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Abstract. A reduced order modeling strategy is proposed that can accurately capture the behavior of strongly
perturbed nonlinear dynamical systems, i.e., those that are subject to general, large magnitude
inputs. In contrast to standard variational approaches which consider dynamics in the neighbor-
hood of a single reference trajectory, the proposed methodology augments the dynamics with an
additional variable that continuously selects from a family of reference trajectories in order to limit
truncation errors that result from neglected nonlinear terms. Provided the reference trajectories
contract sufficiently rapidly in some directions, a reduced order set of equations can be obtained
by choosing an appropriate coordinate system. Direct numerical approaches for computation of the
necessary terms of the associated reduced order equations are provided. Crucially, because the pro-
posed reduction strategy does not require the existence of a persistent, stable fixed point or periodic
orbit, it can be implemented in situations where external inputs cause the dynamics to transition
through a bifurcation. Two examples with relevance to neural control are provided. In the first, the
proposed reduction strategy allows for the formulation of a numerically tractable control problem to
identify energy-optimal inputs that eliminate tonic firing in a neural model. In the second example,
the proposed reduction framework accurately captures successive transitions between quiescence and
tonic firing across the boundary of a saddle-node on invariant circle bifurcation.
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1. Introduction. Reduced order modeling techniques for nonlinear dynamical systems
have seen a surge of interest in recent years. Much of this interest has been spurred by the
tremendous promise of Koopman analysis, which can be used to represent a fully nonlinear
dynamical system as a linear but possibly infinite-dimensional operator [7], [37], [38]. While
the identification of a finite basis to represent an infinite-dimensional Koopman operator is
generally a difficult task, strategies including dynamical mode decomposition (DMD) [51],
[26], extended DMD [58], and deep learning approaches [32], [72] have been shown to be
useful in various applications.

For nonlinear dynamical systems with states in the basin of attraction of a stable pe-
riodic orbit, the decay rates of eigenfunctions of the associated Koopman operator are di-
rectly related to Floquet exponents of the linearized system [38], [27]. Provided that most
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604 DAN WILSON

of these eigenfunctions decay sufficiently rapidly, a substantial reduction of dimensional-
ity is possible. For instance, a well-established technique known as phase reduction [71],
[24], [13] can be used to represent the dynamics of an N -dimensional system in terms of a
1-dimensional phase that encodes for oscillation timing. In situations where some of the
Floquet eigenfunctions have slower decay rates, related phase-amplitude reduction approaches
can be employed [17], [56], [29], [53], [66], [4] that also consider the nonnegligable dynamics
of slowly decaying eigenmodes. In a similar manner, nonlinear dynamical systems in the
basin of attraction of a stable fixed point can be analyzed using a reduced order basis of
slowly decaying Koopman eigenmodes using the isostable coordinate framework [34], [33],
[61], [65].

For dynamical systems in regimes that are not bound to a periodic or fixed point attractor,
it can be difficult to apply general Koopman-based techniques to infer a low order basis to
accurately represent the nonlinear dynamics. For such systems, other tools may be more ap-
propriate. For instance, fast-slow analysis [19], [3], dynamical averaging [53], and contraction
theory [30], [54] can be useful when dynamics that evolve on different timescales can be iso-
lated. Techniques that use inertial manifolds [10], [15] or invariant submanifolds [24], [43], [1]
can be useful in some situations, but such manifolds are not always easily identifiable. Other
strategies have been proposed to represent the behavior along individual trajectories in a re-
duced coordinate basis [68], [70], [9], [49]; however, the associated reduction techniques suffer
when the state is perturbed far from the reference trajectory. Alternative techniques have
been developed that use a locally orthogonal moving coordinate frame to represent dynamical
behaviors in reference to (and potentially far from) a base manifold [28], [29], [56]; however,
when using these approaches it is not generally straightforward to subsequently identify a re-
duced order system of equations. Classical variational techniques can be used to approximate
dynamical behavior in the vicinity of a reference solution by means of series expansion [22];
however, this method is only generally valid in a close neighborhood of the reference trajectory
precluding implementation when large perturbations are required.

In this work, a reduced order modeling framework is proposed that can be used to capture
the behavior of a strongly perturbed, nonlinear dynamical system in the vicinity of a continu-
ous family of reference trajectories. Here, the term ``strongly perturbed"" is used to emphasize
that the applied inputs are arbitrary and potentially of large magnitude. This is in direct
contrast to methodologies that are valid in the ``weakly perturbed"" limit [71], [47], [13], which
place restrictive limitations on the magnitudes of the allowable inputs. The proposed method-
ology augments the dynamics with an additional variable that continuously selects from this
family of reference trajectories in order to limit truncation errors that result from neglected
nonlinear terms. This reduction framework can generally be implemented provided that local
linearizations of the individual trajectories contract sufficiently rapidly in some directions.
Using this framework it is possible to overcome limitations of related reduction strategies [65],
[64]; specifically, it allows for the consideration of applications for which external inputs cause
the dynamics to transition through a bifurcation.

The organization of this paper is as follows: section 2 provides relevant background on
recently proposed, Koopman-based reduction frameworks that have been used to represent
the dynamics near a continuous collection of fixed points [65] or periodic orbits [64]. Sec-
tion 3 provides a derivation of the proposed adaptive trajectory reduction framework and
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ADAPTIVE TRAJECTORY REDUCTION 605

discusses strategies for direct numerical computation of the associated reduced order equa-
tions. Section 4 provides two examples that implement the proposed reduction framework
in the context of neural control applications. In the first application, the adaptive trajec-
tory reduction framework allows for the formulation of a tractable optimal control problem
to identify optimal inputs that transition a tonically firing neuron to a quiescent state. In
the second application, direct numerical comparisons are given between the proposed adap-
tive trajectory reduction strategy and a recently proposed adaptive phase reduction frame-
work from [64]. Section 5 provides concluding remarks and discusses opportunities for future
extension.

2. Background on related phase-isostable-based adaptive reduction methods. Con-
sider a general ordinary differential equation

(1) \.x= F (x, p0) +U(t),

where x \in \BbbR 
N is the state, p = p0 \in \BbbR is a constant nominal parameter, F represents the

unperturbed dynamics, and U(t) is an external input. Previous work on adaptive reduction
techniques has been limited to dynamical systems with a family of either stable periodic orbits
[64] or stable fixed point attractors [65]. Here, a brief background of this strategy for systems
with periodic orbits is provided. Supposing that x\Omega (t, p) is a stable periodic orbit of (1) that
results when taking p to be a constant, the notion of isochrons [16], [71] can be used to define a
phase coordinate that encodes for the timing of oscillations. Likewise, a set of the most slowly
decaying isostable coordinates (i.e., level sets of the slowest decaying Koopman modes [34],
[38]) can be used to encode for the transient decay of solutions towards the stable limit cycle.
Transforming to phase and isostable coordinates, to a linear approximation, the dynamics
near the periodic orbit can often be represented with a reduced order set of equations [69],
[60]

\.\theta = \omega (p) +ZT (\theta , p)U(t),

\.\psi j = \kappa j(p)\psi j + ITj (\theta , p)U(t)(2)

for j = 1, . . . , \beta <N , where state is related to the reduced coordinates according to

(3) x(\theta ,\psi 1, . . . , \psi \beta ) = x\gamma (\theta , p) +

\beta 
\sum 

k=1

gk(\theta , p)\psi k.

Here, \theta is the phase (i.e., the isochron) associated with a given state, and\psi j is the jth isostable
coordinate with associated Floquet exponent \kappa j(p) ordered so that | Re(\kappa \mathrm{j})| \leq | Re(\kappa \mathrm{j}+1)| . The
terms Z(\theta , p) and Ij(\theta , p) are the phase and isostable response curves, respectively, which
capture how the effective input influences the reduced order coordinates, and gk is a Floquet
eigenfunction associated with the kth isostable coordinate. Rapidly decaying isostable coor-
dinates (i.e., those with large magnitude, negative Floquet exponents) are truncated so that
only \beta \leq N  - 1 of the slowest decaying isostable coordinates remain. Note here that the value
of p is assumed to be constant. The interested reader is referred to [69], [66], [40], [38] for a
more detailed background on isostable coordinates and their connection with the Koopman
operator for dynamical systems with periodic oscillations.
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606 DAN WILSON

As part of (2), the terms Z(\theta , p) and Ij(\theta , p) represent the gradient of the phase and
isostable coordinates, respectively, evaluated on the periodic orbit. As such, when the state
travels too far from the periodic orbit, the accuracy of (2) is degraded. One approach to
mitigating this issue is to compute the gradients of the phase and isostable coordinates to
higher orders of accuracy [66], [60], [9], [8]. These strategies can be used to extend the
applicability of the phase-isostable reduction to include larger magnitude inputs, but they still
usually break down when exceedingly large magnitude inputs are applied. Alternatively, one
can consider a family of periodic orbits that emerge in (1) as the parameter p is changed. This
approach was investigated in [25], [44] for use in situations where the input can be decomposed
into the sum of a slowly varying component and another component that has sufficiently small
magnitude. These ideas were augmented in [64] using the isostable coordinate paradigm to
allow for more general inputs. Letting P be an allowable parameter set and considering a
continuous set of stable periodic orbits x\Omega (t, p) that emerge when taking the parameter p\in P ,
one can rewrite (1) as

(4) \.x= F (x, p) +Ue(t, p, x),

where Ue(t, p, x) = F (x, p0) - F (x, p)+U(t). Notice that (4) is identical to (1) with the addition
of a new variable p and with the difference F (x, p0) - F (x, p) being absorbed into the external
forcing term. As shown in [64], by allowing the value of p to change over time, a reduced order
representation of (4) can be obtained that accurately captures the behavior of the underlying
system (1)

\.\theta = \omega (p) +Z(\theta , p) \cdot Ue(t, p, x) +D(\theta , p) \cdot \.p,

\.\psi j = \kappa j(p)\psi j + Ij(\theta , p) \cdot Ue(t, p, x) +Qj(\theta , p) \cdot \.p,

j = 1, . . . , \beta ,

\.p=Gp(p, \theta ,\psi 1, . . . , \psi \beta ),(5)

where the system state can be approximated according to (3). Above, Z(\theta , p) and Ij(\theta , p) are
the phase and isostable response curves associated with the periodic orbit x\Omega (t, p), D(\theta , p)
and each Qj(\theta , p) capture the change in the phase and isostable coordinates, respectively, in
response to shifts in the adaptive parameter p, and Gp is a function that must be designed so
that each \psi j remains an O(\epsilon ) term, where 0< \epsilon \ll 1. In the present manuscript, reduced order
models of the form (5) will be referred to as an adaptive phase reduction (APR). Intuitively,
to implement the adaptive phase reduced equations (5) the function Gp must be designed to
update the adaptive parameter p so that the state of the full system stays close to x\gamma (t, p); a
general form Gp that often works well in practice is

(6) Gp(p, \theta ,\psi 1, . . . , \psi \beta ) = - \alpha 

\beta 
\sum 

i=1

\psi iQi(\theta , p),

where \alpha is a positive constant. Other formulations are also possible. The interested reader
is referred to [64] for a more detailed background on the adaptive reduction strategy. The
APR framework has been successfully used in control applications that require large magnitude

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
2
/0

1
/2

3
 t

o
 7

6
.2

3
4
.1

0
1
.4

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



ADAPTIVE TRAJECTORY REDUCTION 607

inputs [63] and has also been adapted in situations with fixed point attractors [65], [62] instead
of periodic orbit attractors.

