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Koopman Operator Inspired Nonlinear System Identification*

Dan Wilson
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Abstract. Koopman analysis provides a general theoretical underpinning for widely used dynamic mode de-
composition algorithms which approximate the behavior of a nonlinear dynamical system using a
linear operator. While such methods have proven to be remarkably useful in the analysis of time-
series data, the resulting linear models must generally be of high order to accurately approximate
fundamentally nonlinear behaviors. This issue poses an inherent risk of overfitting to training data,
thereby limiting predictive capabilities. By contrast, this work explores strategies for nonlinear data-
driven system identification using strategies inspired by Koopman analysis. General strategies that
yield nonlinear models are presented for systems both with and without control. Subsequent pro-
jection of the resulting nonlinear equations onto a low-rank basis yields a low-order representation
for the underlying dynamical system. In both computational and experimental examples considered
in this work, linear estimators of the Koopman operator are generally only able to provide short-
term predictions for the observable dynamics, while comparable nonlinear estimators for the system
dynamics provide accurate predictions on substantially longer timescales and replicate infinite-time
behaviors that linear predictors cannot.
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1. Introduction. Model identification is a necessary first step in the design, optimiza-
tion, control, and estimation of complex dynamical systems. When the mechanisms that
underlie the dynamics are well understood, models can often be derived using first principles
approaches and subsequently fitting to available data. However, in applications where an
underlying system is too complicated to write down the underlying equations, data-driven
model identification can be a powerful alternative [1], [2]. Substantial progress has been made
in recent years in the development of algorithms for inferring dynamical models strictly from
time-series data. Dynamic mode decomposition (DMD) [1], [3], [4] is one such algorithm, with
the ability to represent the evolution of snapshot data in terms of a collection of linear modes
with associated eigenvalues that determine the growth/decay/oscillation rates. This general
framework has inspired numerous variations that can, for instance, incorporate the influence
of an exogenous control input [5], account for noise and uncertainty [6], and continuously
adjust when the system parameters are time-varying [7].
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1446 DAN WILSON

While DMD has been used in a wide variety of applications to explicate the underlying
behavior of snapshot data in terms of eigenmode and eigenvalue pairs, without additional
modifications it yields a linear estimator for the underlying dynamics. Alternative approaches
have been developed to identify fully nonlinear representations for the underlying equations
from data [8], [9], [10], [11]. These methods typically consider a large nonlinear function
library and subsequently use machine learning algorithms to choose a sparse subset that best
matches the training data. While such methods can be readily applied to identify sparse
representations of highly nonlinear (and even chaotic) systems, their efficacy is dependent on
the choice of an appropriate nonlinear function library. Related machine learning approaches
using neural networks have also achieved success for prediction in highly nonlinear dynamical
systems [12], [13], [14]. Other model identification strategies focus on the use of time-delay
embeddings to infer low-dimensional models with time-series data obtained from nonlinear
systems [15], [16], [17], [18].

Many of the data-driven model identification strategies described above have a close con-
nection to Koopman analysis [19], [20], [21]. Koopman-based approaches generally allow for
the representation of a nonlinear dynamical system as a linear operator acting on an infinite-
dimensional observable space. Such approaches are distinct from standard linearization tech-
niques that consider the dynamics in a close neighborhood of some nominal solution. Rather,
the goal of Koopman analysis is to identify a linear operator that can accurately capture fun-
damentally nonlinear dynamics---the key challenge is in the identification of a suitable finite
basis to represent the action of the generally infinite-dimensional Koopman operator. The
connection between DMD and spectral analysis of the Koopman operator is well established
[4], and in applications where high-dimensional data is readily available, the DMD algorithm
can indeed be used to provide a finite-dimensional approximation of the Koopman operator.
Extensions of the DMD algorithm have illustrated that more accurate approximations of the
Koopman operator can be obtained using DMD in conjunction with a set of lifting functions
[22] and/or time-delayed embeddings of snapshot data [18]. Additional accuracy can also be
obtained using an adaptive strategy that uses DMD to obtain a continuous family of linear
models and actively chooses the one that provides the best representation at every instant
[23].

How best to approximate the action of the Koopman operator from snapshot data remains
an open question. DMD separates data into snapshot pairs and subsequently finds a linear
operator that provides a least squares fit for the mapping from one snapshot to the next. This
is currently the most widely used approach. An obvious advantage of linear estimators of the
Koopman operator is that they allow for subsequent analysis using a wide variety of linear
techniques. Nonetheless, such linear estimators are not always suitable for highly nonlinear
systems since finite-dimensional linear operators cannot be used, for instance, to replicate
the infinite-time behavior of systems with multiple hyperbolic fixed points or systems with
stable limit cycles (see Appendix A for further discussion of this point). Further limitations of
linear estimators can also be seen in [24], which established the difficulty of linear data-driven
model identification for even the relatively simple Burgers equation using DMD owing to the
existence of repeated Koopman eigenvalues with linearly independent Koopman eigenmodes.
Alternatively, nonlinear models obtained from data-driven techniques are often more diffi-
cult to analyze, but can admit lower-dimensional realizations and can often provide accurate
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KOOPMAN INSPIRED NONLINEAR SYSTEM IDENTIFICATION 1447

representations of chaotic behavior [9], [12], [13]. Recent works have considered nonlinear es-
timation strategies. For instance, [25] approximates separate Koopman operators that result
when using different values of an applied control input and uses this information to formulate
a switching time optimization problem. Related approaches consider bilinear approximations
of the Koopman operator for control systems [26], [27], [28].

This work explores strategies for nonlinear data-driven system identification using methods
inspired by Koopman analysis. General strategies that yield nonlinear models are presented for
systems both with and without control. In the various examples considered in this work, only
short-term predictions of the dynamical behavior can be obtained using linear estimators such
as DMD [1] and extended DMD [22]. By contrast, comparable nonlinear model identification
strategies proposed here are able to provide accurate long-term estimates for the dynamics of
model observables and yield accurate information about limit cycling behaviors and basin of
attraction estimates. The organization of this paper is as follows: Section 2 provides necessary
background on Koopman operator theory along with a brief description of associated data-
driven model identification techniques including DMD [1], extended DMD [22], and Koopman
model predictive control [29]. Section 3 proposes Koopman-inspired algorithms for obtaining
a nonlinear approximation for a nonlinear system from snapshot data in both autonomous and
controlled systems. The proposed approach is related to the extended DMD algorithm [22] in
that it considers a dictionary of functions of the observables. However, instead of estimating
the action of the Koopman operator on each of the elements of the dictionary, the explicit
nonlinear dependence of the dictionary elements on the observables is retained. A variety of
examples are presented in section 4. Here, linear estimators for the Koopman operator are
generally able to provide short-term predictions for the dynamics of observables; comparable
nonlinear estimators for the system dynamics provide accurate predictions on substantially
longer timescales and accurately identify infinite-time behaviors. Concluding remarks and
suggestions for extension are provided in section 5.

2. Background.

2.1. Koopman operator theory. Consider a discrete time dynamical system

(1) x+ = F (x),

where x\in \scrX \subseteq \BbbR n is the state and F gives the potentially nonlinear dynamics of the mapping
x \mapsto \rightarrow x+. The Koopman operator K :\scrF \rightarrow \scrF acts on the vector space of observables so that

(2) K\psi (x)\equiv \psi (F (x))

for every \psi : \scrX \rightarrow \BbbC belonging to the space of observables \scrF . As discussed in [30], Hilbert
spaces are often used for the set of observables, for instance, Lebesgue square-integrable
functions. The Koopman operator is linear, owing to the linearity of the composition. As
such, it can be used to represent the dynamics associated with a fully nonlinear system.
Approaches that use Koopman analysis are distinct from standard linearization techniques
that are only valid in a close neighborhood of some nominal solution. Note that while the
Koopman operator is linear, it is generally infinite-dimensional [19], [20], [21]. In practical
applications, the critical challenge of Koopman analysis is in the identification of a finite-
dimensional approximation of the Koopman operator.
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1448 DAN WILSON

2.2. Finite-dimensional approximation of the Koopman operator. Dynamic mode de-
composition (DMD) [1], [3], [31] is one standard approach for identifying a finite-dimensional
approximation of the Koopman operator. To summarize this algorithm, one can consider a
series of data snapshots

