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A B S T R A C T

Reduced order modeling of fluid flow systems can allow for the application of more sophisticated mathematical
analysis and control techniques that would otherwise be computationally prohibitive. Existing reduction
techniques often fail when nonlinear terms dominate the flow (e.g., at large Reynolds numbers) necessitating
the development of new techniques. In this work, we implement an adaptive isostable reduction strategy to
obtain a data-driven reduced order model that captures the dynamics of observables in a computational model
for fluid flow over an airfoil at moderate Reynolds numbers. The resulting model characterizes the response to
both time-varying inflow conditions and Dirichlet boundary conditions on the surface of the airfoil meant to
represent suction or blowing through the action of surface jets. The resulting reduced order model behaviors
agree well with the dynamics of the full order model simulations in response to both open loop and closed
loop inputs. This study provides a proof of concept that reduced order modeling techniques using adaptive
isostable coordinates can be successfully used in realistic fluid flow models using geometries with practical
relevance.

1. Introduction

The steady growth of computational capabilities in recent decades
has given rise to a sustained interest in the development of data-
driven dynamical model identification techniques. Rather than relying
on knowledge of underlying physical processes, data-driven strategies
typically infer dynamical models from time-series measurements of ob-
servables [1,2]. Such techniques can readily be implemented when rich
datasets are available and can be readily used across a wide variety of
application domains. Data-driven model identification techniques have
been particularly powerful for fluid flow applications [3–5] where time
series measurements are often readily available but the mapping from
the state (e.g., flow velocity, pressure) to the observables (e.g., drag,
lift, and pixel intensity from flow imaging techniques) is not always
known.

A wide variety of strategies have been developed for data-driven dy-
namical model identification purposes. For instance, proper orthogonal
decomposition (POD) [3,4,6,7] can be used to yield a set of orthogonal
modes arranged in descending order of their importance as gauged by
the 𝐿2 energy captured by each mode. Truncation of the less important
modes yields a reduced order coordinate basis. Subsequently, Galerkin
projection [6,8,9], can be applied to project the underlying model
equations onto the reduced order POD basis to yield an associated
set of low-order dynamical equations. Dynamic mode decomposition
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(DMD) is another widely used dynamical model identification proce-
dure [1,10,11], whereby the temporal evolution of snapshot data can
be represented as the superposition of linear eigenmodes. DMD shares
a close relationship with Koopman operator theory [12–14], which can
be used to characterize the dynamics of system observables in terms
of a linear but generally infinite dimensional operator. DMD is often
used to provide an approximation of Koopman eigenmodes from data
and can be used in tandem with either lifting functions [15] or delayed
embeddings [16] in order to yield a larger set of observables. Recent
works have considered control inputs in concert with the DMD strategy.
Associated model identification algorithms can yield linear [17,18],
bilinear [19], and switched [20] control systems allowing for the use
of well-established model predictive control techniques.

The central challenge of implementing the Koopman framework
rests on finding a suitable finite basis of Koopman eigenmodes with
which to approximate the infinite dimensional Koopman operator [3].
In this work, we will consider the isostable coordinate framework
which encodes for level sets of the slowest decaying Koopman eigen-
modes [21,22]. For systems that have a stable fixed point or periodic
attractors, system behavior in response to inputs can often be ac-
curately captured by considering the dynamics of only the slowest
decaying Koopman eigenmodes [23–25], allowing for substantial di-
mension reduction. In situations where large magnitude inputs are
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necessary, Refs. [26,27] suggest the inclusion of an adaptive parameter
set, defining extended isostable coordinates that are functions of both
the state and the adaptive parameters and appropriately updating the
adaptive parameter set in order to limit truncation errors associated
with neglected nonlinear terms. Preliminary evidence [27–29], suggests
that this is a promising approach for reduced order modeling of fluid
flows, although these techniques have thus far only been applied to
relatively simple models based on simulations of the Burgers’ equation.

In this work, we implement the adaptive isostable reduction strategy
for data-driven model identification and subsequent control of fluid
flow over an airfoil in a regime with moderate Reynolds numbers.
We use computational fluid dynamics (CFD) simulation data to iden-
tify a reduced order model that captures the dynamics of vorticity
measurements in response to changes in the inflow conditions (meant
to represent gusting winds) and to time-varying Dirichlet boundary
conditions on the surface of the airfoil (meant to represent blowing or
suction through the action of surface jets). We use the resulting reduced
order model to design a simple controller to limit flow separation [30]
which tends to reduce lift and increase drag. The resulting reduced
order model behaviors agree well with the dynamics of the full order
model obtained from CFD simulations when considering both open loop
and closed loop inputs. Importantly, while the application considered
here is still a prototype problem, the methodology described in this
work is quite general and could be readily applied in other flow control
applications.

The organization of this paper is as follows: Section 2 provides
a description of the model equations, boundary conditions, and the
control objective considered in this work. Section 3 gives necessary
background about the reduced order modeling strategy and Section 4
describes the data-driven model identification procedure. Section 5
provides direct comparisons between full and reduced order model
simulations. Section 5 also discusses results obtained for a control
strategy designed using information about the reduced order model.
Concluding remarks are given in Section 6.

2. Problem description

2.1. Model equations and boundary conditions

The aerodynamic features of two-dimensional fluid flows are in-
vestigated numerically using the turbulence closure model of the k-𝜖
model to solve the two-dimensional steady incompressible Navier–
Stokes equations. A NACA 0015 airfoil [31] was chosen as the physical
model for this investigation. The dimensionless Navier–Stokes equa-
tions, a partial differential equation (PDE) that governs fluid velocity
and pressure
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is considered on the two-dimensional domain 𝛺(𝑥, 𝑦). Here, 𝑥 and 𝑦

are coordinates in the horizontal and vertical direction, where 𝑣𝑥, and
𝑣𝑦 are dimensionless velocity components in the 𝑥 and 𝑦 directions,
respectively, 𝑝 is the pressure and Re is the Reynolds number. Eqs. (1)
and (2) comprise the momentum equations and Eq. (3) is the continuity
equation. The Reynolds number is computed according to

Re =
𝜌𝑢𝐿

𝜇
, (4)

where 𝜌 is the fluid density, 𝑢 is a characteristic velocity, 𝐿 is the
characteristic length taken to be the airfoil chord length, and 𝜇 is the
fluid kinematic viscosity. In this model, we consider air at 𝑇 = 293K at
atmospheric pressure yielding a viscosity 𝜇 = 1.814 × 10−5 kg/m-s and

Fig. 1. Geometry of the airfoil model, Here, air flows in from the left boundary and
leaves through the right boundary. Boundary conditions are summarized in Table 1.

Table 1
Boundary conditions associated with the airfoil geometry shown in Fig. 1. 𝑛(𝑥) ∈ R

2

denotes the unit normal to the surface boundary, the dot denotes the dot product, and
the × denotes the cross product. In the development of a reduced order model, we
consider 𝑢1(𝑡) and 𝑢2(𝑡) to be inputs.