While the APR framework has been useful for analyzing the behavior of dynamical systems
with oscillatory dynamics and those with stable fixed points, one of the key assumptions
required for its implementation is that in the allowable range of p, each \psi j(x, p) is continuously
differentiable with respect to both p and x. This condition is usually violated when the
underlying attractor changes. As such, critical points of bifurcations are generally excluded
from the allowable parameter sets when using the APR and other isostable-based reduction
strategies.

3. Theoretical foundation of the adaptive trajectory reduction framework.

3.1. Technical approach. The goal of this work is to identify an adaptive reduction strat-
egy that considers dynamical behavior on a low-dimensional manifold defined by a collection
of reference trajectories. In direct contrast to the previously developed APR from (5), the re-
duction framework detailed here does not require the underlying ordinary differential equation
(1) to have periodic orbits. As such, the reduction framework detailed here will be referred
to as an adaptive trajectory reduction (ATR). To this end, consider a general dynamical sys-
tem of the form (1). Letting P be some allowable parameter set for which p0 \in P , consider
an associated set of unperturbed reference trajectories, x\gamma (t, p), that are the solution to the
ordinary differential equation

\.x= F (x, p),

x(0, p) = \eta (p)(7)

on the interval t = [0, T ], where \eta (p) gives the initial condition. Standard linearization tech-
niques yield variational equations that can be used to represent the behavior in a close neigh-
borhood of any single reference trajectory, x\gamma (t, p), according to

(8)
d\Delta x

dt
= J(x\gamma (t, p), p)\Delta x+O(| | \Delta x| | 2),

where \Delta x= x(t, p0) - x\gamma (t, p) and J(x\gamma (t, p), p) is the Jacobian of F evaluated at x\gamma (t, p) and
p. Provided \Delta x is small, truncation errors in (8) can be ignored. Practically, to guarantee
that \Delta x is small, x(0, p0) must be close to x\gamma (0, p) and both (p  - p0) and U(t) must be
sufficiently small. Asymptotic expansions that are valid to higher orders of accuracy can also
be considered to accommodate larger magnitude inputs, but such techniques still generally
require the state to remain in a close neighborhood of the reference trajectory. To circumvent
this issue, the parameter p will be considered nonstatic, ultimately allowing for the truncation
errors in the associated variational equations to be able to be actively managed. At the
expense of adding an extra variable, the resulting equations can accommodate arbitrarily
large inputs. Additionally, provided the reference trajectories contract sufficiently rapidly in
some directions a reduced order set of equations can be obtained by choosing an appropriate
moving coordinate system (illustrated in Figure 1) as detailed in the derivation to follow.
Preliminary assumptions used in the derivation of this reduced order modeling strategy are
listed below.
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608 DAN WILSON

Figure 1. Illustration of the proposed local coordinate system. For a continuous collection of reference tra-
jectories x\gamma (t, p), in the vicinity of each trajectory it is assumed that the dynamics can be represented according
to a local linearization of the form (8) and that all but two of the eigenvectors of the state transition matrix
\Phi p(T,0) are small in magnitude so that these components of the solution decay rapidly. To capture the behavior
of the remaining components of the solution, the coordinate basis defined by (12)--(14) will be used. For a given
value of p, the basis element g1(t, p) points towards \partial x

\gamma /\partial p and g2(t, p) points in the direction of the unperturbed
flow.

3.2. Sufficient assumptions to implement the proposed adaptive trajectory reduction
(ATR) framework.

Assumption A. The function F (x, p) is \bfitC 2 differentiable.
Assumption A requires that (1) is sufficiently smooth so that the Jacobian, Hessian, and

other second order partial derivatives exist and are continuous.

Assumption B. The reference trajectories x\gamma (t, p) are chosen so that both \partial x\gamma 

\partial p
and \partial 2x\gamma 

\partial p2

exist for all t and for all p\in P .
Like the APR strategy, a shadow system will be considered of the form

(9) \.x= F (x, p) +Ue(t, p, x),

where

(10) Ue(t, p, x) = F (x, p0) - F (x, p) +U(t),

and p is an adjustable parameter. Let \Delta x(t, p) \equiv x  - x\gamma (t, p) represent a perturbed so-
lution of (9), i.e., using the trajectory x\gamma (t, p) as a reference. When both Ue \equiv 0 and p
is static, the dynamics of the variational equation are given by (8) to linear order. Let
\Phi p(t, t0) be the state transition matrix of the linearized system (8), i.e., with the prop-
erty that \Delta x(t, p) = \Phi p(t, t0)\Delta x(t0, p). Let v1(p), . . . , vN (p) and \lambda 1(p), . . . \lambda N (p) denote the
eigenvectors and associated eigenvalues, respectively, of \Phi p(T,0) for some reference value
of T chosen to be identical for all p. By convention, eigenvalues will be sorted so that
maxp | \lambda j(p)| >maxp | \lambda j+1(p)| . Letting \kappa j(p) = log(\lambda j(p))/T , the following will be assumed.

Assumption C. For j > 2, Re(\kappa j(p)) < 0 for all p and maxp(Re(\kappa j)) = O(1/\epsilon ), where
0< \epsilon \ll 1.
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ADAPTIVE TRAJECTORY REDUCTION 609

Assumption C requires that for j > 2 the solutions of (8) associated with \lambda j(p) decay
rapidly. As will be shown in the derivation to follow, this rapid decay ultimately allows for a
reduction of the system order.

Assumption D. For j > 2, each \lambda j(p) is a simple eigenvalue for all p.
An additional constraint will be placed on the magnitude of Ue(t, p, x) in the shadow

system from (9).

Assumption E. For all time and allowable p, | | Ue(t, p, x)| | 1 \leq MU , where MU = O(1) and
| | \cdot | | 1 denotes the 1-norm.

Note that the inputs Ue(t, p, x) and U(t) are generally allowed to be large and are not
constrained to be O(\epsilon ) terms. Towards stating a final assumption, let the matrix A(t, p) \in 
\BbbR 
N\times N be defined such that the first column of A(t, p) equals \partial x\gamma 

\partial p
evaluated at both t and p, the

second column equals F (x\gamma (t, p), p), and the kth column is given by \Phi p(t,0)vk(p) exp( - \kappa kt)
for k\geq 3.

Assumption F. For any p \in P , the matrix inverse A(t, p) - 1 exists for all time and
| | A(t, p) - 1| | 1 =O(1).

Assumptions A--F represent a sufficient set of conditions in order to implement the pro-
posed reduction framework. In section 5, modifications will be discussed that could be used to
implement the proposed reduction framework in situations where some of these assumptions
are not satisfied.

3.3. Derivation of the ATR equations. Consider a general dynamical system of the form
(1) and an associated continuous set of reference trajectories as shown in Figure 1. Suppose
that all assumptions from section 3.2 are satisfied. For the moment, solutions of (9) will be
considered using a static choice of p and taking Ue = 0. Local linearization of these trajectories
yields (8). The system state will be represented using the moving coordinate system

(11) x(t) = x\gamma (t, p) +

N
\sum 

k=1

sk(t, p)gk(t, p),

where

g1(t, p) =
\partial x\gamma 

\partial p

\bigm| 

\bigm| 

\bigm| 

\bigm| 

t,p

,(12)

g2(t, p) = F (x\gamma (t, p), p),(13)

gk(t, p) = exp( - \kappa k(p)t)\Phi p(t,0)vk(p),(14)

k= 3, . . . ,N.

Above, \kappa k(p) = log(\lambda k(p))/T and s1, . . . , sN represent coordinates in the moving basis. Intu-
itively, this moving coordinate system is defined so that g1 points towards adjacent trajectories,
g2 points in the direction of the unperturbed flow, and each gk for k \geq 3 captures a part of
the solution that is rapidly decaying. Note that gk(T,p) =

1
\lambda k(p)

\Phi p(T,0)vk(p) = vk(p) =O(1).
Drawing on Assumption F above, by taking

(15) A(t, p) =
\bigl[ 

g1(t, p) . . . gN (t, p)
\bigr] 

,
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610 DAN WILSON

the inverse

(16) A(t, p) - 1 \equiv 
\bigl[ 

w1(t, p) . . . wN (t, p)
\bigr] T

exists where wT
1 (t, p) are row vectors that comprise A - 1 with T denoting the vector transpose.

