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Abstract

We use molecular simulation to characterize
the dynamics of supercooled liquids confined
in quasi-2D slit geometries. Similar to bulk
supercooled liquids, the confined systems ex-
hibit subdiffusive dynamics on intermediate
time scales arising from particle localization in-
side their neighbor cages, followed by an even-
tual crossover to diffusive behavior as cage rear-
rangement occurs. The quasi-2D confined liq-
uids also exhibit signatures of long-wavelength
fluctuations (LWFs) in the lateral directions
parallel to the confining walls, reminiscent of
the collective displacements observed in 2D but
not 3D systems. The magnitude of the LWFs
increases with the lateral dimensions of sys-
tems with the same particle volume fraction and
confinement length scale, consistent with the
logarithmic scaling predicted for 2D Mermin-
Wagner fluctuations. The amplitude of the fluc-
tuations is a non-monotonic function of the con-
finement length scale because of a competition
between caging and strengthening LWFs upon
approaching the 2D limit. Our findings sug-
gests that LWFs may play an important role
in understanding the behavior of confined su-
percooled liquids due to their prevalence over
a surprisingly broad range of particle densities
and confinement length scales.

Introduction

Strongly confined fluids exhibit properties that
are distinct from those observed in bulk sys-
tems. For example, in a variety of liq-
uids, including gases,1,2 liquids,3,4 polymers,5–7

and colloidal suspensions,8,9 confinement has
been shown to induce solid-like behavior that
strengthens as the characteristic confinement
length scale is decreased. There remains signif-
icant interest in understanding how the proper-
ties of fluids change as they are confined from
three towards two dimensions, with practical
relevance in applications ranging from separa-
tions and porous media characterization to en-
ergy storage and production and materials syn-
thesis.1,2,10–14

The crossover from three to two dimensions
has been extensively explored for one prototyp-
ical supercooled liquid, a concentrated suspen-
sion of nearly-hard spheres. When confined in
a quasi-2D slit geometry in which the height
of the slit is much smaller than its lateral di-
mensions, uniformly-sized particles form layers
at the walls15,16 and arrange into a variety of
ordered crystal structures.17,18 Although intro-
ducing size dispersity can frustrate long-range
crystalline ordering,19,20 these systems can still
undergo a transition to a disordered solid-like
phase, in which the particle dynamics become
increasingly slow and eventually arrest, upon
increasing confinement. This transition is rem-
iniscent of the 3D glass transition, in which the
viscosity dramatically increases as the liquid as
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cooled. The dynamical signature of the 3D
glass transition is the emergence of a plateau
in translational correlation functions, signaling
the formation of transient local cages that con-
strain particle motions. This plateau extends
to longer times as the temperature is decreased
or the particle concentration is increased.8,21,22

Liquids in 2D and 3d exhibit different dy-
namics23 and phase behavior, however, com-
plicating understanding of the relationship
between the 2D and 3D glass transitions.
In 2D, the crystal phase is unstable in the
thermodynamic limit due to long-wavelength
Mermin-Wagner (MW) fluctuations that rep-
resent elastic modes.24–26 Evidence of MW
fluctuations has been recently found in both
2D liquids27 and amorphous solids.28 For 2D
supercooled liquids, MW fluctuations disrupt
particle cages and enable particles to become
delocalized.23,29–31 Thus, 2D supercooled liq-
uids exhibit distinct dynamics from their 3D
counterparts.23,29 However, as shown in ex-
periments28,31,32 and simulations,27,30,33,34 the
behavior in 3D and 2D systems is similar
when particle motions are characterized rela-
tive to the cages formed by their nearest neigh-
bors.30,33,34 These studies suggest that analysis
of the cage-relative motions of particles can be
used to analyze the behavior of confined su-
percooled liquids as the dimensionality contin-
uously changes from 2D to 3D, which remains
incompletely understood.35

Here, we use molecular dynamics (MD) sim-
ulations to show that quasi-2D supercooled liq-
uid systems of particles confined in slits exhibit
long-wavelength fluctuations (LWF) analogous
to those previously observed in dense monolay-
ers. The magnitude of collective particle dis-
placements in the lateral directions parallel to
the confining walls, obtained by removing the
cage-relative contribution to the mean-square
displacement, increases with system size, con-
sistent with the logarithmic growth expected for
MW fluctuations. Both the amplitude of the
fluctuations and the scaling constant depend
non-monotonically on the confinement length
scale, which we attribute to a competition be-
tween arrest-driven caging and strengthening
LWF as the 2D limit is approached. These re-

sults indicate that dynamics in confined quasi-
2D supercooled liquids are affected by steric ef-
fects and LWF.