(3) si = (g(xi), g(x
+
i ))

for i = 1, . . . , d, where g(x) \in \BbbR m =
\bigl[ 

\psi 1(x), . . . , \psi m(x)
\bigr] 

is a set of observables obtained from
the data and x+i = F (xi). The goal of DMD is to identify a linear dynamical system of the
form

(4) g+i =Agi,

where gi = g(xi), g
+
i = g(x+i ), and A\in \BbbR m\times m maps the observables from one time step to the

next. Such an estimate can be found according to a least squares optimization,

(5) A=X+X\dagger ,

where X \equiv [g1 . . . gd], X
+ \equiv [g+1 . . . g

+
d ], and

\dagger denotes the pseudoinverse. As a slight modi-
fication, instead of taking the pseudoinverse of X as in (5), it is often desirable to obtain a
lower rank representation by first taking the singular value decomposition of X and truncating
terms associated with low magnitude singular values [5], [17]. Notice that the DMD algorithm
as described above does not require knowledge of the underlying state and as such can be im-
plemented in a purely data-driven setting. DMD often struggles in applications where few
observables are available, i.e., when m is small. In such cases, extended DMD (EDMD) can
be used [22], which considers a lifted observable space

(6) h(x) =

\biggl[ 

g(x)
f\mathrm{l}\mathrm{i}\mathrm{f}\mathrm{t}(g(x))

\biggr] 

\in \BbbR 
m+b,

where f\mathrm{l}\mathrm{i}\mathrm{f}\mathrm{t}(g(x))\in \BbbR b is a possibly nonlinear function of the observables called a ``dictionary.""
As before, letting hi = h(xi) and h

+
i = h(x+i ) comprise snapshot pairs with

H \equiv 
\bigl[ 

h1 . . . hd
\bigr] 

,

H+ \equiv 
\bigl[ 

h+1 . . . h
+
d

\bigr] 

,(7)

an estimate for the Koopman operator using the lifted coordinates can be obtained according
to A\mathrm{l}\mathrm{i}\mathrm{f}\mathrm{t} =H+H\dagger . The EDMD approach can provide more accurate estimates of the Koopman
operator than the standard DMD approach. Indeed, in some cases the estimated Koopman
operator converges to the true Koopman operator in the limit as both the size of the lifted
state and number of measurements approach infinity [32], [33]. Reference [34] derives bounds
on approximation errors for finite data. Possible choices of lifted coordinates include poly-
nomials, radial basis functions, and Fourier modes [22]. Additionally, delay embeddings of
time-series measurements of observables [17], [18] have also yielded useful results in a variety
of applications.
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KOOPMAN INSPIRED NONLINEAR SYSTEM IDENTIFICATION 1449

2.3. Koopman-based model identification with control. Koopman-based approaches
can readily be generalized to actuated systems [29], [35], [36]. Following the approach sug-
gested in [29], consider a controlled dynamical system

(8) x+ = F (x,u),

with output also given by (2). The above equation is identical to (1) with the incorporation of
a control input u\in \BbbR q \subset \scrU . Following the approach from [29], one can define an extended state
space that is the product of the original state space \BbbR n and the space of all input sequences
l(\scrU ) = \{ (ui)\infty i=0| ui \in \scrU \} . Defining an observable \phi : \BbbR n \times l(\scrU ) \rightarrow \BbbR belonging to a space of
observables\scrH , the nonautonomous Koopman operatorK :\scrH \rightarrow \scrH can be defined according to

(9) K\phi (x, (ui)
\infty 
i=0) = \phi (F (x,u0), (ui)

\infty 
i=1).

Leveraging the EDMD algorithm, an estimate for the nonautonomous Koopman operator
can be obtained by defining a vector of lifted coordinates,

(10) p(xi) =

\left[ 

 

g(xi)
f\mathrm{l}\mathrm{i}\mathrm{f}\mathrm{t}(g(xi))

ui

\right] 

 ,

and determining an estimate for the linear dynamical system p(x+i ) = Acp(xi), where
Ac \in \BbbR (m+b+q)\times (m+b+q). As noted in [29], one is generally not interested in predicting the last
q components of p(x+i ), i.e., those associated with the control input. As such, the estimation
of the final q rows of Ac can be neglected. Let \=A correspond to the first m+b rows of Ac. Par-
titioning \=A =

\bigl[ 

A B
\bigr] 

with A \in \BbbR (m+b)\times (m+b) and B \in \BbbR (m+b)\times q, a linear, finite-dimensional
approximation of the Koopman operator can be obtained using a series of snapshot triples,

(11) wi = (hi, h
+
i , ui)

for i = 1, . . . , d. Recall that hi and h
+
i were defined below (6). Once again, defining H and

H+ as in (7) and letting \Upsilon =
\bigl[ 

u1 . . . ud
\bigr] 

, an estimate for \=A can be obtained according to

(12) \=A=
\bigl[ 

A B
\bigr] 

=H+

\biggl[ 

H
\Upsilon 

\biggr] \dagger 

,

ultimately yielding the state space representation

(13) h+i =Ahi +Bui.

Using the above equation, the evolution of the observables can be recovered from the first
m entries of h(x). Note that the algorithms described in sections 2.2 and 2.3 can also be
modified to provide estimates for the Koopman generator as described in [37].
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1450 DAN WILSON

3. Nonlinear system identification inspired by Koopman analysis.

3.1. Nonlinear predictors for autonomous systems. The estimation strategies summa-
rized in sections 2.2 and 2.3 yield linear models, for instance, of the form (4) and (13). The
strategy detailed below allows for additional nonlinear terms in the prediction of the dynam-
ics. To begin, consider an unperturbed, discrete time dynamical system of the form (1) with
observables g(x) \in \BbbR m. Leveraging the delayed embedding approaches considered in [17] and
[18], one can define a lifted state

(14) \gamma i =

\left[ 

 

 

 

 

h(xi)
h(xi - 1)

...
h(xi - z)

\right] 

 

 

 

 

,

where z \in \BbbN determines the length of the delayed embedding and h(x) is defined as in (6).
Here, \gamma i \in \BbbR M with M = (z + 1)(m+ b). Next, a secondary lifting is defined

(15) \sigma i =

\biggl[ 

\gamma i
fn(\gamma i)

\biggr] 

,

where fn(\gamma i)\in \BbbR L is an additional, generally nonlinear function of the lifted state \gamma i. The term
fn represents an additional user specified lifting of the data. For example, these terms can
be comprised of polynomials, radial basis functions, and Fourier modes [22]. Letting \sigma i and
\sigma +i be the lifted coordinates on successive iterations, a direct implementation of the EDMD
algorithm detailed in section 2.2 would seek a matrix A that solves

(16) min
A

\Biggl[ 

d
\sum 

i=1

| | \sigma +i  - A\sigma i| | F
\Biggr] 

for a collection of data (\sigma i, \sigma 
+
i ) for i = 1, . . . , d where | | \cdot | | F denotes the Frobenius norm.

Alternatively, one can instead neglect the prediction of the final L states because they are
direct functions of \gamma i. In this case, defining the matrix \^A to be the first M rows of A, and
letting \^A=

\bigl[ 

An Cn

\bigr] 

, where An \in \BbbR M\times M and Cn \in \BbbR M\times L, the minimization problem becomes

(17) min
An,Cn

\Biggl[ 

d
\sum 

i=1

| | \gamma +i  - An\gamma i  - Cnfn(\gamma i)| | F
\Biggr] 

.