With these definitions the transformed coordinates are

(17) sj(t, p) =wT
j (t, p)(x - x\gamma (t, p))

for all j. Towards defining a reduced order coordinate system, a time-like variable \theta is intro-
duced with the dynamics that follow:

(18) \.\theta =

\Biggl\{ 

1 if Ue = 0,

F1(x, p,Ue) otherwise

is introduced, where F1 will be determined momentarily. Note that incorporating a time-like
variable is a common analysis strategy for nonautonomous dynamical systems, particularly in
conjunction with Poincar\'e maps [57]. Additionally, unlike in the phase-based reduced order
modeling frameworks given by (2) and (5), \theta in the ATR framework is not a direct function of
the state. Given that each x\gamma (t, p), gk(t, p), and wk(t, p) is defined subject to Ue = 0, \theta will be
substituted for t in these expressions. In the derivation to follow, p will be allowed to change
in time. To proceed, consider some initial condition x(t= 0) of (1) with corresponding values
of \theta and p chosen so that sk = O(\epsilon ) for all k at t = 0. Intuitively, this initial condition must
be close to the set of reference trajectories, i.e., so that min\theta ,p | x

\gamma (\theta , p) - x(0)| =O(\epsilon ). Taking
the time derivative of (17) yields

\.sk = \.wT
k (x - x\gamma ) +wT ( \.x - \.x\gamma )

= \.wT
k

N
\sum 

k=1

(skgk) +wT
k

\biggl( 

F (x, p) +Ue(t, p, x) - 
\partial x\gamma 

\partial \theta 
\.\theta  - 

\partial x\gamma 

\partial p
\.p

\biggr) 

,(19)

where the second line is obtained by substituting both (9) and by taking the time derivative
of x\gamma (\theta , p) using the chain rule. Here, all functions and partial derivatives are evaluated at
\theta and p. Continuing to manipulate (19), first by substituting (11) into F (x, p) and Taylor
expanding, yields

\.sk = \.wT
k

N
\sum 

k=1

(skgk) +wT
k

\biggl( 

F (x\gamma , p) + J(

N
\sum 

k=1

skgk) +Ue(t, p, x) - 
\partial x\gamma 

\partial \theta 
\.\theta  - 

\partial x\gamma 

\partial p
\.p

\biggr) 

+O(\epsilon 2)

= \.wT
k

N
\sum 

k=1

(skgk) +wT
k

N
\sum 

k=1

(sk \.gk)

+wT
k

\biggl[ 

F (x\gamma , p) - 
\partial F

\partial p
s1  - 

N
\sum 

k=1

\biggl( 

sk
\partial gk
\partial p

\.p

\biggr) 

+

N
\sum 

k=3

(sk\kappa kgk) +Ue(t, p, x) - 
\partial x\gamma 

\partial \theta 
\.\theta  - 

\partial x\gamma 

\partial p
\.p

\biggr] 

+O(\epsilon 2)
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ADAPTIVE TRAJECTORY REDUCTION 611

=wT
k

\biggl[ 

F (x\gamma , p) - 
\partial F

\partial p
s1  - 

N
\sum 

k=1

\biggl( 

sk
\partial gk
\partial p

\.p

\biggr) 

+

N
\sum 

k=3

(sk\kappa kgk) +Ue(t, p, x) - 
\partial x\gamma 

\partial \theta 
\.\theta  - 

\partial x\gamma 

\partial p
\.p

\biggr] 

+O(\epsilon 2),

=wT
k

\biggl[ 

g2(\theta , p) - 
\partial F

\partial p
s1  - 

N
\sum 

k=1

\biggl( 

sk
\partial gk
\partial p

\.p

\biggr) 

+

N
\sum 

k=3

(sk\kappa kgk) +Ue(t, p, x) - g2(\theta , p) \.\theta  - g1(\theta , p) \.p

\biggr] 

+O(\epsilon 2),(20)

where the time derivatives \.gk considered in the second line follow from the relations from
(A4), the fourth line follows from the simplification \.wT

j gk+w
T
j \.gk = 0 from (A5), and the final

line follows from (12) and (13). Noting that wT
i gj = 0 for j \not = i and 1 for j = i, evaluating (20)

for specific coordinates of sk at time t= 0 yields

\.s1 =wT
1 (\theta , p)Ue(t, p, x) - \.p+O(\epsilon ),

\.s2 = 1+wT
2 (\theta , p)Ue(t, p, x) - \.\theta +O(\epsilon ),

\.sk = \kappa k(p)sk +wT
k (\theta , p)Ue(t, p, x) +O(\epsilon ),

k= 3, . . . ,N,(21)

where the additional O(\epsilon ) terms emerge because sk(t) = O(\epsilon ) for all k at t = 0. The time
interval on which each sk(t) remains an O(\epsilon ) term in (21) will be discussed momentarily. The
full system can be approximated using (11) yielding

(22) x(t) = x\gamma (\theta , p) +O(\epsilon ).

Letting \theta and p evolve in time according to

\.\theta = 1+wT
2 (\theta , p)Ue(t, p, \theta ),

\.p=wT
1 (\theta , p)Ue(t, p, \theta ),(23)

\.s1 and \.s2 become O(\epsilon ) terms. As such, with this choice for the \theta and p dynamics, s1(t) and
s2(t) remain O(\epsilon ) for t \sim 1/\epsilon . Additionally, in the above equation each Re(\kappa k(p)) = O(1/\epsilon )
for k \geq 3. Because of this, as shown in Appendix B, sk(t) = O(\epsilon ) for k \geq 3 for all time.
As such, the dynamics of each of the coordinates s1, . . . , sN can be neglected. Note that
while s3, . . . , sN can generally take complex values, the modulus of the associated eigenvalues
\lambda 3, . . . , \lambda N is small because Re(\kappa j) = O(1/\epsilon ) for k \geq 3 by Assumption C. As such, there are
no issues caused by resonances when eigenvalues are complex. Above, since x can be written
as a function of \theta and p, Ue can be written as a function of t, p, and \theta , thereby making (23)
self-contained. Note that d\theta /dt in (23) has the same structure as mandated by (18).

\bfA \bfs \bfl \bfi \bfg \bfh \bft \bfr \bfe \bfl \bfa \bfx \bfa \bft \bfi \bfo \bfn \bfo \bff \bfA \bfs \bfs \bfu \bfm \bfp \bft \bfi \bfo \bfn \bfF . For any choice of \theta and p, Assumption F from
section 3.2 ensures that the reduced order coordinates defined according to (17) exist and
ensures that the neglected terms from (21) are of O(\epsilon ). However, some combinations of \theta 
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612 DAN WILSON

and p may not be relevant for a given application. Assumption F can be relaxed slightly
by focusing on specific solutions of (23) instead. In other words, any solution of (23) with
associated state estimation (22) will be an accurate representation of the full order solution
(1) provided that \theta (t) and p(t) remain bounded away from regions for which w1(\theta , p) and
w2(\theta , p) are infinite. This point will be illustrated in the examples from section 4.

3.4. Numerical computation of the terms of the ATR equations. Equations (22) and
(23) provide the foundation of the proposed ATR strategy. In order to implement this strategy,
it is necessary to compute both w1(\theta , p) and w2(\theta , p). Of course, these can technically be
computed by first computing A(t, p) as defined in (15) (perhaps using jet transport [46] or
other variational approaches) and then taking the matrix inverse as part of (16). However,
accurate numerical evaluation of (16) is not generally feasible when the state transition matrix
\Phi p(T,0) has near-zero eigenvalues, \lambda k(p), that subsequently make A(t, p) ill-conditioned. As
such, an alternative strategy detailed below must be used. This strategy is similar to the
adjoint method for calculating phase response curves [6] and isostable response curves [69] for
phase-amplitude reduced equations of the form (2).

To begin, first consider an initial condition x = x\gamma (\theta 1, p1) with dynamics that follow (9).
Here \theta 1 and p1 represent initial values of the phase and adaptive parameter, respectively.
Let \Delta x represent an O(\epsilon ), arbitrary perturbation to that trajectory. Following this initial
perturbation, suppose that Ue(t, p, x) = 0 so that \.\theta = 1. The evolution of \Delta x(t) follows

(24)
d\Delta x

dt
= J\Delta x+

\partial F

\partial p
\Delta p+O(\epsilon 2),

where all partial derivatives are evaluated at x\gamma (\theta 1+t, p1). Here, \Delta p represents some constant
shift in the adaptive parameter caused by the perturbation \Delta x. In the context of the reduced
order equations (23), one can write

(25) \Delta p=wT
1 (\theta 1, p1)\Delta x,

so that (24) becomes

(26)
d\Delta x

dt
=

\biggl( 

J +
\partial F

\partial p
wT
1

\biggr) 

\Delta x.

With this in mind, consider the shift \Delta p from (25). Taking the time derivative yields

(27)
d\Delta p

dt
=
d\Delta x

dt

T

w1 +\Delta xT
dw1

dt
.

After the initial perturbation, the shift in p between the perturbed and unperturbed trajec-
tories is zero since Ue = 0 (in other words, d\Delta p/dt= 0). Substituting this and (26) into (27)
yields

(28) 0 =\Delta xT
\biggl( 

JTw1 +w1
\partial F

\partial p

T

w1 +
dw1

dt

\biggr) 

.

Because (28) is valid for any arbitrary \Delta x, one finds

(29)
dw1

dt
= - 

\biggl( 

JT +w1
\partial F

\partial p

T\biggr) 

w1,
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ADAPTIVE TRAJECTORY REDUCTION 613

where all functions and partial derivatives are evaluated at \theta = \theta 1+t, p= p1, and x
\gamma (\theta 1+t, p1).

Similarly, by considering the shift in the variable \theta resulting from the initial perturbation \Delta x,

(30) \Delta \theta =wT
2 (\theta 1, p1)\Delta x,

and taking the time derivative of both sides (noting that d\Delta \theta /dt= 0 after the initial pertur-
bation since Ue = 0), mirroring the arguments used to derive (27)--(29) yields

(31)
dw2

dt
= - 

\biggl( 

JT +w1
\partial F

\partial p

T\biggr) 

w2,

where once again all functions and partial derivatives are evaluated at \theta = \theta 1 + t, p= p1, and
x\gamma (\theta 1 + t, p1).

The derivation above yields (29) and (31), which can be used to evaluate w1 and w2 local
to the reference trajectory x\gamma (\theta , p1). As a matter of practical implementation, initial con-
ditions for w1(T,p1) and w2(T,p1) can be obtained from (16). Subsequently, w1(\theta , p1) and
w2(\theta , p1) can be obtained for all values of \theta by evaluating (29) and (31) in backwards time.
The necessity of this backwards time integration stems from the fact that for a given value of
p1 some solutions of the form \Delta \.x = J\Delta x, by assumption, are rapidly contracting. As such,
numerical solutions of equations that have the form \Delta \.x =  - JT\Delta x will have errors that are
significantly amplified when evaluated in forward time. Solving such equations in backward
time ameliorates this issue. Finally, w1 and w2 can be computed for different reference trajec-
tories allowing the necessary terms w1(\theta , p) and w2(\theta , p) from (23) to be obtained using linear
interpolation.