Methods

Simulations

We used event-driven molecular dynamics
(MD)19,20,36 to simulate N = 6912−42592 hard
spheres confined in a slit geometry, consisting
of two repulsive parallel walls separated by a
distance W along the z-axis of the simulation
cell (Fig. 1(a)). The walls have edge lengths of
L along x- and y-axes of the cell, and periodic
boundary conditions are imposed in these di-
rections to model an infinite slab. The particles
have unit mass m = 1, and are polydisperse in
size (ca. 23%) to prevent spontaneous crys-
tallization. Polydispersity was introduced by
assigning each particle a diameter σ randomly
drawn from the distribution P (σi) = A/σ3

i with
σi ∈ [0.7255, 1.609] (Fig. 1(b)), yielding an av-
erage size of σ̄ = 1. Following convention, we
adopt a system of reduced units to describe the
systems and our results in which Boltzmann’s
constant kB = 1, and σ̄ and τ = σ̄(m/kBT )

1/2

are the fundamental measures of length and
time, respectively, where T is the tempera-
ture.19 We define the confinement parameter
H = W − σ̄ based on the the width of the slit
geometry accessible to an average-sized parti-
cle; the volume fraction ϕ = Nπσ̄3/6HWL2 is
defined in terms of W .
Initial particle configurations were generated

by gradually compressing a system with ϕ =
0.45, in increments of ∆ϕ = 0.01, to achieve
the final targeted ϕ and H. After each in-
cremental compression step, stress in the sys-
tem was relaxed using MD and/or swap Monte
Carlo.37–39 In most cases, stress relaxation was
achieved by a running short MD simulation 10
time units in duration. For very confined or
dense systems, relaxation following each of the
last few compression steps was achieved by per-
forming 105 sweeps with the SMC algorithm,
where 1 sweep is N attempted MC moves.
Following compression, the systems were equi-
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Figure 1: (a) Confined hard-sphere supercooled
liquid system with {ϕ,H} = {0.57, 9.00}. The
walls of the slit geometry are rendered as black
rectangles, and the particles are represented as
spheres shaded based on their diameter (small
to large using purple to yellow color scale). (b)
Probability distribution of the particle diameter
σi, selected from the distribution P (σi) = A/σ3

i

with σi ∈ [0.7255, 1.6099] such that the average
size σ̄ = 1.

librated using SMC, performing enough MC
sweeps (105 − 109) to ensure that the particles
moved at least twice the mean particle diam-
eter on average. The final equilibrated config-
urations from SMC simulations were used to
propagate microcanonical (NVE) MD trajecto-
ries 102 − 104 time units in duration for the
analysis of dynamics. Initial particle momenta
in the MD simulations were randomly sampled
from the Maxwell-Boltzmann distribution spec-
ified by T = 1. Dynamical quantities and asso-
ciated statistical uncertainties were estimated
from the averages and standard errors, respec-
tively, computed from MD trajectories propa-
gated from 50 independent realizations of the
system at each state point using the protocols
described above. Thus, approximately 50000
simulations in total were performed for this
study.

Mean-square displacements

From the trajectories, we characterize lateral
positional fluctuations in the plane parallel to
the walls using the mean-square displacement
(MSD),

M(t) =
1

N

N∑
i=1

⟨|δri(t)|2⟩ (1)

where δri(t) = ri(t)− ri(0), ri = {xi, yi} is the
position of particle i, t is the observation time,
and the brackets ⟨. . .⟩ indicate an average over
different observation windows.
The cage relative MSD MCR(t) characterizes

the mean-square displacement of a particle rel-
ative to the motion of the cage formed by its
nearest neighbors and is defined as

MCR(t) =
1

N

N∑
i

⟨[δrCR
i (t)]2⟩ (2)

where

δrCR
i (t) = [ri(t)−ri(0)]−

1

Nnn(i)

Nnn(i)∑
n=1

[rn(t)−rn(0)]

(3)
and Nnn(i) indexes the nearest neighbors that
form the cage for particle i.
Finally, the effects of LWF can be analyzed by

removing the contributions from cage-rattling
from M(t):

Γ(t) = M(t)−MCR(t). (4)

Neighbor identification

Evaluation of the cage-relative MSD using Eqs.
2 and 3 requires identifying particles that form
the local neighbor cages. To account for the
strong polydispersity, neighbors were identified
using the surface-to-surface distance

sij = |xi − xj| −
σi + σj

2
(5)

where xi = {xi, yi, zi}. Two particles were con-
sidered to be neighbors if sij ≤ 0.5; this value
corresponds to approximately the first mini-
mum in the probability density distribution of
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sij.