This minimization problem can be solved by computing

(18) \^A=
\bigl[ 

An Cn

\bigr] 

=\Gamma +

\biggl[ 

\Gamma 
Fn

\biggr] \dagger 

,

where \Gamma \equiv 
\bigl[ 

\gamma 1 . . . \gamma d
\bigr] 

, \Gamma + \equiv 
\bigl[ 

\gamma +1 . . . \gamma 
+
d

\bigr] 

, and Fn =
\bigl[ 

fn(\gamma 1) . . . fn(\gamma d)
\bigr] 

. The resulting model
takes the form

(19) \gamma +i =An\gamma i +Cnfn(\gamma i).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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KOOPMAN INSPIRED NONLINEAR SYSTEM IDENTIFICATION 1451

Lower-rank approximations of An and Cn may be desirable in order to avoid overfitting to
the measured data. In this instance, one can consider the singular value decomposition

(20)

\biggl[ 

\Gamma 
Fn

\biggr] 

=U\Sigma V T ,

where U \in \BbbR (M+L)\times (M+L), \Sigma \in \BbbR (M+L)\times d, and V \in \BbbR d\times d, and T denotes the matrix transpose.
Note that U and V are real because \Gamma and Fn are real. A rank r approximation of (20) can
be obtained by letting \~U and \~V represent the first r columns of U and V , respectively, and
by letting \~\Sigma be a square matrix containing the first r singular values from \Sigma so that

(21)

\biggl[ 

\Gamma 
Fn

\biggr] 

\approx \~U \~\Sigma \~V T .

With this representation, one can obtain the lower-rank approximation of the solution of the
optimization problem from (17),

(22)
\bigl[ 

An Cn

\bigr] 

\approx \Gamma + \~V \~\Sigma  - 1 \~UT ,

where  - 1 denotes the matrix inverse.
In contrast to the standard EDMD algorithm, the predictor (19) is nonlinear. Nonetheless,

as illustrated in the examples presented in section 4, the added nonlinearity can accommodate
behaviors that linear predictors cannot.

3.2. Reduced order representations using nonlinear predictors. The model identification
strategy proposed in section 3.1 incorporates a lifting of the observables in conjunction with
a delayed embedding of the lifted coordinates. As such, the resulting nonlinear model may
be high-dimensional, making analysis and control difficult. Because the proposed strategy
yields a nonlinear predictor for the dynamics of the observables of (1) (as opposed to a linear
predictor obtained from the EDMD algorithm), it is generally useful to identify a reduced order
representation of the dynamics. This task can be accomplished by applying proper orthogonal
decomposition (POD) [38], [39] to \Gamma to identify a representative set of modes from the data.
Here, POD modes are found according to the eigenvectors of \Gamma \Gamma T and sorted according to the
magnitude of the associated eigenvalues. Keeping the first \rho POD modes and truncating the
rest (i.e., associated with the smallest eigenvalues) yields an orthogonal basis of POD modes
\Phi =

\bigl[ 

\mu 1 . . . \mu \rho 
\bigr] 

\in \BbbR M\times \rho for which

(23) \gamma i \approx 
\rho 
\sum 

k=1

\mu k\omega k,i,

where \omega k,i is a coefficient that can be obtained according to \omega k,i = \mu Tk \gamma i. Substituting (23)
into (19) yields

(24)

\rho 
\sum 

k=1

\mu k\omega 
+
k,i \approx An

\rho 
\sum 

k=1

\mu k\omega k,i +Cnfn

\Biggl( 

\rho 
\sum 

k=1

\mu k\omega k,i

\Biggr) 

.
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1452 DAN WILSON

Multiplying both sides of the above equation on the left by \Phi T and rearranging (noting that
the POD modes are orthogonal) yields

(25) \Omega +
i =\Phi TAn\Phi \Omega i +\Phi TCnfn(\Phi \Omega i),

where \Omega i =
\bigl[ 

\omega 1,i . . . \omega \rho ,i

\bigr] T
and \Omega + =

\bigl[ 

\omega +
1,i . . . \omega +

\rho ,i

\bigr] T
. Equation (25) provides an order \rho 

approximation for the dynamics of the nonlinear system given by (19). Conversion from the
reduced order basis \Omega i back to the lifted state \gamma i can be accomplished using (23).

3.3. Nonlinear predictors for controlled systems. Control input can readily be incorpo-
rated into the proposed model identification strategy. To do so, considering a general system
of the form (8), one can define the lifted state as

(26) \gamma c,i =

\left[ 

 

 

 

 

 

 

 

 

 

h(xi)
...

h(xi - z)
ui - 1

...
ui - z

\right] 

 

 

 

 

 

 

 

 

 

.

Here, \gamma c,i \in \BbbR Mc , where Mc = (z + 1)(m+ b) + zq. Compared with the lifted state defined in
(14), \gamma c,i also contains an embedding of the preceding z control inputs as suggested in [40].
This lifted state is then augmented with additional states to yield

(27) \sigma c,i =

\left[ 

 

\gamma c,i
ui

fc,n(\gamma c,i)

\right] 

 ,

where fc,n(\gamma c,i)\in \BbbR L is a nonlinear function of \gamma c,i. Let \sigma c,i and \sigma 
+
c,i be the lifted coordinates

on successive iterations. Mirroring the argument from section 3.1 that starts with (16) and
ends with (19), for a collection of snapshot pairs (\sigma c,i, \sigma 

+
c,i) for i= 1, . . . , d, a direct implemen-

tation of the EDMD algorithm would seek a matrix A that solves the minimization problem
minA[

\sum d
i=1 | | \sigma +c,i  - A\sigma c,i| | F ]. However, prediction of the final L + q states can be omitted

because prediction of the control sequence is not of interest and fc,n(\gamma c,i) is an explicit func-
tion of \gamma c,i. Subsequently defining the matrix \^A to be the first Mc rows of A and letting
\^A=

\bigl[ 

Ac Bc Cc

\bigr] 

, the minimization problem becomes

(28) min
Ac,Bc,Cc

\Biggl[ 

d
\sum 

i=1

| | \gamma +c,i  - Ac\gamma c,i  - Bcui  - Ccfc,n(\gamma c,i)| | F
\Biggr] 

,

which can be solved by computing

(29) \^A=
\bigl[ 

Ac Bc Cc

\bigr] 

=\Gamma +
c

\left[ 

 

\Gamma c

U
Fc,n

\right] 

 

\dagger 

,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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KOOPMAN INSPIRED NONLINEAR SYSTEM IDENTIFICATION 1453

where \Gamma c \equiv 
\bigl[ 

\gamma c,1 . . . \gamma c,d
\bigr] 

, \Gamma +
c \equiv 

\bigl[ 

\gamma +c,1 . . . \gamma 
+
c,d

\bigr] 

, U =
\bigl[ 

u1 . . . un
\bigr] 

, and Fc,n =
\bigl[ 

fc,n(\gamma c,1) . . . fc,n(\gamma c,d)
\bigr] 

. The resulting model takes the form

(30) \gamma +c,i =Ac\gamma c,i +Bcui +Ccfc,n(\gamma c,i).

As with the autonomous system of the form (19), a lower-rank approximation of the matrices
Ac, Bc, and Cc can be obtained using a truncated singular value decomposition. Likewise, a
reduced order model similar to (25) can be obtained by projecting (30) onto a reduced order
basis of POD modes obtained from the data contained in \Gamma c.

4. Examples with comparisons to other Koopman-based approaches.

4.1. Forced Duffing equation. Consider the forced Duffing equation

\.x1 = x2,

\.x2 = u(t) - \delta x2  - \alpha x1  - \beta x31,(31)

with observable

(32) g(x) = x1,

taking \alpha =  - 1, \beta = 1, and \delta = 0.5. Here u(t) represents a general control input instead
of the usual periodic driving force. When u(t) = 0, (31) has one unstable equilibrium at
x1 = x2 = 0 and two stable equilibria at x2 = 0 and x1 = \pm 1. Data is obtained for model
identification taking u(t) as follows: Random numbers between  - 1.5 and 1.5 are chosen from
a uniform distribution with the value held constant over a 5 time unit interval. The resulting
curve is smoothed with a spline interpolation and used as the input in (31). Simulation is
performed for t \in [0,1000], and the resulting output is used to implement the model identi-
fication procedure detailed in section 3.3 taking snapshots at time intervals \Delta t= 0.1, i.e., so

that xi =
\bigl[ 

x1(\Delta t(i - 1)) x2(\Delta t(i - 1))
\bigr] T

. Panel A of Figure 1 shows the state of the system
over the first 100 time units of simulation. Panels B and C show the corresponding observable
and input, respectively, used for model identification. To implement the model identification
strategy, a delay embedding of size z = 1 is used taking h(xi) = g(xi) so that \gamma c,i \in \BbbR 3 as
defined in (26). The nonlinear lifting fc,n(\gamma c,i) \in \BbbR 12 is comprised of polynomial terms in
h(xi) and h(xi - 1) up to degree 4 (e.g., h(xi)

2, h(xi)
2h(xi - 1), h(xi)h(x

3
i - 1)). The matrix \^A is

estimated according to (29), which is comprised of the matrices Ac \in \BbbR 3\times 3, Bc \in \BbbR 3\times 1, and
Cc \in \BbbR 3\times 12 from (30).