3.5. Explicit solutions for the terms of the ATR equations. As shown here, with knowl-
edge of w1(0, p) and w2(0, p), one can write both w1(t, p) and w2(t, p) explicitly as functions
of the state transition matrix \Phi p(t, t0) and the terms g1(t, p) and g2(t, p) from (12) and (13).
To begin, let

y(t, p) = \Phi p(t,0)
Tw1(0, p),

z(t, p) = \Phi p(t,0)
Tw2(0, p).(32)

Note here that y(t) and z(t) are solutions of the adjoint system of (8) so that

dy

dt
= - JT (x, p)y,

dz

dt
= - JT (x, p)z.(33)

With this in mind, one can show that w1 and w2 can be written explicitly as

w1(t, p) =
y(t, p)

gT1 (t, p)y(t, p)
,(34)

w2(t, p) = z(t, p) - 
gT1 (t, p)z(t, p)

gT1 (t, p)y(t, p)
y(t, p).(35)
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614 DAN WILSON

To see that (34) is the solution to (29), first notice that when t = 0, the right-hand side of
(34) simplifies to w1(0, p). Taking the time derivative of (34) yields

\.w1 =
1

gT1 y
\.y - 

\Biggl( 

\.gT1 y+ gT1 \.y

(gT1 y)
2

\Biggr) 

y

= - 
1

gT1 y
JT y - 

1

(gT1 y)
2

\biggl( \biggl( 

gT1 J
T +

\partial F

\partial p

T\biggr) 

y - gT1 J
T y

\biggr) 

y

= - 
1

gT1 y
JT y - 

1

(gT1 y)
2

\biggl( 

\partial F

\partial p

T

y

\biggr) 

y

= - 

\biggl( 

JT +w1
\partial F

\partial p

T\biggr) 

w1,(36)

which is identical to (29). The second line of (36) above is obtained, recalling that \Delta p is
constant, by substituting in (A2) and (33), and the last line is obtained by substituting (35)
and rearranging. Likewise, considering (35), the right-hand side simplifies to w2(0, p) when
t= 0. To verify that (35) satisfies (31), taking the time derivative of (35) yields

\.w2 = \.z  - 
gT1 z

gT1 y
\.y - 

1

(gT1 y)
2 (( \.g

T
1 z + gT1 \.z)gT1 y - gT1 z( \.g

T
1 y+ gT1 \.y))y

(37)

= - JT z +
gT1 z

gT1 y
JT y

 - 
1

(gT1 y)
2

\biggl[ 

\Bigl( \Bigl( 

gT1 J
T +

\partial F

\partial p

T\Bigr) 

z  - gT1 J
T z
\Bigr) 

gT1 y - gT1 z
\Bigl( \Bigl( 

gT1 J
T +

\partial F

\partial p

T\Bigr) 

y - gT1 J
T y
\Bigr) 

\biggr] 

y,

where the second line is obtained by substituting derivatives from (A2) and (33). Continuing
to simplify, emphasizing that many of the terms of (37) are scalars for which the multiplication
order can be rearranged as necessary, yields

\.w2 = - JT

\biggl( 

z  - 
gT1 z

gT1 y
y

\biggr) 

 - 
1

(gT1 y)
2

\biggl[ 

\partial F

\partial p

T

zgT1 y - gT1 z
\partial F

\partial p

T

y

\biggr] 

y

= - JTw2  - 

\biggl[ 

\partial F

\partial p

T

z  - 
gT1 z

gT1 y

\partial F

\partial p

T

y

\biggr] 

w1

= - JTw2  - 
\partial F

\partial p

T

w2w1

= - 

\biggl( 

JT +w1
\partial F

\partial p

T\biggr) 

w2,(38)

which is indeed identical to (31). In most cases, it is easier to numerically compute w1(t, p)
and w2(t, p) using (34) and (35) instead of solving (29) and (31) directly. Here, y(t, p) and
z(t, p) can be obtained by solving equations (33) in backward time, and g1(t, p) can be found
by solving (A2) in forward time. Equations (34) and (35) also emphasize the fact that both
w1 and w2 tend towards infinity if there exists some t for which gT1 (t, p)y(t, p) = 0.
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ADAPTIVE TRAJECTORY REDUCTION 615

3.6. An alternative reduced coordinate system for implementing the ATR strategy.
The moving coordinate system defined by (11)--(14) allows the N -dimensional system (1) to be
represented using only 2 dimensions. The implementation of this coordinate transformation,
however, requires A(t, p) - 1 as defined in (16) to exist at all times (Assumption F). As discussed
in the previous section, this assumption can be relaxed slightly by requiring \theta and p in the
reduced order equations (23) to be sufficiently bounded away from regions for which w1(\theta , p)
and w2(\theta , p) are infinite. When this is not possible, an alternative reduced order coordinate
system can be used that results in a reduced order system with 3 dimensions. This formulation
is detailed below.

To begin, consider a moving coordinate system similar to (11) defined in reference to
a continuous set of unperturbed reference trajectories of a shadow system (9) as shown in
Figure 1. This alternative coordinate system is defined below for a given choice of p.

g1(t, p) = \Phi p(t,0)
\partial x\gamma 

\partial p

\bigm| 

\bigm| 

\bigm| 

\bigm| 

t=0

,

g2(t, p) = F (x\gamma (t, p), p),

gk(t, p) = exp( - \kappa kt)\Phi p(t,0)vk(p),(39)

k= 3, . . . ,N.

The above basis is identical to the one from (12)--(14), except for the change in the definition
of g1. Once again, the matrices A(t, p) and A(t, p) - 1 will be defined identically to (15) and
(16). As a consequence of (A3), one can write g2 = \Phi p(t,0)g2. As such, all elements of the
basis from (39) evolve according to the relationship

(40) gj(t, p) = \nu j(t)\Phi p(t,0)gj(0, p)

for all j, where \nu j(t) is an appropriately defined, nonzero scalar. Note that because \Phi p(t,0)
is always invertible, A(t, p) is guaranteed to be invertible for all time provided that A(0, p)
is invertible. Therefore, the collection w1, . . . ,wn is guaranteed to exist at all times provided
that it exists at t= 0.

Once again defining a transformed coordinate system according to (17), taking time de-
rivatives and simplifying following the steps used to obtain (19) and (20) yields

(41) \.sk =wT
k

\biggl( 

F (x\gamma , p) - 

N
\sum 

k=1

\biggl( 

sk
\partial gk
\partial p

\.p

\biggr) 

+

N
\sum 

k=3

(sk\kappa kgk)+Ue(t, p, x) - 
\partial x\gamma 

\partial \theta 
\.\theta  - 

\partial x\gamma 

\partial p
\.p

\biggr) 

+O(\epsilon 2).

Assuming that sk =O(\epsilon ) for all k, evaluating (41) at specific values of k gives

\.s1 =wT
1 (\theta , p)Ue(t, p, x) - wT

1 (\theta , p)
\partial x\gamma 

\partial p
\.p+O(\epsilon ),(42)

\.s2 = 1+wT
2 (\theta , p)Ue(t, p, x) - \.\theta  - wT

2 (\theta , p)
\partial x\gamma 

\partial p
\.p+O(\epsilon ),(43)

\.sk = \kappa (p)sk +wT
k (\theta , p)Ue(t, p, x) - wT

k (\theta , p)
\partial x\gamma 

\partial p
\.p+O(\epsilon ).(44)
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616 DAN WILSON

Equations (42)--(44) are similar to those from (21); however, fewer cancellations occur due to
the fact that g1(t, p) is no longer identical to \partial x\gamma /\partial p. Provided that each sk remains an order
\epsilon term for all time, the full system (9) can be approximated according to

(45) x(t) = x\gamma (\theta , p) +O(\epsilon ).

Noting that (44) is in a form similar to the equation from (B1) and that each \kappa k(p) =O(1/\epsilon ),
provided that | \.p| and | | \partial x\gamma /\partial p| | 1 are both bounded uniformly in time by O(1) constants, using
a line of reasoning similar to that of Appendix B, one can show that sk(t) =O(\epsilon ) for all time
for k \geq 3. Consequently, the following reduction can then be implemented to represent the
perturbed behavior of (9):

\.\theta = 1+wT
2 (\theta , p)Ue(t, p, \theta ) - \alpha s1

\biggl( 

wT
2 (\theta , p)

\partial x\gamma 

\partial p

\biggr) \biggl( 

wT
1 (\theta , p)

\partial x\gamma 

\partial p

\biggr) 

,(46)

\.p= \alpha s1w
T
1 (\theta , p)

\partial x\gamma 

\partial p
,(47)

\.s1 =wT
1 (\theta , p)Ue(t, p, \theta ) - \alpha s1

\biggl( 

wT
1 (\theta , p)

\partial x\gamma 

\partial p

\biggr) 2

,(48)

where \alpha is a positive constant. Above, the parameter update in (47) is chosen so that the re-
sulting term - \alpha s1(w

T
1 (\theta , p)\partial x

\gamma /\partial p)2 in (48) serves to counteract the effect of wT
1 (\theta , p)Ue(t, p, \theta )

so that s1 stays an O(\epsilon ) term for all time. The update for (46) is chosen so that \.s2 = O(\epsilon ),
allowing this variable to be ignored from the reduced order equations. As in (23), Ue can be
written as a function of t, p, and \theta using (45) so that (46)--(48) are self-contained. Note that
the set of reduced order equations of the form (46)--(48) is similar in form to the set from (5)
for use in systems with periodic oscillations.

The three-dimensional ATR represented by (45)--(48) constitute an alternative reduced
order modeling framework to the two-dimensional ATR represented by (22) and (23). It is
generally preferable to use the two-dimensional ATR (23) when possible because it requires
fewer reduced order variables. Nevertheless, the three-dimensional ATR can be applied in
situations where the two-dimensional ATR cannot. Applications to follow will consider these
points further.

