(k2 + κ2)2
−

interference of evanescent waves︷ ︸︸ ︷
32k2κ2cosh(κLB)e

−κLB

2(k2 + κ2)2cosh(2κLB)− ((k + iκ)4 + (k − iκ)4)

+

interference of evanescent waves︷ ︸︸ ︷
8k2κ2e−2κLB

(
(k + iκ)4 + (k − iκ)4 − 2(k2 + κ2)2e−2κLB

)
sinh(2κLB)(k2 + κ2)2 (2(k2 + κ2)2cosh(2κLB)− (k + iκ)4 − (k − iκ)4)

≡ Rincoherent +Rcoherent (42)

where

Rincoherent = 1 +
8k2κ2e−2κLB

sinh(2κLB)(k2 + κ2)2
(43)

From Eq. (40) and Eq. (42), T +R = 1.

We now wish to consider the affects of dephasing on T and R in the tunneling regime.

For simplicity, consider the application of Model I. In this case, the interference terms in

Eqs. (40) and (42) are attenuated by a factor of e
−LB

Lϕ = λϕ < 1, which gives:

⟨T ⟩ = Tincoherent + λϕ
8k2κ2

(
(k + iκ)4 + (k − iκ)4 − 2(k2 + κ2)2e−2κLB

)
sinh(2κLB)(k2 + κ2)2 (2(k2 + κ2)2cosh(2κLB)− ((k + iκ)4 + (k − iκ)4))

⟨R⟩ = Rincoherent − λϕ

(
32k2κ2cosh(κLB)e

−κLB

2(k2 + κ2)2cosh(2κLB)− ((k + iκ)4 + (k − iκ)4)

)
+ λϕ

(
8k2κ2e−2κLB

(
(k + iκ)4 + (k − iκ)4 − 2(k2 + κ2)2e−2κLB

)
sinh(2κLB)(k2 + κ2)2 (2(k2 + κ2)2cosh(2κLB)− (k + iκ)4 − (k − iκ)4)

)
(44)

In Figure 5, the transmission and reflection spectra in the tunneling regime are shown for

both the fully coherent case [Fig. 5(A) and calculated using Eqs. (5) and (6)] and for Model

I [calculated using Eq. (44) for [Fig. 5(B)] LB

Lϕ
= 1 and for [Fig. 5(C)] LB

Lϕ
= 5]. Attenuating

the contributions of the interference terms led to a violation of unitarity with ⟨T ⟩+ ⟨R⟩ > 1

as seen in Fig. 5(B) and 5(C) [purple, dotted curves]. Violation of the unitarity condition

18



in Eq. (8) is due to the fact that [Eq. (43)] Rincoherent and [Eq. (41)] Tincoherent do not

themselves satisfy the unitarity condition:

Tincoherent +Rincoherent = 1 +
8k2κ2(1 + e−2κLB)

sinh(2κLB)(k2 + κ2)2
> 1 (45)

As such, the condition that λϕ → 1 (i.e., Lϕ → ∞) in Eq. (44) for dephasing models must

be satisfied in order to maintain unitarity in the tunneling regime.
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FIG. 5. Plots of (blue) ⟨R⟩ and (red) ⟨T ⟩ vs E
V0

in the tunneling regime for
√

2mV0
ℏ2 LB = 3. (A)

Fully coherent case, calculated using Eqs. (40) and (42), where unitarity is demonstrated from

⟨R⟩+ ⟨T ⟩ = 1 (purple, dotted line). Plots of ⟨R⟩ and ⟨T ⟩ calculated using Model I [Eq. (44)] for

(B) LB
Lϕ

= 1 and (C) LB
Lϕ

= 5. Note that in both cases, the unitarity condition in Eq. (8) is violated

since ⟨R⟩+ ⟨T ⟩ > 1 (purple, dotted curve) in the presence of dephasing.

