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Abstract—We consider the problem of predicting cellular network performance (signal maps) from measurements collected by several
mobile devices. We formulate the problem within the online federated learning framework: (i) federated learning (FL) enables users to
collaboratively train a model, while keeping their training data on their devices; (ii) measurements are collected as users move around
over time and are used for local training in an online fashion. We consider an honest-but-curious server, who observes the updates
from target users participating in FL and infers their location using a deep leakage from gradients (DLG) type of attack, originally
developed to reconstruct training data of DNN image classifiers. We make the key observation that a DLG attack, applied to our setting,
infers the average location of a batch of local data, and can thus be used to reconstruct the target users’ trajectory at a coarse
granularity. We build on this observation to protect location privacy, in our setting, by revisiting and designing mechanisms within the
federated learning framework including: tuning the FL parameters for averaging, curating local batches so as to mislead the DLG
attacker, and aggregating across multiple users with different trajectories. We evaluate the performance of our algorithms through both
analysis and simulation based on real-world mobile datasets, and we show that they achieve a good privacy-utility tradeoff.

Index Terms—Federated learning, deep leakage from gradients (DLG), location privacy, signal maps.
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1 INTRODUCTION

MOBILE crowdsourcing is widely used to collect data
from a large number of mobile devices, which are

useful on their own and/or used to train models for prop-
erties of interest, such as cellular/WiFi coverage, senti-
ment, occupancy, temperature, COVID-related statistics, etc.
Within this broader class of spatiotemporal models trained
by mobile crowdsourced data [1], we focus on the represen-
tative and important case of cellular signal maps. Cellular
operators rely on key performance indicators (a.k.a. KPIs) to
understand the performance and coverage of their network,
in their effort to provide the best user experience. These KPIs
include wireless signal strength measurements, especially
Reference Signal Received Power (RSRP), which is going to
be the focus of this paper, and other performance metrics
(e.g., coverage, throughput, delay) as well as information
associated with the measurement (e.g., location, time, fre-
quency band, device type, etc.).

Cellular signal strength maps consist of KPIs in several
locations. Traditionally, cellular operators collected such
measurements by hiring dedicated vans (a.k.a. wardriv-
ing [2]) with special equipment, to drive through, measure
and map the performance in a particular area of interest.
However, in recent years, they increasingly outsource the
collection of signal maps to third parties [3]. Mobile an-
alytics companies (e.g., OpenSignal [4], Tutela [5]) crowd-
source measurements directly from end-user devices, via
standalone mobile apps or SDKs integrated into popular
partnering apps, typically games, utility or streaming apps.
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The upcoming dense deployment of small cells for 5G at
metropolitan scales will only increase the need for accurate
and comprehensive signal maps [6], [7]. Because cellular
measurements are expensive to obtain, they may not be
available for all locations, times and other parameters of
interest, thus there is a need for signal maps prediction
based on limited available such measurements.

Signal maps prediction is an active research area and
includes: propagation models [8], [9], data-driven ap-
proaches [10], [11], [12], combinations thereof [13], and
increasingly sophisticated ML models for RSRP [3], [14],
[15], [16] and throughput [17], [18]. All these prediction tech-
niques consider a centralized setting: mobile devices upload
measurements to a server, which then trains a global model
to predict cellular performance (typically RSRP) based on at
least location, and potentially time and other features.

Fig. 1 depicts an example of a dataset collected on a
university campus, which is one of the datasets we use
throughout this paper. Fig. 1(a) and (b) show the locations
where measurements of signal strength (RSRP) were col-
lected by two different volunteers as they move around the
campus. The measurements from all users are uploaded to a
server, which then merges them and creates a signal map for
the campus (shown in Fig. 1(c)); and/or may train a global
model for predicting signal strength based on location and
potentially other features. However, this utility comes at the
expense of privacy: as evident in Fig. 1, frequently visited
locations may reveal users’ home, work, or other impor-
tant locations, as well as their mobility pattern; these may
further reveal sensitive information such as their medical
conditions, political beliefs, etc [19]. The trajectories of the
two example users are also sufficiently different from each
other, and can be used to distinguish between them, even if
their identifiers are removed from the dataset.

In this paper, we make three contributions (in the prob-
lem setup, privacy attack and defense mechanisms), all
leveraging the patterns of human mobility underlying our
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(a) RSRP measurements of one user. (b) RSRP measurements of another user. (c) RSRP measurements from all users.

Fig. 1: Examples from the Campus Dataset. We see the locations where measurements are collected and the color indicates the
values of signal strength (RSRP) in those locations. Fig. (a) and (b) depict measurements collected by two different users. Fig. (c)
shows the union of all measurements from all users in the Campus Dataset.

data. First, we design a lightweight online federated learn-
ing framework, specifically for the signal strength prediction
problem. Second, we introduce a privacy attack, specifically
for this framework: an honest-but-curious server employs
gradient inversion to infer the location of users participating
in the federated signal map framework. This DLG-based
attack is specifically designed to reconstruct the average
location in each round; this is in contrast to state-of-the-art
DLG attacks on images or text, which aims at fully recon-
structing all training data points. Third, we propose a defense
approach that selects local batches so that the inferred loca-
tion is far from the true average location, thus misleading
the DLG attacker. Evaluation results show that our defense
mechanisms achieve better privacy-performance trade-off
compared to state-of-the-art baselines.

First, w.r.t. the signal maps prediction based on crowd-
sourced data: we formulate a simple version that captures
the core problem. We train a DNN to predict signal strength
(RSRP) based on GPS location (latitude, longitude), while
local training data arrive in an online fashion. The problem
lends itself naturally to Federated Learning (FL): training
data are collected by mobile devices, which want to collab-
orate without uploading sensitive location information. FL
enables mobiles to do that by exchanging model parameters
with the server but keeping their training data local [20]. The
problem further lends itself to online learning because the
training data are collected over time [21], [22] as users move
around. We design a lightweight online FL scheme, which
trains only on data collected during the current round, and
we show that it performs well in this setting.

Second, w.r.t. the location privacy: we consider an honest-
but-curious server, which implements online FL accurately
but attempts to infer the location of users. Since gradient
updates are sent from users to the server in every FL
round, FL lends itself naturally to inference attacks from
gradients. We adapt the DLG attack, originally developed to
reconstruct training images and text used for training DNN
classifiers [23], [24]. A key observation, that we confirm both
empirically and analytically, is that a DLG attacker who
observes a single gradient (SGD) update from a target user,
can reconstruct the average location of points in the batch.
Over multiple rounds of FL, this allows the reconstruction
of the target(s)’ mobility pattern.

Third, on the defense side, we leverage this intuition
to design local mechanisms that are inherent to FL (which

we refer to as ”FL-native”) specifically to mislead the DLGs
attacker and protect location privacy. In particular, we show
that the averaging of gradients inherent in FedAvg provides
a moderate level of protection against DLG, while simul-
taneously improving utility; we systematically evaluate the
effect of multiple federate learning parameters (E,B,R, η)
on the success of the attack. Furthermore, we design and
evaluate two algorithms for local batch selection, Diverse
Batch and Farthest Batch, that a mobile device can
apply locally to curate its local batches so that the inferred
location is far from the true average location, thus mislead-
ing the DLG attacker and protecting location privacy. (3)
We also show that the effect of multiple users participating
in FL, w.r.t. the success of the DLG attack, depends on the
similarity of user trajectories.

Throughout this paper, we use two real-world datasets:
(i) our own geographically small but dense Campus
Dataset [25] we introduced in Fig. 1); and (ii) the larger
but sparser publicly available Radiocells Dataset [26],
especially its subset from the London metropolitan area.
We show that we can achieve good location privacy, with-
out compromising prediction performance, through the
privacy-enhancing design of the aforementioned FL-native
mechanisms (i.e., tuning of averaging, curation of diverse
and farthest local batches, and aggregation of mobile users
with different trajectories). Add-on privacy-preserving tech-
niques, such as Differential Privacy (DP) [27], [28] or Se-
cure Aggregation (SecAgg) [29], are orthogonal and can be
added on top of these FL mechanisms, if stronger privacy
guarantees are desired, at the expense of computation or
utility. Our evaluation suggests that Diverse Batch and
Farthest Batch alone are sufficient to achieve a great
privacy-utility tradeoff in our setting.

The outline of the paper is as follows. Section 2 for-
mulates the federated online signal maps prediction prob-
lem and the corresponding DLG attack, and provides key
insights. Section 3 describes the evaluation setup, includ-
ing datasets and privacy metrics. Section 4 presents the
evaluation results for DLG attacks without any defense,
as well as with our privacy-enhancing techniques, for a
range of simulation scenarios. Section 5 discusses related
work. Section 6 concludes and outlines future directions.
The appendix – uploaded under supplemental materials –
provide additional details on datasets, parameter tuning,
analysis, and evaluation results.
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2 LOCATION DLG ATTACK

In Section 2.1, we model the problem within the online
federated learning framework and we define the DLG at-
tack that allows an honest-but-curious server to infer the
whereabouts of the target user(s). In Section 2.2, we provide
analytical insights that explain the performance of the DLG
attack for various user trajectories and tuning of various
parameters, and also guide our algorithm design choices.

2.1 Problem Setup
Signal Maps Prediction. Signal maps prediction typi-
cally trains a model to predict a key performance indi-
cator (KPI) yi based on the input feature vector xi =
[xi,1, xi,2, ....xi,m]T , where i denotes the i-th datapoint in
the training set. W.l.o.g. we consider the following: y is a
metric capturing the signal strength and we focus specifi-
cally on Reference Signal Received Power (RSRP), which is
the most widely used KPI in LTE. For the features x used
for the prediction of y, we focus on the spatial coordinates
(longitude, latitude), i.e., m = 2.1 We train a DNN model
with weights w, per cell tower, yi = F (xi, w); the loss
function ℓ is the Mean Square Error, and we report the
commonly used Root Mean Squared Error (RMSE).