3.7. Reduction of time-scaled trajectories. The proposed dimension reduction strategy
explicitly assumes that the end time, T , is constant between reference trajectories x\gamma (t, p). In
some cases, it may be useful to compare trajectories for which the end time T is a function
of p. For example, when some x\gamma (t, p) are periodic, it may be desirable to take T (p) to be the
period of oscillation. This can be handled straightforwardly by applying a preliminary time
scaling \tau (p) = t/T (p) to the model (1). With this scaling, (9) becomes

dx

d\tau 
= T (p)F (x, p) + T (p)Ue(t, p, \theta ).(49)
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ADAPTIVE TRAJECTORY REDUCTION 617

Applying the ATR strategy detailed in section 3.3 to the time-scaled model (49) yields

d\theta 

d\tau 
= 1+ T (p)wT

2,\tau (\theta , p)Ue(t, p, \theta ),

dp

d\tau 
= T (p)wT

1,\tau (\theta , p)Ue(t, p, \theta ),(50)

where the terms w1,\tau and w2,\tau are computed using (49) and not (9). Undoing the time scaling
in (50) yields

\.\theta =
1

T (p)
+wT

2,\tau (\theta , p)Ue(t, p, \theta ),

\.p=wT
1,\tau (\theta , p)Ue(t, p, \theta ).(51)

An analogous strategy can also be implemented for the three-dimensional ATR described
by (46)--(48) yielding the time-scaled equations

d\theta 

d\tau 
= 1+ T (p)wT

2,\tau (\theta , p)Ue(t, p, \theta ) - \^\alpha s1

\biggl( 

wT
2,\tau (\theta , p)

\partial x\gamma 

\partial p

\biggr) \biggl( 

wT
1,\tau (\theta , p)

\partial x\gamma 

\partial p

\biggr) 

,

dp

d\tau 
= \^\alpha s1w

T
1,\tau (\theta , p)

\partial x\gamma 

\partial p
,

ds1
d\tau 

= T (p)wT
1,\tau (\theta , p)Ue(t, p, \theta ) - \^\alpha s1

\biggl( 

wT
1,\tau (\theta , p)

\partial x\gamma 

\partial p

\biggr) 2

,(52)

where \^\alpha > 0 can be chosen arbitrarily. Once again, the terms w1,\tau and w2,\tau are computed
using (49) and not (9). Taking \^\alpha = \alpha T (p) and undoing the time scaling in (52) yields

\.\theta = 1/T (p) +wT
2,\tau (\theta , p)Ue(t, p, \theta ) - \alpha s1

\biggl( 

wT
2,\tau (\theta , p)

\partial x\gamma 

\partial p

\biggr) \biggl( 

wT
1,\tau (\theta , p)

\partial x\gamma 

\partial p

\biggr) 

,

\.p= \alpha s1w
T
1,\tau (\theta , p)

\partial x\gamma 

\partial p
,

\.s1 =wT
1,\tau (\theta , p)Ue(t, p, \theta ) - \alpha s1

\biggl( 

wT
1,\tau (\theta , p)

\partial x\gamma 

\partial p

\biggr) 2

.(53)

The time scaling discussed above can sometimes be used to compute necessary terms of the
ATR equations more efficiently. For instance, when x\gamma (t, p) is periodic, using the preliminary
scaling \tau (p) = t/T (p), one can compute the necessary terms of the ATR over a single period.
Simulations can subsequently be performed considering \theta \in [0,1) and resetting \theta to 0 every
time it reaches 1. Without time scaling, such resetting would not be possible and one would
need to compute the terms of the ATR equations over the full time interval considered.
Appropriate time scaling can also be numerically beneficial. For instance, considering the
trajectories plotted in panel A in the example from Figure 5, the trajectories are time-scaled
so that the action potentials are aligned. If the action potentials were not aligned, both w1(\theta , p)
and w2(\theta , p) would change more sharply across trajectories requiring a finer discretization in
order to obtain an accurate interpolation between trajectories. The time-scaled forms of the
reduced order equations (51) and (53) will be used in the examples to follow.
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618 DAN WILSON

3.8. Choosing an adaptive parameter set and reference trajectory set. In general, any
parameter p from (1) can be used as an adaptive parameter for the purposes of implementing
the ATR strategy. It often works well in practice to consider an adaptive parameter that
mimics the effect of the applied input U(t). For instance, if it is possible to write (1) in
the form \.x = F (x, p0) + U(t) = F (x) + U(p0) + U(t), one can consider the shadow system
\.x = F (x) + U(p) + Ue(t, p) with Ue(t, p) = U(p0)  - U(p) + U(t). In this case, Ue no longer
depends explicitly on the state x, which greatly simplifies the implementation and analysis of
the resulting reduced order equations. In the applications provided in section 4, the adaptive
parameter is chosen in this manner.

In the implementation of the ATR strategy, there is significant freedom in the choice
of the reference trajectory set x\gamma (t, p). In general one can start with a single, trajectory
x\gamma (t, p0) associated with the unperturbed flow of (1) and add additional trajectories that
are relevant to the specific application. Considering Assumption B from section 3.2, these
additional trajectories must be chosen so that \partial x\gamma 

\partial p
and \partial 2x\gamma 

\partial p2 exist for all t and p. This can be
accomplished by choosing a set of initial conditions x\gamma (0, p) that satisfy these differentiability
constraints and integrate (9) forward in time to obtain the full trajectory set. Examples of
the implementation of this process are given in the examples provided in section 4.

4. Examples. Two applications are provided here with relevance to neural spiking behav-
ior. In the first example, the problem of identifying an energy optimal transmembrane current
input to transition a periodically firing neuron to a quiescent state is considered. In the sec-
ond example, the adaptive trajectory reduction framework is used to characterize transitions
between tonic firing and quiescence in response to external inputs.

4.1. Optimal inputs to eliminate tonic firing in a neural model. Control strategies for
neural spiking have received a great deal of interest in recent years, primarily motivated by the
advent of deep brain stimulation as a treatment for various neurological disorders [31], [5]. One
class of neuron control problems seeks to identify an optimal input that will yield an action
potential in an otherwise quiescent neuron [2], [14], [21], [42]. These problems generally restrict
the dynamics to a neighborhood of the quiescent state, and consider an action potential to have
occurred if the transmembrane voltage surpasses some threshold value, but do not consider
the full transmembrane voltage upstroke and subsequent recovery. Another large class of
neuron control problems considers optimal modification of action potential timing in tonically
firing neurons [39], [67], [11], [50], [48], [41], [20]. In these applications, the hyperbolicity of
an underlying periodic orbit generally allows for the implementation of phase-based reduction
strategies.

A significant difficulty associated with neural control problems is that the dynamical equa-
tions associated with excitable neurons are highly nonlinear. As such, in order to formulate a
tractable control problem, it is generally necessary to restrict the state to be near a stable at-
tractor, for instance to a neighborhood of a stable fixed point when considering optimal inputs
to produce action potentials or to the neighborhood of a stable periodic orbit when consid-
ering the modification of spike timing. As such, it is difficult to formulate control problems
that require a transition through a bifurcation, for example, from tonic spiking to quiescence.
In the following example, the ATR strategy is used to circumvent this limitation. Using the
reduced order equations from (51), a tractable optimal control problem is formulated and
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ADAPTIVE TRAJECTORY REDUCTION 619

solved to identify minimum energy inputs required to drive a neuron from a tonically firing
state to a quiescent state.

To approach this problem, consider a dynamical model from [52] which replicates firing
behavior in thalamic neurons

C \.V = - I\mathrm{L}(V ) - I\mathrm{N}\mathrm{a}(V,h) - I\mathrm{K}(V,h) - I\mathrm{T}(V, r) + I\mathrm{S}\mathrm{M} + u(t),

\.h= (h\infty (V ) - h)/\tau h(V ),

\.r= (r\infty (V ) - r)/\tau r(V ),(54)

where V represents the transmembrane voltage, h and r are gating variables, u(t) is an
externally applied transmembrane current, C = 1\mu F/cm2 is the membrane capacitance, and
I\mathrm{S}\mathrm{M} = 3\mu A/cm2. The reader is referred to [52] for a full description of the remaining functions
that determine the ionic currents I\mathrm{L}, I\mathrm{N}\mathrm{a}, I\mathrm{K}, and I\mathrm{T}. For this choice of I\mathrm{S}\mathrm{M}, the neural model
has a stable periodic orbit with period 11.89 ms corresponding to tonic firing.

As stated above, the goal here is to identify an energy-optimal input (i.e., that minimizes
the L2 norm) that can eliminate tonic firing in favor of quiescence. To proceed, a shadow sys-
tem will be considered with the same h and r dynamics as (54), but where the transmembrane
voltage dynamics follow

(55) C \.V = - I\mathrm{L}(V ) - I\mathrm{N}\mathrm{a}(V,h) - I\mathrm{K}(V,h) - I\mathrm{T}(V, r) + p+Ue(t, p),

where p is an adaptive parameter that behaves like a baseline current and

(56) Ue(t, p) =

\left[ 

 

I\mathrm{S}\mathrm{M}  - p+ u(t)
0
0

\right] 

 

is the effective input. When Ue(t, p) = 0, the shadow model (55) displays qualitatively different
steady state behavior for different values of p as shown in Figure 2. For instance in Panel
E taking p > 0.33 \mu A/cm2, tonic firing emerges in steady state. As p decreases, the steady
state behavior transitions through quiescence, tonic firing, and bursting (Panels B--D) before
settling to a quiescent state when p <  - 0.61 \mu A/cm2. Notice that while the steady state
behavior is substantially different for this range of values of p, the trajectories in panels A--E
of Figure 2 are qualitatively similar over the first 60 ms of simulation.

The ATR framework is implemented by choosing trajectories x\gamma (t, p) as follows: first the
model (54) (i.e., with nominal parameters in the tonically firing regime) is simulated until it
reaches its limit cycle and an initial condition x\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t} is chosen on the upstroke of the action
potential 0.6 seconds before the peak voltage is achieved. Using this initial condition, the
shadow system (55) is then simulated for 0.6 seconds for various choices of p. The resulting
state after this 0.6 s simulation is chosen to correspond to x\gamma (0, p). Trajectories of the ATR
are time-scaled using the strategy detailed in section 3.7 taking T (p) = 13.5 - 1.5p+0.25(6 - 
p)2. This scaling is used to efficiently cover the domain of interest for the proposed control
problem of eliminating action potentials. Here action potentials do not occur on the interval
\theta = [0,1] for any choice of p. Resulting trajectories are shown in panel A of Figure 3 with
corresponding time scalings shown in panel B. For each x\gamma (p, \theta ), the associated eigenvalues
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620 DAN WILSON

Figure 2. The neural model (55) transitions from tonic firing for p > 0.33 \mu A/cm2 (panel E) to quiescence
when p < - 0.61 \mu A/cm2 (panel A). The model is quiescent for p \in (0, .33] (panel D), tonic firing occurs when
p \in ( - .4,0] (panel C), and bursting occurs when p \in ( - .61, - .4]. Because the steady state behavior changes on
this interval, methods such as the previously proposed APR from (5) cannot be used in this application and the
ATR must be used instead.