The inferred model is used to provide basin of attraction estimates for stable fixed points
of the Duffing equation for different constant values of u. For the inferred model, initial

conditions are taken to be \gamma c,1 =
\bigl[ 

x1 x1  - \Delta tx2 0
\bigr] T

and the associated basin of attraction
is assigned according to the resulting steady state value of x1, i.e., x1,ss = limj\rightarrow \infty (eT1 \gamma c,j),
where e1 =

\bigl[ 

1 0 0
\bigr] 

. Results are shown in panels D--I of Figure 1; basin of attraction
estimates between the true model (31) and the inferred model of the form (30) are nearly
identical.

For this example, comparison with linear estimators such as EDMD as described in section
2.3 is not considered. It is well known that linear models cannot be used to accurately represent
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1454 DAN WILSON

Figure 1. Data-driven model identification and subsequent basin of attraction estimates for the forced Duff-
ing equation (31). Panel A shows a representative sample of the forced behavior of this model in response to
the input from panel C. Solid (resp., open) dots indicate stable (resp., unstable) fixed points. Panels B gives
the corresponding observable used for model identification. Note that the state x2 is not directly measured. The
model identification strategy from section 3.3 is performed, and the resulting nonlinear models are used to obtain
basin of attraction estimates for the fixed points that result for various constant values of u. Predicted basins
of attraction are shown in panels E, G, and I when taking u= 0,0.2, and  - 0.2, respectively. Panels D, F, and
H, show comparisons obtained from direct simulations of (31). Stable and unstable fixed points are shown for
reference as closed and open circles, respectively. The colormap represents the value of x1 in the limit as time
approaches infinity for both the inferred and actual models.

the infinite time behavior of systems with multiple hyperbolic fixed points (as is the case in
(31)), complicating their use for providing basin of attraction estimates. EDMD was used in
[22] to obtain basin of attraction estimates of the unforced Duffing equation by considering the
resulting approximation of the nontrivial Koopman eigenmode associated with nondecaying
solutions. This method of analysis, however, would require data from trajectories with initial
conditions uniformly distributed over a domain of interest and with a constant value of u.
By contrast, the approximated basin of attraction estimates from Figure 1 are obtained from
snapshot triples using arbitrary inputs and also provide accurate basin of attraction estimates
for arbitrary values of u.

As a final note regarding this example using the forced Duffing equation, the model equa-
tions (31) can be recast in discrete time by first letting \.x2(t) \approx (x1(t)  - x1(t  - \Delta t))/\Delta t.
Subsequently taking a forward Euler time step yields

x1(t+\Delta t) = a1x1(t) + a2x1(t - \Delta t),

x2(t+\Delta t) = a3u(t) + a4x1(t) + a5x
3
1(t) + a6x1(t - \Delta t),(33)

where a1 = 1, a2 =  - 1, a3 = \Delta t, a4 =  - (\delta + \alpha \Delta t), a5 =  - \beta \Delta t, and a6 = \delta . When using the
delay embedding and polynomial lifting strategy described above, the augmented state (27)
contains all of the polynomial terms that comprise (33). As such, for \Delta t small enough, this
example could readily be handled by a sparse nonlinear model identification algorithm [41], [9]
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KOOPMAN INSPIRED NONLINEAR SYSTEM IDENTIFICATION 1455

that selects appropriate functions from a library and identifies the associated coefficients. The
examples to follow, however, do not admit simple, sparse representations for the dynamics of
the observables.

4.2. Conductance-based neural model. Consider a conductance-based Wang--Buzsaki
model neuron [42] with an additional adaptation current [43]

C \.V = - g\mathrm{N}\mathrm{a}m
3
\infty p(V  - E\mathrm{N}\mathrm{a}) - g\mathrm{K}n

4(V  - EK) - g\mathrm{L}(V  - E\mathrm{L}) - iw + u(t) + ib,

\.p= \gamma [\alpha p(V )(1 - p) - \beta p(V )p] ,

\.n= \gamma [\alpha n(V )(1 - n) - \beta n(V )n] ,

\.w= a(1.5/(1 + exp((b - V )/k)) - w).(34)

Here, V represents the transmembrane voltage, with p and n representing gating variables.
The adaptation current iw = gww(V  - EK) is mediated by the variable w, and ib = 10\mu A/cm2

is a constant baseline current. The input u(t) represents a transmembrane current. The
membrane capacitance, C, is taken to be 1\mu F/cm2. Auxiliary equations governing ionic
currents are

m\infty = \alpha m(V )/(\alpha m(V ) + \beta m(V )),

\beta n(V ) = 0.125exp( - (V + 44)/80),

\alpha n(V ) = - 0.01(V + 34)/(exp( - 0.1(V + 34)) - 1),

\beta p(V ) = 1/(exp( - 0.1(V + 28)) + 1),

\alpha p(V ) = 0.07exp( - (V + 58)/20),

\beta m(V ) = 4exp( - (V + 60)/18),

\alpha m(V ) = - 0.1(V + 35)/(exp( - 0.1(V + 35)) - 1).

Reversal potentials and conductances are E\mathrm{N}\mathrm{a} = 55mV, E\mathrm{K} = - 90mV, E\mathrm{L} = - 65 mV, g\mathrm{N}\mathrm{a} =
35mS/cm2, g\mathrm{K} = 9mS/cm2, g\mathrm{L} = 0.1mS/cm2, gw = 2mS/cm2. Auxiliary parameters are
a = 0.02 ms - 1, b =  - 5 mV,k = 0.5mV , and \gamma = 5. In the absence of input, the neural model
(34) is in a tonically firing regime with a stable limit cycle having period 6.53 ms. The input
u(t) serves to modulate the firing rate of the action potentials.

For the conductance-based neural model from (34), the state is x=
\bigl[ 

V p n w
\bigr] T

. The
observable for the spiking neural model is taken to be

(35) g(x) =

\biggl[ 

V
h

\biggr] 

,

i.e., it is assumed that the variables V and h can be measured directly but that the variables n
and w are inaccessible. The model identification strategy from section 3.3 is implemented using
300 ms of simulated data taking a time step of \Delta t = 0.025 ms with an applied input u(t) =
6sin(2\pi t/200 + 0.0003t2). A delayed embedding of size z = 10 is used taking h(xi) = g(xi) so
that \gamma c,i \in \BbbR 32 as defined in (26). The nonlinear lifting function fc,n(\gamma c,i) = f1(f2(h(xi))). Here
f2(h(xi))\in \BbbR 10, with the jth term given by | | g(xi) - qj | | 2, where qj \in \BbbR 2 is the center of each
radial basis function with the first element (associated with the transmembrane voltage) chosen
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1456 DAN WILSON

Figure 2. Comparisons between the full order model, linear predictor, and proposed nonlinear predictor in
response to various inputs. Panel A (resp., C) shows the response to the pulse input in panel B (resp., D).
The proposed nonlinear predictor accurately reflects the increase (resp., decrease) in firing rate in response
to positive (resp., negative) inputs as well as the subsequent rebound caused by the adaptation current. The
linear predictor obtained using the strategy proposed in [29] is unable to replicate the true model output. Panel
E highlights accurate predictions for the steady state firing rate predicted by the nonlinear inferred model for
various baseline currents. Note that the inputs considered in the results shown above are substantially different
than the oscillatory inputs used for model inference.

randomly from a uniform distribution taking values between  - 300 and 200 and the second
element (associated with the gating variable) chosen randomly from a uniform distribution
taking values between 0 and 1, and | | \cdot | | 2 denotes the 2-norm. The function f1(f2(h(xi)))\in \BbbR 990

provides a second nonlinear lifting and is comprised by taking polynomial combinations of the
elements of f2(h(xi)) up to degree 4. The matrix \^A is estimated according to (29) using a
truncated singular value decomposition of rank 80 to approximate the pseudoinverse. This
information is used to determine Ac \in \BbbR 32\times 32, Bc \in \BbbR 32\times 1, and Cc \in \BbbR 32\times 990 from (30). As
described in section 3.2, a 20-dimensional model is obtained by projecting the inferred model
equations onto a POD basis obtained from the eigenvectors of \Gamma c\Gamma 

T
c .