We consider a general DNN architecture that, unlike
prior work [23], is quite general. We tune its hyperparame-
ters (depth, width, type of activation functions, learning rate
η) via the Hyperband tuner [31] to maximize utility. Tuning
the DNN architecture can be done using small datasets per
cell tower, which are collected directly or contributed by
users or third parties willing to share/sell their data.

Measurements over time and space. We consider several
users, each with a mobile device, who collect several signal
strength measurements ({xi, yi}i=N

i=1 ), as they move around
throughout the day and occasionally upload some informa-
tion to the server. Fig.1 shows examples of users moving
around on a university campus; Fig. 2 shows a single such
user and the locations where measurements were collected
for three different days. It is important to note that the
measurement data are not static but collected in an online
fashion. Users continuously collect such measurements as
they move around throughout the day, and they periodically
upload them to the server, e.g., every night when the mobile
is plugged into charge and connected to WiFi. This is a
special case of mobile crowdsourcing (MCS) [1].

Let the time be divided into time intervals or ”rounds”
indexed by t = 1, . . . , R. All rounds have the same duration
T ; in the previous example, T was one day, but we also
consider other values: 1-3 hours, one day, one week, etc.
2 At the end of each such round, user k processes the set

1. In prior work on centralized signal map prediction [3], [30], we
assessed the feature importance on the campus and other datasets, and
found location, time, and cell tower id to be the most important, while
device type, frequency and outdoor/indoor location had negligible
effect on our campus datasets. In this paper, we focus on the most
important features, i.e., spatial coordinates, we handle time within the
online learning framework, and we train one DNN per cell id.

2. Values of T were chosen to match the time scales of human
mobility (on the order of hours, days or weeks) and not the dynamics of
the wireless channel (much shorter time scales, e.g., below a second). Se-
lecting T to be one day or one week also allows for enough datapoints
in a round (see Fig. 17 in App. A.2). It also reflects common practices in
crowdsourcing signal strength (apps collect measurements throughout
the day but upload once, at night, when the phone is charging).

Notation Description

x Input features: (lat, lon) coordinates (and potentially more)
y Prediction label for RSRP
ℓ MSE loss for RSRP prediction (RMSE is reported as utility)
η Learning rate
i ith measurement used for training: (xi, yi)
T Duration of time interval/round over which users process the online data;

one interval corresponds to one round in FL and one local batch
t Index of FL round, t = 1, 2., ..R; each round has duration T

Dk
t Local data arriving to user k in round t

LocalBatch Subset of all local data Dk
t used as a local batch in FL

In FedAvg: LocalBatch =Dk
t ;

In Diverse Batch and Farthest Batch: LocalBatch ⊂ Dk
t

wt Global model weights at round t
wk

t Local model weights at round t from user k
B Mini-batch size; if B = ∞ then mini-batch = LocalBatch
Bk

t Partition of user k’s LocalBatch at round t into mini-batches
E Number of local epochs

∇wtarget
t Gradient of target’s model weights at round t
D Cosine loss used in DLG attack (Algorithm 2)

xDLG Reconstructed location by DLG attack (Algorithm 2)
x̄t Centroid: average location of data in a local batch: x̄t =

∑i=N
i=1 xi

eps DBSCAN parameter that controls total clusters for Diverse Batch
num Farthest Batch parameter that controls the number of

measurements selected in each LocalBatch.

TABLE 1: Main parameters and notation. See also Fig. 2.

of measurement data Dk
t collected during that round and

sends an update to the server. We also refer to Dk
t as the local

data that “arrive” at user client k in round t. Collected over
t = 1, . . . , R, Dk

t reveals a lot about user k’s whereabouts,
as evident by the examples of Fig. 1 and Fig. 2. Human
mobility is well known to exhibit strong patterns: people
spend several hours a day in a few important places (e.g.,
their home, work, and other important locations), and move
between them in continuous trajectories. The locations x col-
lected as part of the signal maps measurements (xi, yi)

i=N
i=1

essentially sample the real user’s trajectory.
Federated Signal Maps. State-of-the-art mobile crowd-

sourcing practices [1], [5] rely on the server to collect the
raw measurements (in our context locations and associated
RSRP measurements) from multiple users, aggregate them
into a single map, and maybe train a centralized prediction
model, with the associated location privacy risks. In this
paper, we apply for the first time FL [20] to the signal maps
prediction problem, which allows users to keep their data on
their device, while still collaborating to train a global model,
by exchanging model parameter updates with the server.

In the federated learning framework [20], [32], the server
and the users agree on a DNN architecture and they com-
municate in rounds (t = 1, . . . , R) to train it. In every
round t, the server initializes the global parameters wt and
asks for a local update from a subset (fraction C) of the
users. The user k trains a local model on its local data
and sends its update for the local model parameters wk

t

to the server. The server averages all received updates,
updates the global parameters to wt+1 and initiates another
round; until convergence. If a single gradient descent step is
performed on the local data, the scheme is called Federated
SGD (FedSGD). If there are multiple local steps, (i.e., local
data are partitioned into mini-batches of size B each, there
is one gradient descent step per mini-batch, and multiple
passes E epochs) on the local data), the scheme is called
Federated Averaging (FedAvg) [20]. FedSGD is FedAvg for
E = 1, B = ∞, C = 1. B = ∞ indicates that the entire local
batch is treated as one mini-batch.

Online Federated Learning. Differently from the classic
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Fig. 2: Example of the Online Federated Learning Framework with DLG Attack, using data from the campus. The target user
k collects data in an online fashion, and processes them in intervals/rounds of duration T=1 day. The right part of the picture
shows real locations (in light blue) the target user visited on different days. During round t, the target collects local data Dk

t , uses
it for local training, updates the local model weights wk

t and shares them with the server. (During local training, the local data
Dk

t is further split into a list Bk
t of mini-batches, each of size B.) The server observes the model parameter update wk

t at time t,
computes the gradient (∇w = wk

t −wk
t−1) and launches a DLG attack using Algorithm 2. For each day t, it manages to reconstruct

the centroid (average location) of the points in Dk
t (shown in dark blue color). During the last day, where the user did not move

much, the centroid conveys quite a a lot of information.

FL setting [20], the local data of user k are not available all
at once, but arrive in an online fashion as the user collects
measurements. We consider that the interval T (for process-
ing online data) coincides with one round t of federated
learning, at the end of which, the user processes the local
data Dk

t that arrived during the last time interval T ; it then
updates its local model parameters wt and sends the update
to the server. We introduce a new local pre-processing step
in line 16 in Algorithm 1: the user may choose to use all
recent local data Dk

t or a subset of it as its LocalBatch.
(Unless explicitly noted, we mean LocalBatch = Dk

t , except
for Section 4.3 where Diverse Batch is introduced to pick
LocalBatch ⊂ Dk

t so as to increase location variance and
privacy.) Once LocalBatch is selected, FedAvg can further
partition it into a set of mini-batches (Bk

t ) of size B. An
example is depicted in Fig. 2, where data are collected and
processed by user k in rounds of T = one day.

How to update the model parameters based on the
stream of local data ({Dk

t }, t = 1, . . . , R) is the subject of
active research area on online learning [21], [22]. We adopt
the following approach. In every round t, user k uses only
its latest batch Dk

t for local training and for computing wk
t .

The data collected in previous rounds (Dk
1 , ...D

k
t−1) have

already been used to compute the previous local (wk
t−1) and

global (wt−1) model parameters but is not used for the new
local update. This is one of the state-of-the-art approaches
in federated learning [33], [34], [35]. Our design choice to
discard data from previous rounds, raises a concern about
catastrophic forgetting [36], [37]. Our intuition is that this
will not happen in our datasets because of the predictable
and repeated patterns in human mobility data. As users
visit the same locations and follow the same trajectories over
days and weeks, they contribute similar data over time. This
intuition was, indeed, confirmed by the model evaluation. 3

3. Due to lack of space, quantitative comparison to alternative ap-
proaches (i.e., “Cumulative Online FL”, which accumulates all training
data as they arrive, and “Testing on Past Data”, which trains on the
current round but tests on the past data) are deferred to Appendix A.3,
under supplementary materials.The consistency in performance across
all evaluation scenarios confirms that there is no catastrophic forgetting.

Algorithm 1: Online FedAvg with DLG Attack.
Given: K users (indexed by k); B local mini-batch size;
E number of local epochs; R number of rounds of
duration T each; C fraction of clients; nt is the total
data size from all users at round t, η is the learning
rate; the server aims to reconstruct the local data of
target user k.

Server executes:
Initialize w0

for each round t = 1,2, ... R do
m← max(C ·K, 1)
St ← (random subset (C) of users)
for each user k ∈ St in parallel do

wk
t ← UserUpdate(k, wt−1, t, B)

if k==target then
∇wtarget

t ← wk
t − wk

t−1

DLG(F (x;wk
t ), wk

t , ∇wtarget
t )

wt ←
∑K

k=1

nk
t

nt
wk

t

UserUpdate(k, w, t, B):
Local data Dk

t are collected by user k during round t
Select LocalBatch ⊆ Dk

t to use for training
nk
t = |LocalBatch|: training data size of user k at

round t
Bk

t ← (split LocalBatch into mini-batches of size B)
for each local epoch i: 1...E do

for mini-batch b ∈ Bk
t do

w ← w − η∇ℓ(w; b)
return w to server

Therefore, the design choice of discarding past data allows
us to train a good signal strength model, while keeping
storage and computation light.