𝑛(𝜕𝛺A) ⋅ 𝑓 (𝑡, 𝜕𝛺A) = 𝑢2(𝑡) Dirichlet Control Input
𝑛(𝜕𝛺A) × 𝑓 (𝑡, 𝜕𝛺A) = 0 Dirichlet Control Input
𝑣𝑥(𝜕𝛺W , 𝑡) = 0 Dirichlet Flow Conditions (Wall)
𝑣𝑦(𝜕𝛺W , 𝑡) = 0 Dirichlet Flow Conditions (Wall)
𝑣𝑥(𝜕𝛺U , 𝑡) = 𝑣𝑥(𝜕𝛺D , 𝑡) 𝑣𝑥 Periodic Flow Conditions
𝑣𝑦(𝜕𝛺U , 𝑡) = 𝑣𝑦(𝜕𝛺D , 𝑡) 𝑣𝑦 Periodic Flow Conditions
𝑝(𝜕𝛺U , 𝑡) = 𝑝(𝜕𝛺D , 𝑡) 𝑝 Periodic Flow Conditions
𝑣𝑥(𝜕𝛺L , 𝑡) = 𝑢1(𝑡) 𝑣𝑥 Inflow Conditions
𝑣𝑦(𝜕𝛺L , 𝑡) = 0 𝑣𝑦 Inflow Conditions
𝑝(𝜕𝛺R , 𝑡) = 0 𝑝 Outflow Conditions

density 𝜌 = 1.204 kg/m3. The characteristic length and velocity are 𝐿
= 2 m and 𝑢 = 7 m/s, respectively, yielding Re = 9.3 × 105.

Here, a rectangular area with a width of 10 m and a height of 8 m
is considered as the domain of whole geometry. Six distinct boundaries
are considered for the domain 𝛺 taking 𝜕𝛺 = 𝜕𝛺A ∪𝜕𝛺W ∪𝜕𝛺L ∪𝜕𝛺R ∪

𝜕𝛺U∪𝜕𝛺D. The domain is shown in Fig. 1. Here, 𝜕𝛺A is the boundary on
the bottom surface of the airfoil where control input is applied, 𝜕𝛺W

is the remainder of the airfoil where no-slip boundary conditions are
considered. 𝜕𝛺L is left of the airfoil where the inflow velocity condition
is specified, 𝜕𝛺R is to the right of the airfoil where the outflow velocity
condition is specified. 𝜕𝛺U and 𝜕𝛺D are the rectangle upper and lower
boundaries where periodic flow conditions are used. All the boundaries
are clearly depicted in Fig. 1 with boundary conditions summarized in
Table 1. Note that 𝑛(𝑥) ∈ R2 denotes the unit normal to the surface
boundary at the location 𝑥 and 𝑓 (𝑡, 𝑥) ≡ [

𝑣𝑥(𝑡, 𝑥) 𝑣𝑦(𝑡, 𝑥)
]𝑇
. Numerical

simulation is performed on a 12,014 node finite element mesh using
COMSOL 5.6 with the turbulent flow k-𝜖 model.

2.2. Flow separation

Boundary layer detachment from a solid surface [32–35], is com-
monly referred to as flow separation. Flow separation happens in a
range of applications, with airfoils at high angles of attack being one
of the most common instances. Separation can be caused, for instance,
by adverse pressure gradients [36,37], or geometrical aberration on
the flow surface [38,39]. Flow separation generally results in eddies
and vortices, yielding a pressure differential between an object’s front
and back surfaces and ultimately resulting in reduced lift and ele-
vated drag [40]. The design of aerodynamic and hydrodynamic surface
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Fig. 2. Two representative simulations of the airfoil model taking 𝑢2(𝑡) = 0. Panel A shows the vorticity, 𝑤(𝑡) (black line) in response to constant flow of 𝑢1(𝑡) = 5m∕s (blue line).
Panel C shows a snapshot of the corresponding steady state flow; arrows on the inset indicate the direction of the fluid flow near the trailing edge of the airfoil and the white
arrow indicates that there is no recirculating motion at the trailing edge of the airfoil. Panels B and D show the same information when taking 𝑢1(𝑡) = 5 + 2 sin(2𝜋𝑡∕50)m∕s. The
inset from the snapshot in panel D clearly demonstrates a recirculating flow (indicated by the white arrow) near the trailing edge of the airfoil. Note that the instantaneous value
of 𝑢1 is identical for the snapshots from panels C and D.

contours can delay flow separation [41]. As shown in Fig. 2, flow
separation develops in the model described in Section 2 in response
to time-varying inflow in the boundary 𝜕𝛺𝐿 as demonstrated by the
circulation that develops near the trailing edge of the airfoil. This re-
circulation does not develop when a comparable constant inlet velocity
is applied.

2.3. General overview of the control objective

Control of flow separation is an important consideration for improv-
ing aerodynamic performance. Both active and passive flow manage-
ment strategies have been used to avoid or mitigate separation-induced
performance loss [42]. Previously, a variety of strategies have been
used to control flow separation including periodic excitation [43]
and acoustic excitation [44]. Other strategies have included the used
of synthetic jets [45], plasma actuators [46], and electromagnetic
forces [47].

In this work, we consider the vorticity as an observable of interest
related to the formation of flow separation. The vorticity, 𝑤(𝑡) is defined
as a surface integral of the curl of the flow velocity over the entire
domain, i.e.,

𝑤(𝑡) = ∬𝛺

(∇ × 𝑣) ⋅ 𝑑𝑥𝑑𝑦. (5)

In general, more pronounced flow separation will yield increased flow
recirculation and consequently a larger value of the vorticity. As such,
our control objective will be to maintain the vorticity at a constant low
level in the presence of a time-varying inflow on the boundary 𝜕𝛺𝐿.
To do this, we will consider the Dirichlet input at 𝜕𝛺𝐴 as a control
input. The inflow velocity 𝛺𝐿 will be considered as a time-varying
disturbance.

We emphasize that the control objective described here is consid-
ered as a prototype problem. It characterizes a situation where we have
limited access to observables which are not perfect representations of
the behavior that we wish to control. In this case we assume that we

only have access to a single observable which gives an aggregate view
of the curl evaluated over the entire flow field, and want to use this
information to influence the behavior that occurs at the boundary layer.
In the model identification strategy and subsequent control design
considered in this work, other observables could be used instead (for
instance, pointwise velocity or pressure measurements).

As a first step for approaching this control problem, we will em-
ploy a reduced order modeling approach that considers coordinates
that capture level sets of Koopman eigenfunctions [14,21] to yield an
approximation for the dynamics of 𝑤 of the form:

𝑤̇ = 𝐹 (𝑤, 𝑢1, 𝑢2), (6)

where 𝑤 ∈ R is the vorticity observable defined according to Eqs. (5),
𝑢1 ∈ R and 𝑢2 ∈ R are time-varying inputs, and 𝐹 sets the model
dynamics. In principle, this could be done by directly taking the time
derivative of Eq. (5) while considering the relationships on the 𝑥 and
𝑦 velocities governed by Eqs. (1)–(3). Of course, such an approach
would generally require direct knowledge of the velocity and pressure
as a function of time and would likely be too complicated to consider
from a control theoretic perspective. In Section 3 below, we discuss the
mathematical details underlying our approach; subsequent strategies
for data-driven model identification are given in Section 4.