Figure 3. Individual trajectories of the shadow system (55) are shown in panel A for various values of the
adaptive parameter p. Each trajectory is time-scaled using the strategy described in section 3.7 so that no action
potentials occur for any of the considered trajectories. Panel B shows the magnitude of the time scaling as a
function of p. Resulting eigenvalues of the state transition matrix are shown in panel C. Panels D and E show
terms of the reduced order equations eT1 w1(\theta , p) and eT1 w1(\theta , p), respectively. Dotted lines highlight a boundary
for which both w1(\theta , p) and w2(\theta , p) are infinite.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
2
/0

1
/2

3
 t

o
 7

6
.2

3
4
.1

0
1
.4

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



ADAPTIVE TRAJECTORY REDUCTION 621

of the state transition matrix \Phi p(T (p),0) are shown in panel C. In this case, \lambda 3 is nearly
zero for all values of p allowing for the application of the ATR strategy. For each value of p,
the terms w1(\theta , p) and w2(\theta , p) are computed numerically according to the relations (34) and
(35). Colormaps of eT1 w1(\theta , p) and e

T
1 w2(\theta , p), i.e., components of the reduced order equations

corresponding to perturbations in the transmembrane voltage variable, are shown in panels D
and E, respectively. The dotted lines in these panels correspond to locations for which w1(\theta , p)
and w2(\theta , p) are infinite---the state of the reduced order model must remain sufficiently far
from this set to avoid compromising the accuracy of the reduced order equations as explained
at the end of section 3.3.

Upon implementing the proposed adaptive trajectory reduction strategy, the resulting
ATR equations are

\.\theta = 1/T (p) +R(\theta , p)(I\mathrm{S}\mathrm{M}  - p+ u),

\.p= Y (\theta , p)(I\mathrm{S}\mathrm{M}  - p+ u),(57)

where R(\theta , p) = eT1 w2(\theta , p) and Y (\theta , p) = eT1 w1(\theta , p). The problem of identifying an energy-
optimal input to eliminate tonic firing in favor of quiescence will be approached using a
calculus of variations framework [23] to identify the control input u(t) that minimizes the cost
functional

(58) C =

\int t\mathrm{e}\mathrm{n}\mathrm{d}

0
u2(t)dt

subject to the initial conditions conditions p(0) = I\mathrm{S}\mathrm{M} = 3\mu A/cm2 and \theta (0) = \theta 0. End
point conditions are chosen so that p(t\mathrm{e}\mathrm{n}\mathrm{d}) = p\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{g} and \theta (t\mathrm{e}\mathrm{n}\mathrm{d}) is free. The initial conditions
are chosen to correspond to a location on the neuron's stable limit cycle x\gamma (t, I\mathrm{S}\mathrm{M}) that the
system relaxes to when u(t) = 0. Provided p\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{g} <  - 0.61 \mu A/cm2 the neuron will be on a
trajectory that does not result in an action potential (input will constantly need to be applied
to maintain this quiescent state, however). The term u2(t) is chosen in the integrand of the
cost functional (58) which is proportional to the power consumed by the stimulus provided the
system obeys Ohm's law. Inputs that minimize the cost functional from (58) can be identified
by defining the associated Hamiltonian

(59) H(\Psi , u,L, t) = u2 +L1[1/T (p) +R(\theta , p)(I\mathrm{S}\mathrm{M}  - p+ u)] +L2[Y (\theta , p)(I\mathrm{S}\mathrm{M}  - p+ u)],

where \Psi \equiv 
\bigl[ 

\theta p
\bigr] T

is a vector of state variables and L\equiv 
\bigl[ 

L1 L2

\bigr] T
are Lagrange multipliers

that force the dynamics to satisfy the reduced order equations (57). The Euler--Lagrange
equations associated with the Hamiltonian (59) are [23]

\.\Psi =
\partial H

\partial L
,(60)

\.L= - 
\partial H

\partial \Psi 
,(61)

0 =
\partial H

\partial u
.(62)
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622 DAN WILSON

Evaluation of (60) returns the reduced order equations from (57). Evaluation of (61) yields

\.L1 = - L1R\theta (\theta , p)(I\mathrm{S}\mathrm{M}  - p+ u) - L2Y\theta (\theta , p)(I\mathrm{S}\mathrm{M}  - p+ u),

\.L2 = - (L1Rp(\theta , p) +L2Yp(\theta , p))(I\mathrm{S}\mathrm{M}  - p+ u) +L1R(\theta , p) +L2Y (\theta , p) +
L1Tp
T 2(p)

,(63)

where the subscripts \theta and p are used to denote the appropriate partial derivatives. Finally,
evaluation of (62) yields

(64) u=
 - L1R(\theta , p) - L2Y (\theta , p)

2
,

so that (57), (63), and (64) comprise a set of Euler--Lagrange equations that must be satisfied
by control inputs u(t) that locally minimize the cost functional (58). Boundary conditions
p(0) = I\mathrm{S}\mathrm{M}, \theta (0) = \theta 0, and p(t\mathrm{e}\mathrm{n}\mathrm{d}) = p\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{g} are mandated by the problem formulation. The final
boundary condition is L1(t\mathrm{e}\mathrm{n}\mathrm{d}) = 0 and follows from the fact that \theta (t\mathrm{e}\mathrm{n}\mathrm{d}) is free. Solutions
of this two-point boundary value problem can be found by identifying initial values of L1(0)
and L2(0) that give the correct final conditions. This is accomplished by first noticing that
when p\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{g} = I\mathrm{S}\mathrm{M} the optimal solution can be found by taking L1(0) =L2(0) = 0. Solutions for
nearby values of p\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{g} can be obtained by updating the initial values for L1(0) and L2(0) using
a Newton iteration until convergence is achieved. This process can be performed iteratively
until the solution associated with the desired value of p\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{g} is obtained.

Using \theta 0 = 0.2 and p\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{g} =  - 2, the resulting optimal inputs are shown in panel A of
Figure 4 for various choices of t\mathrm{e}\mathrm{n}\mathrm{d}. For smaller values of t\mathrm{e}\mathrm{n}\mathrm{d}, the optimal input resembles a
linear ramp. For larger values of t\mathrm{e}\mathrm{n}\mathrm{d}, the optimal input plateaus near u(t) = - 2\mu A/cm2 before
sharply decreasing as time approaches t\mathrm{e}\mathrm{n}\mathrm{d}. Corresponding values of \theta (t) and p(t) are shown
in panels B and C. Panel D gives plots of p versus \theta for various values of t\mathrm{e}\mathrm{n}\mathrm{d} illustrating that
these trajectories are sufficiently bounded away from the threshold for which the functions
R(\theta , p) and Y (\theta , p) from the reduced order equations (57) are infinite. The optimal solutions
are compared to the input u(t) =  - 5\mu A/cm2. This comparison is chosen as a simple input
for which p(t) approaches the target value of  - 2\mu A/cm2 over time (recall that the baseline
current I\mathrm{s}\mathrm{m} = 3\mu A/cm2). The overall energy consumption computed according to (58) is
shown in panel E for the optimal and the comparison stimuli. For larger values of t\mathrm{e}\mathrm{n}\mathrm{d}, the
optimal stimulus is approximately three times more efficient than the comparison stimulus.
Finally, the optimal stimulus associated with t\mathrm{e}\mathrm{n}\mathrm{d} = 60 ms is applied to the full order model,
with results shown in panel F. The black line shows the first 2.4 ms after an action potential
where no inputs are applied as \theta increases from 0 to 0.2. The blue trace shows transmembrane
voltage in response to the optimal input. The dashed line shows the transmembrane voltage
in response to the optimal input applied to the reduced order model (57) where (22) is used
to determine the associated state estimation. Near-perfect agreement is observed between the
full and reduced order models. The comparison input u(t) =  - 5\mu A/cm2 is also applied to
the full order model, with results shown in red. Note that the resulting \theta (t\mathrm{e}\mathrm{n}\mathrm{d}) resulting from
the application of the optimal stimulus is different for \theta (t\mathrm{e}\mathrm{n}\mathrm{d}) resulting from application of the
comparison stimulus. As such, the final states are also different.
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ADAPTIVE TRAJECTORY REDUCTION 623

Figure 4. Optimal control computation to eliminate tonic firing in the thalamic neural model from (54).
Panel A shows the control inputs (in units of \mu A/cm2) obtained according to (64) that satisfy the Euler--Lagrange
equations (60)-(62) for various values of tend. Panels B and C show associated values of \theta and p during the
application of these inputs. Panel D shows plots of p versus \theta for these trajectories. The dotted black line denotes
a boundary for which both R(\theta , p) and Y (\theta , p) from the reduced order equations (57) are infinite. As such, all
valid trajectories of the reduced order model must remain sufficiently far from this boundary. Panel E gives an
energy comparison, computed according to (58), for the optimal stimuli and the input u(t) = - 5\mu A/cm2. Panel
F shows the resulting transmembrane voltage (in units of mV) in response to the optimal and comparison input
applied to the full order model. The dashed line shows the output of the reduced order model for the optimal
input and is in near-perfect agreement with the full model simulations. Recall that \theta (0) = 0.2 in the optimal
control formulation; the black line in panel F represents the first 2.4 ms after an action potential occurs during
which the optimal phase transitions from \theta = 0 to \theta = 0.2.

4.2. Adaptive trajectory reduction to capture transitions between quiescence and tonic
firing. As a second example, neural spiking of the Wang--Buzs\'aki [55] neuron is considered:

C \.V = - I\mathrm{L}(V ) - I\mathrm{N}\mathrm{a}(V,h) - I\mathrm{K}(V,n) + I\mathrm{S}\mathrm{M} + u(t),

\.h= \phi (\alpha h(1 - h) - \beta hh),

\.n= \phi (\alpha n(1 - n) - \beta nn),(65)

where V represents the transmembrane voltage, h and n are gating variables, u(t) is an ex-
ternally applied transmembrane current, C = 1\mu F/cm2 is the membrane capacitance, and
I\mathrm{S}\mathrm{M} = 10\mu A/cm2 is the baseline current. The reader is referred to [55] for a full descrip-
tion of the remaining functions that determine the ionic currents I\mathrm{L}, I\mathrm{N}\mathrm{a}, and I\mathrm{K}. For this
choice of I\mathrm{S}\mathrm{M}, when taking u(t) = 0 the model (65) has a stable limit cycle with period
3.5 ms. This periodic orbit exists for ISM > 0.16 \mu A/cm2; when ISM falls below this
threshold, stable oscillations disappear due to a saddle node on an invariant circle (SNIC)
bifurcation.
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624 DAN WILSON

The goal here is to represent the model (65) using the proposed adaptive trajectory reduc-
tion framework, particularly for situations where the system transitions between tonic firing
and quiescence across the SNIC bifurcation. To this end, a shadow system will be considered
with the same h and n dynamics as (65), but where the transmembrane voltage dynamics
follow

(66) C \.V = - I\mathrm{L}(V ) - I\mathrm{N}\mathrm{a}(V,h) - I\mathrm{K}(V,n) + p+Ue(t, p),

where p is an adaptive parameter that behaves like a baseline current and Ue(t, p) is an effective
input identical to the one given in (56).