Honest-but-Curious Server. We assume an honest-but-
curious server who receives and stores model updates from
each user, and whose goal is to infer the user’s locations. The
server may be interested in various location inference goals:
e.g., the user trajectory at various spatiotemporal granu-
larities, important locations (e.g., home or work), presence
near points-of-interest (e.g., has the user been at the doctor’s
office?). W.l.o.g., the server targets a user k who participates
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Algorithm 2: DLG Attack.
Input: F (x;wt): DNN model at round t; wt: model
weights, ∇wt:model gradients, after target trains on a
data batch of size B at round t, learning rate η for DLG
optimizer; m: max DLG iterations; a: regularization
term for cosine DLG loss.
Output: reconstructed training data (x, y) at round t

Initialize x′
0 ← N (0,1), y′

0 ← ȳ // mean RSRP
for i← 0,1, ... m do
∇w′

i ← ∂ℓ(F (x′
i, wt), y

′
i)/∂wt

Di ← 1− ∇w·∇w′
i

∥∇w∥∥∇w′
i∥

+ α // cosine loss

x′
i+1 ← x′

i − η∇x′
i
Di, y′

i+1 ← y′
i − η∇y′

i
Di

return xDLG ← x′
m+1

in round t: it compares updates across successive rounds
wk

t−1 and wk
t and computes the gradient for round t; see

Algorithm 1 and Fig.2. It then uses this gradient to infer
user k’s location in round t, as described next.

DLG Attack against a Single Update. At Line 11 of
Algorithm 1, the server launches a DLG attack to infer the
location of user k in round t. The DLG attack is defined
in Algorithm 2 and an example is shown in Fig. 3. In
each iteration i, the DLG algorithm: 1) randomly initializes
a dummy location x′

0 (shown in yellow), 2) obtains the
gradient at dummy location, ∇w′

i, a.k.a. dummy gradient,
3) updates the dummy location towards the direction that
minimizes the cosine distance between the dummy and
true gradient. We choose to minimize cosine, as opposed
to euclidean loss to match the direction, not the magnitude,
of the true gradient [24].

Implementation details. (1) The attacker reconstructs both
the location x (i.e., latitude and longitude coordinates), and
the RSRP value y; we cannot use the analytical reconstruc-
tion of the label proposed in [38], since we have regression
instead of classification. (2) We observe that different loca-
tion initializations converge to the same point in practice,
as shown in Fig. 6. We initialize the prediction label with
the mean RSRP from the training data, which is realistic: the
attacker can have access to public cellular signal strength
measurements or collect a few measurements around each
cell tower. (See Appendix A.4 on “Analysis of DLG Label
Initialization”, for a discussion on different RSRP initial-
izations) (3) We set the maximum number of iterations
to m = 400, 000, and add an early stopping condition:
if the reconstructed location does not change for 10 DLG
iterations, then we declare convergence.

Key observation O1: DLG on one batch. An example
of our DLG attack on one SGD update from user k is
depicted in Fig. 3: it reconstructs xDLG, which ends up
being close to the average location x̄ in batch Dk

t . We
experimented with multiple initializations and we found
that to be true in practice, independently of initialization;
see Fig. 6. Therefore, when applied to a single local update,
Algorithm 2 reconstructs one location xDLG, which is close to
the average location x̄ of the N points in that batch. This is in
contrast to the original DLG attacks on images [23], [24],
which aimed at reconstructing all N points in the batch.

Since local data arrive in an online fashion, the server can
launch one DLG attack per round and reconstruct one (the
average) location in each round. All reconstructed locations

Fig. 3: Example of DLG attack (Algorithm 2), using a user
from the Campus Dataset. The target has been in the light
blue locations during an interval of T=1 week. The true
average location (centroid, x̄) of points is shown in dark blue.
The DLG attack starts (iteration ”0”) with a dummy location
(shown in yellow) and it gets closer to the centroid with more
iterations (darker color indicates progression in iterations),
by minimizing the cosine loss D of the true gradient and the
gradient of the reconstructed point. After m = 500 iterations,
the distance between the reconstructed location xDLG (dark
purple) and x̄ (dark blue) is only 20 meters.

together reveal the user’s whereabouts, as discussed next.
Key observation O2: DLG across several rounds. Hu-

man mobility is well-known to exhibit strong spatiotempo-
ral patterns, e.g., (i) people move in continuous trajectories
and (ii) they frequently visit a few important locations, such
as home, work, gym, etc [39], [40]. Because of (i), inferring
the average location in successive rounds essentially reveals
the trajectory at the granularity of interval T . Because of
(ii), there is inherent clustering around these important lo-
cations, as exemplified in Fig. 4a. These can reveal sensitive
information [19] and help identify the user [41].

2.2 Analytical Insights
In this section, we are interested in analyzing how close
is the location reconstructed by the DLG attack (xDLG)
to the true average location of the batch (x̄). The analysis
explains analytically our empirical observations, provides
insights into the performance of DLG attacks depending on
the input data characteristics, and guides our design choice
to maximize privacy.

Given a data mini-batch of size B: {(xi, yi)}i=B
i=1 , the

DLG attacker can reconstruct a unique user location xDLG,
which satisfies:

xDLG =
1

B

i=B∑
i=1

gi(w)

ḡ(w)
· xi, (1)

where gi(w) = ∂ℓ(F (xi,w),yi)
∂b1h

∈ R is an element in the
gradient ∇w representing the partial derivative of loss ℓ w.r.t
b1h, and ḡ(w) = 1

B

∑i=B
i=1 gi(w).

Proof: We are able to prove this lemma under two assump-
tions on the DNN model architecture: (1) the DNN model
starts with a biased fully-connected layer (Assumption 1 in
Appendix A.1.1); and (2) the bias vector of its first layer (b1h)
has not converged (Assumption 2 in Appendix A.1.1). □

Next, we bound the distance between the reconstructed
user location by the DLG attacker and the centroid of user
locations in a data mini-batch as follows:
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Theorem 1. Suppose that a data mini-batch of size B:
{(xi, yi)}i=B

i=1 is used to update the DNN model yi =
F (xi, w) during a gradient descent step. Then, the re-
construction error of the DLG attacker, defined as the
L2 distance between the user location reconstructed by
DLG attacker xDLG and the centroid of user locations in
this mini-batch x̄ = 1

B

∑i=B
i=1 xi, can be bounded by the

following expression:

||xDLG − x̄||2 =
1

B|ḡ(w)|
||

i=B∑
i=1

(
gi(w)− ḡ(w)

)
·
(
xi − x̄

)
||2

≤ 1

2B|ḡ(w)|

i=B∑
i=1

((
gi(w)− ḡ(w)

)2
+ ||xi − x̄||22

)
.

(2)

Proof: See Appendix A.1.2. □
Theorem 1 says that the reconstruction error of the DLG

attacker is equal to the L2 norm of the sample co-variance
matrix between the partial derivative over the bias gi(w)
and the user location xi, divided by the (absolute value
of the) average partial derivative within a mini-batch ḡ(w).
Moreover, this error can be upper bounded by the sum of
the sample variance of gi(w) and the sample variance of
||xi||2 in the mini-batch. This is a tight bound that can be
achieved if, for any i and j, it is: |xi − x̄| = |xj − x̄| =
|gi(w)− ḡ(w)| = |gj(w)− ḡ(w)|.

The above theorem involves the partial derivatives gi(w)
whose values are hard to predict when xi varies. To bound
the error of the DLG attacker without involving such deriva-
tives, we further make the mild assumption that the gradi-
ent function is Lipschitz continuous (see Assumption 3 in
Appendix A.1.3), and state the following theorem:
Theorem 2. Subject to the Lipschitz continuity assumption

about ∇ℓ(F (xi, w), yi), the reconstruction error of the
DLG attacker can be bounded by:

||xDLG − x̄||2 ≤ L2

B|ḡ(w)|

i=B∑
i=1

(
α||xi − x̄||2 + ||yi − ȳ||2

)
,

(3)

where ȳ = 1
B

∑i=B
i=1 yi and α = 1 + 1

2L2 .

Proof: See Appendix A.1.3. □
Theorem 2 says that the reconstruction error can be

bounded by the weighted sum of the sample variance of
the user data ||xi||2 and the labels yi in the mini-batch. To
achieve the bound of Eq. (2), Assumption 3 should hold in
addition to the condition for achieving the bound of Eq. (1).
For instance, when the mini-batch size B is equal to 1, the
equality in Eq. (1) and Eq. (2) can be achieved.

(I1) Impact of data mini-batch variance. Theorem 1
shows that the variance of user locations affects the up-
per bound of the DLG attacker’s reconstruction error. The
smaller the data mini-batch variance is, the smaller the
upper bound of the DLG attacker’s reconstruction error
is. Theorem 1 also shows that the DLG error depends on
the variance of the gradients. One may intuitively argue
that since the randomness of the gradients comes from the
randomness of the data, the larger the data variance the
larger the gradients variance too, thus the larger the error.

Theorem 2 does not involve gradients. It directly shows how
the variance of local user data and associated labels affect
the upper bound of the reconstruction error. Motivated
by the above discussion, we propose an algorithm, which
we refer to as Diverse Batch to increase the mini-batch
data variance of each user during training, see Sec. 4.3. In
theory, an increasing upper bound does not guarantee that
the actual reconstruction error will increase. We empirically
show this to be the case (see Table 2 in Sec. 4.3).

(I2) Impact of model convergence rate. As shown above,
another key component affecting the upper bound of the
attacker’s reconstruction error is |ḡ(w)|, which is the average
partial derivative over the bias and reflects the convergence
of the global model: As the global model converges (i.e., the
training loss ℓ converges to zero), |ḡ(w)| will also converge
to zero, and hence the upper bound of the reconstruction er-
ror will diverge to infinity. This is expected since the attacker
needs user information from the gradient to reconstruct
users’ location. Recall that the attacker attempts to recon-
struct one user location at each mini-batch and FL round.
As the model converges faster, the reconstruction error will
diverge faster and thus a smaller fraction of reconstructed
user locations will be accurate, those corresponding to early
reconstruction attempts, see Fig. 7.

(I3) Impact of Averaging. While under FedSGD the
attacker observes the gradient updates after processing
each mini-batch, under FedAvg the attacker observes the
gradient update at the end of the batch/round, thus this
gradient update is the time average of ∂ℓ(F (xi,w),yi)

∂b1h
during

each training round. We can apply Theorems 1 and 2 to the
FedAvg case by re-defining gi(w) as the time average of
∂ℓ((xi,w),yi)

∂b1h
during each training round, and the impact of

each parameter will be the same, as that discussed above for
FedSGD. In Sec. 4.1 and 4.2, we show the impact of FedAvg
parameters (B, E) on the DLG attack: as B decreases and/or
E increases, the attack is less accurate, due to faster model
convergence rate caused by multiple local gradient descent
steps (see Fig. 9 and Fig. 10).

