2023 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

Billion-scale Detection of Isomorphic Nodes

Luca Cappelletti Tommaso Fontana Justin Reese David A. Bader
Department of Computer Science Department of Computer Science EGSB Department of Data Science
University of Milan University of Milan Berkeley Lab New Jersey Institute of Technology
Milan, Italy Milan, Italy Berkeley, USA New Jersey, USA
0000-0002-1269-2038 0000-0002-9806-3493 0000-0002-2170-2250 0000-0002-7380-5876

Abstract—This paper presents an algorithm for detecting at-
tributed high-degree node isomorphism. High-degree isomorphic
nodes seldom happen by chance and often represent duplicated
entities or data processing errors. By definition, isomorphic nodes
are topologically indistinguishable and can be problematic in
graph ML tasks. The algorithm employs a parallel, “degree-
bounded” approach that fingerprints each node’s local properties
through a hash, which constrains the search to nodes within hash-
defined buckets, thus minimising the number of comparisons.
This method scales on graphs with billions of nodes and edges.
Finally, we provide isomorphic node oddities identified in real-

Fig. 1. Isomorphic and non-isomorphic nodes: the nodes A and B are iso-
world data. morphic as they share all the neighbours and are topologically interchangeable.
Index Terms—graph, node isomorphism, parallel algorithm C and D are non-isomorphic, as they have a distinct topology.

I INTRODUCTION Our algorithm is implemented in Rust with Python bindings

Isomorphic graphs are a fundamental concept in graph as part of the open-source GRAPE graph pI'OCCSSiI]g and ML
theory, i.e. graphs that can be transformed into one another library [4]. The experiments code is available on GitHub '.
through a bijective node re-labelling function called graph
isomorphism. There are no known polynomial time algorithms
for detecting graph isomorphism; therefore, detecting them A graph G = (V, E) (or multigraph) is constituted of a
is computationally expensive [!]. This paper focuses on the set of nodes V' and a set of edges E. A node v € V has
more tractable problem of detecting attributed isomorphic neighbours N (v) and degree d(v) = |[N(v)].
node groups (INGs) within a graph. Nodes in an ING are Two nodes a,b € V are isomorphic if they have the same
topologically identical, as they cannot be distinguished based neighbours, except for {a, b} themselves, which we denote as
on their connections to other nodes in the graph (see Figure 1). N, (v) = N (v) \ {v, w}. Furthermore, if a € N (), then b €
Intuitively, swapping nodes within INGs does not change the N (a) and vice-versa. Therefore, we can define the equivalence
graph topology. INGs can reveal peculiar node properties or relationship between a and b as:
quality control (QC) issues in real-world graphs. They may N —
represent the same duplicated entity or eflgements that have a=b = (Npla) = Na(b)) A (b € N(a) == a € N (b))
become topologically identical due to data processing errors or
lack of information. For example, in protein-protein interaction
graphs such as STRING’s, INGs may hint at the presence of
isoform proteins [2]: generally, only one representative isoform III. DEGREE-BOUNDED APPROACH
protein is kept in the graph; therefore, detecting isoform groups
would hint to preprocessing issues. By definition, nodes in
INGs are topologically indistinguishable and, therefore, can
be problematic in graph ML tasks.

In the literature, there exist fuzzy approaches to detect
semantically duplicated nodes using their metadata, generally
characterized by a quadratic complexity with respect to the
number of nodes [3]. We present a novel parallel exact algo-
rithm for detecting INGs in graphs with billions of attributed
nodes and edges on a commodity desktop with, except for

II. ISOMORPHIC NODES

Additional properties, such as edge labels and weights, should
be compared when available.