The ATR framework is implemented by choosing trajectories x\gamma (\theta , p) as follows: for values
of p\in [4.6,16], the periodic orbit is taken to be x\gamma (\theta , p), with each of these trajectories aligned
and time-scaled so that \theta = 0 and \theta = 1 both correspond to the peak value of the transmem-
brane voltage. While additional periodic orbits exist for values of 4.6> p> 0.16, the accuracy
of the resulting reduced order model is diminished when using reference trajectories that are
close to the SNIC bifurcation. For values of p < 4.6, the initial conditions for the reference
trajectories x\gamma (0, p) are chosen so that both \partial x\gamma 

\partial p
| \theta =0 and \partial 2x\gamma 

\partial p2 | \theta =0 are continuous. Likewise,

the time scaling for p < 4.6 is taken to be T (p) = T (4.6) + (p  - 4.6)dT
dp
| p=4.6 and is chosen

so that T (p) is also continuously differentiable. Voltage traces of the resulting trajectories and
the corresponding time scaling T (p) are shown in panels A and B of Figure 5. Panel C shows
the relative magnitudes of the eigenvalues of the state transition matrix. Because \lambda 3 is always

Figure 5. Panel A shows individual trajectories of the shadow system (66) for various values of p obtained
using the procedure described in the text. Trajectories with p\geq 4 represent limit cycle solutions. Other trajec-
tories are chosen so that the terms of the resulting ATR of the form (51) are continuously differentiable. Panel
B shows the associated time scaling of each trajectory. Panel C shows the resulting eigenvalues of the state
transition matrix associated with the linearized trajectories. Panels D and E show terms of the reduced order
equations eT1 w1(\theta , p) and eT1 w2(\theta , p), respectively. Dotted lines highlight a boundary for which both w1(\theta , p) and
w2(\theta , p) are infinite, necessitating the use of the three-dimensional ATR of the form (53) in some situations.
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ADAPTIVE TRAJECTORY REDUCTION 625

near-zero, the reduction framework can be applied to eliminate dynamics associated with this
rapid decay. Colormaps of eT1 w1(\theta , p) and eT1 w1(\theta , p), i.e., components of the reduced order
equations corresponding to perturbations in the transmembrane voltage variable, are shown in
panels D and E, respectively. The dotted lines in these panels correspond to locations for which
w1(\theta , p) and w2(\theta , p) are infinite. As such, the state of the reduced order model must remain
sufficiently far from this set to avoid compromising the accuracy of the reduced order equa-
tions as explained at the end of section 3.3. In this example, the three-dimensional ATR with
transformed equations of the form (53) will also be investigated. For this reduction, \alpha = 10 is
used. Note that while the three-dimensional ATR does not result in a reduction in dimension
for this application, this strategy is readily generalizable to higher dimensional models.

The APR strategy is also considered to represent the dynamics of (65). To implement the
APR, stable periodic orbits are considered taking p\in [0.6,16]. Note that the SNIC bifurcation
occurs at p = 0.16, but accuracy of the APR degrades substantially for values of p that are
close to this critical value. When using the APR framework, the update function Gp is chosen
to be of the form (6) taking \alpha = 1000.

Simulations of the full model (65), the proposed ATR (both the two- and the three-
dimensional versions from (51) and (53), respectively), and the APR from (5) are shown in
Figure 6. Initial conditions in each simulation are chosen to correspond to the moment that

Figure 6. Results comparing simulations of the full order model (65) to the proposed 2- and 3-dimensional
ATR equations ((51) and (53), respectively). Solutions using the the previously proposed APR framework from
(5) are also considered. Panels A, E, I, and M show four different stimuli applied to each model. As explained
in the text, not every input can be considered by all of the reduced order models. Panels B, F, J, and N show
the resulting transmembrane voltage output. Panels C, G, K, and O show associated traces of the adaptive
parameter p and panels D, H, L, and P show traces of the variables p versus \theta when using the proposed ATR
equations.
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626 DAN WILSON

the neuron reaches its peak value of the transmembrane voltage on the limit cycle that results
when u(t) = 0. When using the ATR strategy, when \theta reaches 1 with a value of p\geq 4.6, the
phase is reset to 0 since these trajectories are periodic.

The response to a purely sinusoidal input of moderate magnitude is shown in panels A--D
of Figure 6. For these inputs, all reduced order models are able to faithfully reproduce the full
model behavior. Panels E--H show the response to a larger magnitude sinusoid. Here, the two-
dimensional ATR cannot be used because the input drives the system to values of p and \theta for
which the reduced order terms are infinite. The three-dimensional ATR is able to circumvent
this limitation. The APR strategy can also be used in this regime. Larger magnitude, negative
inputs cannot be considered for the APR because they cause p to approach values that are
near the SNIC bifurcation. A constant input u(t) = - 10\mu A/cm2 is considered in panels I--L.
In this case, the APR from (5) cannot be considered because the input drives the neuron past
the SNIC bifurcation to a quiescent state. Both the proposed two- and three-dimensional
ATR strategies yield results that are indistinguishable from the full model simulations when
using this constant input. Finally, the input u(t) =  - 9.4 - sin(0.03t) is considered in panels
M--P. This input is chosen to highlight the ability of the ATR strategy to accurately capture
transitions between the quiescent and tonically firing regimes. Once again, the APR strategy
cannot be considered for this input because it drives the system past the SNIC bifurcation.

5. Conclusion and future directions. In this work, a general reduced order modeling
strategy is developed that can accurately capture the behavior of a strongly perturbed, non-
linear dynamical system in the vicinity of a continuous collection of reference trajectories.
To implement this strategy, it is assumed that the local linearization of each trajectory is
rapidly contracting in some directions (as gauged by the magnitudes of the eigenvalues of the
associated state transition matrix). To capture the behavior of the nonrapidly contracting
directions, a local coordinate transformation is proposed that explicitly considers the behavior
of other nearby trajectories. As illustrated in the examples from section 4, the ATR frame-
work can be used to accurately capture the behavior of systems for which external inputs are
of sufficient strength to precipitate bifurcations.

There are many opportunities for extension of the proposed ATR strategy, particularly
for situations where some of the mandated assumptions from section 3.2 are not satisfied.
Foremost, Assumption A requires that F (x, p) from (9) is sufficiently smooth. This constraint
precludes the use of the ATR for nonsmooth dynamical systems. Recent work in [45], [59]
has considered phase-based reduced order modeling strategies that are valid for piecewise
smooth dynamical systems subject to a transverse flow condition. For such piecewise smooth
dynamical systems, the infinitesimal phase and isostable response curves (i.e., the gradients of
the phase and isostable coordinates evaluated on the periodic orbit) are generally discontinuous
across boundaries for which the corresponding vector field is discontinuous. It is likely that
methods similar to those used in [45], [59] could be used to identify the necessary terms of the
ATR for a piecewise smooth dynamical system.

Assumption C, i.e., the requirement that all but two of the eigenvalues of \Phi p(T,0) are
small for all p, is one of the most restrictive conditions required for the implementation of
the proposed ATR strategy. It would be of interest to investigate possible extensions valid
for use when this constraint is not satisfied. To approach this problem, one could start with

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 1
2
/0

1
/2

3
 t

o
 7

6
.2

3
4
.1

0
1
.4

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



ADAPTIVE TRAJECTORY REDUCTION 627

a modified version of (39) that includes the dynamics of \zeta > 2 slowly decaying components
of the linearized solution. This would ultimately yield a reduced order set of coordinates
s1, s2, . . . , s\zeta  - 1 in APR equations from (53) in order to account for these additional slowly
decaying directions. Subsequently, similar to the APR strategy from [64], one would need to
identify a parameter update rule that keeps the magnitude of these reduced order coordinates
small in order to arrive at a reduced order set of equations. Depending on the number
of nontruncated reduced order coordinates required, it may also be necessary to consider
adaptive parameter sets, p, with multiple dimensions.

As part of Assumption D, the eigenvalues \lambda k(p) of \Phi p(T,0) are required to be simple for
k \geq 3. This assumption ensures that the time derivatives of the coordinate basis g1, . . . , gN
as defined in section 3.3 exist. It may be possible to explicitly extend this derivation for
application in situations where Assumption D is not satisfied, for instance by using the notion
of generalized eigenvectors [35]. A similar strategy was employed in [62] for applications of
the APR framework to dynamical systems with defective linearizations.

For the proposed ATR framework, a set of reference trajectories is required to perform
the reduction; however, there is no set strategy for constructing this trajectory set. In the
examples considered in this work, the reference trajectory set is constructed in an ad hoc
manner to capture the salient features of the full model behavior. It would be of interest
to identify a concrete metric that gives a sense of how the accuracy of the resulting reduced
order equations is influenced by the choice of the reference trajectory set. It is worth noting
that for the examples considered in this work, small changes in the choice of the reference
trajectory sets do not substantially influence the accuracy of the resulting reduced order
equations.

In contrast to reduced order modeling techniques based on the use of asymptotic phase
and isostable coordinates, the proposed ATR framework can be applied to a set of arbitrary
reference trajectories. As such, it can be used to investigate problems where the applica-
tion of external input causes the dynamics to transition through a bifurcation. Future work
will consider the possibility of using the proposed ATR strategy in conjunction with other
phase and isostable-based reduction frameworks with the goal of creating a unified frame-
work that can represent the behavior of a general dynamical system in multiple operating
regimes.

Appendix A. Dynamical relationships between terms of the proposed moving coor-
dinate basis. Here, dynamical relationships associated with the terms gk(t, p) that comprise
the moving coordinate basis from (11) are considered. To begin, consider an initial trajectory
x1 = x\gamma (t, p) and an adjacent trajectory x2 = x\gamma (t, p+\Delta p) where \Delta p is a small, constant shift
in the parameter p. Asymptotically expanding in reference to x\gamma (t, p) yields

\.x1 = F (x\gamma , p),

\.x2 = F (x\gamma +\Delta x, p+\Delta p)

= F (x\gamma , p) + J\Delta x+
\partial F

\partial p
\Delta p+O(| | \Delta x| | 2) +O(| | \Delta p| | 2)

= F (x\gamma , p) + J
\partial x\gamma 

\partial p
\Delta p+

\partial F

\partial p
\Delta p+O(| | \Delta p| | 2),(A1)
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628 DAN WILSON

where the relationship \Delta x = \partial x\gamma 

\partial p
\Delta p is used in the fourth line and all partial derivatives are

evaluated at x\gamma (t, p) using the parameter set p. Recalling that g1 = \partial x\gamma 

\partial p
, by considering

lim\Delta p\rightarrow 0[( \.x2  - \.x1)/\Delta p], one finds

(A2) \.g1 = Jg1 +
\partial F

\partial p
.