Dynamical corrections

For some liquid-like systems, we used a modi-
fied version of Eq. 4:

Γ(t) = M(t)−MCR(t)−∆γDD(t)−∆γCB(t),
(6)

where ∆γDD(t) and ∆γCB(t) are corrections ac-
counting for the asymptotic decorrelation of
particle displacements at long times and local
rearrangements of neighboring particles at in-
termediate times, respectively.29,34 These cor-
rections are needed when the times scales as-
sociated with LWF and the α-relaxation (tLWF

and tα, respectively) are of similar order. For
the systems considered here, tLWF ∼ 101 − 102

time units. Thus, we use the criterion tα ≲
102tLWF ≈ 104 time units as an indicator that
these corrections may be necessary, employing
an operational definition for tα as the time re-
quired for particles to displace one diameter on
average (i.e., M(tα) = σ̄2). For many of our
systems, we note that tα moves outside the ac-
cessible window for MD simulations, indicat-
ing that these systems are effectively glasses on
these time scales and preventing characteriza-
tion of the terminal relaxation behavior.
For liquids, the long-time behavior of MCR is

given by

MCR(t) = M(t) + ⟨Nnn(i)⟩−1M(t), (7)

implying that MCR(t) > M(t). This behav-
ior arises because the displacements of particles
become uncorrelated from those of other par-
ticles in liquids on long times.29 For systems
where MCR(t) > M(t), we follow ref. 29 and
fit the long-time behavior of MCR(t) and M(t)
to power-law functions of the form Cta + b,
where C, a, and b are fitting parameters and
a is globally fit for systems of constant ϕ and
H. The correction for displacement decorrela-
tion accounts for differences in the long-time
growth of MCR(t) and M(t) and is given by:

∆γDD(t) = (CMCR − CM)ta. (8)

Similarly, power-law growth of particle dis-

placements at intermediate times can arise from
local rearrangements in neighboring particles,
which is not accounted for in the definition of
MCR(t). We correct for this behavior using29,34

∆γCB(t) = Dte, (9)

where D and e < 1 are constants found by fit-
ting the function obtained after correcting for
displacement decorrelation.

Correlated displacements

Correlations between the displacements of par-
ticles and those of their surrounding neighbors
were quantified using

Svec,i(t) =
1

Nnn(i)

Nnn(i)∑
j=1

δri(t) · δrj(t)
max[|δri(t)|2, |δrj(t)|2]

.

(10)
This function is a modified, particle-resolved
version of the spatial-temporal correlation func-
tion used in refs. 32,40,41. The maximum
operation in the denominator ensures −1 ≤
Svec,i ≤ 1 and that very small or large neigh-
bor displacements are not disproportionately
weighted. The function assumes values of −1
and 1 when the displacement of the central par-
ticle i is perfectly correlated and anti-correlated
with the displacements of its surrounding neigh-
bors, respectively. Nearest neighbors were iden-
tified using the same surface-to-surface distance
criterion used in the evaluation of MCR.
To facilitate visualization, we coarse-grained

the displacement vector correlation function
into a continuous field using Gaussian functions
centered at the location of each particle:

Svec(t, x, y) =

Ncl∑
i=1

Svec,i(t)e

−[(x−xi)
2+(y−yi)

2]/σ̃2

2|δri(t)|2/M(t) ,

(11)
where the sum is taken over the Ncl particles in
the contact layer near the lower wall.
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Results and Discussion

Dynamics of confined supercooled
liquids

We analyze the dynamics of hard-sphere su-
percooled liquids confined in a quasi-2D slit
geometry. The state of the systems is nom-
inally specified by {ϕ,H}. We study ranges
of these parameters (0.550 ≤ ϕ ≤ 0.600 and
1.0 ≤ H ≤ 14.0) corresponding to high to mod-
erately confined dense packings of particles that
exhibit glassy dynamics.
The MSDs for a moderately confined system