Real-world graphs tend to have many low-degree nodes and
a small number of high-degree nodes, following a scale-free
degree distribution [5]. Given this distribution, it is improbable
that two randomly chosen high-degree nodes would have the
same neighbours. The probability of two nodes having the
same neighbours decreases significantly with the degree of
those nodes. Therefore, if two high-degree nodes have the
same neighbours, they may be an ING oddity and warrant
further investigation. This property can be exploited to reduce

pathological cases, linear complexity with the number of Uhttps://github.com/AnacletoL AB/grape/blob/main/tutorials/Billion-scale%
nodes. 20attributed%20isomorphic%20nodes %20with%20GRAPE.ipynb
979-8-3503-1199-0/23/$31.00 ©2023 IEEE 230

DOI 10.1109/IPDPSW59300.2023.00046

the number of nodes to be examined by restricting the search
to nodes v € V' with degree d(v) > dpin.

IV. ISOMORPHIC NODE GROUPS DETECTION

Checking exhaustively whether any two nodes v, w € V are
isomorphic is expensive. Therefore, to scale, we must reduce
the number of comparisons as much as possible. Our approach
fingerprints each node’s local properties through a hash: this
allows us to limit the comparisons to the nodes within the same
hash-defined bucket and to minimise the number of extensive
comparisons to execute.

The algorithm starts by computing in parallel the vector
of the nodes v € V that have a degree d(v) higher than a
specified minimum degree dp, (lines 3 through 5), alongside
with a hash of the local properties of the node, such as the label
and neighbours, using a provided hash method n : V. — N.
Our approach is detailed in Section V.

The algorithm then semi-sorts in parallel H (line 6) to
create contiguous groups of nodes with identical hashes [6].
While sub-optimal, we employed a parallel BlockQuick-
Sort [7] in the experiments. Using a semi-sort may lead to
better performance.

We iterate in parallel over the contiguous groups of v € H
with identical hash. We start by creating the set of candidate
isomorphic groups I’ (line 9) and iterating on the nodes in
v € =, and for each one, we check whether v is isomorphic
to any of the budding INGs +’ € I’. We use a slight abuse
of notation v = ~’ to mean that we compare the node v with
a node of +'. If we identify a compatible group, we add the
node to it. Otherwise, we create a new singleton group with
exclusively the node v (lines 10 to 19). Finally, we add to
the INGs set I all of the non-trivial groups 4’ € I’ (lines 20
to 22).

V. HASHES

The hash strategies should produce for each node a hash
that captures the local properties of a given node to minimise
the number of exhaustive comparisons to execute and must not
cause false negatives. The key insight is that two topologically
indistinguishable isomorphic nodes a = b can have different
neighbourhoods N (a) # N(b). Both nodes might appear in
each-others neighbourhoods, e.g. a € N (b), or have self-loops,
e.g. a € N(a). For this reason, to design a viable node-specific
hash function 7 : V' — Nsuch thata 2 b = n(a) = n(b), it
is paramount to identify node properties that avoid including
all nodes ¢ € V that might be isomorphic ¢ = ¢ in their
computation, while trying to minimise collisions.

A. Self-loops-excluded degree-based hash

Nodes may have one or more self-loops and be connected
(Figure 2). Such nodes are isomorphic since they have the
same topology. Yet, they do not share the same neighbour-
hoods.

Given a node v, we define its self-loops-excluded degree
d(v) as the degree d(v) minus the number of its self-loops:

d(v) = d(v) — [{w € N(v) | w = v}

231

Algorithm 1: Isomorphic node groups detection
Input : Graph G = (V, E), degree din,
hashn:V =+ N
Output: List of isomorphic node groups I
1 I + empty vector;
2 H <+ empty vector;
3 for node v € V do in parallel

4 if d(v) > dnin then

s || Happend((n(v),v));

6 H <« semi-sort in parallel H;

7 Hjser < iterator over slices of H with equal hash;
8 for candidate group ~v € Hj;., do in parallel
9 I« 1;

10 foreach node v € v do

11 match_found < false;

12 foreach group ' € I' do

13 if v =~ then

14 match_found < true;

15 ~’.append(v);

16 break;

17 if not match_found then

18 I .append({v});

19 break;
20 foreach group v’ € I’ do

21 if |[7/| > 1 then

2 | Iappend(v');
23 return /;

All isomorphic nodes have the same self-loops-excluded
degree. Thus, we can use it as a component for the hash.
The node label may be used in the hash if available.