While the above arguments suggest that transport through a barrier must be fully phase

coherent in order to preserve unitarity, this statement has meaning only if there are Feynman
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paths besides ΨT,0 and ΨR,i that significantly contribute to |ΨT ⟩ [Eq. (34)] and |ΨR⟩ [Eq.

(37)], respectively. This requires:

χ =
|t̃0|2

T
=
∣∣∣1− e2iϕ

κ,k
R e−2κLB

∣∣∣2 < 1 (46)

where χ represents the fraction of transmitted Feynman paths in |ΨT ⟩ corresponding to

|ΨT,0⟩. In Fig. 3, χ < 0.75 for E
V0

≥ 0.777. Note in general, Eq. (46) will be satisfied as

E → V0 meaning that as the energy of the incident wave approaches the barrier height,

more Feynman paths other than |ΨT,0⟩ and |ΨR,i⟩ will significantly contribute to |ΨT ⟩ and

|ΨR⟩, respectively.

A. Partial absorption of evanescent waves preserves unitarity

While it was shown that dephasing of the coherence of evanescent waves within the barrier

does not preserve unitarity, partial absorption of the evanescent waves within the barrier

does. To see this, consider again ΨT (x) in Eq. (34) and ΨR(x) in Eq. (37). In the following,

we will assume that the electron carriers can be “absorbed”, i.e., inelastically scattered,

as the electron travels through the barrier. In this case, the attenuation factor for going

from the left to right barrier edge is given by e−αLB where we take α > 0 in order that the

evanescent wave is attenuated. In the wave absorption model, the attenuated ΨR(x) and

ΨT (x) can be written as:

ΨR(x) = ΨR,i(x) + e−2αLBΨR,1(x) + e−4αLBΨR,3(x) + · · · = ΨR,i(x) +
∞∑
n=1

e−2nαLB r̃n
e−ikx√

ℏk
m

= ΨR,i(x) +
∞∑
n=1

˜̃rn
e−ikx√

ℏk
m

ΨT (x) = e−αLBΨt,0(x) + e−3αLBΨt,2(x) + · · · =
∞∑
n=0

t̃ne
−(2n+1)αLB

eikx√
ℏk
m

=
∞∑
n=0

˜̃tn
eikx√

ℏk
m

(47)

where

˜̃rn = e2nαLB r̃n = i|tk,κ|2e2iϕ
k,κ
T eiϕ

k,κ
R e2ikL0e−2κLB(1+α

κ )
(
e2iϕ

k,κ
R e−2κLB(1+α

κ )
)n
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≡ i|tk,κ|2e2iϕ
k,κ
T eiϕ

k,κ
R e2ikL0e−2κL̃B

(
e2iϕ

k,κ
R e−2κL̃B

)n
˜̃tn = e−(2n+1)αLB t̃n = i|tk,κ|2e2iϕ

T
k,κe−ikLBe−κL̃B

(
e2iϕ

R
k,κe−2κL̃B

)n
(48)

Thus, the effects of absorption/attenuation of the evanescent Feynman pathways within the

barrier is just to increase the effective barrier length from LB to L̃B = LB

(
1 + α

κ

)
> LB.

As such, both T and R can be calculated from Eqs. (40) and (42), respectively, simply by

replacing LB with L̃B. Thus the transmission spectrum in the tunneling regime should be

identical to the case of fully phase-coherent tunneling in a barrier with an effective larger size

of L̃B. In this case, determining L̃B and knowing LB could be used to determine the effective

absorption within the tunnel barrier (if any). It should be noted that while T +R = 1 within

the wave attenuation model for tunneling within a barrier, T +R ̸= 1 for transmission above

a barrier using the wave attenuation model.

