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Abstract

The dynamics of a periodic nonlinear system can be represented accurately beyond

the limit cycle in a reduced-order phase-amplitude coordinate-based model reduction

framework. When only observable time series data is available, data-driven strategies

must be employed for model inference. In this work, we propose a data-driven approach

that can predict the unknown, periodic terms of a phase-amplitude coordinate-based

reduced-order model by considering their Fourier series expansions and reframing

the terms as a composition of a known nonlinear function with an unknown linear

function. These linear functions can be structured as weights of a feed-forward neural

network and learned to obtain a reduced-order model representation valid to arbitrary

orders of accuracy in an expansion of amplitude coordinates by training the network

on observable data. The proposed approach can be used in conjunction with other

recently developed reduced-order modeling approaches to yield very high accuracy

reduced-order models. The proposed strategy is illustrated in a variety of examples

that consider the dynamics of a synaptically coupled neuronal population.

Keywords Model identification · Periodic orbit · Artificial neural networks ·

Phase-isostable coordinates · Dynamical systems · Model order reduction

Mathematics Subject Classification 34E10 · 37Cxx · 92Bxx · 68Txx

1 Introduction

Many naturally occurring phenomenon, especially complex dynamical systems, lack a

mathematical model to explain their underlying dynamics. In most cases, one only has
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access to a finite set of observables for the system; to extract useful information from

the available data, data-driven strategies have been developed to infer low-dimensional,

predictive dynamical models (Kutz et al. 2016; Brunton and Kutz 2019). These models

attempt to approximate the full model dynamics of the underlying system in response to

any general stimulus without prespecifying an underlying dynamical structure. Data-

driven strategies are particularly effective in situations where a clear mapping between

state variables and model observables is not available and where the underlying model

mechanisms are not well understood.

To infer a set of equations of a reduced model from a given dataset, numerous

data-driven techniques have been proposed. Eigensystem realization algorithm (ERA)

(Juang and Pappa 1985) works by identifying a linear model for a given nonlinear sys-

tem based on temporal data which is then transformed into modal space for parameter

identification. Similarly, authors in Holmes et al. (1996), Towne et al. (2018), Berkooz

et al. (1993) utilize proper orthogonal decomposition (POD) which is another data-

driven model reduction technique that finds an orthogonal basis to fit the provided

temporal dataset. A dynamical system can subsequently be obtained using Galerkin

projection (Holmes et al. 1996; Noack et al. 2003). Approaches in Schmid (2010),

Rowley et al. (2009), Kutz et al. (2016) employ dynamic mode decomposition (DMD)

which computes a set of linear modes from time series data. Other techniques employ

a prespecified function library from which relevant terms are sparsely selected in a

way to effectively replicate the observable data without overfitting (Mangan et al.

2019; Brunton et al. 2016; Pantazis and Tsamardinos 2019; Schaeffer 2017). Alter-

natively, by incorporating adaptive parameter sets (Wilson 2021b, 2022a, b; Wilson

and Djouadi 2020), reduced-order modeling methods can be devised that can capture

the salient features of the nonlinear system. These adaptive parameters can efficiently

capture the effect of large inputs, that perturb the state far from a nominal family of

attractors that emerge as the adaptive parameter is changed. Various methods are also

based on Koopman operator theory to identify reduced linear model representations.

Koopman analysis can be used to represent nonlinear system dynamics with a linear

representation by lifting its dynamics to an infinite-dimensional linear space (Budišić

et al. 2012; Mezić 2013, 2019). In a data-driven setting, approaches (Geneva and

Zabaras 2020; Kaiser et al. 2021; Lusch et al. 2018) have accomplished this by finding

representative eigenmodes of the Koopman operator.

Variations of neural network-based approaches have also been used in previous

works in order to infer dynamics of nonlinear systems. For example, Ortin et al.