3. Reduced order modeling and control using an adaptive
isostable coordinate reduction approach

3.1. The isostable coordinate basis

In order to identify a reduced order dynamical model for the vortic-
ity from Eq. (5), we will consider a reduced order modeling approach
using an adaptive parameter set as suggested by [27] (cf., [26]).
Following the derivation from [27], we consider a general partial
differential equation of the form

𝜕

𝜕𝑡
𝑋(𝑟, 𝑡) = 𝐹 (𝑋(𝑟, 𝑡), 𝑢(𝑡)), (7)
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where 𝑋(𝑟, 𝑡) ∈ R𝑛 is the state, 𝑟 is some location on the domain
𝛺, 𝐹 sets the dynamics, and 𝑢 ∈ R𝑀 is an input. Suppose that for
some 𝑢 ∈ 𝑈 ⊂ R𝑀 that Eq. (7) has a stationary solution 𝑋ss(𝑟, 𝑢),
i.e., with 𝐹 (𝑋𝑠𝑠(𝑟, 𝑢), 𝑢) = 0. Suppose also that for all 𝑢 ∈ 𝑈 , the operator
associated with the local linearization 𝐽 (𝑟, 𝑢) ≡ ∇𝐹 |𝑋𝑠𝑠 ,𝑢 exists and has
a discrete spectrum. In this problem formulation we will also consider
an observable 𝑤 ∈ R defined according to

𝑤(𝑡) = 𝐺(𝑋(𝑟, 𝑡)), (8)

where 𝐺 maps the state to the observable. Near the steady state,
solutions can be written as

𝜙(𝑡, 𝑋0, 𝑢) −𝑋ss(𝑟, 𝑢) =

∞∑
𝑗=1

𝜓𝑗 (𝑋0, 𝑢)𝜁𝑗 (𝑟, 𝑢)𝑒
𝜆𝑗 (𝑢)𝑡, (9)

where 𝜙 represents the flow of the vector field (7) taking 𝑢 to be
constant, 𝑋0 is an initial condition, 𝜁𝑗 (𝑟, 𝑢) is an eigenfunction with
associated decay rate 𝜆𝑗 (𝑢) of 𝐽 (𝑟, 𝑢), and 𝜓𝑗 (𝑋0, 𝑢) maps the state to
the eigenfunction basis. Eq. (9) is a linear, lowest-order approxima-
tion to the general expansion of the state of (7) using the Koopman
eigenfunctions; the general Koopman expansion includes higher-order
terms [12,48]. Specifically, each eigenfunction 𝜁𝑗 (𝑟, 𝑢) is a principal
Koopman eigenfunction. Consequently, the coordinates 𝜓𝑗 (𝑋, 𝑢) repre-
sent level sets of these eigenfunctions and can provide a reduced order
coordinate basis that can be used to represent the dynamical behavior.
To do so, we sort each 𝜆1(𝑢), 𝜆2(𝑢),… so that 0 > max𝑢∈𝑈 (Re(𝜆𝑗 (𝑢))) ≥
max𝑢∈𝑈 (Re(𝜆𝑗+1(𝑢))). Note that for a stable stationary solution, 𝜆1(𝑢)
would correspond to the eigenfunction with the slowest decay rate. To
a linear approximation, i.e., close to the stationary solution, one can
write

𝛥𝑋(𝑟, 𝑢) ≡ 𝑋(𝑟) −𝑋ss(𝑟, 𝑢) =

∞∑
𝑗=1

𝜓𝑗 (𝑋, 𝑢)𝜁𝑗 (𝑟, 𝑢). (10)

Here, 𝜓𝑗 (𝑋, 𝑢) = 𝜓𝑗 (𝑋0, 𝑢)𝑒
𝜆𝑗 (𝑢)𝑡 because 𝜓𝑗 (𝑋, 𝑢) is a Koopman eigen-

function with eigenvalue 𝜆𝑗 (𝑢).
An isostable coordinate reduction only considers the 𝛽 slowest

decaying eigenmodes

𝛥𝑋(𝑟, 𝑢) ≈

𝛽∑
𝑗=1

𝜓𝑗 (𝑋, 𝑢)𝜁𝑗 (𝑟, 𝑢). (11)

In many applications, inputs that excite modes with fast decay die out
rapidly so that Eq. (11) can be used to provide a good approximation
for Eq. (10) [23,49,50]. Note that (10) considers the local linearization
near the stationary solution 𝑋ss(𝑟, 𝑢). Isostable coordinates can also be
defined in the fully nonlinear basin of attraction of 𝑋ss(𝑟, 𝑢) as level sets
of Koopman eigenfunctions [14,21].

3.2. Adaptive isostable reduction

Following the general formulation proposed in [26], consider a
rewritten version of (7)

𝜕

𝜕𝑡
𝑋(𝑟, 𝑡) = 𝐹 (𝑋, 𝑝) + 𝑈𝑒(𝑋, 𝑢, 𝑝), (12)

where

𝑈𝑒(𝑋, 𝑢, 𝑝) = 𝐹 (𝑋, 𝑢) − 𝐹 (𝑋, 𝑝)

=

𝑀∑
𝑗=1

𝜕𝐹

𝜕𝑢𝑗
(𝑢𝑗 − 𝑝𝑗 ) + 𝑂(‖𝑢 − 𝑝‖2), (13)

for 𝑗 = 1,… , 𝛽 where partial derivatives are evaluated at X taking 𝑢 = 𝑝,
𝐹 (𝑋, 𝑝) represents the dynamics that results when taking 𝑢 = 𝑝 to be
a constant, and 𝑈𝑒 represents the effect of a time-varying input. The
term 𝑝 ∈ R𝑀 is a time-varying parameter that will be used in the
subsequent isostable reduction to mitigate the influence of truncation
errors caused by nonlinear terms of (7). For convenience of notation
above, dependence on 𝑟 has been suppressed. Notice that Eq. (12) is

identical to Eq. (7). Allowing for 𝑝 from (12) to be nonstatic, changing
to isostable coordinates using the chain rule for functional derivatives
yields

𝑑𝜓𝑗
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⟨
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⟩
−

𝑀∑
𝑖=1

⟨
∇𝜓𝑖,

𝜕𝑋ss
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⟨
∇𝜓𝑖,

𝜕𝑋ss

𝜕𝑝𝑖

⟩
𝑑𝑝𝑖

𝑑𝑡
, (14)

where ∇𝜓𝑗 is the gradient of the isostable coordinate 𝜓𝑗 with respect to
the state evaluated at 𝑋ss(𝑢), ⟨⋅, ⋅⟩ denotes the inner product, 𝜕𝑋ss∕𝜕𝑝𝑖 =

lim𝑎→0[𝑋ss(𝑟, 𝑢)|𝑝𝑖+𝑎−𝑋ss(𝑟, 𝑢)|𝑝𝑖 ]∕𝑎, and the 𝑂(‖𝑢−𝑝‖2) terms have been
neglected. In the final line above, the relation