B. Adjusted neighbours

We can improve the hash by including part of the immediate
node neighbourhood. Given two nodes A and B, the subset
of shared neighbours that are not the isomorphic nodes them-
selves is all nodes with self-loops-excluded degrees different
from d(v) (Figure 2). For any node v € V, we define an
adjusted neighbourhood N (v) C N(v) as follows:

N(v) ={w e N(v) | d(v) # d(w)}

We can use the first k& sorted adjusted neighbours as an
additional hash component. The edge labels may be used in
the hash if available. We exclude edge weights from the hash
as they are subject to float errors which might cause false
negatives.

VI. EXPERIMENTS

The experiments were run on an AMD Ryzen 9 3900x CPU
12 cores (24 threads) @ 4Ghz paired with four banks of
32GB DDR4 3200 MT/s RAM (128GB). In all experiments,
where not otherwise specified, we used a minimum degree
of din = 100, k£ = 1000 adjusted neighbours, and as hash
function AHash.

\4"
-

Fig. 2. Connected isomorphic nodes with self-loops: isomorphic nodes
may be connected or have self-loops. Directly comparing their neighbourhood
would fail, and more complex comparative schemas are necessary.

TABLE I
SUMMARY OF THE DATASETS’ MAIN CHARACTERISTICS
Nodes Edges
Graph id Graph name # Types # Types
1 Saccharomyces TK 23K 1M X
Cerevisiae [2]
2 Homo Sapiens [2] 20K 62K 6M X
3 Mus Musculus [2] 22K 57K ™ X
4 KGCOVID19 [8] 570K 20 18M 47
5 Friendster [10] 65M X 1.8G X
6 Wikidata [9] 1.3G X 6.2G IK
7 ClueWeb09 [10], 1.6G X 7.8G X
[11]
A. Datasets

We considered seven real-world graphs. These datasets span
from STRING’s v11.5 weighted protein-protein interaction
graphs [2] to knowledge graphs (KG) such as KGCOVID19
(v20221102) [8] and Wikidata (latest-truthy, 27-10-2021) [9],
and web graphs such as Friendster [10] and ClueWeb09 [10],
[11]. Whenever node or edge attributes are available, we
employ them in node isomorphism detection. The datasets’
main characteristics are summarised in Table I. The first
column of Table I is the graph ID, and it is used in all other
result tables.

B. Impact of hash function

We used four hash functions to evaluate the algorithm’s
sensibility to the used hash. These included xXhash [12],
AHash [13], Siphash2-4 [14], and lastly, a simple custom
hash composed of xor and the addition of a constant. We
observe that the algorithm’s performance is not sensitive to the
hash uniformity guarantees and achieves the best performance
with the simple hash, which has the least computational
requirements and the no uniformity guarantee. The single
thread wall times are in Table II.

C. Scalability

The algorithm generally shows near-linear scalability with
the number of employed cores from 1 to 12. However, both for
large graphs and hyper-threading, we observe marginal perfor-
mance improvements; this may be caused by the algorithm
being primarily memory-bounded by the memory accesses
needed to compute the hashes. The wall times by the number
of threads are in Table III.

232

TABLE II
SINGLE THREAD TIME (MS) BY HASH

Id Simple AHash SipHash2-4 xXhash
1 25.3+0.8 27.4+0.6 44.7+£0.8 139 £4.5
2 136 3 149.7+1.3 2424+ 1.8 TAT £ 15
3 148 +£4 163.6 2.7 266 1 4.7 816 + 22
4 2k £+ 65 2k £ 65 2.5k £81 3.4k £ 98
5 143k £722 144k £647 243k £ 1.5k 344k £ 2k
6 389 +427 420k £ 873 446k £ 962 586 + 1k
7 122k +£685 126k £753 202k +1.4k 370k £ 2k