VI. CONCLUSIONS

In this work, a Feynman pathway picture was used to describe the transmission and

reflection probabilities for a 1D rectangular barrier in the presence of the dephasing of

spatial coherences. For energies above the barrier, dephasing models that preserve unitarity

require that the attenuation factors for the interference between any two Feynman paths

are either identical (Model I) or depend only upon the difference in path lengths (Models

II and III). In the tunneling regime, however, the evanescent waves cannot dephase within

the barrier in order to preserve unitarity. While absorption models (without reinjection

of electrons) for above barrier transmission violate unitarity, the evanescent waves in the

tunneling regime can be absorbed within the barrier, which does satisfy unitarity. Wave

absorption within the barrier results in transmission spectra that are equivalent to purely

phase coherent tunneling in an effectively longer barrier. In this case, careful experimental

studies of the transmission spectra in tunnel junctions, gated quantum wires, and other

effective one-dimensional systems with a single barrier could be used to characterize the

amount of absorption (if any) within the barrier for these materials. If materials in which

the observed wave absorption is minimal inside the barrier are found, these materials can

be doped with scatterers that act like “δ”-wells, in which case near unity phase-coherent

tunneling through a single barrier can be generated. The theory using Feynman paths that
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was presented in this work could also be used to study transport in multibarrier systems

(an application to double barrier systems and resonant tunneling is given in Supplementary

Information). Though a single particle picture for the Feynman paths was used in this work,

the theory can in principle be extended to Feynman paths representing multiple particles.
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VII. APPENDIX
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FIG. 6. Determination of scattering amplitudes from a step potential edge at x = L0. For E > V0,

illustration of scattering processes to determine (A)
(
tLRk,k1

)
L0

and
(
rLRk,k1

)
L0

, and (B)
(
rRL
k1,k

)
L0

and
(
tRL
k1,k

)
L0

. For E < V0, illustration of the scattering processes to determine (C)
(
tLRk,κ

)
L0

and(
rLRk,κ

)
L0

along with (C)
(
tLRκ,k

)
L0

and
(
rLRκ,k

)
L0

.
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A. Determination of the reflection and transmission coefficients from a potential

step of height V0 for E > V0

Consider again the case of a particle scattering from a potential step of height V0 at

x = L0. For an incident wave from the left with E = ℏ2k2
2m

> V0 as depicted in Fig. 6(A),

the wave function for x < L0 is given by:

Ψ(x) =
eikx√

ℏk
m

+
(
rLRk,k1

)
L0

e−ikx√
ℏk
m

(49)

and for x > L0

Ψ(x) =
(
tLRk,k1

)
L0

eik1x√
ℏk1
m

(50)

where k1 =
√

2m
ℏ2 (E − V0), and

(
tLRk,k1

)
L0

and
(
rLRk,k1

)
L0

are the transmission and reflection

coefficients from a potential step at x = L0, respectively. Continuity of the wave function

and its derivative at x = L0 gives:

eikL0 +
(
rLRk,k1

)
L0

e−ikL0 =

√
k

k1

(
tLRk,k1

)
L0

eik1L0

k

k1

(
eikL0 −

(
rLRk,k1

)
L0

e−ikL0

)
=

√
k

k1

(
tLRk,k1

)
L0

eik1L0 (51)

from which (
rLRk,k1

)
L0

=
k − k1
k + k1

e2ikL0 ≡ rk,k1e
2ikL0

(
tLRk,k1

)
L0

=
2
√
kk1

k + k1
ei(k−k1)L0 ≡ tk,k1e

i(k−k1)L0 (52)

For a wave incident from the right to a potential step at x = L0 as depicted in Fig. 6(B),

a similar calculation gives: (
rRL
k1,k

)
L0

= −rk,k1e
−2ik1L0(

tRL
k1,k

)
L0

= tk,k1e
i(k−k0)L0 (53)

From the above equations, we have∣∣∣(rLRk,k1

)
L0

∣∣∣ =
∣∣∣(rRL

k1,k

)
L0

∣∣∣ ≡ |rk,k1 |∣∣∣(tLRk,k1)L0

∣∣∣ =
∣∣∣(tRL

k1,k

)
L0

∣∣∣ ≡ |tk,k1 | (54)
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In all cases, the reflection and transmission coefficients satisfy the unitarity condition in Eq.