Simulations of the inferred model are compared to those of the simulations of the true
model (34). Comparisons are also given when using the Koopman model predictive control
strategy from [29], which provides a least squares estimate for the update rule a+i =Aai+Bui,

where the lifted state space in this example is taken to be ai =
\bigl[ 

\gamma Tc,i fc,n(\gamma c,i)
T
\bigr] T

. Results are
shown in Figure 2. Panel A shows the effect of a 10 ms duration positive pulse input as shown in
panel B. Panel C shows the effect of a comparable negative pulse input as shown in panel D. In
each case the proposed method (with the nonlinear predictor) provides a good approximation
for the true model output, while the linear predictor does not. The model obtained from
the nonlinear predictor yields stable oscillations in response to constant inputs---such stable
oscillations are not possible to obtain when considering linear predictors. Pane E shows the
predicted natural frequency for different baseline currents illustrating good agreement with
the true model. These results are particularly noteworthy considering that the model was
trained using only oscillatory inputs and that this model was inferred without direct access
to the auxiliary variables n and w.
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KOOPMAN INSPIRED NONLINEAR SYSTEM IDENTIFICATION 1457

4.3. Coupled population of neural oscillators. In the previous section, the dynamics of a
single conductance-based neuron was considered. Here, the behavior of a coupled population
of identical, noisy thalamic neural oscillators taken from [44] will be considered:

C \.Vj = fV (Vj , pj , rj) + ib + u(t) +
\surd 
2D\eta j +

1

N

N
\sum 

i=1

\sigma c(Vi  - Vj),

\.pj = fp(Vj , pj),

\.rj = fr(Vj , rj),

j = 1, . . . ,N.(36)

Above, Vj is the transmembrane voltage of neuron j, pj and rj are associated gating variables,
N denotes the total number of neurons, u(t) is a transmembrane current stimulus common
to each neuron,

\surd 
2D\eta j is a white noise process with intensity D = 1 associated with neuron

j, and C = 1\mu F/cm2 is a membrane capacitance. For simplicity, neurons are coupled using
all-to-all electrotonic coupling [45] with strength \sigma c; other types of neural coupling could also
be considered. Each of the remaining functions from (36) is described in [44]. The baseline
current ib = 5\mu A/cm2 is chosen so that in the absence of input, coupling, and noise, each
oscillator is in a tonically firing regime with a period of T = 8.39 ms. In the limit that both
u, D, and \sigma c are all small in magnitude, (36) can be well approximated in a phase reduced
form [46], [47], [48],

\.\theta j = \omega +Z(\theta j)

\biggl( 

u(t) +
\surd 
2D\eta j +

1

N

N
\sum 

i=1

\sigma c(V (\theta i) - V (\theta j))

\biggr) 

,

j = 1, . . . ,N,(37)

where \theta j \in [0,2\pi ) is the phase of oscillator i, \omega = 2\pi /T , and Z(\theta ) is the phase response curve
that characterizes the effect of infinitesimal inputs on the phase. In the limit as N \rightarrow \infty , (37)
can be considered according to a probability density \rho (\theta , t) governed by the Fokker--Planck
equation [49]

(38)
\partial \rho 

\partial t
= - \partial 

\partial \theta 
[(\omega +Z(\theta )(u(t) + \sigma c(V  - V (\theta ))))\rho (\theta , t)] +

\partial 2

\partial \theta 2
[DZ2(\theta )\rho (\theta , t)],

with periodic boundary conditions. Here, V =
\int 2\pi 
0 V (\theta )\rho (\theta )d\theta is the average voltage. In

previous work [50], [51], the above equation was analyzed in the context of developing control
strategies to desynchronize a pathologically synchronized population of neural oscillators.
Here, (38) will be used in conjunction with the proposed data-driven model identification
strategy. To obtain simulated data for this purpose, the functions Z(\theta ) and V (\theta ) are computed
numerically for the individual neurons from (36), and (38) is subsequently simulated using
finite difference approximations for the partial derivatives. For this model, the state is \rho i =
\rho (\theta ,\Delta t(i - 1)). The model identification strategy from section 3.3 is implemented using 1000
ms of simulated data taking the time step to be \Delta t = 0.3 ms. The input u(t) for training is
taken as follows: Random numbers between  - 1 and 1 are chosen from a uniform distribution
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1458 DAN WILSON

Figure 3. Response to pulse inputs for the true model (38) and the data-driven inferred models that use
either linear or nonlinear predictors. Panel A shows the response to a 0.01 \mu A/cm2 pulse starting at 1.5 ms. The
true model output is nearly indistinguishable from the output from the inferred nonlinear model. By contrast,
the inferred linear model displays spurious high frequency oscillations. Panels B and C show the response to a
stronger 1 \mu A/cm2 pulse. For this larger pulse, the nonlinear predictor is still nearly identical to the true model
output. The spurious oscillations from the linear predictor become larger when considering the larger input as
shown in panel C. Panel D compares the population phase response curve from (40) obtained from simulations
of the true model (gray line) and the nonlinear inferred model (blue dots). Note that while pulse inputs were
not used for training, the nonlinear inferred model accurately reproduces the response to these pulses.

with the value held constant over a 2 ms interval; the resulting signal is smoothed with a
spline interpolation and used as the input.

Two separate observables are considered for the model (38). For the first,

(39) g(\rho i) = \rho (0,\Delta t(i - 1))\in \BbbR 
1.

To implement the model identification strategy, a delay embedding of size z = 30 is used. No
preliminary lifting is considered so that h(\rho i) = g(\rho i) as defined in (6). As such, \gamma c,i \in \BbbR 61 as
defined in (26). The nonlinear lifting function fc,n(\gamma c,i) \in \BbbR 5952 is comprised of all possible
combinations of polynomial terms taken from h(xi), h(xi - 1), . . . , h(xi - z) up to degree 3. The
matrix \^A from (29) is estimated using a truncated singular value decomposition of rank 40
to approximate the pseudoinverse. This yields approximations of Ac \in \BbbR 61\times 61, Bc \in \BbbR 61\times 1,
and Cc \in \BbbR 61\times 5952 from (30). As described in section 3.2, the resulting nonlinear equation is
projected onto a 20 element POD basis obtained from the eigenvectors of \Gamma c\Gamma 

T
c . Comparisons

are also provided using the Koopman model predictive control strategy from [29], which
provides a least squares estimate for the update rule a+i = Aai +Bui, where the lifted state

space in this example is taken to be ai =
\bigl[ 

\gamma Tc,i fc,n(\gamma c,i)
T
\bigr] T

.
Figure 3 shows simulations using the true model and inferred models in response to pulse

inputs. In panel A, a pulse input of magnitude 0.01 \mu A/cm2 lasting 9 ms in duration is
applied starting at t= 1.5 ms. Output from the proposed nonlinear predictor is nearly indis-
tinguishable from the output from simulations of the true model (38). Conversely, the output
from the model obtained using the linear predictor is accurate for only the first three mil-
liseconds and ultimately develops spurious high frequency oscillations that render the results
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KOOPMAN INSPIRED NONLINEAR SYSTEM IDENTIFICATION 1459

inaccurate. The differences between the linear model and the nonlinear inferred models be-
come more pronounced when using larger inputs; panels B and C show the influence of a
magnitude 1 \mu A/cm2 pulse with the same timing as the one considered in panel A. In this
case, the nonlinear model still performs well, with outputs that are nearly indistinguishable
from the true model outputs. In response to the 1 \mu A/cm2 pulse, the spurious oscillations in
the linear model shown in panel C become substantially more pronounced.

The nonlinear model has a stable limit cycle when u(t) = 0. As such, the collective rhythm
associated with this stable limit cycle can be analyzed with its own phase model of the form

(40) \.\Theta =\Omega +Z(\Theta )u(t).