(I4) Impact of multiple users. FL involves the partic-
ipation of multiple users, who will jointly affect the con-
vergence of the global model. Prior work has shown that
as the data diversity across multiple users increases, i.e.,
the dissimilarity or heterogeneity between users increases,
the global model may converge slower or even diverge
[42], [43]. The global model convergence rate impacts the
DLG attacker’s reconstruction accuracy. Thus, when the
data diversity across multiple users increases, we expect
that the global model will converge slower, resulting in a
more accurate reconstruction of user locations by the DLG
attacker. In Sec.4.6, we empirically show how the similarity
of users affects the DLG attacker’s performance; see Table 3.

3 EVALUATION SETUP

We evaluate the success of the DLG attack for different
scenarios: we specify the exact configuration and parameter
tuning for the online federated learning (Algorithm 1), DLG
attack (Algorithm 2), and any defense mechanism in Section
4. In Sec. 3.1, we describe two real-world datasets that we
use as input to our simulations. In Sec. 3.2, we define privacy
metrics that quantify the privacy loss due to the attack.
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3.1 Datasets

Campus Dataset [25]. This dataset is collected on a uni-
versity campus and is the one depicted in Fig. 1. It contains
real traces from seven different devices used by student vol-
unteers and faculty members, using two cellular providers
over a period of four months. IRB review was not required
as the proposed activity was deemed as non-human subjects
research by the IRB of our institution. It is a relatively small
dataset; it spans an entire university campus, a geographical
area of approx. 3 km2 and 25 cell towers. However, it is very
dense: it consists of 169,295 measurements in total. Pseudo-
ids are associated with the measurements which facilitate
the simulation of user trajectories in FL. The number of
measurements per cell tower and user varies, details are
deferred to Appendix A.2. For the evaluation in Sec. 4, we
pick the cell tower x204 with the largest number of data-
points, and choose the user 0 with the most measurements
as the target user. The campus is depicted in Fig. 1c, and
the locations of the target (user 0) are depicted in Fig. 1a
(all cells) and Fig. 4a (cell x204 only). It is worth noting
that we know the frequently visited locations coincide with
home (on the right part of the picture) and work (campus
buildings on the left part of the picture) locations for the
user. This side information becomes useful when we assess
the success of the attack. Moreover, the attacker uses the
campus boundaries (an area of 3 km2) as the defined area of
the attack; if some reconstructed locations fall outside this
area, they are treated as diverged.

Radiocells Dataset [26]. We also consider the large-
scale real-world Radiocells Dataset, which comes
from a community project founded in 2009 under the name
openmap.org. It contains data from over 700 thousand cell
towers around the world and is publicly available in [26].
Raw measurement data are available for in-depth analysis
of communication networks or cell coverage, and can be
used for our problem of signal maps. The measurements
are contributed by real users without logging their user
ids. Users log and upload their data into multiple upload
files: each containing device information, version of the app,
etc. that can be used for distinguishing users, as in [1]. We
focus on cellular data from 2017 (8.5 months) in the area
of London, UK, from the top cell tower (x455), which had
the most measurements (64,302 in total) from approx. 3,500
upload files and a geographical area that spans approx.
5,167 km2. Each upload file corresponds to a single device,
typically containing 16 measurements per 2h on average.
Since no pseudo-ids are provided that would allow us to
link multiple upload files of a user, we use heuristics to
create longer user trajectories so that we have enough data
points per batch; see details in Sec. 4.6. The trajectories of
the synthetic users are depicted in Fig. 16a.

For both datasets, we partition the data into batches
Dk

t for each k user, corresponding to different time in-
tervals T in time-increasing order (t = 1, .., R), so as to
simulate the online collection of data points as it happens.
We mainly focus on T=1 week; each batch contains all
datapoints in that week, which are used in one FL round.
Choosing coarser T results in fewer batches/rounds but it
includes more datapoints per batch, which facilitates local
training. In the Campus Dataset, there are 11 weeks for

user 0 (the target user in the Campus Dataset) and the
average batch size is 3,492 measurements. In Radiocells
Dataset, most users’ batches contain fewer than 50 data-
points on average, as it is a much sparser dataset. The target
user in Radiocells Dataset (user 3) contains 26 1-week
batches. The features in each dataset are standardized by
subtracting the mean and scaling to unit variance so that
their values span an appropriate range.

3.2 Location Privacy Metrics

We use the RMSE for the signal maps prediction problem as
our utility metric, as described at the beginning of Sec. 2.1.
We also need metrics that capture how similar or dissimilar
the reconstructed locations are from the real ones. Any FL
algorithm and any defense mechanism must be evaluated
w.r.t. the privacy-utility trade-off they achieve.

Visualization. Visually comparing the reconstructed
(xDLG) to the true locations in the batch (Dk

t ) provides
intuition. Fig. 4(a) shows the real (shown in light blue) and
the reconstructed (shown in color) locations reconstructed
per 1h-long batches, for a user in the Campus Dataset.
One can see that the reconstructed locations match the
frequently visited locations of the user. For example, DLG
seems indeed to reconstruct locations on the right side of the
figure, where we confirmed that graduate student housing
is on this campus. This is expected, based on our key
observation O2, i.e., the characteristics of human mobility.

Distance from the Centroid. In order to assess how
accurate the attack is within a single round t, we use
the distance ||xDLG − x̄t||, i.e., how far (in meters) is the
reconstructed location from the average location of points in
that batch Bk

t . Based on the key observation O1, we expect
this distance to be small when the attack converges.

Comparing location distributions. To assess the success
of the attack considering all rounds t = 1, ..., R, we need
a metric that captures how similar or dissimilar are the
reconstructed locations from the real ones; e.g., see Fig. 4 for
an example of real (light blue) vs. reconstructed (in color)
locations over multiple rounds. We considered the KL-
divergence and Jensen-Shannon distance, which are well-
known metrics for comparing distributions. However, they
only capture the difference in probability mass, not the spa-
tial distance between real and inferred frequent locations,
which is of interest in our case, as per key observation O2.

We use the Earth Movers Distance (EMD) [44], [45]
to capture the distance between the 2D-distributions of
reconstructed and real locations. It has been previously
used in location privacy as a measure of t-closeness
[46], l-diversity [47]. It is defined as: EMD(P,Q) =
infγ∈Π(P,Q) E(x,y)∼γ [∥x− y∥], where Π(P,Q) is the set of
all joint distributions whose marginals are P (true locations)
and Q (reconstructed locations). EMD takes into account the
spatial correlations and returns the minimum cost required
to convert one probability distribution to another by moving
probability mass.4 We use the Euclidean distance when

4. A classic interpretation of EMD is to view the two probability
distributions as two ways to pile up an amount of dirt (“earth”) over
a region and EMD as the minimum cost required to turn one pile into
the other. Cost is defined as the amount of dirt moved x the distance it
was moved.
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(a) Reconstructed locations by the DLG attack, con-
sidering one attack per 1-hour batches and FedSGD.
The distance between the real and inferred location
distributions is small: EMD=5.3.

(b) Locations generated uniformly at random (1 per
hour) within the defined campus boundaries. The dis-
tance between the real and uniform random location
distributions is high: EMD = 21.33 for 5 realizations;
it provides a baseline for comparison.

Fig. 4: We consider a target user and its real locations on cam-
pus, 489 in total (with T = 1 hour), depicted in light blue. The
over-sampled area on the right corresponds to home location
of that user. The other area on the left, corresponds to their
work on campus. The DLG attacker processing updates from
1h rounds can successfully reconstruct the important locations
of the user: the difference between the distribution of real and
the inferred locations is EMD=5.2. To put that in context, if one
would randomly guess the same number of locations, the EMD
would be 21.33.

calculating EMD on GPS coordinates in UTM. We compute
EMD using Monte Carlo approximations for N = 1000
projections; which is more computationally efficient than the
exact EMD calculation and it is suitable for 2D distributions.

The range of EMD values depends on the dataset and
spatial area. EMD = 0 would mean that the distributions of
real and reconstructed locations are identical. Low EMD val-
ues indicate successful location reconstruction by the DLG
attack thus high privacy loss. To get more intuition, let’s
revisit Fig. 4. In Fig. 4(a), the DLG attacker reconstructed
locations around the frequently visited locations (close to
home) and achieved EMD = 5.3. In Fig. 4(b), we show
the same number of locations chosen uniformly at random,
which leads to EMD = 21.33; this provides an upper
bound in privacy (random guesses by the attackers) in this

scenario.

(a) T = 24-hour rounds: EMD=6.4.

(b) T = 1-week rounds: EMD=7.6.

Fig. 5: The reconstructed locations in the case of strongest
attack for various T = 24-h vs. 1-week. The light blue square
points are the ground truth points and the circle points are the
reconstructed points for each round; the darker color represents
the later rounds. RMSE is 4.93, 4.91, 5.16 for 1w, 24h, 1h respec-
tively. Reconstruction with 1-hour rounds (Fig.4a) reveals fine-
grained user trajectories. The coarser rounds (24-h, 1-week) still
reveal the frequent locations of the target, e.g., their home/work
locations.

%Attack Divergence. In our simulations, we observed
that: (i) if the DLG attack converges, it converges to x̄
regardless of the initialization; (ii) however, the DLG at-
tack did not always converge, depending on the location
variance of the batch, the tuning of parameters of the DLG
optimizer and FedAvg. Examples of attack divergence are
shown in Fig. 7a. In Sec. 4, we define a rectangular geo-
graphical area of interest for the attacker e.g., the entire 3
km2 campus in Campus Dataset. If some reconstructed
locations are outside the boundaries, we declare them “di-
verged” and (i) we discard them when computing the
privacy (EMD) metric, but also (ii) we report the fraction of
those attacks that diverged. In practice, if an attack diverges
outside the area of interest, the attacker can relaunch the
DLG attack with a different initialization hoping until it
reaches convergence to x̄. This, however, is costly for the
attacker, therefore the % of attacks that diverged is another
metric of success or failure of the DLG attack.
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Fig. 6: FedSGD for one Round. DLG converges visually and
in terms of cosine loss (D < −0.9988) to the average location x̄
regardless of the initialization point.