(H = 3.00) illustrate typical behaviors of a su-
percooled liquid (Fig. 2(a)). At volume fraction
ϕ = 0.550, the MSD exhibits ballistic behav-
ior on short time scales, sub-diffusive behavior
(power-law scaling such that M(t) ∼ tα with
α < 1) on intermediate time scales (t ≈ 1−10),
and an upturn (t ≈ 10) and gradual cross-
over to diffusive scaling (M(t) ∼ t) on long
times (t > 10). These features are common
in dense particle suspensions and deeply su-
percooled liquids. The sub-diffusive behavior
at intermediate times arises from “cage rat-
tling” in which particles are localized inside
the cages formed by their surrounding neigh-
bors. The upturn observed for liquid but not
glassy samples indicates the onset of local rear-
rangements that eventually accumulate and al-
low particles to escape the cages formed by their
neighbors.34 Cage escape is associated with the
α- (or terminal-) relaxation process in the liquid
and occurs on characteristic time scale tα.
Upon increasing ϕ, the sub-diffusive region

becomes more pronounced and persists for
longer duration, reflecting enhanced caging and
slowing of the dynamics.8,9,42 The upturn in
M(t) eventually moves outside of the observa-
tion window for ϕ > 0.585, indicating that the
systems behave as glassy solids on the simu-
lated time scales. For a less-confined system
(H = 8.00), the MSDs also become more sub-
diffusive as ϕ is increased and are larger at a
given ϕ than those measured at H = 3.00 (Fig.
2(b)).
Similar trends are observed upon decreasing

H when the volume fraction is held constant

10 2

10 1

100

M

(a) H = 3.00

100 101 102

t

10 2

10 1

100

M

(b) H = 8.00

Figure 2: Mean-square displacement M(t)
functions for systems with various particle vol-
ume fractions ϕ = 0.560 − 0.600 and confine-
ment parameters (a) H = 3.00 and (b) H =
8.00. The arrow indicates the direction of in-
creasing ϕ in steps of ∆ϕ = 0.005.

(Fig. 3). Interestingly, below a particular value
of H, oscillations appear in the sub-diffusive
caging plateaus (t ≈ 1–10). These oscillations
are not observed in 3D amorphous solids,8,32,43

but have been previously reported in 2D glasses,
where they have been interpreted as evidence of
LWF.30,33,34

Collective dynamics

In model systems with LWF, measured prop-
erties often depend sensitively on system size
due to the artificial suppression of fluctuations
larger than the linear dimension L of the peri-
odic simulation cell. Although finite-size effects
are generally undesirable, they can be rigor-
ously analyzed to detect and characterize LWF
in model systems.44,45 Accordingly, we examine
the influence of L on MCR(t) and Γ(t).
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Figure 3: Mean-square displacement M(t)
functions for systems with various confinement
parameters H and particle volume fractions of
(a) ϕ = 0.570 and (b) ϕ = 0.600. The arrow in-
dicates the direction of decreasing H. The con-
finement parameters in (a) are H = 1.00, 1.20,
1.34, 1.70, 2.00, 2.50, 3.00, 4.00, 5.00, 6.00, 7.00,
8.00, 9.00. The confinement parameters in (b)
are H = 2.00, 2.50, 3.00, 4.00, 5.00, 6.00, 7.00,
8.00, 9.00, 10.00, 11.00, 12.00, 13.00, 14.00.

The cage-relative MSD MCR(t) (Eq. 2) char-
acterizes particle displacements in the reference
frame of the center-of-mass of their surround-
ing nearest neighbors (Fig. 4(a)). Hence, it
describes the cage-rattling dynamics that arise
from the relative motion of particles inside their
local neighbor cages. We observe that MCR(t)
exhibit a crossover from ballistic scaling on
short time to diffusive scaling on long times
and collapse for all L, indicating that the lo-
cal dynamics do not exhibit finite-size effects
(Fig. 4(b)).
By contrast, the contribution remaining after

MCR(t) is subtracted from the MSD, Γ(t) (Eq.
4), retains information about collective transla-

tional particle motions (Fig. 4(a)). This func-
tion varies with system size on intermediate
time scales, increasing with L for a given ob-
servation time t (Fig. 4(b)). This system-size
dependence indicates the presence of LWF with
characteristic size > O(L).30,34
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M
SD

s

(a)

M
MCR

= M MCR

100 101 102

t
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10 1

&
M

CR

(b) L
43.1
48.6
54.3

60.2
72.6
80.8

Figure 4: (a) Mean-square displacement M(t),
cage-relative MSD MCR(t), and Γ(t) =
M(t) − MCR(t) for a system with {ϕ,H} =
{0.570, 3.00} and periodic edge length L =
54.3. (b) MCR(t) and Γ(t) for systems with
various L and {ϕ,H} = {0.570, 5.00}.