Here \Theta \in [0,2\pi ) denotes the phase of the collective rhythm, \Omega is the associated natural
frequency, and Z(\Theta ) is the phase response curve to infinitesimal inputs. Here, capitol Greek
letters are used to emphasize that the phase and natural frequency are associated with the
collective rhythm as opposed to the phase and natural frequencies of the individual oscillators
as considered in (37). Here, \Theta = 0 will be defined to occur the moment that \rho (0, t) crosses
0.16 with a positive slope. In some cases, it is possible to compute the necessary terms
for the phase reduction from (40) of a collective rhythm directly in terms of the underlying
equations, i.e., (38) (see, for instance, [52], [53], [54]). Here, Z(\Theta ) will instead be inferred using
the direct method [48], [55]. This strategy is implemented by applying an pulse input u(t) =
M = 1.5\mu A/cm2 for a duration L = 1.5 milliseconds at a known phase \Theta 0 and subsequently
inferring the resulting phase shift \Delta \Theta . This process is then repeated for different values of
\theta 0 to provide pointwise estimates of Z(\Theta 0)\approx \Delta \Theta /ML for both the nonlinear inferred model
and the true model (38). Results are shown in panel D of Figure 3 illustrating that the phase
response of the true model to inputs is nearly identical to the phase response of the nonlinear
inferred model. Note that it is not possible to provide a similar estimate for the linear inferred
model because it does not have a stable periodic orbit.

A second observable is considered for the model (38) to illustrate the generality of the
proposed model identification strategy. This second observable is taken to be

(41) g(\rho i) =

\left[ 

 

 

 

 

 

 

\rho (0,\Delta t(i - 1))
\rho (2\pi /25,\Delta t(i - 1))
\rho (4\pi /25,\Delta t(i - 1))

...
\rho (48\pi /25,\Delta t(i - 1))

\right] 

 

 

 

 

 

 

\in \BbbR 
25,

i.e., the observable is comprised of 25 measurements of \rho (\theta , t) equally spaced in \theta . With
this alternative observable, the model identification strategy is implemented using a delay
embedding of size z = 20. Data for model identification is taken for 1000 ms of simulated data
with a time step of \Delta t= 0.3 ms. The input u(t) used for training is chosen as follows: Random
numbers between  - 0.25 and 0.25 are chosen from a uniform distribution with the value held
constant over a 2 ms interval. The resulting input is smoothed with a spline interpolation
and applied for simulations of the true model (38). Once again, no preliminary lifting is
considered so that h(\rho i) = g(\rho i). Consequently \gamma c,i \in \BbbR 545. The nonlinear lifting function
fc,n(\gamma c,i) \in \BbbR 3250 is comprised of all possible combinations of polynomial terms taken from
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1460 DAN WILSON

Figure 4. Dynamical features of the model obtained using the nonlinear predictor with observables from
(41). Panel A shows an unstable fixed point, \rho fp(\theta ), for the inferred nonlinear model (blue line) which is nearly
identical to the unstable fixed point of the full model (gray line). Unstable eigenvalues associated with these
solutions are nearly identical. Initial conditions near the unstable fixed points of each model are in the basin of
attraction of a stable periodic orbit. Panels B and C show that the periodic orbits, \rho po(\theta , t), obtained for each
model are nearly identical. Panel D highlights a trace of \rho (0, t) for an initial condition near the stable fixed
point. Output from the nonlinear predictor matches the output from the true model. Output from the linear
model matches well in the early parts of this simulation, but does not capture the full increase in the amplitude
of the oscillation.

h(\rho i) up to degree 4. The matrix \^A is estimated according to (29) using a truncated singular
value decomposition of rank 40 to approximate the pseudoinverse. This information is used to
determine Ac \in \BbbR 545\times 545, Bc \in \BbbR 545\times 1, and Cc \in \BbbR 545\times 3250 from (30). As described in section
3.2, a 25-dimensional model is obtained by projecting the inferred model equations onto a
POD basis obtained from the eigenvectors of \Gamma c\Gamma 

T
c . Once again, comparisons are provided

when using the Koopman model predictive control strategy [29] that obtains a least squares
estimate for the update rule a+i = Aai +Bui, where the lifted state space in this example is

taken to be ai =
\bigl[ 

\gamma Tc,i fc,n(\gamma c,i)
T
\bigr] T

.
In addition to accurately predicting the output of the true model in response to input, the

inferred nonlinear model accurately characterizes fixed points and periodic orbits as shown in
Figure 4. For instance, panel A illustrates an unstable fixed point, \rho \mathrm{f}\mathrm{p}(\theta ), that exists both in
the full model (38) and the nonlinear inferred model of the form (30) when taking u(t) = 0. As
indicated in the figure, both the profile of the fixed point solution and the associated unstable,
complex-conjugate discrete time eigenvalues (obtained from the linearization about the fixed
point) are nearly identical. This unstable fixed point emerges in the true model as a result of
a Hopf bifurcation where the coupling strength is the bifurcation parameter. Note that the
model obtained when using the observable (39) also has a fixed point with \rho (0, t) = 0.159 with
associated unstable discrete time eigenvalues \lambda 1,2 = .9740 \pm 0.239i. Despite using different
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KOOPMAN INSPIRED NONLINEAR SYSTEM IDENTIFICATION 1461

data sets, the models inferred from the observables (39) and (41) yield comparable estimates
for the location and stability of this fixed point. Of course, for the model that uses the
single observable (39), it is not possible to reconstruct the full probability density since this
information is unavailable. Initial conditions near this unstable fixed point eventually settle
to a stable periodic orbit; the periodic orbits, \rho \mathrm{p}\mathrm{o}(\theta , t), obtained from the nonlinear predictor
and the true model represented by the colormaps in panels B and C, respectively, are nearly
indistinguishable. Panel D illustrates the time course of p(0, t) for an initial condition near
the unstable fixed point when taking u(t) = 0. The transition from the stable fixed point to
the unstable periodic orbit is well captured by the proposed nonlinear predictor. The model
obtained using the Koopman model predictive control strategy [29] does not accurately reflect
this transition.

4.4. One-dimensional Burgers equation. The Burgers equation is often used as a test bed
for Koopman-based model identification and analysis strategies [24], [40], [56]. This equation
has a convective nonlinearity that is similar to that of the Navier--Stokes equations but has
exact solutions that can be obtained by first transforming to a linear equation using the Cole--
Hopf transformation [57], [58]. Here a one-dimensional version of the Burgers equation is
considered:

(42)
\partial w

\partial t
=

1

Re

\partial 2w

\partial x2
 - w

\partial w

\partial x
.

Here w(x, t) gives the state on the domain x\in [0,1] and Re= 50 is a constant that is analogous
to the Reynolds number from the Navier--Stokes equations. In this example, Dirichlet bound-
ary conditions wL(t) and wR(t) are considered for the boundary at x = 0 and x = 1, respec-

tively. These boundary conditions are also taken to be the inputs, i.e., u(t) =
\bigl[ 

wL(t) wR(t)
\bigr] T

.
For this model, the state is wi =w(x,\Delta t(i - 1)). The model identification strategy from section
3.3 is implemented taking 2000 time units of simulated data with \Delta t= 0.1 ms. The input u(t)
used for training is chosen as follows: For both wL(t) and wR(t), random numbers between
 - 0.5 and 0.5 are chosen from a uniform distribution with the value held constant over a 20
time unit interval. These signals are smoothed with a spline interpolation and the resulting
inputs are used in training simulations.