4 EVALUATION RESULTS

Next, we evaluate the DLG attack in a range of scenarios. In
Section 4.1, we consider FedSGD, which is the most favor-
able scenario for DLG – the strongest attack. In Section 4.2,
we show that the averaging inherent in FedAvg provides
a moderate level of protection against DLG, which also
improves utility. In Section 4.3, we propose a simple defense
that users can apply locally: Diverse Batch curates local
batches with high variance. In Section 4.6, we show the
effect of multiple users on the success of the DLG attack.
We use a default η = 0.001 (or η = 10−5 in case of mini-
batches), details on tuning η are deferred to Appendix A.4.
W.l.o.g., we focus on a particular target, whose locations are
to be reconstructed by the DLG attacker and we report the
privacy (EMD, % diverged attacks)-utility tradeoff (RMSE).

4.1 Location Leakage in FedSGD
Strongest Attack. FedSGD is a special case of Algorithm 1
with B = ∞, E = 1: in each round t the target user per-
forms a single SGD step on their data Dk

t and sends the local
model parameters wk

t to server, which in turn computes the
gradient (line 10 in Algorithm 1). ∇wk

t corresponds to the
true gradient obtained on data Dk

t and it is the best scenario
for the attacker.

Impact of time interval T . Fig. 4a shows the true vs. the
reconstructed locations via DLG for intervals with T=1h.
Fig. 8 shows the results for the same data but divided into
intervals with duration longer than 1h, i.e., 24h and 1 week.
The shorter the interval, the better the reconstruction of lo-
cations: we can confirm that visually and quantitatively via
EMD, while the utility (RMSE) is not affected significantly.
This is in agreement with Insight I1, since smaller T leads
to smaller batch variance in the target’s trajectory. However,
the most visited locations by the user (i.e., the home and
work) are successfully reconstructed for all T ; this is due
to the mobility pattern of the target, who repeats his home-
work trajectory over time.

Impact of DLG Initialization. First, we consider a single
FL round and we evaluate the effect of DLG initialization.
For example, consider LocalBatch to consist of the mea-
surements of the target from week t = 7 (D0

t ) in Campus

(a) FedSGD over multiple FL rounds.

(b) Cosine loss of DLG attack per round.

(c) Distance between reconstructed XDLG and x̄ in
meters.

(d) Norm of gradient of flattened per-layer weight
matrices between two consecutive rounds.

Fig. 7: FedSGD over Multiple FL Rounds. FL is performed
over multiple rounds. (a) The local data are considered the same
from one round to the next, and the same as the batch used in
Fig. 6. The attacker uses the same 20 random initialization as
in the single round case. The effect of multiple ML rounds is
that (b) the gradients are converging to zero, which results in
(c) higher cosine loss for the DLG attacker and eventually (d)
the reconstructed points XDLG end up further away from the
centroid x̄.

Dataset, and perform one local SGD step to train the
local model. The global model is initialized to the same
random weights before local training. The attacker splits the
geographical area into a grid of 350 meters and uses the
center of each grid cell as a candidate initial dummy point
in Algorithm 2. Fig. 6 shows the results for 20 random ini-
tialization. We observe that, for all initializations, the attack
converges (cosine loss < -0.9988) to the average location
x̄ of the local data, regardless of the distance between the
initialization and the centroid of the data. This is explained
by Insight I2 in Sec. 2.2; the gradient provides information
for the attack, since the model has not converged.

Impact of Number of FL Rounds. Second, we repeat
the same experiment, but with the goal of evaluating the
effect of multiple FL rounds, everything else staying the
same. To that end, we consider that the LocalBatch data is
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Fig. 8: Effect of Interval Duration: the shorter the interval
T , the less privacy (low EMD), due to lower batch variance.
Effect of Initialization Strategies: (ii) mean-init of the batch
with Gaussian noise, (iii) initialize in the campus center, then
use previous batch’s xDLG to initialize next dummy point. Both
are strong attacks regardless of the initialization strategy: all
reconstructed points converge and result in similar privacy
(EMD).

the same for all rounds D0
t = D0

7, t = 0, ..., 20 (and the
same as in the previous experiment: D0

t ); this removes the
effect of local data changing over time in an online fashion.
We also use the exact same 20 random initializations, as
above. The global model is now updated in each round
and iterates with the target as in Algorithm 1. The norm
of the flattened per-layer weight matrices approaches zero
after round 9 (see Fig. 7d) and at this point the DLG attack
starts diverging; the reconstructed point is further away
from the mean of the data as shown in Fig. 7c and the
final cosine loss D starts increasing (Fig. 7b). In the worst
case, when the attack diverges, the reconstructed point is 1
km away from the centroid location of the batch. This can
be explained by Insight I2 in Sec. 2.2: after several rounds,
the model starts converging and the gradients decrease; the
average gradient goes to 0, the bound in Theorem 1 goes to
∞, and xDLG can go far from x̄. Thus, even in the worse
scenario of the FedSGD, without any add-on averaging or
defense mechanisms, there is some protection against the
DLG attack, after the initial FL rounds when the global
model converges.

DLG Initialization Strategies. There are different strate-
gies for initializing the dummy points in each batch. (i)
The attacker could pick randomly within the geographical
area of interest, as we did in Fig. 6, or the middle of the
campus. (ii) The attacker could use a rough estimate of x̄
plus Gaussian noise. (iii) The attacker could leverage the
reconstructed location from a previous round and use it
to initialize the dummy point in the next round, in order
to leverage the continuity of user mobility and make an
educated guess especially in the finer time intervals. Fig.
8 compares strategies (ii) and (iii): both are strong attacks,
with all points converging within the area of interest, and
resulting in similar EMD. If an attack diverges, (i) would
be better than (ii) or (iii), to keep the dummy point within
the defined boundaries. For the rest of the paper, we use by
default strategy (ii) for faster simulation.

4.2 Location Leakage in FedAvg

FedAvg is the general Algorithm 1, of which FedSGD is a
special case for B = ∞, E = 1. FedAvg [20] has many
parameters that control the computation, communication

(a) EMD vs. mini-batch size B. (b) RMSE vs. mini-batch size B.

(c) B ≤ 20 increases diver-
gence.

(d) B ≤ 20 increases DLG
time.

Fig. 9: Impact of mini-batch size B in FedAvg. [T=1 week,
E = 1.] Reducing mini-batch size B introduces more averaging
of the gradients which increases EMD (and privacy) and makes
the attack more expensive due to divergence. The default η
seems to be less sensitive to B in terms of RMSE. Here B=1000
corresponds to B = ∞, thus FedSGD, which leads to reduced
privacy but also to higher RMSE for the lower η.

(a) E ≥ 5 increases divergence. (b) E ≥ 5 increases DLG time.

Fig. 10: Impact of local epochs E on 1-week rounds. We set
B = 20 and increase local epochs, which increases the EMD
and attack divergence, while utility is preserved.

and storage at the users and server. The learning rate η is
tuned for each dataset, see Appendix A.4; the number of FL
rounds R is discussed previously for FedSGD; the fraction
C of users in round is related to global averaging in Section
4.6. Our focus here is to evaluate the effect of local averaging
through the use of B-sized mini-batches and E number of
epochs, as a way to defend against DLG attacks. Intuitively,
the more local SGD steps (smaller B and high E), the more
averaging over local gradients, and the less successful the
DLG attack by the server based on the observed wk

t −wk
t−1.

Interestingly, more averaging improves both convergence
and utility [20]. Throughout this section, we focus on T = 1
week which gives 11 intervals.

Impact of Mini-batch Size B in FedAvg. Fig. 9 shows
the utility (RMSE) and privacy (EMD, Fraction of Attacks
Diverged and Avg DLG time ) metrics when the target splits
its local data into mini-batches of size B, and performs one
SGD step per mini-batch. In terms of the convergence speed
and accuracy, prior works such as [43], [48] have provided
theoretical rules for the bound of mini-batch Size B and
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proven that larger B can lead to faster convergence speed.
At one extreme B = ∞, the entire LocalBatch is treated
as one mini-batch, and this becomes FedSGD. At the other
extreme, B = 1, there is one SGD step per local data point,
which maximizes privacy. Smaller B values decrease RMSE,
especially for lower η, but for the default η = 0.001 the
RMSE is not significantly affected. In addition to EMD, we
show in Fig. 9c the fraction of diverged DLG attacks. As B
decreases, the fraction of diverged attacks increases (which
makes the attack less accurate) due to increased gradient
descent steps. It also makes the attack more expensive (in
terms of execution time and DLG iterations). We choose B =
20 (3rd marker in Fig. 9) and the lower η =1e-05 in order to
get some privacy protection (EMD increases slightly) and to
maximize utility.

Impact of Local Epochs E. Another parameter of Fe-
dAvg that affects the number of SGD steps is the number
of epochs E, i.e., the number of local passes on the dataset,
during local training. We set B = 20, based on the previous
experiment and we evaluate the impact of local epochs
for two learning rates η. Fig. 10 shows that increasing E
increases privacy both in terms of EMD and divergence. It
also improved utility (not shown): can reduce RMSE from
6.25 to 4.75dbm.

Putting it together. We choose E = 5 and B = 20, which
together provide improved privacy and utility. In summary,
averaging in FedAvg provides some moderate protection
against DLG attacks, which is also consistent with Insight
I3. However, even with these parameters, the frequently
visited locations (i.e., home and work) of the target can still
be revealed (e.g., see Fig. 11a), which motivated us to design
the following algorithm for further improvement.