Furthermore, noting that \partial 
\partial t
\Phi p(t,0) = J\Phi p(t,0), directly differentiating (13) and (14) with

respect to time (recalling that p is constant) yields

\.g2 = Jg2,

\.gk = (J  - \kappa kId)gk,

k= 3, . . . ,N,(A3)

where the partial derivatives are calculated at x\gamma (t, p) using the parameter set p and Id is
an appropriately sized identity matrix. Equations (A2) and (A3) are valid, provided p is
constant, and are used in the derivations presented in section 3.5. If p is allowed to change in
time, these total derivatives become

\.g1 = Jg1 +
\partial F

\partial p
+
\partial g1
\partial p

\.p,

\.g2 = Jg2 +
\partial g2
\partial p

\.p,

\.gk = (J  - \kappa kId)gk +
\partial gk
\partial p

\.p,

k= 3, . . . ,N.(A4)

Equations (A4) are applied in the derivation from section 3.3.
Finally, recalling the definitions of wT

k from (16), for any choice of j and k one can write

(A5) wT
j (t, p)gk(t, p) = c,

where c is a constant that equals 1 if j = k and 0 otherwise. As such, taking the time derivative
of (A5) yields

(A6) \.wT
j gk +wT

j \.gk = 0

for any choice of k and j.

Appendix B. Bounding the magnitude of rapidly decaying terms of the moving coordi-
nate system. Here, we consider the dynamics of the rapidly decaying terms from the moving
coordinate system from (21):

(B1) \.sk = \kappa k(p)sk +wT
k (t, p)Ue(t, p, x) +O(\epsilon )

for k\geq 3. As in the derivation from section 3.3, it will be assumed that each sk =O(\epsilon ) at time
t = 0. Noting that sk may be complex valued, let | sk| 

2 = sks
\ast 
k, where

\ast denotes the complex
conjugate. Taking the time derivative of both sides of this relation yields

2| sk| | \.sk| = sk \.s
\ast 
k + \.sks

\ast 
k.(B2)
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ADAPTIVE TRAJECTORY REDUCTION 629

Considering that \kappa k(p) and wk(t, p) may be complex valued, substituting (B1) into (B2)
yields

2| sk| | \.sk| = sk(\kappa 
\ast 
k(p)s

\ast 
k +wT

k

\ast 
(t, p)Ue(t, p, x)) + s\ast k(\kappa k(p)sk +wT

k (t, p)Ue(t, p, x)) +O(\epsilon 2)

= 2Re(\kappa k(p))| sk| 
2 + sk(w

T
k

\ast 
(t, p)Ue(t, p, x)) + s\ast k(w

T
k (t, p)Ue(t, p, x)) +O(\epsilon 2)

\leq 2Re(\kappa k(p))| sk| 
2 + 2| sk| | w

T
k (t, p)Ue(t, p, x)| +O(\epsilon 2).(B3)

Rearranging (B3), invoking Assumption E from section 3.2, noting that each Re(\kappa k(p)) < 0,
and truncating O(\epsilon 2) terms, one finds

| \.sk| \leq Re(\kappa k(p))| sk| +max
t,p,x

| wT
k (t, p)Ue(t, p, x)| 

\leq max
p

(Re(\kappa k(p)))| sk| +MU max
t,p

| | wk(t, p)| | 1.(B4)

Once again, recalling that maxp(Re(\kappa k(p)))< 0, considering the relationship from (B4), if

| sk| >
MU maxt,p | | wk(t, p)| | 1
 - maxp(Re(\kappa k(p)))

(B5)

is satisfied, then | \.sk| < 0. As such,

(B6) | sk| \leq 
MU maxt,p | | wk(t, p)| | 1
 - maxp(Re(\kappa k(p)))

=O(\epsilon )

is an upper bound for | sk| . This upper bound is an O(\epsilon ) term because maxp(Re(\kappa k(p))) =
O(1/\epsilon ) (by Assumption C) and because MU and wk are O(1) terms as a consequence of
Assumptions E and F, respectively.

Appendix C. Partial derivatives of the state transition matrix with respect to adjacent
trajectories. Here, it is shown that for the state transition matrix \Phi p(t,0) as defined below

(8), \partial \Phi p

\partial p
exists provided the assumptions from section 3.2 are satisfied. This will be shown

through direct computation. To begin, for a given trajectory x\gamma (t, p), using the Peano--Baker
series representation for the state transition matrix [18] associated with solutions of (8), one
finds

(C1) \Phi p(t,0) = Id+

\int t

0
Jp(\sigma 1)d\sigma 1 +

\int t

0
Jp(\sigma 1)

\int \sigma 1

0
Jp(\sigma 2)\sigma 2d\sigma 1 + \cdot \cdot \cdot ,

where Id is the identity matrix, and Jp(t) is a shorthand representation of the Jacobian from
(8). Next consider the nearby trajectory x\gamma (t, p+\Delta p) = x\gamma (t, p) + \partial x\gamma 

\partial p
\Delta p+ O(\Delta p2). Using

equation (28) from [60], through asymptotic expansion one finds

Jp+\Delta p = Jp +
\bigl[ 

a1 \cdot \cdot \cdot aN
\bigr] T

+
\partial 

\partial p

\biggl( 

\partial F

\partial x

\biggr) 

\Delta p+O(\Delta p2),(C2)

where each ai is a column vector given by

(C3) ai =\Delta p
\bigl( 

(\partial x\gamma /\partial p)T \otimes Id
\bigr) 

vec(Hi),
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630 DAN WILSON

Hi is the Hessian matrix of partial derivatives associated with the ith entry of F , \otimes denotes
the Kronecker product, vec(\cdot ) is an operator that stacks each column of a matrix to form a
single column vector, and Id is an appropriately sized identity matrix. In (C2) and (C3), all
partial derivatives are evaluated at x(t) and p. Considering (C2), one can write

(C4) Jp+\Delta p(t) = Jp(t) +M(t)\Delta p+O(\Delta p2),

where M(t) is defined appropriately. With this in mind, using the Peano--Baker series rep-
resentation from (C1) for both \Phi p(t,0) and \Phi p+\Delta p(t,0) and simplifying appropriately yields

\Phi p(t,0) - \Phi p+\Delta p(t,0) =\Delta p

\int t

0
M(\sigma 1)d\sigma 1

+\Delta p

\int t

0

\int \sigma 1

0

\biggl[ 

Jp(\sigma 1)M(\sigma 2) +M(\sigma 1)Jp(\sigma 2)

\biggr] 

d\sigma 2d\sigma 1

+\Delta p

\int t

0

\int \sigma 1

0

\int \sigma 2

0

\biggl[ 

Jp(\sigma 1)Jp(\sigma 2)M(\sigma 3) + Jp(\sigma 1)M(\sigma 2)Jp(\sigma 3)

+M(\sigma 1)Jp(\sigma 2)Jp(\sigma 3)

\biggr] 

d\sigma 3d\sigma 2d\sigma 1 + \cdot \cdot \cdot +O(\Delta p2).(C5)

As such, the required partial derivatives exist and can be written as a series representation
according to

lim
\Delta p\rightarrow 0

\Phi p(t,0) - \Phi p+\Delta p(t,0)

\Delta p
=

\int t

0
M(\sigma 1)d\sigma 1

+

\int t

0

\int \sigma 1

0

\biggl[ 

Jp(\sigma 1)M(\sigma 2) +M(\sigma 1)Jp(\sigma 2)

\biggr] 

d\sigma 2d\sigma 1 + \cdot \cdot \cdot .(C6)

Appendix D. Existence of time derivatives of basis elements of the proposed moving
coordinate system. In the derivations from section 3.3, it is necessary for the time derivatives
of g1(t, p), . . . , gN (t, p) and w1(t, p), . . . ,wN (t, p) to exist. Considering the set of equations from
(A4), the terms \.g1(t, p), . . . , \.gN (t, p) exist provided all the terms of the right- hand side of (A4)
exist. The Jacobian and \partial F

\partial p
exist as a consequence of Assumption A from section 3.2. The

term \partial g1
\partial p

= \partial 2x\gamma 

\partial p2 exists according to Assumption B. The term \partial g2
\partial p

= \partial x\gamma 

\partial p
also exists according

to Assumption B.
To establish the existence of \partial gk

\partial p
for k\geq 3, consider the following definition from (14):

(D1) gk(t, p) = exp( - \kappa k(p)t)\Phi p(t,0)vk(p)

for k = 3 . . .N . Define \lambda k(p) = f\lambda k
(\Phi p(T,0)) and vk(p) = fvk

(\Phi p(T,0)), where each vk(p) is
scaled such that | | vk(p)| | 2 = 1, where | | \cdot | | 2 is the two-norm. Appendix C illustrates that
\partial \Phi p(t,0)

\partial p
exists. By assumption D, each \lambda k(p) is a simple eigenvalue for k \geq 3. For these

simple eigenvalues, considering the associated sensitivity to perturbations of eigenvectors and
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ADAPTIVE TRAJECTORY REDUCTION 631

eigenvalues established in [12], [36], \partial \lambda k

\partial p
and \partial vk

\partial p
also exist. Note that \lambda k \not = 0 for any k since

the state transition matrix must be invertible. As such, \partial \kappa k

\partial p
exists for k \geq 3. All partial

derivatives with respect to p of the terms that comprise the right-hand side of (D1) exist so
that gk

\partial p
also exists. Finally, because all terms of the right-hand sides of the equations that

comprise (A4) exist, \.g1(t, p), . . . , \.gN (t, p) also exist.
As defined in (16) each wk(t, p) corresponds to a row of A(t, p) - 1 which must exist by

Assumption F. One can also write

dA - 1

dt
=
\partial A - 1

\partial t
+
\partial A - 1

\partial p
\.p

=A - 1\partial A

\partial t
A - 1 +A - 1\partial A

\partial p
A - 1 \.p.(D2)

The matrix A(t, p) is comprised of the vectors g1(t, p), . . . , gN (t, p) with time derivatives and
partial derivatives that exist. As such, dA - 1

dt
exists and consequently each \.w1(t, p), . . . , \.wN (t, p)

exists.
A nearly identical argument can be applied to show that the required time derivatives

exist when using the alternative reduced coordinate system defined in section 3.6.
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