⟨
∇𝜓𝑗 , 𝐹 (𝑋, 𝑝)

⟩
= 𝜆𝑗 (𝑝)𝜓𝑗

is used and holds because isostable coordinates decay according to the
relation 𝑑𝜓𝑗∕𝑑𝑡 = 𝜆𝑗𝜓𝑗 for all 𝑗. Using the state approximation from
(11), to leading order accuracy in the basis of isostable coordinates,
the observable from (8) can be approximated according to

𝑤 = 𝐺(𝑋(𝑟, 𝑝))

≈ 𝐺

(
𝑋ss(𝑟, 𝑝) +

𝛽∑
𝑗=1

𝜓𝑗 (𝑋, 𝑝)𝜁𝑗 (𝑟, 𝑝)

)

≈ 𝑤ss(𝑝) +

⟨
𝜕𝐺

𝜕𝑋
,

𝛽∑
𝑗=1

𝜓𝑗 (𝑋, 𝑝)𝜁𝑗 (𝑟, 𝑝)

⟩
, (15)

where 𝑤ss(𝑝) = 𝐺(𝑋ss(𝑟, 𝑝)). Considering Eqs. (14) and (15), the reduced
order isostable-based model can be represented according to

𝛹̇ = 𝛬(𝑝)𝛹 + 𝐼(𝑝)(𝑢 − 𝑝) + 𝐵(𝑝)𝑝̇,

𝑤 = 𝑤ss(𝑝) +

𝛽∑
𝑗=1

𝜂𝑗 (𝑝)𝜓𝑗 , (16)

where 𝛹 =
[
𝜓1 … 𝜓𝛽

]
, 𝛬(𝑝) = diag(𝜆1(𝑝),… , 𝜆𝛽 (𝑝)) ∈ C𝛽×𝛽 , the 𝑖th

row and 𝑗th column of 𝐼(𝑝) ∈ C𝛽×𝑀 is given by ⟨∇𝜓𝑖, 𝜕𝐹∕𝜕𝑢𝑗⟩, the 𝑖th
row and 𝑗th column of 𝐵(𝑝) ∈ C𝛽×𝑀 is given by −⟨∇𝜓𝑖, 𝜕𝑋ss∕𝜕𝑝𝑗⟩, and
𝜂𝑗 (𝑝) = ⟨𝜕𝐺∕𝜕𝑋, 𝜁𝑗 (𝑟, 𝑝)⟩.

Recall that Eq. (16) results after truncating 𝑂(𝜓2
𝑗
) terms. As such, its

accuracy begins to degrade as ‖𝛹‖ increases. Noting that the parameter
set 𝑝 is free, one can mitigate these truncation errors by choosing an
appropriate update rule

𝑝̇ = 𝐺𝑝(𝛹, 𝑝), (17)

to keep ‖𝛹‖ small. General strategies for design of an appropriate
update rule for 𝑝 are discussed in [26,29]. Eqs. (16) with the parameter
update rule (17) comprise the full form of the adaptive isostable
reduction.

4. Data-driven model identification using the adaptive isostable
reduction

We will investigate the model order reduction framework that yields
Eqs. (16) with parameter update rule (17) in the context of the flow
separation problem discussed in Section 2.2. As discussed in [27], the
necessary terms of the reduced order Eq. (16) can be computed by
finding the eigenfunctions of the operator 𝐽 (𝑟, 𝑢) ≡ ∇𝐹 (𝑋ss(𝑟, 𝑝), 𝑝) and
its adjoint. The complexity of our domain precludes this computational
approach and instead we consider a data-driven approximation.

To aid in this task, note that there is a direct relationship between
𝐼(𝑝) and 𝐵(𝑝). To see this, consider the response to a constant input
𝑢 = 𝑢 + 𝑒𝑗𝛥𝑢 with 𝑝 = 𝑢 held constant where 𝑒𝑗 is the 𝑗th member
of the standard unit basis. The steady state solution for each isostable
coordinate is

𝜓𝑖,ss = −
𝐼𝑖,𝑗 (𝑝)𝛥𝑢

𝜆𝑖(𝑝)
, (18)
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for 𝑖 = 1,… , 𝛽 where 𝐼𝑖,𝑗 (𝑝) is the 𝑖th row and 𝑗th column of 𝐼(p). To
linear order of accuracy considering Eq. (11), the steady state output
in response to this static input is

𝑋(𝑟) = 𝑋ss(𝑟, 𝑢) −

𝛽∑
𝑖=1

𝜁𝑖(𝑟, 𝑝)𝐼𝑖,𝑗 (𝑝)𝛥𝑢

𝜆𝑖(𝑝)
. (19)

Considering the definition of 𝐵(𝑝) given below Eq. (16) and noting that
⟨∇𝜓𝑖, 𝜁𝑗⟩ = 1 when 𝑖 = 𝑗 and zero otherwise, starting with Eq. (19) it is
straightforward to show that

𝐼(𝑝) = 𝛬(𝑝)𝐵(𝑝). (20)

As such, the only unknowns in Eq. (16) are 𝐵(𝑝), 𝛬(𝑝) and the collection
𝜂1(𝑝), . . . , 𝜂𝛽 (𝑝). To infer these unknown equations, we adapt a model
identification strategy proposed in [51].

4.1. Model identification procedure

In the context of the adaptive isostable reduction strategy, we let
𝑋(𝑟, 𝑡) be the velocity and pressure fields that govern the evolution of
the Navier–Stokes Equations from (1)–(3) with geometry and boundary
conditions shown in Fig. 1 and Table 1, respectively. We consider the
two inputs 𝑢1(𝑡) = 𝑤(𝜕𝛺𝐿, 𝑡) and 𝑢2(𝑡) = 𝑛(𝜕𝛺A) ⋅ 𝑓 (𝑡, 𝜕𝛺A) as described
in Table 1 so that 𝑢 ∈ R2. Our observable is taken to be the vorticity
defined according to Eq. (5). The model identification procedure below
is adapted from [28].

Step (1) Choose some 𝑢nom =
[
𝑢1 𝑢2

]𝑇
and 𝑢𝛥 =

[
(𝑢1 + 𝛥𝑢1) 𝑢2

]𝑇
so

that both 𝑢nom and 𝑢𝛥 are taken from the subset 𝑈 ⊂ R2 for
which the Navier–Stokes equations have a stationary solution
𝑋ss. Here 𝛥𝑢1 should be small. Apply the constant input 𝑢 =

𝑢𝛥 until the steady state solution 𝑋ss(𝑟, 𝑢𝛥) is achieved with
corresponding output 𝑤ss(𝑢𝛥).

Step (2) At 𝑡 = 𝑡0, increment the input so that 𝑢 = 𝑢nom, i.e., so that
𝑢 = 𝑢𝛥 when 𝑡 < 𝑡0 and 𝑢 = 𝑢nom for 𝑡 ≥ 𝑡0. Record 𝑤(𝑡) during
the recovery to its new steady state value 𝑤ss(𝑢nom).