4.3 FedAvg with Diverse Batch

Intuition. So far, we have considered that every user, in-
cluding the target, processes all the local data in the order
they arrive during round t, i.e., in line 16 of Algorithm 1
it is LocalBatch = Dtarget

t . The local averaging in FedAvg
prevents the server from obtaining the real gradient, thus
providing some protection. We can do better by exploiting
the key observation (O1) supported analytically by insight
(I1): the variance of locations in a batch affects how far the
reconstructed xDLG is from the batch centroid x̄. If the target
preprocesses the data to pick a subset LocalBatch ⊆ Dtarget

t ,
so that the selected locations have high variance, then we
can force the DLG attack to have high |xDLG − x̄| and
possibly even diverge.

Diverse Batch Algorithm. There are many ways to
achieve the aforementioned goal. We designed Diverse
Batch to maximize variance of locations in LocalBatch,
using DBSCAN clustering. In each FL round t, the target
does the following at line (16) of Algorithm 1:

1) The data Dtarget
t that arrived during that round t are

considered candidates to include in LocalBatch.
2) Apply DBSCAN on those points and identify the clus-

ters.
3) Pick the center point from each cluster and include it in

LocalBatch; this intuitively increases variance.
4) If more datapoints are needed, remove the selected

points from Dtarget
t and repeat steps 1, 2 recursively

on the remaining data, until the desired LocalBatch size
is reached.

We refer to this selection of LocalBatch as Diverse Batch
and it is applied in line (16) of Algorithm 1. After that,
FedAvg continues as usually, potentially using mini-batches
and multiple epochs. Appendix A.4 shows more details.

Data Minimization. In our implementation of Diverse
Batch, the target applies step 3 above exactly once, and
skips step 4. As a result, Diverse Batch uses significantly
fewer points, and thus has a data minimization effect, in
addition to high variance. For example, with eps = 0.05km,
Diverse Batch achieves EMD=15.23 using 1% of the lo-
cation compared to a random sampling of 1% of the points
that leads to EMD=7.6; see Fig. 11(b) vs. 11(c), as well as
Table 2.

Tuning Diverse Batch. First, we tune the learning
rate η = 0.001 via a grid search; see Appendix A.4 for
details. An important parameter of DBSCAN is eps, which
controls the maximum distance between points in a cluster:
higher eps leads to fewer clusters, i.e., less datapoints cho-
sen in LocalBatch, but higher variance in the coordinates
of points in LocalBatch. Table 2 shows the performance
of Diverse Batch for various eps values. We make the
following observations. First, as expected, increasing eps de-
creases the number of training points and results in smaller
batches, due to fewer clusters. Second, w/o averaging, the
RMSE increases with eps; with B = 20, E = 5, RMSE
is not affected by eps. On the other hand, EMD increases
for larger eps in both cases, but with averaging EMD is
higher overall. The percentage of diverged attacks increases
with eps, which makes the attack more expensive and less
accurate. Third, we consider two baselines: (i) the same
number of points as DBSCAN in each round, but randomly
selected; (ii) FedAvg with B = 20, E = 5 but LocalBatch
=Dtarget

t : the EMD remains low regardless of eps since the
batch variance is not controlled.

Performance of FedAvg with Diverse Batch. Fig.
11 shows that adding Diverse Batch to FedAvg (B =
20, E = 5) significantly improves privacy from EMD = 9.7
to EMD = 15.23. Random sampling of the same random
of points per batch performs worse (EMD = 6.6), because
it preserves the spatial correlation in trajectories. This indi-
cates that the main benefit of Diverse Batch is controlling
the batch location variance, rather than data minimization.

In Fig. 12, we compare all methods (in increasing pri-
vacy: FedSGD, FedAvg with mini-batches and epochs, and
Diverse Batch) w.r.t. both privacy (EMD, divergence,
distance from centroid) and utility (RMSE). (a) EMD starts
at 7.5 in FedSGD, increases in FedAvg, and almost doubles
(15) in Diverse Batch. (b) In FedSGD attack, there is
almost no divergence, while with Diverse Batch more
than 60% of the attacks diverge. Divergence makes the
DLG attack more expensive, since the attacker needs to
relaunch the attack with other initializations. (c) We also
report the distance between the reconstructed location and
the centroid of the batch |xDLG − x̄|: in FedSGD, this is less
than 30 meters, while with Diverse Batch it increases to
more than 350 meters.

4.4 FedAvg with Farthest Batch
Intuition. There are many ways to select the local batch so
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eps Avg B % chosen RMSE EMD % diverged Avg Dist (m) Random
(km) size points FedSGD/FedAvg FedSGD/FedAvg FedSGD/FedAvg FedSGD/FedAvg RMSE/EMD

0.0001 239 6.84 5.24/4.88 9.61/10.59 18/82 139/265 4.82/7.5
0.001 180 5.2 5.34/4.86 9.72/10.84 18/90 134/245 4.83/7.9
0.005 98 2.8 5.78/4.83 10.72/14.15 9/57 170/290 4.82/7.9
0.05 16 0.45 8.78/4.93 14.524/15.23 13/64 331/345 4.96/7.6

TABLE 2: Performance of Diverse Batch. Parameters: T =1-week; DBSCAN is run once in each round; η = 0.001, dropout=0.05.
When two numbers are reported (X/Y) they correspond to FedSGD and FedAvg (B = 20, E = 5), respectively. For each value of
the main parameter eps of DBSCAN we report the following metrics. Since Diverse Batch picks LocalBatch of different size in
every round, we report the average batch size. Since it picks a subset of all data LocalBatch ⊂ Dk

t , we report of the % of datapoints
chosen. The utility (RMSE) is not significantly affected by eps, but is improved by FedAvg, as expected. For privacy, we report the
EMD between reconstructed and real locations, the % of diverged attacks, and the average distance |xDLG − x̄| in meters. In general,
as eps increases, privacy increase. In the last column, as a baseline for comparison, we report the utility and privacy if the same
number of points as in column 3 are picked uniformly at random: the EMD is approx. half.

(a) FedAvg: B=20, E=5: EMD=9.7,
RMSE=4.83.

(b) Diverse Batch (selects dark blue points):
EMD=15.23, RMSE=4.93.

(c) Random baseline to Diverse Batch:
EMD=7.6.

Fig. 11: FedAvg with Diverse Batch. Light blue shows the real locations of the target in Campus Dataset for T = 1 week.
Dark blue shows the points chosen by Diverse Batch with eps = 0.05km. The colors show the reconstructed locations by DLG.

(a) EMD. (b) Diverged Attacks. (c) Distance from centroid. (d) Avg DLG iterations.

Fig. 12: Privacy-utility trade-offs for all approaches. Setup: Campus Dataset, 1-week intervals. Algorithms: FedSGD (B =
∞, E = 1), FedAvg (B = 20, E = 5), and Diverse Batch. Privacy metrics: EMD, divergence, distance from centroid. Utility:
RMSE. The DLG attack is strongest in FedSGD. FedAvg improves both privacy and utility. FedAvg with Diverse Batch
improves privacy (doubles EMD, increases divergence above 60%, and distance from 50 to 350m), without significantly hurting
RMSE, and while using < 1% of the data.

as to mislead the attackers, i.e., achieve high |xDLG − x̄|.
We already presented Diverse Batch to maximize loca-
tion variance in LocalBatch, by picking a subset of points
from different DBSCAN clusters. An alternative way is
Farthest Batch that we present here: we pick the subset
of num points to include in LocalBatch ⊆ Dtarget

t , from the
DBSCAN cluster that is farthest away (i.e., has the highest
distance from the batch’s true centroid x̄). According to our
key observation (O1), the DLG attack will infer xDLG close
to the average location of the selected LocalBatch, which is,
by construction, far away from the true average location x̄
in the entire batch Dtarget

t in round t.

Farthest Batch. In each FL round t, the target does
the following at line (16) of Algorithm 1:

1) Consider data Dtarget
t that arrived during that round as

candidates to include in LocalBatch.
2) Apply DBSCAN on those points and identify the clus-

ters, as shown at the line (10) of Algorithm 3.
3) Sort the clusters in decreasing distance between the

centroid of that cluster and the true centroid of en-
tire LocalBatch. Then, pick num data points, from the
farthest to the closest clusters, and include them in
LocalBatch, as shown at the line (11) of Algorithm 3.

Tuning Farthest Batch. For learning rate η, we adopt
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Algorithm 3: Farthest Batch

Given: K users (indexed by k); B local mini-batch size;
nt is the total data size from all users at round t, η is
the learning rate; the server aims to reconstruct the
local data of target user k. w received from server, eps
the DBSCAN parameter, num the number of points to
select.

UserUpdate(k, w, t, B, eps, num):
Local data Dk

t are collected by user k during round t
Select LocalBatch ⊆ Dk

t to use for training
Ck

t =DBSCAN (Dk
t , eps)

nk
t =Sort and select(Ck

t , num)
Bk

t ← (split LocalBatch into mini-batches of size B)
for each local epoch i: 1...E do

for mini-batch b ∈ Bk
t do

w ← w − η∇ℓ(w; b)
return w to server

the same values η = 0.001 as in Diverse Batch. Re-
garding the DBSCAN parameter eps, we select eps = 0.05,
which shows the best performance in Table 2. An important
parameter of Farthest Batch is num, which controls the
number of measurements selected in each LocalBatch. When
num = 1, it means we only pick one measurement from
the farthest cluster and include it into LocalBatch. Also,
by choosing num = 1, it will provide the best privacy
protection, and the worst utility. By increasing num, there
are more measurements selected from farthest to closest
clusters, which improves utility and degrades privacy.

Performance of FedAvg with Farthest Batch. Fig.
13 and 14 show that, when compared to Diverse Batch,
Farthest Batch can enhance the privacy from EMD =
20.147 to EMD = 22.91 and from Dist = 675.9 to
Dist = 844.35. in FedAvg. Although utility degrades when
privacy increases, the loss of utility is still in a reasonable
and acceptable range. This motivates us to use Farthest
Batch for better privacy protection in this setting.