(8): ∣∣∣(tLRk,k1)L0

∣∣∣2 + ∣∣∣(rLRk,k1

)
L0

∣∣∣2 = ∣∣∣(tRL
k1,k

)
L0

∣∣∣2 + ∣∣∣(rRL
k1,k

)
L0

∣∣∣2 = |rk,k1 |2 + |tk,k1 |2 = 1 (55)

These scattering coefficients were used in Sec. III.

B. Determination of reflection and transmission coefficients from a potential step

of height V0 for E < V0

For a wave that is incident to a step potential at x = L0 from the left with E < V0 as

illustrated in Fig. 6(C), the wave function for x < L0 is given by:

Ψ(x) =
eikx√

ℏk
m

+
(
rLRk,κ

)
L0

e−ikx√
ℏk
m

(56)

where κ =
√

2m(V0−E)
ℏ2 , and

(
rLRk,κ

)
L0

is the reflection coefficient for a step potential at x = L0.

The wave function for x > L0 is given by:

Ψ(x) =
(
tLRk,κ
)
L0

e−κx√
ℏκ
m

(57)

where
(
tLRk,κ
)
L0

is the transmission amplitude into the barrier.

Continuity of the wave function and its derivative at x = L0 gives:

eikL0 +
(
rLRk,κ

)
L0

e−ikL0 =

√
k

κ

(
tLRk,κ
)
L0

e−κL0

ik

κ

(
eikL0 −

(
rLRk,κ

)
L0

)
= −

√
k

κ

(
tLRk,κ
)
L0

e−κL0 (58)

which gives (
rLRk,κ

)
L0

=
k − iκ

k + iκ
e2ikL0 ≡ eiϕ

k,κ
R e2ikL0

(
tLRk,κ
)
L0

=
2
√
kκ

k + iκ
eikL0eκL0 ≡ |tk,κ|eiϕ

k,κ
T eikL0eκL0 (59)

where

|tk,κ| =
2
√
kκ√

k2 + κ2

eiϕ
k,κ
T =

k − iκ√
k2 + κ2

eiϕ
k,κ
R =

k − iκ

k + iκ
(60)

24



Note that
∣∣∣(rLRk,κ

)
L0

∣∣∣2 = 1 since the transmitted wave in the barrier has imaginary flux.

Now consider a particle that exits a barrier step at x = L0 from the left as illustrated in

Fig. 6(D). In this case, the wave function for x < L0 is given by:

Ψ(x) =
e−κx√

ℏκ
m

+
(
rLRκ,k

)
L0

eκx√
ℏκ
m

(61)

and for x > L0

Ψ(x) =
(
tLRκ,k
)
L0

eikx√
ℏk
m

(62)

where k =
√

2mE
ℏ2 .

Continuity of the wave function and its derivative at x = L0 gives:

e−κL0 +
(
rLRκ,k

)
L0

eκL0 =

√
κ

k

(
tLRκ,k
)
L0

eikL0

− κ

ik

(
e−κL0 −

(
rLRκ,k

)
L0

eκL0

)
=

√
κ

k

(
tLRκ,k
)
L0

eikL0 (63)

which gives

(
tLRκ,k
)
L0

= i|tk,κ|eiϕ
k,κ
T e−ikL0e−κL0(

rLRκ,k

)
L0

= −eiϕ
k,κ
R e−2κL0 (64)

For completeness, similar calculations of the transmission and reflection coefficients for the

reverse processes depicted in Fig. 6(C) and 6(D) give:

(
tRL
k,κ

)
L0

= |tk,κ|eiϕ
k,κ
T e−ikL0e−κL0(

rRL
k,κ

)
L0

= eiϕ
k,κ
R e−2ikL0(

tRL
κ,k

)
L0

= i|tk,κ|eiϕ
k,κ
T eikL0eκL0(

rRL
κ,k

)
L0

= −eiϕ
k,κ
R e2κL0 (65)

These scattering coefficients were used in Section V.
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