Step (3) Repeat Steps 1 and 2 taking 𝑢𝛥 =
[
(𝑢1 − 𝛥𝑢1) 𝑢2

]𝑇
, 𝑢𝛥 =[

𝑢1 (𝑢2 + 𝛥𝑢2)
]𝑇
, and 𝑢𝛥 =

[
𝑢1 (𝑢2 − 𝛥𝑢2)

]𝑇
. Note that 𝛥𝑢2

should also be small.
Step (4) The data from Steps 1–3 can be used to identify the neces-

sary dimension of 𝛹 , and the associated values of 𝜆(𝑢), 𝐵(𝑢)
and each 𝜂1,… , 𝜂𝛽 . In order to infer the terms associated
with multiple isostable coordinates, we employ a delayed
embedding approach [52,53], splitting each recording 𝑤(𝑡) −
𝑤ss(𝑢nom) from Step 2 into separate intervals 𝑤̂𝑡, 𝑤̂2𝑡,… where
𝑤̂𝑡 contains data recorded over the interval 𝑡 = [𝑡, 𝑡 + 𝑇 ) that
are discretized by a timestep 𝛥𝑡. See Fig. 4 for a description
of this delayed embedding process.

Step (5) Arrange the delayed embeddings from Step 4 into a matrix
𝑌 ∈ R𝑎,𝑏 where 𝑎 =

𝑇

𝛥𝑡
is the length of each delayed

embedding and 𝑏 is the total number of delayed embeddings.
Proper orthogonal decomposition (POD) [3,6] is performed
by finding the eigenvalues and eigenvectors of the matrix
𝑌 𝑌 𝑇 which will be denoted 𝜆POD

𝑗
(𝑢nom) and 𝜉𝑗 (𝑢nom), respec-

tively. Note that while 𝑤(𝑡) ∈ R, the delay embeddings lift
the observable space to a higher dimension, making the POD
useful here to reduce dimensionality. POD eigenvectors with
the largest corresponding POD eigenvalues capture more of
the temporal fluctuations in the data. Here, we only con-
sider a single POD mode and truncate the rest, however,
it is straightforward to implement the fitting strategy when
considering multiple POD modes.

Step (6) The coefficient 𝜇1 of the POD basis for a given embedding
can be determined according to

𝜇1(𝑡) = 𝜉𝑇
1
(𝑢nom)𝑤̂𝑡. (21)

A least squares fitting approach is used to infer the rela-
tionship 𝜇1(𝑡 + 𝑇 ) = 𝐴𝜇1(𝑡). This is accomplished by taking
pairs of measurements, arranging them into matrices 𝑍1 =[
𝜇1(𝑡1) … 𝜇1(𝑡𝑑 )

]
and 𝑍2 =

[
𝜇1(𝑡1 + 𝑇 ) … 𝜇1(𝑡𝑑 + 𝑇 )

]
,

and taking 𝐴(𝑢nom) = 𝑍2𝑍
†

1
where † denotes the Moore–

Penrose pseudoinverse. Note that Step 6 can be viewed as
DMD applied to the time series 𝜇1(𝑡) [1]. Here 𝜇1 is scalar so
that 𝐴(𝑢nom) is assumed to give an approximation of a single,
representative Koopman eigenvalue. Other strategies such as
Hankel DMD [16,53] could be applied to give a similar result
for this step.

Step (7) The estimate 𝐴(𝑢nom) from Step 6 gives a finite time mapping
from 𝜇1(𝑡) to 𝜇1(𝑡+ 𝑇 ) when taking 𝑢 = 𝑢nom to be a constant.
In continuous time, this relationship is approximated by

𝜓̇1 = 𝜆1(𝑢nom)𝜓1,

𝑤(𝑡) = 𝑤ss(𝑢nom) + 𝜂1(𝑢nom)𝜓1, (22)

where 𝜆(𝑢nom) = log(𝐴(𝑢nom))∕𝑇 , 𝜂1(𝑢nom) = 𝜉𝑇
1
(𝑢nom)𝑒1, and

𝑒1 is the first component of the standard unit basis and is
used to select for the component of 𝜉1 (obtained from the
delayed embedding) that corresponds to the state at time 𝑡.
Note that if multiple POD modes were considered, a slightly
different transformation would need to be used, for instance,
the decay rates in (22) would be given by the eigenvalues of
log(𝐴(𝑢nom))∕𝑇 .

Step (8) Comparing to the form of the model to be fit from Eq. (16),
Eq. (22) gives the unperturbed evolution of the reduced order
system. The terms of 𝐵(𝑝) can be inferred by noting that the
initial stepwise shift from 𝑢𝛥 =

[
(𝑢1 + 𝛥𝑢1) 𝑢2

]
to 𝑢nom =[

𝑢1 𝑢2
]
occurring at 𝑡0 from Step 1 will yield a shift in the

isostable coordinate 𝜓1(𝑡0) = −𝐵1(𝑢nom)∕𝛥𝑢1, where 𝐵1(𝑢) is
the first component of 𝐵(𝑢). Because 𝜓1 is identical to 𝜇1, one
can use Eq. (21) to write

𝜓1(𝑡0) = exp(−𝜆1(𝑡 − 𝑡0))𝜉
𝑇
1
(𝑢nom)𝑤̂𝑡, (23)

for some 𝑤̂𝑡 obtained during the relaxation to the steady state
from Step 4. Samples of 𝐵1(𝑢nom) can be averaged over mul-
tiple trials. Data from trials for which 𝑢𝛥 =

[
𝑢1 (𝑢2 + 𝛥𝑢2)

]𝑇
can be used to obtain samples of 𝐵2(𝑢nom). Once 𝐵(𝑝) is
obtained, 𝐼(𝑝) can be obtained according to the relation (20).

Step (9) Steps 1–8 yields a data-driven estimate for all terms in (16)
for a static value of 𝑝 = 𝑢nom. These steps can be repeated for
an adequate sampling of 𝑢nom ∈ 𝑈 to allow for interpolation.
Note that when the data is noisy, it may be necessary to
obtain multiple estimates of the terms 𝛬(𝑢), 𝐵(𝑢), and each
𝜂𝑗 (𝑢) in order to average out the effects of noise. In the
application considered in this work, there is no such noise
or uncertainty.

4.2. Model fitting using data collected from numerical simulations

We implement the model identification procedure described in Sec-
tion 4.1 taking the input 𝑢 =

[
𝑢1(𝑡) 𝑢2(𝑡)

]
, i.e., that describes the

time-varying boundary conditions from Table 1. We consider the vortic-
ity, 𝑤(𝑡) defined according to Eq. (5) to be the sole observable. A single
isostable coordinate, 𝜓1 is considered in the reduced order model of
the form (16). Correspondingly, the terms 𝜆1(𝑢), 𝐼

𝑇 (𝑢) =
[
𝐼1(𝑢) 𝐼2(𝑢)

]
,

𝐵𝑇 (𝑢) =
[
𝐵1(𝑢) 𝐵2(𝑢)

]
, 𝑤ss(𝑢), and 𝜂1(𝑢) must be inferred from data.