Logarithmically divergent fluctua-
tions

Similar finite-size effects are absent in 3D sys-
tems, but have been observed in 2D solids where
they have been attributed to long-wavelength
Mermin-Wagner fluctuations.24,25,28 These LW
acoustic modes result in collective translational
particle displacements, which are isolated in the
function Γ(t). Thus, the time scale associated
the local maximum in Γ on intermediate time
scales is an estimate of the characteristic time
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scale tLW at which LWF emerge, and the corre-
sponding magnitude Γ(tLWF) provides an esti-
mate of the squared amplitude of the LWF.34

To determine whether the LWF observed in
our quasi-2D systems are Mermin-Wagner-like,
we examine the L-dependence of Γ(tLWF) for
systems with 0.550 ≤ ϕ ≤ 0.600. Specifically,
for an elastic medium, the square amplitude of
the Mermin-Wagner fluctuations diverges log-
arithmically with system size A2 ∼ B log(L),
where the scaling constant B reflects the elastic
contributions to the thermal vibrations and is
a function of the shear and bulk moduli of the
system.34 In agreement with this expectation,
we observe that the increase in Γ(tLWF) with L
is consistent with logarithmic scaling over dis-
tinct ranges of system size and H for each iso-
chore (Fig. 5(a,b)), suggesting the presence of
MW fluctuations. Further, Γ(tLWF) varies non-
monotonically with both ϕ (constant H, Fig.
5(a)) and H (constant ϕ, Fig. 5(b)).
We note that the logarithmic scaling law

above is derived in the continuum limit for an
elastic medium and hence only valid for the
large L (large N) limit. Consequently, devia-
tions are expected in small systems, followed by
an eventual crossover to the predicted logarith-
mic scaling behavior as L becomes sufficiently
large. In studies of 2D systems, however, con-
sistency with logarithmic scaling has been ob-
served in systems that are significantly smaller
than those examined here.28,34 Hence, we ob-
serve behavior consistent with the logarithmic
scaling prediction over the entire range of sys-
tem sizes examined in our study.
To capture the relationship between the fluc-

tuation magnitude and the confinement, we
examine the H-dependence of the logarithmic
scaling coefficient B, which for a 2D solid re-
flects the elastic contributions to the thermal vi-
brations and is a function of the shear and bulk
moduli.34 For ϕ = 0.570, the elastic coefficient
B exhibits a pronounced local maximum at an
intermediate H; by contrast, for ϕ = 0.600 B is
approximately independent of H (Fig. 6(a)).
We posit that the non-monotonic variation

of both Γ(tLWF) and B with H for ϕ = 0.570
arises from the competition of two physical pro-
cesses: changes in local structure driven by in-
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Figure 5: First maximum in Γ × 103 (i.e.,
Γ(tLWF) × 103) as a function of periodic side
length L for (a) constant H = 4.00 and (b) con-
stant ϕ = 0.57. At constant H and L, Γ(tLWF)
decreases with increasing ϕ as the system be-
comes denser. Along an isochore, fluctuations
initially increase in magnitude with H as sys-
tems become more mobile. Further increases
in H, however, lead to a decrease in Γ(tLWF).
The solid lines are logarithmic fits Γ(tLWF) ∼
B logL to the data, and data error bars are 95%
confidence intervals. From these fits, the coef-
ficient B was extracted, which quantifies how
strongly the MW fluctuation magnitude varies
with system size.
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Figure 6: (a) Non-normalized B and (b) nor-
malized Bn scaling coefficients for selected
glassy isochores. For comparison, scaling co-
efficients are also shown for crystalline sys-
tems of confined hexagonally close-packed hard
spheres (xtl). The average particle-particle and
particle-wall surface-to-surface separations for
the crystalline systems are 1.07σ̄ and constant
for all H. The maximum in B for ϕ < 0.60
reflects the competition between strengthening
MW fluctuations and variation in local struc-
ture. The Bn scaling isolates the growth of MW
fluctuations relative to variation in local struc-
ture.