TABLE III
WALL TIME (MS) BY NUMBER OF THREADS
Id 1 6 12 24
1 27.440.6 4+£0.17 2+0 2404
2 150+ 1.3 25£0.1 12 £0.6 10+£0.3
3 164 £3 27+0.5 13£0.5 11£0.2
4 2k £ 65 717+ 19 374+ 11 224 £ 10
5 144k £647 25k 270 14k +£483 13k 133
6 420k £873 70k 890 43k £103 38k 230
7 126k £753 73k+359 56k +£432 38k +200

D. Impact of adjusted neighbours

We explore values of adjusted k& neighbours from O, i.e.
using only the self-loop-excluded degree, to 1000. Higher val-
ues of k increase the hash compute time but might reduce the
number of collisions. Graphs with similar high-degree nodes,
like Wikidata, benefit the most from a high k. Otherwise, we
observe that using a small number of neighbours (10) generally
improves the performance, but higher values such as 100 or
1000 rapidly deteriorate them. The single thread wall times
are in Table IV, and values bigger than twelve hours (43M
ms) are considered out-of-time (OOT).

E. Impact of degree threshold

In all previous experiments, we considered a threshold of
dyin = 100, which is reasonable for STRING graphs but low
for larger graphs. In this subsection, we explore the impact of
dvin on the wall time and the number of INGs.

The wall time required decreases substantially while detect-
ing high-degree INGs. The single thread wall times and the
number of INGs are in Tables V and VI, respectively.

F. Discussion of identified ING oddities

We have identified several high-degree INGs (see Table VI).
By using AHash, k = 10, a single thread, dyn = 1000, and

TABLE IV
SINGLE THREAD TIME (MS) BY k ADJUSTED NEIGHBOURS
Id 0 10 50 100 1000
1 2+0 21403 5+0 8+0.1 27+ 0.6
2 11+0 15+04 24 4+0.3 37+0.4 150 £1.3
3 10+0 13+0.4 23+0.3 360 164 £ 2.7
4 102+1.4 53+ 1 202 +3 439+ 6 2k £+ 65
5 10M 4+ 247k 5k £65 25k £244 54k + 1k 144k £+ 1k
6 O0oT O0T OooT OOT 420k + 1k
7 OOT 12k+63 30k+154 57k+ 1k 126k + 1k

TABLE V
SINGLE THREAD TIME (MS) BY DEGREE THRESHOLD dyN
Id 100 500 1000 10k 100k
1 274+ 0.6 14+0 1+0.1 0 0
2 150+ 1.3 112+1 4940 0 0
3 164 + 2.7 128 +1 66 +0 0 0
4 2056 + 65 1k+7 473 +3 85+0 0
5 144k +647 43k + 1k 12k 4+ 286 0 0
6 420k +£873 51k+33 33k+903 48k+8 24k+£5
7 126k £664 42k £+ 21 22k+10 27k+2 23k+2
TABLE VI
NUMBER OF INGS BY DEGREE THRESHOLD dyiN

Id 100 500 1000 10k 100k

1 0 0 0 0 0

2 0 0 0 0 0

3 8 4 1 0 0

4 907 14 3 0 0

5 58 9 8 0 0

6 20756 6462 3749 483 148

7 91294 10872 4298 0 0

accounting for edge weights and node labels, we identified two
isoform proteins in STRING Mus Musculus, namely Rpl7a-
ps3 and Rpl7a-ps8 in 4ms. It may be the case that one of
the two proteins needs to be removed. Similarly, we identified
three INGs in KGCOVID in 6ms, considering both node and
edge labels: the first is the triple Watasenia-luciferin, Renilla-
luciferin and Cypridina-luciferin, all activity related to bio-
luminescence in different marine species. The second group is
a tuple composed of CHEMBL 132268 and CHEMBL388581.
It is unclear to the authors why these compounds should be
topologically identical. Finally, the isomorphic tuple composed
of PODTCY, a protein of SARS-CoV-2 of 2019, and P59595,
the analogous core protein in SARS-CoV-1 from 2002. This is
a notable oddity, as topological edge prediction methods can-
not distinguish the proteins from the two viruses. A solution
to these INGs is to integrate more information into the KG.
The INGs from other graphs are not analogously interpretable.