Fig. 3 shows a subset of the data used in the model fitting procedure.
Inputs 𝑢1 ∈ [2.5, 7.5] and 𝑢2 ∈ [−0.5, 0.5] are changed in stepwise
increments, the relaxation to the new steady state 𝑤ss(𝑢1, 𝑢2) is ob-
served, and this data is used to fit the model of the form (16). Fig. 3
shows simulation data when sweeping through allowable values of
𝑢1 and 𝑢2, primarily holding 𝑢1 constant while incrementing 𝑢2. This
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Fig. 3. This figure shows a subset of the data used for fitting the model of the form (16) as required by steps 1–3 of the model fitting procedure from Section 4.1. Panels A and
B show the timecourse of 𝑢1 and 𝑢2. The vorticity (i.e., the observable) is shown in Panel C during the course of this simulation. This data provides a sweep through allowable
parameters with stepwise increments while primarily making changes to 𝑢2.

Fig. 4. This figure describes the delayed embedding and subsequent least squares fitting procedure as required by steps 4 and 5 of the model fitting procedure from Section 4.1.
Panel A shows highlights the vorticity following a stepwise increase in 𝑢2. This recording is split into 50 delayed embeddings as shown in Panel B. These embeddings are plotted
on the same axis in panel C. Panel D shows the first POD mode associated with this data as defined in step 5 of the model fitting procedure.
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Fig. 5. For the allowable set of inputs 𝑢 = [𝑢1 , 𝑢2], colormaps in panels A, B, C, and D show the terms 𝜆(𝑢), 𝜂(𝑢) 𝐵1(𝑢), and 𝐵2(𝑢) that comprise Eq. (16). These terms are identified
as part of steps 6–8 of the model fitting procedure from Section 4.1. Dots represent discrete measurements and the surface plots are fitted to the data. Note that the term 𝐼(𝑝) is
determined from the relation (20).

information is used to infer 𝐵2(𝑢). Additional data (not shown) holds 𝑝2
constant while incrementing 𝑝1 and is used to infer 𝐵1(𝑝). Fig. 4 gives
a visual representation of how the vorticity data is used in the model
fitting procedure. Panel A highlights the vorticity measurement where
𝑢nom = [2.5, 0]𝑇 m∕s and 𝑢𝛥 = [2.5,−0.1]. The ensuing 10 s of decay
towards the new fixed point is highlighted in panel B. As described
in Step 4 of the procedure from Section 4.1, this signal is split into
50 separate delayed embeddings, each lasting 𝑇 = 0.2 seconds. Each
of these embeddings is plotted in panel C, and POD is subsequently
applied to the data as described in Step 5 of the model fitting procedure.
Steps 6 through 8 are implemented to infer the associated reduced
order dynamics. For each value of 𝑢nom considered, the minimum and
average value of 𝜆POD

1
∕
∑𝑎

𝑗=1
𝜆POD
𝑗

is 0.9839 and 0.9945, respectively,
indicating that one POD mode provides an adequate representation for
the data from the delayed embeddings. The resulting inferred terms
of the reduced order models are shown in Fig. 5. The dots represent
terms from individual trials that are computed from Steps 7 and 8 of
the model fitting procedure from Section 4.1. The surface plots provide
a polynomial fit of order two and three in the variables 𝑢1 and 𝑢2,
respectively.

5. Results

5.1. Reduced order model validation

Terms of the reduced order model (16) are computed as described
in Section 4. The resulting model takes two inputs 𝑢1 and 𝑢2. As such
there are two adaptive parameters 𝑝 = [𝑝1, 𝑝2] in the adaptive isostable
reduction. The parameter update rule (i.e., 𝐺𝑝 from Eq. (17)) is chosen
to be

𝑝1 = 𝑢̇1,

𝑝2 = −10𝜓1𝐵2(𝑝). (24)

Here, 𝑝1 tracks 𝑢1, and 𝑝2 is adjusted in order to limit the magnitude of
𝜓1. With this choice of the update rule, the adaptive isostable reduction
governed by Eqs. (16) and (17) becomes

𝜓̇1 = (𝜆1(𝑝) − 10(𝐵2(𝑝))
2)𝜓1 + 𝐼2(𝑝)(𝑢2 − 𝑝2) + 𝐵1(𝑝)𝑢̇1,

𝑝̇1 = ̇𝑢1,

𝑝2 = −10𝜓1𝐵2(𝑝), (25)

with output

𝑤(𝑡) = 𝑤ss(𝑝) + 𝜂1(𝑝)𝜓1. (26)

In Eq. (25) above, the parameter 𝑝2 is modulated in order to limit the
magnitude of 𝜓1 while the contributions from the terms 𝐼2(𝑝)(𝑢2 − 𝑝2)
and 𝐵1(𝑝)𝑢̇1 will generally drive 𝜓1 to larger magnitude values. Note
that 𝑢1 = 𝑝1 in this formulation so that 𝐼1(𝑝) does not appear in Eq. (25).
The reduced order model described by Eq. (25) with output (26) is
compared to full model simulations of Eqs. (1)–(3) with output (5)
using purely sinusoidal inputs 𝑢1(𝑡) = 5 + sin(2𝜋∕80) m∕s and 𝑢2(𝑡) =

5+ sin(2𝜋∕50) m∕s. Results are shown in Fig. 6. Panel A (resp., B) show
𝑢1(𝑡) and 𝑝1(𝑡) (resp., 𝑢2(𝑡) and 𝑝2(𝑡)) over the course of the simulation.
Panels C shows the time course of 𝜓1 indicating that the parameter
update rule keeps the isostable coordinates small as desired. Panel D
shows the error between the true model output and the reduced order
model output. Panel E shows the model output for the full and reduced
order models. Note that while the inputs 𝑢1 and 𝑢2 are purely sinusoidal,
we emphasize that the model was inferred using step inputs and not
sinusoidal inputs, i.e., we are not testing on the same inputs used for
training. For additional comparison, we also implement the Hankel
DMD algorithm [52] which applies the DMDc algorithm [18] taking the
state to be a delay embedding of the system observable. Here a delay
embedding of length 100 data points is used to define the state, with
𝑢1 and 𝑢2 comprising the input. The prediction when using the DMDc
algorithm is shown in yellow for comparison and is substantially worse
than the proposed strategy.
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Fig. 6. Comparisons are shown among the full order model (Eqs. (1)–(3) with output (5)), reduced order model (Eq. (25) with output (26)) and DMDc output (Eq. (A.4)). Panel
A shows the applied inputs 𝑢1 and 𝑢2. Panel B shows the adaptive parameters on 𝑝1 and 𝑝2. Panel C shows the resulting isostable coordinates of the reduced order model. Panel D
shows the error between the full and reduced order models and full and DMDc models. Panel E gives a direct comparison among the full, reduced order model and DMDc outputs.