creased caging and transition to 2D-like LWF
as the extent of confinement in increased. In
weakly confined systems (large H), particles
remain mobile. As a result, when H is large
the local structure is spatially uniform. As
H is decreased, the time scale for liquid rear-
rangement tR increases and the time for onset
of LW fluctuations tLW decreases (Fig. 3 and
4(b)). These time scales become increasingly
separated and the amplitude of LW fluctua-
tions increases as the system becomes more con-
fined (i.e., more 2D). These factors drive the in-
creases in Γ(tLWF) and B asH is decreased from
the weakly-confined regime. For small H, how-
ever, confinement drives slowing of dynamics8

and particles are strongly localized into cages,
as in deeply quenched glassy systems.46–48 In
this strongly-confined regime, decreasing H re-
duces variation in local structure due to increas-
ing arrest and hence reduces Γ(tLWF) and B.
Thus, the competition between arrest-driven
caging and strengthening 2D LW fluctuations
leads to the local maxima in Γ(tLWF) and B at
an intermediate value of H.
Along the ϕ = 0.600 isochore, by contrast, all

samples exhibit glassy dynamics and the elas-
tic coefficient B is weakly dependent on H. The
relatively small change in B with H likely re-
flects the weaker variation in local structure at
higher ϕ due to steric and packing constraints.
To distinguish the effects of structure on B and
Γ(tLWF) from those of confinement, we normal-
ized B by a structural metric. To select an ap-
propriate metric, we note that finite variance
in the distance between nearest neighbors is a
necessary condition to obtain LWF.24,25 Fur-
ther, for 2D crystals the long-time limit of MCR

is twice the variance of the neighbor-neighbor
distance.49,50 We therefore hypothesize that a
metric based upon MCR can be used to remove
variation in B that arises from local structure.
We select as the metricMCR(tp), where tp is the
time at which MCR attains an inflection point
in its caging plateau. This metric is invariant
with L and has been associated with cage size
in 3D systems.28,46,47,51,52 Thus, we define a nor-
malized scaling coefficient Bn = B/MCR(tp).
Along the isochores ϕ = 0.570 and ϕ = 0.600,

Bn increases monotonically as H is decreased
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(Fig. 6(b)). This monotonic increase in Bn is
expected for a system transitioning from 3D, for
which Bn would be effectively zero due to the
absence of logarithmic scaling, to 2D MW fluc-
tuations.24–26 The similarity in the values of Bn

for the two ϕ at fixed confinement suggests that
normalization by the cage size indeed removes
much of the variation in B due to changes in
local structure.
To further confirm this idea, we examine the

H-dependence of Bn in a system for which the
local structure is nearly independent of con-
finement. To this end, we simulated a se-
ries of crystals of hexagonally closed-packed,
monodisperse hard spheres confined between
two hard walls. The confined crystals are gen-
erated such that the average wall-particle and
nearest-neighbor separation at 1.07σ̄, which en-
sures that their local structure and dynamics
do not vary significantly with H. For the crys-
talline systems, the increase of Γ(tLWF) with L
is consistent with logarithmic scaling, indicat-
ing that they exhibit LWF. Both the elastic co-
efficient B and the normalized coefficient Bn of
the crystal systems increase monotonically as H
is decreased (Fig. 6), as expected for a 3D-to-2D
transition in LWF, and are very close in mag-
nitude. Hence, we conclude that the growth
of Γ(tLWF) with L is indicative of MW fluctu-
ations in quasi-2D confined supercooled liquids
and that the non-monotonic variation of B with
H in some of samples arises from confinement-
induced changes in local structure.

State-space dependence

As the confinement length scale H decreases,
the non-local MW fluctuations are expected to
increasingly dominate particle motion. In un-
confined 3D geometries, directional correlations
between the motions of particles in supercooled
liquids and those of their neighbors are small on
intermediate to long time scales.32 By contrast,
in a 2D system with LWF, the displacements
of particles are highly directionally correlated
with those of the neighbors in their surround-
ing cage.32,53 The transition from 3D- to 2D-like
dynamics can be be characterized by examin-
ing the two-particle correlation function Svec,i,

which quantifies the degree of directional cor-
relation between the displacement of a central
particle and those of its surrounding neighbors
(see Section ).32,40,41 The function Svec,i assumes
values of 1 and −1 when the displacement direc-
tion and magnitude of the central particle i and
all of its nearest are perfectly correlated and
anit-correlated, respectively. To isolate the ef-
fects of confinement, we control for variations in
local structure by examining three state points
with different H, but similar L and equal MCR