Discussion: Local Batch Selection. In vanilla FL, local
batches are typically randomly selected. To the best of our
knowledge, we are the first to notice that there can be many
ways to pick a subset LocalBatch of all local measurements,
collected and processed in round t, Dtarget

t , so as to con-
struct x̄ that is far from the true centroid, thus misleading
the DLG attacker as per key observation O1 – which is
specific to our setting. Which local batch selection algorithm
performs better depending on the characteristics of the mo-
bility patterns (e.g. how many important locations/clusters
there are and how fast they change), as well as the time scale
T over which new data arrive and are processed in a batch.
In this paper, we proposed two intuitive such algorithms
for local batch selection (Diverse Batch and Farthest
Batch) and we showed that they achieve good privacy
protection, without significant degradation in prediction,
with Farthest Batch outperforming Diverse Batch
in our evaluation. This good privacy-utility tradeoff was
achieved while operating strictly within the ”native” FL
framework, and without orthogonal add-ons, such as DP that
is discussed next.

(a) RMSE vs. EMD.

(b) RMSE vs. Distance from centroid.

Fig. 13: Comparison between Diverse Batch and Farthest
Batch for 1-day interval using FedSGD.

4.5 Baselines: DP, GeoInd, GAN Obfuscation

So far, we enhanced privacy through native FL mechanisms,
i.e., tuning the parameters and local batch selection. In this
section, we explore how much benefit we get by adding
state-of-the-art (but orthogonal) defenses, such as Differ-
ential Privacy (DP), Geo-Indistinguishability (GeoInd) [49]
and Gan Obfuscation (Gan) [50], with both FedSGD and
FedAvg and we compare it to Farthest Batch alone. We
use RMSE as the utility metric; EMD and Distance from
centroid as privacy metrics separately.

DP. In the FL setting, differentially private (DP) noise
is typically added to the gradients of each LocalBatch, as
in [51], [52]. Before transferring gradients from each user
to the server, the gradients will first be clipped and then
DP noise will be added. Clipping can bound the maximum
influence of each user and we are using the fixed clipping
method with parameter C in our experiments. We use (ϵ, δ)-
DP bound for the Gaussian mechanism with noise N(0, σ2),
where σ =

√
2 log 1.25

δ · C
ϵ , δ = 1

∥LocalBatch∥ . We choose C =
1 and δ =1e-5.

GeoInd. The mechanism of Geo-Indistinguishability
(GeoInd) [49] is a variant of DP and is designed to provide
strong privacy guarantees, specifically for location-based
applications, by adding spatially controlled local noise to
the user’s location data. We use Geo ϵ to represent the noise
parameter of GeoInd in our evaluations.

GAN. Generative adversarial networks (GANs) have
been applied before to crowdsourced signal maps, stored on
a server, to protect the privacy of users [50]. Here, we apply
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(a) RMSE vs. EMD.

(b) RMSE vs. Distance from centroid.

Fig. 14: Comparison between Diverse Batch and Farthest
Batch for 1-day interval using FedAvg.

Gan Obfuscation to obfuscate users’ private data before the
data leaves the mobile device. The goal is to increase privacy
such that it is difficult to recover sensitive features from
the obfuscated data (e.g., user ids and user whereabouts),
while still allowing network providers to obtain accurate
signal maps to improve their network services. We use ρ to
represent the obfuscation level of Gan.

Comparison. By applying DP, GeoInd and Gan locally,
each user can protect their private training data from DLG
attacks. Figure 15 compares the local batch selection ap-
proach (using the best of our two algorithms Farthest
Batch) against DP, GeoInd and Gan for 1-day intervals, in
terms of the privacy-utility tradeoff they achieve. We ob-
serve that as ϵ, Geo ϵ and ρ decrease, the privacy (in terms
of EMD and Distance from centroid) improves, while
the model performance captured by RMSE) deteriorates. We
also observe that for the same privacy level, our Farthest
Batch can provide more utility compared to differential
privacy, GeoInd and Gan. Especially, when EMD is higher
than 21 and Distance from centroid is larger than 680, the
utility loss in Farthest Batch is much smaller. Although
Gan could provide similar utility as Farthest Batch for
the same privacy level, Gan requires more computation
resources since two additional neural networks need to
be trained (i.e. a generator and an adversary) and it also
requires hundreds of training rounds for these two neural
networks to converge. Compared with Gan, our local batch
selection approach is more efficient and lightweight. In
summary, optimizing the batch selection to mislead the DLG

(a) RMSE vs. EMD.

(b) RMSE vs. Distance from centroid.

Fig. 15: Comparison between Baselines (DP, GeoInd, Gan) and
Farthest Batch, for rounds of 1-day, in terms of the privacy-
utility tradeoff they achieve. Privacy is captured by two metrics:
EMD and Dist from centroid. Model performance is captured
by the prediction error (RMSE).

attack (via Farthest Batch) achieves a better privacy-
utility tradeoff compared to all three baselines. Please
see Appendix B for additional evaluation results between
Diverse Batch, Farthest Batch, DP, GeoInd and Gan.

Discussion. The focus of this paper has been the privacy-
enhancing design of FL-native local mechanisms for privacy,
such as the tuning of local parameters and the local batch
selection (e.g., Diverse Batch and Farthest Batch.)
These native mechanisms are necessary ingredients of FL
itself and orthogonal to add-ons such as DP, GeoInd, Gan
or SecAgg. The comparisons to DP, GeoInd and Gan are
provided as a baseline for comparison against state-of-the-
art (local) defense mechanisms. In the future, these add-ons
(DP, GeoInd and Gan) can co-exist with and be combined
with our local batch selection approach (Diverse Batch
and Farthest Batch) further improve performance.

4.6 Multiple Users
Throughout this paper, we focus on the target user exchang-
ing local (wtarget

t ) and global (wt ) model parameter updates
with the server, for t = 1, . . . , R. When there are more
users participating in FL, they contribute their updates and
there is also global averaging of the gradients across users
to produce wt (line 12 in Algorithm 1). The data used for
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(a) The entire London 2017 Radiocells Dataset.

(b) Zooming into the Luton area.

Fig. 16: The London 2017 Radiocells Dataset, partitioned
into “synthetic users” 0-5, for cell x455. Background (“user
0”, shown in orange,) contains the vast majority (1059 our of
1351) of upload files across the entire London region which are
contributed by a large number of real users. Synthetic users 1-5
are also shown. Target is user 3 is shown in green.

updates across rounds may be different, depending on how
similar the users’ trajectories are. As discussed in (I4) in Sec.
2.2, when the diversity of data (across rounds) increases,
convergence slows down and the gradient magnitude |ḡ|
remains large for more rounds, which makes the DLG
attack more successful. Here, we evaluate the performance
of all previous methods (FedSGD, FedAvg, FedAvg with
Diverse Batch) under DLG attack, still from the perspec-
tive of a single target user, but considering the presence of
multiple users updating the global model.

Creating Multiple Synthetic Users. We use the London
2017 part of the Radiocells Dataset, described in Sec.
3.1. Each upload file contains a sequence of measurements
from a single device, but without specifying user pseudo-
ids. In order to create realistic trajectories for the simulation
of FL,we use heuristics to concatenate upload files, and we
refer to the result as “synthetic” users.5 The entire dataset
(partitioned into synthetic users 0-5) is depicted in Fig.16.
We confirmed visually and via pair-wise similarity (via

5. We start by grouping upload files with identical cell and device
information (i.e., device manufacturer, device model, software id and
version, etc.). The device information was also used in [1] to create
“users”, but we also consider the cell id because we train a DNN model
per cell. In addition, we merge files with the same device information
as follows: if the start and end locations of two upload files are within
a certain distance Z, then we assign them to the same “synthetic user”.
The intuition is that users typically repeat their trajectory across days,
i.e., a user starts/ends logging data from/to the same places, such as
home or work. By setting Z = 1 mile, we obtain 933 potential synthetic
users. We select five of them (users 1-5), each with a sufficiently high
number of measurements per week and spanning several weeks. We
merge all remaining upload files of the dataset (1059 out of 1351) into
one “background” user 0.

Scheme User(s) RMSE EMD % diverged

FedSGD user 3 6.1 17.08 65
FedAvg user 3 5.43 24.13 91

FedAvg, eps = 0.005 user 3 5.42 25.2 97
FedAvg, eps = 0.01 user 3 5.44 26.9 97

FedAvg user 3, 0 5.43 22.51 90
FedAvg, eps = 0.01 user 3, 0 5.41 23.01 90

FedAvg user 3, 1 5.47 29.16 95
FedAvg user 3, 2 5.43 26.15 95
FedAvg user 3, 4 5.47 29.30 95
FedSGD user 3, 5 5.82 18.02 59
FedAvg user 3, 5 5.42 23.02 92

FedAvg, eps = 0.01 user 3, 5 5.41 31.33 96

TABLE 3: The effect of multiple users on the DLG attack.
Parameters: Radiocells Dataset, η = 0.001; results are
averaged over multiple runs. We compare FedSGD, FedAvg
(with E = 5, B = 10) and FedAvg with Diverse Batch (with
eps in km). Users 1,2,3,4 are similar to each other and dissimilar
from users 0 (background) and 5; user 3 is the target.

EMD) that: users 1-4 are highly similar to each other, and
dissimilar to users 0 and 5. We pick user 3, with the most
measurements, as the target.

Impact of Additional Users. We simulate DLG on FL
with the target and additional synthetic users participating.
We report the results in Table 3. First, we consider the
target (3) alone: the DLG attack achieves: EMD 17.08, under
FedSGD; 24.13, under FedAvg; up to 26.9, for FedAvg with
Diverse Batch and eps = 0.01; the RMSE is roughly the
same across all FedAvg and better than FedSGD.

Next, we consider that the background user 0 joins and
updates the global model after locally training on its data.
This is a realistic scenario of DLG on target 3, where the
effect of most other real users in London is captured by
this massive ”background” user, who updates the global
model following the timestamps indicated in the individual
upload files. This results in a slight decrease of EMD for
FedAvg from 24.13 to 22.51, while attack divergence remains
practically the same.