Fig. 7. Additional comparisons are shown among the full order model (Eqs. (1)–(3) with output (5)), reduced order model (Eq. (25) with output (26)) and DMDc output (Eq. (A.4)),
using nonperiodic and more rapidly varying inputs (relative to the results from Fig. 6). Panel A shows the applied inputs 𝑢1 and 𝑢2. Panel B shows the adaptive parameters on
𝑝1 and 𝑝2. Panel C shows the resulting isostable coordinates of the reduced order model. Panel D shows the error between the full and reduced order models and full and DMDc
models as a function of time. Panel E gives a direct comparison among the full, reduced order model DMDc outputs.
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Fig. 8. Comparison of the PI controller (27) applied to both the full and nonlinear reduced order models. Panel A shows a sinusoidally varying input velocity, 𝑢1(𝑡). The PI
controller is set to have a constant target of 40 m2∕s for the vorticity measurements. The resulting input 𝑢2 is shown in panels B and C when applying the PI controller when
using the reduced and full order models, respectively. Panels D and E show the actual outputs from each simulation relative to the target value. The reduced order model provides
a reliable representation of the model behavior when the PI controller is implemented.

Results for a second comparison between full and reduced or-
der model simulations are shown in Fig. 7. Here, we take 𝑢1(𝑡) =

1.1 sin(0.02𝜋𝑡)+0.3 sin(0.08𝜋𝑡)+0.7 sin(0.051𝜋𝑡) and 𝑢2(𝑡) = 0.33 sin(0.195𝜋𝑡)

−0.02 sin(0.054𝜋𝑡)+0.08 sin(0.051𝜋𝑡). In contrast to the previous illustra-
tion, 𝑢2 varies slightly faster and both inputs are not periodic. Once
again, panels A and B show the model inputs and adaptive parameters,
respectively. Panels C and D show the isostable coordinate for the
reduced order simulation and the difference between the full and re-
duced order models, respectively. Panel E provides a direct comparison
between full and reduced order model outputs. Once again, DMDc is
markedly worse than the proposed model identification strategy.

Considering the results in Figs. 6 and 7, the reduced order model
given by Eqs. (25) and (26) performs well, especially considering that
it requires only three state variables. When considering more rapidly
varying inputs, as in the case of Fig. 7, The full and reduced order
models do not always agree well, especially in moments for which
𝑢1(𝑡) is near its maximum and minimum values. The primary reason
for the discrepancy is that we are representing the dynamics with a
single isostable coordinate and that the input is changing fast enough
for other, unmodeled isostable coordinates to contribute to the dynam-
ics. In principle, it would be possible to consider multiple isostable
coordinates, however, this runs the risk of overfitting to the available
data. Additionally, in a scenario with multiple isostable coordinates, 𝐺𝑝
would need to be updated accordingly to keep their magnitudes low.

5.2. Comparison when using a proportional integral controller

As discussed in Section 2.3, our control objective for this prototype
problem is to maintain a constant vorticity despite a time-varying inlet
velocity 𝑢1(𝑡). This will be accomplished using a proportional–integral
(PI) controller that dictates the control input 𝑢2(𝑡):

𝑢2(𝑡) = 𝑘𝑝(𝑦targ −𝑤(𝑡)) + 𝑘𝑖 ∫
𝑡

0

(𝑤targ −𝑤(𝑡))𝑑𝑡. (27)

Here, 𝑘𝑝 and 𝑘𝑖 are proportional and integral gains, respectively. The
purpose of implementing this controller is two-fold: first, we illustrate
that the reduced order model from Eqs. (25) and (26) can be used
to choose appropriate gains when considering the full order model;
second, we will illustrate that the reduced order and full order models
have qualitatively similar behavior when the PI control is applied.
To determine appropriate gains for the controller, the system is first
linearized in reference to the steady state solution

[
𝜓1,ss 𝑝1,ss 𝑝2,ss

]
=[

0 5 0
]
that results when taking the constant inputs

[
𝑢1 𝑢2

]
=[

5 0
]
. The steady state vorticity is 𝑤ss = 40.76 m2∕s. For this lin-

earization, we consider 𝑢2 as the control and let 𝑢̇1 be a disturbance.
The linearized version of Eqs. (25) and (26) neglecting disturbances is

𝑑

𝑑𝑡

⎡⎢⎢⎣

𝛥𝜓1

𝛥𝑝1
𝛥𝑝2

⎤⎥⎥⎦
=

⎡⎢⎢⎣

𝜆1(𝑝) − 10𝐵2(𝑝) 0 −𝐼2(𝑝)

0 0 0

−10𝐵2(𝑝) 0 0

⎤⎥⎥⎦

⎡⎢⎢⎣

𝛥𝜓1

𝛥𝑝1
𝛥𝑝2

⎤⎥⎥⎦
+

⎡⎢⎢⎣

𝐼2(𝑝)

0

0

⎤⎥⎥⎦
𝑢2(𝑡),

𝛥𝑤(𝑡) =
[
𝜂1(𝑝)

𝜕𝑤ss

𝜕𝑝1

𝜕𝑤ss

𝜕𝑝2

] ⎡⎢⎢⎣

𝛥𝜓1

𝛥𝑝1
𝛥𝑝2

⎤
⎥⎥⎦
. (28)

where 𝛥𝜓1 = 𝜓1 − 𝜓1,ss, 𝛥𝑝1 = 𝑝1 − 𝑝1,ss, and 𝛥𝑝2 = 𝑝2 − 𝑝2,ss and 𝜆1(𝑝),
𝐼2(𝑝), 𝐵1(𝑝) and 𝐵2(𝑝) are evaluated at 𝑝1 = 5 m∕s and 𝑝2 = 0 m∕s.
The gains of the PI controller are obtained for the linearized system
after the reduced order nonlinear model is linearized. Gains for the
PI controller are chosen to be 𝑘𝑝 = 0.0240 and 𝑘𝑖 = 0.0029 in order
to balance the trade off between overshoot and settling time for the
linearized model. As an additional consideration, the reduced order
model performs worse when using faster varying inputs (as displayed
in results from Fig. 7); the gains are also chosen so that the resulting
model does not yield rapid fluctuations in 𝑝2(𝑡). When implementing
the PI controller in the results below, the target value is set to 40 m2∕s.

Using the PI controller (27), comparisons between the full order
model (Eqs. (1)–(3) with output (5)) and reduced order model (Eq. (25)
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Fig. 9. In full order model simulations, panel A shows resulting vorticities both with (blue line) and without (black line) the application of the PI controller from Eq. (27). The
dashed line highlights the target value for the PI controller and is shown for reference. Red dots indicate the observable values corresponding to the velocity field snapshots shown
in panels B and C. In the simulation where the PI controller is not applied (panel C), velocity flow lines highlight flow separation and an associated region of recirculating flow.
In the simulation where the PI controller is applied (Panel B). This region of recirculating flow is not present. While the PI controller does not fully suppress oscillations in the
vorticity, it is sufficient to reduce flow separation.

with output (26)) are shown in Fig. 8. Panel A shows the profile of
𝑢1(𝑡). The resulting input 𝑢2(𝑡) is shown in panels B and C when using
the nonlinear reduced order model and full order models, respectively.
Likewise, panels D and E show the controlled output for the full and
reduced order models. On balance, the reduced order model provides
an accurate representation for the full order model dynamics when
using the PI controller.