at lag time t = 10 ∼ tLW.
A weakly-confined system ({ϕ,H} =

{0.59, 13.00}) exhibits modest correlations in
directional displacement between neighboring
particles (Fig. 7). As H is decreased, the cor-
relations become stronger (i.e., Svec increases)
and the size of regions of correlated displace-
ment increases. Together, these observations
suggest that increasing 2D LWF in supercooled
liquids leads to enhanced collective displace-
ment within regions of particles. This result
is consistent with experimental observations
of larger displacement correlations in colloids
at a 2D oil-aqueous interface compared to 3D
systems.32

Lastly, to characterize how LWF vary across
the {ϕ,H} state space, we calculated the elas-
tic coefficient B for supercooled liquids across a
range of confinements spanning bulk to quasi-
2D systems (Fig. 8). LWF are detectable across
a broad range of H. As ϕ is increased from
0.550, state points with measurable values of
B (by our methods) extend to larger values
of H. This result is consistent with the ex-
pectation that B (which is a measure of the
elastic contributions to the thermal vibrations)
should increase as systems become denser and
hence more solid-like. Indeed, non-zero values
of B are observed up to the largest H studied
(H = 14) for ϕ ≥ 0.580. For ϕ < 0.580, our
methods fail to detect LW fluctuations beyond
H ≈ 10. We note, however, that 2D LW fluc-
tuations can be present and influence dynamics
within normal 2D liquids.27,54 Thus, alternative
approaches may reveal LW fluctuations in more
weakly confined systems.
Along isochores with ϕ ≤ 0.590, B attains

a maximum at an intermediate value of H (as
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Figure 7: Contour maps of the coarse-grained directional displacement field Svec within the contact
layers for systems with approximately the same periodic side length L and cage-relative MSD MCR

at the selected lag time, but varying levels of confinement H. The constant L controls the maximum
possible wavelength of density fluctuations, and the constant MCR controls for variation in local
structure. The state points are {ϕ,H} = (a) {0.59, 13.00}, (b) {0.57, 4.00}, and (c) {0.55, 2.00}.
Darkly colored regions in which Svec ≫ 0 exhibit displacements that are correlated in both direction
and magnitude. In brief, Svec is obtained by a sum of Gaussians centered at ri that smear the Svec, i
of each particle. The maximum value for Svec of 6 reflects the fact that only the Gaussians of the
nearest neighbors contribute to the sum. To account for directional correlation alongside significant
mobility, the Gaussian variance and height are the MSD and Svec, i of particle i, respectively. The
lag time of each displacement is t = 10 simulation time units, which is approximately the time for
the first minimum in ΓCR. The extent of spatial correlations decreases with decreasing confinement,
i. e., the dark regions are smaller for larger H.

also seen in Fig. 6). This value of B signifies the
maximum magnitude of the LW fluctuations in-
duced by finite-size effects. The largest maxi-
mum in B occurs at the lowest value of ϕ exam-
ined (i.e., in the most liquid-like system). Fur-
ther, because LW fluctuations are detectable
across a narrower range as ϕ is decreased, the
change in B with H is steeper. Thus, finite-size
effects arising from LW fluctuations are most
pronounced for low-ϕ systems in the quasi-2D
limit.
While writing this article, Ciamarra and col-

laborators published a study in which they in-
vestigated the change in dynamics for increas-
ingly confined systems containing a 80:20 Kob-
Andersen Lennard-Jones glass-forming mix-
ture.21,55 Using periodic boundary conditions
to avoid layering in the confinement direction,
they showed that LWFs affected the relax-
ation dynamics of quasi-2D supercoooled liq-
uid by examining their dependence on lateral
size, similar to what is reported here. Fur-
ther, they compared the time scales associ-