Finally, we consider the other synthetic users (1,2,4,5),
joining the target (3) one at a time, and updating the
global model via FedAvg. When the most dissimilar user (5)
participates, privacy loss is maximum (EMD is 18.02 with
FedSGD and 23.02 with FedAvg). When similar users (1,2,4)
participate, privacy loss is smaller (EMD ∈ [26.1, 29.3]). This
was expected from Insight I4 in Sec.2.2: dissimilar users lead
to slower convergence and more successful DLG attack.

Adding Diverse Batch to FedAvg offers significant
protection to the target: for eps = 0.005, one third of the
runs resulted in 100% divergence. Increasing eps to 0.01
resulted in two-thirds of runs with 100% divergence, and
the remaining had EMD=26.9 and RMSE=5.44. In the multi-
users case, it is sufficient that the target applies Diverse
Batch locally, to get privacy protection, e.g., EMD=31.33
and 96% divergence in the case of (3,5). This is amplified
when users are dissimilar, like users (3,5), rather than the
case of background (3,0).

5 RELATED WORK

Signal Maps Prediction Framework. There has been sig-
nificant interest in signal maps prediction based on a lim-
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ited number of spatiotemporal cellular measurements [30].
These include propagation models [8], [9] as well as data-
driven approaches ZipWeave [10], SpecSense [11], BCCS
[12] and combinations thereof [13]. Increasingly sophisti-
cated machine learning models are being developed to
capture various spatial, temporal and other characteristics of
signal strength [3], [14], [15] and throughput [17], [18]. The
problem has been considered so far only in a centralized,
not distributed setting. To the best of our knowledge, this
paper is the first to consider signal maps prediction (i) in the
FL framework (ii) considering online learning in the case of
streaming data and (iii) a DLG inference attack on location.

Online federated learning is an emerging area [33], [34],
[35]. To the best of our knowledge, existing work such as
ASO-Fed [33], Fedvision [34], Fleet [35], in the online setting
does not consider privacy leakage and focuses on conver-
gence and device heterogeneity. RoF [53] and [54] focus on
achieving efficient federated learning in industrial IoT but
do not consider privacy leakage. Different communities [55]
consider the case of online location data, although not in a
FL way and with different goals (e.g., location prediction,
where the utility lies in the location itself).

Location Privacy. Numerous works evaluated location
privacy or trajectory data, e.g., [39], [40], [41], [56], [57], [58],
Federated RFF KDE [59], where the utility of the dataset
lies in the location itself. In this work, we focus on location
privacy in mobile crowdsourcing systems (MCS), similarly
to [1], [56]. As [1] pointed out, an important difference is that
the utility in MCS does not lie in the location itself, but in the
measurement associated with that location. In our case, the
measurement is RSRP, and location is only a feature in an
ML model. However, location is the primary feature needed
to predict signal strength: additional features other than
location and time (such as frequency, device information,
environment etc. ) bring only incremental benefit [3].

Reconstruction attacks and defenses based on gradi-
ents. It has been shown that observing gradients DLG [23],
iDLG [38] gradients (as in FedSGD) or model parameters
[24], ROG [60] (as in FedAvg) can enable reconstruction of
the local training data. There has been a significant amount
of prior work in this area, [23], [24], [38], [60], [61], [62],
[63], [64], [65] to mention just a few representatives. Since
gradient/model updates are the core of federated learning,
FL is inherently vulnerable to such inference attacks based
on observing and inverting the gradients.

Such attacks have been mostly applied to reconstruct
image or text training data, with a few exceptions such as
FedPacket [61] that inferred users’ browsing history. “Deep
leakage from gradients” (DLG) [23], reconstructed training
data (images and text) and their corresponding labels, from
observing a single gradient during training of DNN image
classifiers, without the need for additional models (e.g.,
GANs [63]) or side information. DLG [23] discussed po-
tential defenses, including tuning training parameters such
as mini-batch size, which we incorporate in our setting. We
consider an attack that builds on ”inverting the gradients” in
[24]: using a cosine-based instead of the Euclidean distance,
and also evaluating against FedAvg and the impact of
averaged gradients due to local epochs. In our setting, the
attack reconstructs only one (the average) location from a
gradient update computed on N locations, as opposed to all

N data points in a batch.
The work in [66] points out that information about a

user’s dataset can still leak through the aggregated model at
the server, and provides a first analysis of the formal privacy
guarantees for federated learning with secure aggregation.
The work in [58] designs a scalable algorithm combining
distributed differential privacy and secure aggregation to
privately generate location heatmaps over decentralized
data; however, the communication and computation costs
brought by secure aggregation should be considered for
mobile users. In contrast, in our work (1) we only utilize FL-
”native” mechanisms to achieve location privacy, without
added DP or SecAggr; and (2) we consider an online FL
setting, where users collect data in an online fashion, and
process them in intervals of duration T .

In Section 4.5, we considered two more privacy-
enhancing techniques, beyond just DP. Geo-
Indistinguishability (GeoInd) is a state-of-the-art,
privacy-preserving method, inspired by DP and modified
specifically to protect location data [49]. The GAN
obfuscation technique we adopted from [50], applied
generative adversarial networks to signal map datasets,
stored at the server. We adapted the above techniques as
well as DP, to be applied locally at the mobile.

Our prior work. In our prior work, we developed tools
for collecting crowdsourced mobile data and uploading to
a server [25]; the Campus Dataset collected therein is one
we use for evaluation here as well. [3], we formulated a
framework for centralized signal maps prediction using ran-
dom forests. In [30], we extended the framework to provide
several knobs to operators and allow them to optimize pre-
diction when training on data of unequal important and/or
for different tasks. In [50], we proposed a centralized GAN
obfuscation technique to provide privacy for such tasks.

6 CONCLUSION

Summary. In this paper, we make three contributions.
First, we design a lightweight online federated learning
framework, specifically for the signal strength prediction
problem in a crowdsourced setting. Second, we introduce
a privacy attack, specifically for this framework: an honest-
but-curious server employs gradient inversion to infer the
location of users participating in the federated signal map
framework. This DLG attack is specifically designed to
reconstruct the average location in each round; this is in
contrast to state-of-the-art DLG attacks on images or text,
which aim at fully reconstructing all training data points.
Third, we propose a defense approach that selects local
batches so that the inferred location is far from the true aver-
age location, thus misleading the DLG attacker. Evaluation
results show that our defense mechanisms achieve better
privacy-performance trade-off compared to state-of-the-art
baselines. Ultimately, the success of the attack depends not
only on the FL algorithm and defenses used, but also on the
characteristics of the underlying user trajectory data.

Future Directions. First, in terms of applications: signal
maps prediction is a representative special case of predicting
properties of interest based on crowdsourced spatiotempo-
ral data. The same methodology to protect location privacy
against DLG attacks can be applied to other learning tasks
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that rely on such crowdsourced measurements. Second,
in terms of methodology, there are several directions for
extension. Due to the characteristics of human trajectories,
there are more dependencies and opportunities to explore in
the design of DLG attacks and defenses. Another direction is
exploiting similarities and differences in users’ trajectories,
to further optimize aggregation schemes. Finally, this pa-
per focused on designing and optimizing local FL-”native”
privacy-preserving algorithms that can provide inherent
privacy protection; these can be combined with other state-
of-the-art but orthogonal defenses, such as DP or Gan.
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loss landscape of adversarial training: Identifying challenges and
how to overcome them,” arXiv preprint arXiv:2006.08403, 2020.

[68] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” JMLR, 2014. [Online]. Available:
http://jmlr.org/papers/v15/srivastava14a.html

Evita Bakopoulou received her B.Sc. and M.Sc.
degrees in Computer Science from Athens Uni-
versity of Economics and Business, Greece, in
2014 and 2016, respectively. She received a
Ph.D. in Networked Systems from UC Irvine
in 2021. She was a Summer Intern with Bell
Labs (2017), Oath/Verizon Digital Media Ser-
vices (2018) Google (2020), and joined Google
as a full time Privacy Engineer in December
2021. Her research interests are primarily in the
area of machine learning and privacy.

Mengwei Yang is currently a PhD student in
the Electrical Engineering program at the Univer-
sity of California, Irvine, advised by Prof. Athina
Markopoulou. Mengwei’s research interests are
in the areas of Federated Learning, Privacy-
preserving machine learning and data privacy.

Jiang Zhang is currently a PhD student in the
Ming Hsieh Department of Electrical and Com-
puter Engineering at the University of Southern
California. His research interests include ma-
chine learning and data privacy with applications
to mobile networks.

Konstantinos Psounis (Fellow, IEEE) received
the BS degree from the Department of Electrical
and Computer Engineering, National Technical
University of Athens, Greece, in 1997, and the
M.S. and Ph.D. degrees in Electrical Engineering
from Stanford University, Stanford, CA, USA, in
1999 and 2002, respectively. He is currently a
Professor of Electrical and Computer Engineer-
ing and of Computer Science with the Univer-
sity of Southern California. He works on model-
ing, performance analysis, algorithm design, and

system implementation for efficient and privacy-preserving networked,
distributed systems. He is a Distinguished Member of the ACM.

Athina Markopoulou (S’98-M’02-SM’13-F’21)
received the Diploma degree in Electrical and
Computer Engineering from the National Tech-
nical University of Athens, Greece, in 1996,
and the M.S. and Ph.D. degrees in Electrical
Engineering from Stanford University in 1998
and 2003, respectively. She joined the faculty of
EECS Department at UC Irvine in 2006, where
she is currently a Professor and Chair. She has
held short-term positions at SprintLabs, Arista
Networks, and IT University of Copenhagen.

She has received the NSF CAREER award in 2008, the HSSoE Faculty
Midcareer Research Award in 2014, the OCEC Educator Award in 2017,
and a UCI Chancellor’s Fellowship in 2019. She has served as an Asso-
ciate Editor for IEEE/ACM Trans. on Networking and for ACM Computer
Communications Review, as the General Co-Chair for ACM CoNEXT
2016, as TPC Co-Chair for ACM SIGMETRICS 2020 and NetCod 2012.
She is also a Distinguished Member of the ACM. Her research interests
include network measurement, privacy, mobile and IoT, social networks.