VII. CONCLUSIONS

The paper presents an algorithm to identify attributed INGs,
which was evaluated for scalability, how it is affected by the
hash function, the number of adjusted & neighbours, and the
threshold dyn. The results show that the algorithm has near-
linear scalability with the number of cores and that using a
small £ improves performance, especially in larger graphs.
Additionally, increasing dyn reduces wall time while allowing
the detection of less likely INGs.

We identified ING oddities in real-world graphs, such as iso-
forms in STRING Mus Musculus and 3 INGs in KGCOVID.

The algorithm can be deployed in QC pipelines and used
to improve and monitor the quality of graphs.

VIII. ACKNOWLEDGEMENTS

David Bader is supported in part by NSF Grant 2109988.

233

(1]
[2]

[3]

[4]

[6]

[71

[9]

[10]

[11]
[12]
[13]

[14]

REFERENCES

R. C. Read and D. G. Corneil, “The graph isomorphism disease,” Journal
of Graph Theory, vol. 1, no. 4, pp. 339-363, 1977.

D. Szklarczyk, A. L. Gable, K. C. Nastou, D. Lyon, R. Kirsch,
S. Pyysalo, N. T. Doncheva, M. Legeay, T. Fang, P. Bork et al., “The
STRING database in 2021: customizable protein-protein networks, and
functional characterization of user-uploaded gene/measurement sets,”
Nucleic Acids Research, vol. 49, no. D1, pp. D605-D612, 2021.

E. Huaman, E. Kirle, and D. Fensel, “Duplication detection in
knowledge graphs: Literature and tools,” 2020. [Online]. Available:
https://arxiv.org/abs/2004.08257

L. Cappelletti, T. Fontana, E. Casiraghi, V. Ravanmehr, T. J.
Callahan, M. P. Joachimiak, C. J. Mungall, P. N. Robinson, J. Reese,
and G. Valentini, “GraPE: fast and scalable Graph Processing and
Embedding,” 2021. [Online]. Available: https://arxiv.org/abs/2110.06196
A.-L. Barabasi and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509-512, 1999.

H. Bast and T. Hagerup, “Fast parallel space allocation, estimation, and
integer sorting,” Information and Computation, vol. 1, no. 123, pp. 72—
110, 1995.

S. Edelkamp and A. Weil3, “Blockquicksort: Avoiding branch mispredic-
tions in quicksort,” Journal of Experimental Algorithmics (JEA), vol. 24,
pp. 1-22, 2019.

J. T. Reese, D. Unni, T. J. Callahan, L. Cappelletti, V. Ravanmehr,
S. Carbon, K. A. Shefchek, B. M. Good, J. P. Balhoff, T. Fontana,
H. Blau, N. Matentzoglu, N. L. Harris, M. C. Munoz-Torres, M. A.
Haendel, P. N. Robinson, M. P. Joachimiak, and C. J. Mungall, “KG-
COVID-19: A framework to produce customized knowledge graphs for
COVID-19 response,” Patterns, vol. 2, no. 1, p. 100155, 2021.

D. Vrandec¢i¢ and M. Krotzsch, “Wikidata: a free collaborative knowl-
edgebase,” Communications of the ACM, vol. 57, no. 10, pp. 78-85,
2014.

R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, ser. AAAT’15.
AAAI Press, 2015, p. 4292-4293.

C. L. Clarke, N. Craswell, and 1. Soboroff, “Overview of the TREC
2009 web track,” DTIC Document, Tech. Rep., 2009.

Y. Collet, “xxHash: Extremely fast hash algorithm,” 2016. [Online].
Available: http://cyan4973.github.io/xxHash/

T. Kaitchuck, “aHash,” 2019. [Online]. Available: https://github.com/
tkaitchuck/aHash

J.-P. Aumasson and D. J. Bernstein, “SipHash: a fast short-input PRF,”
in International Conference on Cryptology in India. Springer, 2012,
pp. 489-508.