The observable for the model (42) is taken to be

(43) g(wi) =

\left[ 

 

 

 

 

 

 

w(0,\Delta t(i - 1))
w(0.05,\Delta t(i - 1))
w(0.10,\Delta t(i - 1))

...
w(0.95,\Delta t(i - 1))

\right] 

 

 

 

 

 

 

\in \BbbR 
20,

i.e., the observable is comprised of 20 measurements of w(x, t) equally spaced in x. Following
the definitions given in sections 2 and 3, a delay embedding of size z = 30 is used. No
preliminary lifting is considered so that h(wi) = g(wi) as defined in (6). Here \gamma c,i \in \BbbR 680 as
defined in (26). The nonlinear lifting function fc,n(\gamma c,i) \in \BbbR 1750 is comprised of all possible
combinations of polynomial terms taken from h(wi) up to degree 3. The matrix \^A from (29)
is estimated using a truncated singular value decomposition of rank 80 to approximate the
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1462 DAN WILSON

Figure 5. Accuracy of the linear and nonlinear models inferred from data in response to inputs with different
frequency content. In panel A, inputs similar to those used for training are considered. In panel B, inputs with
higher frequency content are considered. These panels show representative traces of the L2 error over a 200 time
unit window of simulation. In each case, the proposed nonlinear predictor yields results that are approximately
3 orders of magnitude better than the linear predictor. Panels C and D give representative traces of the outputs
from the simulations from panels A and B, respectively. In each case, the nonlinear predictor yields outputs that
are nearly identical to the true model output while the linear predictor yields outputs that are substantially less
accurate. Panel E shows the influence of the model order on the accuracy of the inferred linear and nonlinear
models. For models with order between 10 and 100, most inferred linear models are unstable with errors that
grow unbounded in time. As such, there are fewer data points for the linear predictor in panel E.

pseudoinverse. This yields approximations of Ac \in \BbbR 680\times 680, Bc \in \BbbR 680\times 2, and Cc \in \BbbR 680\times 1750

from (30). As described in section 3.2, the resulting nonlinear equation is projected onto
a lower-dimensional POD basis obtained from the eigenvectors of \Gamma c\Gamma 

T
c . Comparisons are

also provided using the Koopman model predictive control strategy from [29], which gives an
estimate for the update rule a+i = Aai +Bui, where the lifted state space in this example is

taken to be ai =
\bigl[ 

\gamma Tc,i fc,n(\gamma c,i)
T
\bigr] T

. This least squares fitting is implemented according to
(12) using a truncated singular value decomposition retaining different numbers of singular
values as described in the results below.

Comparisons are provided between simulations of the true model (42) and both the linear
and nonlinear inferred models in response to different inputs. Panels A and B show the L2

error, L2 =
\int 1
0 (w\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}(t, x) - w\mathrm{i}\mathrm{n}\mathrm{f}\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{d}(t, x))

2dx, between the true model solutions and the inferred
solutions when using the linear predictor (red lines) and nonlinear predictor (blue lines) for
different inputs. In panel A, wL(t) and wR(t) are chosen similarly to the training data, i.e.,
obtained by choosing random numbers between  - 0.5 and 0.5 from a uniform distribution,
holding the value constant over a 20 time unit interval, and smoothing the resulting input
with a spline interpolation. Note that the inputs are not identical to those used for training
because the random numbers are realized differently. Results from panel B consider a similar
input, except that the values that comprise wL and wR are held constant for only 7 time units
before smoothing. Effectively, this yields inputs with higher frequency content than those
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used for training. In each case, the L2 error is approximately three orders of magnitude lower
when using the nonlinear predictor as compared to the linear predictor. Panels C and D show
representative traces of w(x, t) corresponding to simulations in panels A and B, respectively.
The true model output and the output from the nonlinear model are nearly identical in both
cases, while the linear predictor does not accurately capture the model output. Panel E shows
the average L2 error for inferred models of different order when applying the lower frequency
input. For the linear model, order is determined by the number of singular values retained in
the truncated singular value decomposition used to approximate the pseudoinverse in (12). For
the nonlinear model, order is governed by the dimension of the POD basis used for projection
as described in section 3.2. The linear model performs slightly better as the order increases.
For moderate orders between 10 and 100, the inferred linear model is generally unstable, i.e.,
the inferred matrix A from (13) has unstable eigenvalues. These dots are omitted from panel
E because the error grows unbounded as time approaches infinity. The inferred nonlinear
models do not suffer from the same stability issues as the linear models. Accuracy of the
nonlinear model stops improving once the model order reaches 50, at which point the output
is nearly indistinguishable from the true model output.

4.5. Schlieren images of supersonic flow past a cylinder. Finally, experimental schlieren
image data of cylinder-generated shock-wave/transitional boundary-layer interaction is ana-
lyzed using the proposed nonlinear model identification strategy. Here, the schlieren images
of the Mach 2 flow past a standing cylinder are taken at 100 kHz. Details of the experimental
setup and data collection are provided in [59]. Salient flow features are illustrated in panel
A of Figure 6 with the flow going from left to right. Panel B shows a characteristic schlieren
image taken from this data set. A flat plate is visible on the bottom edge and the cylinder is
visible near the right edge of the image. Differences in pixel intensities roughly correspond to
differences in fluid density gradients. Of particular interest in this data is the location of the
forward lambda shock foot. Previous studies identified a characteristic oscillation frequency of
the forward shock foot of approximately 5 kHz [60], [61], [59] by analyzing power spectral den-
sities and by using linear data analysis techniques such as spectral POD and other techniques
related to DMD.

The data set consists of 25,000 snapshots with each image containing 5,472 pixels. In
order to make the data set more computationally tractable, every other snapshot is removed
so that the data is effectively sampled at 50 kHz. Half of the remaining snapshots are used for
training, and the other half are used to validate the resulting data-driven model. To further
compress the data, snapshots from the training set are represented using a 5 mode POD basis
which captures 48 percent of the total energy as determined by taking the sum of the largest
5 eigenvalues of the covariance matrix and dividing by the total sum of the eigenvalues. The
observable is taken to be

(44) gi =
\bigl[ 

\omega 1,i . . . \omega 5,i

\bigr] T \in \BbbR 
5,

where \omega k,i is the amplitude of the kth POD mode on the ith snapshot. A representation
in the space of the schlieren images can be obtained by taking a linear combination of the
POD modes with weights \omega 1,i, . . . , \omega 5,i. The strategy from section 3.1 is implemented on the
autonomous data set in order to infer a nonlinear model. Once again, no initial lifting is
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1464 DAN WILSON

Figure 6. Panel A shows a schematic depicting the flow geometry used to study shock-wave/transitional
boundary-layer interaction. Mach 2 flow enters from the left and interacts with the cylinder mounted to a flat
plate. Temporal oscillation in the location of the forward shock foot is of particular interest here. Panel B
shows a characteristic schlieren image taken from this data set. Adapted from [59].

considered so that hi = gi. A delay embedding of size z = 25 is used. Consequently, \gamma i \in \BbbR 130

as defined in (14). The nonlinear lifting function fn(\gamma i) \in \BbbR 120 is comprised of all possible
combinations of polynomial terms that comprise hi up to degree 4. The matrix \^A is estimated
according to (18), yielding approximations of An \in \BbbR 130\times 130 and Cn \in \BbbR 130\times 120 in the nonlinear
estimator from (19). As described in section 3.2, the resulting nonlinear model equations are
projected onto a low-rank basis comprised of the 4 most important POD modes obtained from
the eigenvectors of \Gamma \Gamma T .

The inferred nonlinear model of the form (19) has a stable periodic orbit with a frequency
of 4.70 kHz that agrees well with the oscillation frequencies identified in prior studies [60],
[61], [59]. This periodic orbit is identified by taking an initial condition obtained from the
comparison data set (i.e., the portion of the data set not used for training) and iterating
the model (19) until the initial transients decay. In contrast to the results of this study,
the linear techniques applied in these previous studies did not explicitly identify a periodic
orbit, but rather identified characteristic oscillation frequencies observed with the data set.
Figure 7 shows the periodic orbit obtained from the inferred nonlinear model (left column)
as well as raw data from the comparison data set in the right columns. The ten sequential
frames are centered at the lambda shock to emphasize the oscillation in the location of the
forward shock foot and correspond to approximately one period of oscillation. The cylinder
and the flat plate appear in the right and bottom edges each frame, respectively. The middle
column of Figure 7 shows the raw data projected onto the 5 mode POD basis used for the
nonlinear model identification strategy; the left and middle frames are qualitatively similar
to each other both in terms of the location of the forward lambda shock and in terms of the
pixel intensities. Note that the higher frequency flow features, for instance, that appear in the
flow separation region between the forward shock foot, \lambda 1, and the closure shock, \lambda 2, are not
accurately resolved in the reduced order model; these features are filtered out in the initial
projection of the data onto the 5 mode POD basis.
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KOOPMAN INSPIRED NONLINEAR SYSTEM IDENTIFICATION 1465

Figure 7. The inferred nonlinear model of the form (19) has a stable periodic orbit with frequency 4.70 kHz
shown in sequential frames in the left columns. In the fourth frame from the top, the forward shock foot is
farthest from the cylinder. The forward shock foot is closest to the cylinder in the eighth and ninth frames. The
right columns show sequential schlieren images from the comparison data set (i.e., that was not used during
training). The middle panel shows these images projected onto the same 5 POD mode basis used to implement
the nonlinear model identification strategy. While the left and middle columns display slight variations in the
pixel intensities, the periodic orbit identified by the inferred nonlinear model is nearly indistinguishable from
the behavior observed in the experimental data.