ated with structural relaxation and the longest-
wavelength vibrational modes and thereby de-
termined whether systems exhibited 2D-like (in
which dynamics were dominated by LWFs) or
3D-like (in which dynamics were dominated
by structural relaxation) behavior. Interest-
ingly, Ref. 55 also examined the behavior of
the Kob-Andersen mixture confined in a slit
geometry, but they did not report observing a
non-monotonic dependence of MW fluctuations
on H, as was found in our study. This appar-
ent discrepancy may be due to the fact that
the particle volume fraction was not held con-
stant as H was varied in their study, nor were
the effects of varying ϕ systematically explored.
Alternatively, it may arise from the use of dif-
ferent model liquids. In either case, our study
presents a complementary analysis of a differ-
ent model in which the effects of both particle
volume fraction ϕ and the confinement length
scale H were systematically explored, revealing
distinct behavior in different regions of the pa-
rameter space.
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Figure 8: Contour map of the unnormalized
scaling coefficient B for varying state point
{ϕ,H}, where 0.550 ≤ ϕ ≤ 0.600 and 1.00 ≤
H ≤ 14.00. Contours are generated by lo-
cal cubic interpolation of B data and local
re-entrance is an artifact of the interpolation.
Translucent black dots indicate locations of
state points. Values of B have been scaled by
a factor of 103 for clarity. Non-monotonic vari-
ation of B is more evident for smaller ϕ. LWF
are not detectable via the first maximum in Γ
in the white regions of this diagram.

Additionally, our analysis of LWFs in the
quasi-2D systems is based on global dynamical
quantities calculated by averaging over all of
the particles in the systems. Nonetheless, the
dynamics of confined liquids may be heteroge-
neous and vary as a function of distance from
the bounding walls due to the organization par-
ticles into distinct layers.16 Thus, we anticipate
that additional insights into long-wavelength
fluctuations in these systems obtained by ex-
amining the local dynamics in different particle
layers. We expect that the dense contact lay-
ers start to dominate the average MSD as H
is decreased. Indeed, our preliminary exami-
nation of local dynamics indicates that long-
wavelength MW fluctuations may be enhanced
in the dense contact layers near the walls rel-
ative to those in the center of the pores, but
this topic merits further investigation in future
studies. Another promising avenue for future
study is structural metrics that provide an im-
proved description of the changes in dynam-

ics observed as the confinement length scale is
changed. There has been recent success, for
example, in identifying metrics that connect
the dynamics of 2D and quasi-2D liquids con-
sisting of bi-disperse, nearly-hard sphere parti-
cles.56 Although these structural descriptors do
not appear to be directly extensible to poly-
disperse systems in this study, we anticipate
that similar approaches may prove successful
in developing metrics that better account for
the variations in the the strength of the long-
wavelength fluctuations with confining length
scale that those presented here. A second po-
tential structural metric is the hexatic order
parameter, which has been shown to describe
melting processes57,58 and nanoparticle adsorp-
tion59 in two dimensions. Our previous com-
putational study showed that the in-plane re-
laxation time increased exponentially with the
correlation length associated with the hexatic
order parameter for confinements whose widths
were commensurate with the average particle
size.20 Thus, an interesting avenue for future
study is to examine if there is a connection be-
tween LWF and crystalline order.

Conclusions

Using event-driven molecular dynamics simula-
tions, we showed that confined supercooled liq-
uids exhibit long-wavelength MW fluctuations
in the lateral directions parallel to the confining
walls, similar to those observed in 2D but not
3D systems. Competition between caging and
MW fluctuations as the liquids are increasingly
confined leads to a non-monotonic dependence
of the fluctuations on the confinement length
scale. Thus, the fluctuation amplitude can be
modulated by controlling the particle volume
fraction and extent of confinement. The re-
sults reveal that LWF are detectable for volume
fractions below random close packed as long as
the confinement is sufficiently strong (in Fig.
8); below ϕ < 0.58, bulk behavior appears for
H > 14. Thus, choosing H ≳ 20 appears to
be sufficient to avoid LWF for systems far from
random close packing (RCP). For ϕ closer to
RCP, however, we are able to detect LWF even
at widths up to H = 14, the maximum exam-
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ined in this study due to the need to simulate
systems with large L to determine the scaling
behavior. Although their strength appears to
decrease as ϕ is increased towards RCP, addi-
tional simulations closer to RCP are needed to
quantitatively test this speculation.
The detectability of MW fluctuations even in

systems where the confinement length scale is
an order of magnitude larger than the parti-
cle diameter suggests that they may influence
the properties of confined liquids in practical
settings. Collective displacements in quasi-2D
paramagnetic colloids, for example, were found
to smear cage rearrangement and enhance par-
ticle mobility53 and to accelerate viscoelastic re-
laxation and reduce viscosity.29 Thus, improved
understanding of dynamical processes in quasi-
2D systems may open new routes to tuning the
meso- and macro-scopic properties of confined
liquids.
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