Finally, we consider the ability of the PI controller to suppress
flow separation in the full order model with results shown in Fig. 9.
Here we consider the same sinusoidal input for 𝑢1(𝑡) that was used
in Fig. 8. Panel A compares the uncontrolled vorticity (black line) to
the controlled vorticity (blue line). The dashed magenta line highlights
the target value for the PI controller. While the controller does not
perfectly maintain the prescribed reference value, the magnitude of
the oscillations is substantially diminished. Panels B and C highlight
velocity snapshots at 𝑡 = 180 s in simulations of the full order model
(Eqs. (1)–(3) with output (5)) with and without the application of the
PI controller, respectively. In simulations where the PI controller is
not applied, 𝑢2(𝑡) is held constant at 0 m/s. Arrows from the insets in
panels B and C highlight the flow direction near the trailing end of the
airfoil. In the uncontrolled simulation from panel C, flow separation
results in a large recirculation zone. This recirculation is not seen in the
controlled simulations from panel B. While the PI controller does not
perfectly maintain the 40 m2∕s target value for vorticity, it is sufficient
to suppress flow separation in these simulations.

6. Conclusion

In this work, we have implemented an adaptive isostable reduction
strategy for data-driven model identification and control of fluid flows
over an airfoil with moderate Reynolds numbers. Using data taken from
simulations of the dimensionless Navier–Stokes equations (1)–(3), we
are able to identify a low dimensional model that accurately captures
the dynamics of the vorticity from Eq. (5) in response to time-varying
boundary conditions. A linearized version of this model is then used to
identify appropriate gains for a PI controller that attempts to keep the

vorticity at a constant low level in the presence of time-varying inflow
conditions. While the controller does not perfectly control the vorticity,
it is able to suppress flow separation as illustrated in the results from
Fig. 9.

Previous work [27,29] using the adaptive isostable reduction ap-
proach has been limited to prototype problems involving the Burgers’
equation on simple 1 and 2-dimensional domains. Results presented
in this work provide proof of concept that this framework can be
successfully used in realistic fluid flow models using geometries with
practical relevance. Because the model identification process does not
require any information about the underlying model equations, it could
be implemented in an experimental setting. In this work, we considered
a single observable (5) indirectly related to the emergence of flow
separation. In an experimental setting, other observables such as lift
and drag generated by the airfoil, pointwise velocity flow velocity mea-
surements, or data from flow visualization techniques would be more
feasible to obtain. The underlying methodology applied in this work
is quite general and could be used with any combination of these ob-
servables provided time-series measurements can be reliably obtained.
While the control problem considered in this work is a straightfor-
ward implementation of a PI controller, the low dimensionality of the
resulting reduced order model would allow for the implementation
more sophisticated nonlinear optimal control strategies. Given the low-
dimensionality of the resulting representation for the system dynamics,
it might be possible to use sparse fitting techniques such as those
described in [54–56] to learn a representation for the system dynamics.
However, an appropriate basis would need to be determined for the
fitting and there is no guarantee that one would arrive at an adequate
realization for the dynamics.

We emphasize that the present study is still a prototype problem
meant to illustrate the feasibility of implementing data-driven isostable-
based reduced order modeling strategies in a practically relevant fluid
flow model. We have not directly considered other relevant questions
such as the placement of the inlet on the airfoil, the angle of attack of
the airfoil or variations in the airfoil geometry. There are many other
limitations of the present study. For instance, we did not consider the
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influence of measurement noise on the observable data which would
likely degrade the accuracy of the inferred reduced order model. The
influence of noise could be mitigated by performing multiple identical
trials and averaging the results, but this approach would likely require
substantially more data to implement the model fitting procedure. As
an additional limitation, we consider the k-𝜖 model to obtain numerical
solutions of the Navier–Stokes equation. This is a common model that
includes two extra transport equations in order to account for the
flow turbulent properties [57]. It is a numerically stable model with
fast convergence, but it is not always accurate for flows containing
large adverse pressure gradients and hence not preferred for separated
flows [58]. Future work will consider the simulation of different tur-
bulence models such as the sheer stress transport (SST) model [59]
or the k-𝜔 model [60] that may be able to yield results that would
agree better with experimental data. As an additional limitation, the
present reduced order modeling approach considers solutions relative
to a stable fixed point attractor. The k-𝜖 model used in this work
averages out the effect of turbulent features in the flow data, effectively
yielding stationary solutions for the model considered in this work. For
more finely resolved simulations and for experimental data, however,
modifications to the proposed method would need to be made in order
to handle applications where the observables cannot be analyzed in
reference to a fixed point attractor.
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Appendix. Dynamic mode decomposition with control

The DMDc algorithm is described in [18] and provided here for
convenience. When the system state is comprised of a delay embedding
of time series measurements, this procedure is often called Hankel
DMD [16]. The goal is to approximate a linear operator (from data)
that relates a future system measurement 𝑥𝑘+1 ∈ R𝑛 to the current
measurement 𝑥𝑘 and control 𝑢𝑘 ∈ R𝑙, i.e.

𝑥𝑘+1 ≈ 𝐴𝑥𝑘 + 𝐵𝑢𝑘. (A.1)

Here, 𝐴 ∈ R𝑛×𝑛, and 𝐵 ∈ R𝑛×𝑙. The measurements of the system and the
control input throughout time can be captured in temporal snapshots
that can be used to create data matrices. The measurement snapshot
matrices, 𝑋 and 𝑋′, are organized as

𝑋 =

⎡⎢⎢⎣

∣ ∣ ∣

𝑥1 𝑥2 … 𝑥𝑚−1
∣ ∣ ∣

⎤⎥⎥⎦
,

𝑋′ =

⎡⎢⎢⎣

∣ ∣ ∣

𝑥2 𝑥3 … 𝑥𝑚
∣ ∣ ∣

⎤⎥⎥⎦
, (A.2)

where 𝑚 is the total number of snapshots. The sequence of collected
control input snapshots are arranged as

𝛶 =

⎡⎢⎢⎣

∣ ∣ ∣

𝑢1 𝑢2 … 𝑢𝑚−1
∣ ∣ ∣

⎤⎥⎥⎦
. (A.3)

To incorporate the new data matrices, Eq. (A.1) can be rewritten in
matrix form as follows

𝑋′ = 𝐴𝑋 + 𝐵𝛶 ,

𝑋′ =
[
𝐴 𝐵

] [𝑋
𝛶

]
, (A.4)

Estimates for the 𝐴 and 𝐵 matrix can be obtained using least squares
fitting

[
𝐴 𝐵

]
= 𝑋′

[
𝑋

𝛶

]†
, (A.5)

where † denotes the pseudoinverse. The output of Eq. (6) can be
predicted using Eq. (A.4) in response to general inputs once estimates
of 𝐴 and 𝐵 have been determined.
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