For comparison, the extended DMD approach [22] is also implemented on the schlieren
image data set as described in section 2.2 to provide a linear least squares estimate for the

update rule a+i = Aai. Here, the lifted state space is taken to be ai =
\bigl[ 

\gamma Ti fn(\gamma i)
T
\bigr] T

. The
least squares fitting uses a truncated singular value decomposition of rank 200; keeping more
singular values results in an unstable linear system. This extended DMD approach is often
used to provide an approximation for Koopman eigenmodes. However, as noted in [61] it is
often difficult to identify which Koopman eigenmodes are most important in a given data set.
Indeed, Figure 8 shows a plot of frequency of the eigenmodes versus the average amplitude of
the eigenmode from the snapshot data. Here, the frequency associated with a given eigenmode
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1466 DAN WILSON

Figure 8. Extended DMD is applied to the schlieren image data. The resulting eigenmodes are shown
according to their frequency content and their relative importance as gauged by the average amplitude of the
eigenmode observed in the snapshot data. Previous analysis of this data in [60] identified peaks in the power
spectrum at approximately 4.7 kHz, which is consistent with the stable 4.7 kHz periodic orbit that results when
using the proposed nonlinear model identification technique. By contrast, the extended DMD algorithm identifies
two dominant eigenmodes at approximately 20 kHz. The eigenmodes with frequency content near 4.7 kHz do
not stand out relative to the other eigenmodes.

is equal to the imaginary component of log(\lambda A)/2\pi \Delta t, where \lambda A is an eigenvector of the
inferred A matrix and \Delta t is the time between successive snapshots. The associated amplitude
at frame i is given by wT

Aai, where w
T
A is the left eigenvector for eigenvalue \lambda A. Analysis

of the frequency content of these eigenmodes would identify two dominant eigenmodes with
a frequency near 20 kHz. However, power spectrum analysis of the same schlieren image
data performed in [60] identifies a peak in power at approximately 4.7 kHz and relatively
little power in the 20 kHz region. By contrast, the proposed nonlinear model identification
technique identifies a 4.70 kHz stable periodic orbit embedded in the data which is consistent
with peaks in the power spectrum of the imaging data identified in [60].

5. Conclusion. Koopman analysis and associated data-driven model identification algo-
rithms are invaluable tools in the study of nonlinear dynamical systems. In data-driven mod-
eling applications, the vast majority of Koopman-based strategies consider finite-dimensional,
linear estimators for the action of the Koopman operator on observables. This work proposes
a general strategy for data-driven nonlinear system identification using an approach inspired
by Koopman analysis. In the examples considered in this work, the proposed strategy yields
nonlinear models that are substantially more accurate on longer timescales than comparable
models that consider linear estimators for the Koopman operator. It should be noted that the
examples considered in this work did not explicitly consider optimization of the observables
used for fitting, for instance, which might result in a low-dimensional Koopman invariant
subspace [62], [63]. These issues have been considered using machine learning algorithms to
identify an efficient choice for the set of lifting functions [64], [65]. Considering the results
presented in this work, one cannot rule out the possibility that a linear estimator obtained
using DMD or extended DMD could have provided a more accurate representation for the
Koopman operator with a more careful choice of the observables for the examples considered
in this work.
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The proposed algorithm shares similarities with the extended DMD algorithm in that it
uses a dictionary of functions of the observables to lift to a higher-dimensional space. As
shown in [32], [33], in certain cases when using extended DMD the estimated Koopman oper-
ator converges to the true Koopman operator in the limit as both the size of the lifted state
(i.e., dictionary) and number of measurements approach infinity. For practical implementa-
tion, a good approximation for the dynamics of observables can often be obtained when using
extended DMD with an appropriately chosen, finite-dimensional dictionary. In contrast to
extended DMD, the proposed algorithm retains the explicit nonlinear dependence of the dic-
tionary elements on the observables. Consequently, there are fewer degrees of freedom in the
minimization problems from (17) and (28) as compared to the minimization (16) associated
with the extended DMD algorithm.

Despite the promising results presented in the applications considered in this paper, the
proposed nonlinear model identification strategy certainly comes with its share of drawbacks.
Foremost, the proposed model identification strategy yields a nonlinear model, thereby pre-
cluding the direct use of a wide variety of linear model analysis techniques and control al-
gorithms that are available for linear models obtained using DMD [1], extended DMD [22],
and Koopman model predictive control [29]. In applications where the dynamics can be well
approximated by a low-dimensional linear system, linear models are certainly preferable to
nonlinear models. Despite the connection to existing DMD algorithms, when using the pro-
posed strategy, there is no obvious way to convert the obtained nonlinear model to a linear
model. Strategies for determining an optimal choice for the lifting functions were not con-
sidered here. Practically, using polynomial combinations of the observables and radial basis
functions worked well in the applications presented in this work. The proposed model identi-
fication technique shares similarities with other approaches designed to determine the model
equations directly from data. In contrast to sparse model identification algorithms [8], [9],
[10], [11], the proposed strategy instead identifies low-rank approximations for the nonlinear
dynamics. The proposed methodology yields a nonlinear model that is generally not inter-
pretable in the sense that the terms of the learned equation correspond to the physics of the
underlying models. Nonetheless, the proposed strategy does not require the use of neural
networks and still provides a low-rank approximation for the dynamics.

Due to its similarity to existing Koopman-based model identification strategies, the pro-
posed framework offers some interesting opportunities for extension. For instance, this strat-
egy could be used alongside the linear Koopman model predictive control strategies described
in [40], [29], using the linear estimator to approximate an optimal control input over a finite
time horizon and subsequently using the nonlinear predictor to maintain accurate information
about the state of the system. Such an approach would be particularly useful in situations
where real-time information about the observables is not continuously available. Alternatively,
the resulting nonlinear models can be used to obtain additional information about stable at-
tractors in the inferred systems. This point was illustrated in section 4.3, where applying pulse
inputs to the nonlinear model allowed for accurate estimation of the phase response curve for
the limit cycle that emerges in the true model equations. The diversity of examples consid-
ered in this work using both computational and experimental data suggest that the proposed
framework could be a versatile tool to aid in the identification of nonlinear dynamical systems,
especially in applications where linear predictors alone are not sufficient.
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1468 DAN WILSON

Appendix A. Limiting behaviors for finite-dimensional linear estimators of the Koop-

man operator.

Consider a linear estimator of the form (4). For an initial condition g0, letting gn be
the state after n iterations of the underlying mapping, a prediction for gn can be obtained
according to

(45) gn =Ang0.

Powers of the matrix A can be computed according to

(46) An = P - 1

\left[ 

 

 

 

 

Jn
1 0 . . . 0
0 Jn

2 . . . 0
...

...
. . .

...
0 0 . . . Jn

l

\right] 

 

 

 

 

P,

where J = PAP - 1 is the Jordan normal form of A, and J1, . . . , Jl are the corresponding Jordan
blocks with associated eigenvalues \lambda 1, . . . , \lambda l. As discussed in [66], if | \lambda i| < 1, then Jn

i \rightarrow 0 as
n\rightarrow \infty , where 0 is an appropriately sized matrix of zeros. If | \lambda i| > 1, or if | \lambda i| = 1 and the
Jordan block is larger than size 1\times 1, Jn

i becomes unbounded as n\rightarrow \infty .
For (45) to have a periodic orbit, A must have a complex-conjugate pair of simple eigen-

values with | \lambda j | = 1. Such a periodic orbit cannot be asymptotically stable; however, it is
associated with an eigenvalue with magnitude 1. Furthermore, (45) can only have multiple
fixed points if A has a simple eigenvalue \lambda i = 1. In this case, there will be a linear subspace
of nonhyperbolic fixed points; it is not possible for (45) to contain multiple hyperbolic fixed
points.
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