(2005) compares performance of feed-forward neural networks with modular neural

networks for inferring chaotic time-delay system dynamics. Reference (Tan and Saif

2000) uses external recurrent neural networks (RNNs) for model identification of spe-

cific processes occurring in an automotive engine. To predict the solution of various

time-dependent and autonomous systems, (Omidi et al. 2022) proposes the idea of

orthogonal neural networks. The predicted systems generally follow singular Emden–

Fowler dynamics, and hence, their behavior can generally be described by either an

ordinary differential equation (ODE) or partial differential equation (PDE). Physics

informed neural networks (PINNs) (Raissi et al. 2019) are a class of neural networks

for model identification of systems involving nonlinear partial differential equations

(PDEs). The approach incorporates PDE-based domain knowledge into essential com-

123



Journal of Nonlinear Science            (2024) 34:15 Page 3 of 28    15 

ponents of the neural network’s training process, thus allowing for convergence to the

optimal solution even with limited training input data. The PINN-based approaches

can also be adjusted to solve both the forward and inverse problems for PDEs given

a set of noisy measurements from a dynamical system. Feed-forward artificial neural

networks have also been used in literature to perform model identification of nonlinear

dynamics. Presented in Wray and Green (1994), the approach computes Volterra kernel

representations for dynamical systems by assuming equivalency of Volterra series to

feed-forward neural networks and utilizing the network’s internal parameters. Work in

Masri et al. (1992) uses the idea of dynamic neurons in feed-forward neural networks

in order to capture system nonlinearities. For long-time predictive modeling of non-

linear dynamical systems, authors of Pan and Duraisamy (2018) modify feed-forward

neural networks to augment Jacobian regularization in the network’s loss function.

In this work, we consider data-driven strategies for reduced-order model iden-

tification of oscillatory dynamical systems. In these applications, phase-amplitude

coordinates provide a robust modeling framework for identifying a reduced-order

model that can effectively represent the full model dynamics of the underlying peri-

odic system (Wilson 2020c; Ahmed and Wilson 2021). If the mathematical model

is known, various approaches have been proposed that employ the direct method to

compute the necessary phase and amplitude response curves (Wilson 2020c; Wilson

and Ermentrout 2019). However, there are no general strategies available for systems

with multiple amplitude coordinates and for systems that require accuracy beyond

linear order. An alternative data-driven framework for phase-amplitude reduction was

derived in Wilson (2020a) which employed a proper orthogonal decomposition (POD)

reduction strategy to identify important features of the transient decay of solutions to

the limit cycle. The extracted features can be explicitly related to phase-amplitude

coordinates and ultimately define so-called data-driven phase-amplitude coordinates

that are valid in the entire basin of attraction of a limit cycle. The efficacy of the

approach is also illustrated in the work done in Ahmed and Wilson (2021) which

also utilized these data-driven phase-amplitude reduced-order model representations

to obtain optimal control inputs for mitigating the effects of jet lag. Related work in

Wilson and Djouadi (2019) and Wilson (2021a) proposed a least-squares model fitting

approach using the steady-state response to periodic forcing. However, the strategy

only works with sinusoidal inputs limiting its utility for model fitting, requires a sub-

stantial amount of data and is sensitive to noise.

Recently, a strategy for reduced-order model identification was developed for

dynamical systems with fixed points employing neural networks based on isostable

coordinates (Mauroy et al. 2013; Wilson and Moehlis 2015), which represent level sets

of the slowest decaying eigenmodes of the Koopman operator. This is done by refram-

ing the isostable coordinate-based input–output dynamics in terms of the composition

of a set of known nonlinear functions and unknown linear functions such that the

unknown coefficients correspond to the neural network’s weights and learning them

through training the network. In this work, we extend this idea for nonlinear periodic

systems by structuring neural networks in terms of phase and isostable coordinates

to extract a reduced-order model representation. Unlike other data-driven approaches

such as SINDy (Fasel et al. 2021) which utilize neural networks to identify terms of

the reduced model’s right-hand side, our approach uses the neural network to learn the
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reduced model’s unknown coefficients and provide a solution that can approximate

the full model dynamics given an initial condition. The learned coefficients can also

be utilized independently to obtain the corresponding isostable and phase response

curves which can be used for further analysis of the full model dynamics. Our pro-

posed approach restructures the neural network based on phase-amplitude dynamics in

order to derive a reduced-order model. By contrast, the structure of PINNs is tailored

to a given application. Moreover, our approach does not require any prior domain

knowledge including any physical laws that govern the dynamical system in consid-

eration. Also, our proposed approach builds the artificial neural network according to

the derived reduced-order phase-amplitude coordinate dynamics rather than utilizing

the network as a black-box like most vanilla neural network approaches do.

The organization of this paper is as follows: Sect. 2 provides necessary back-

ground on the phase and amplitude coordinates as well as previously developed

phase-amplitude-coordinate-based model order reduction frameworks for oscillatory

dynamical systems. Section 3 describes the mathematical formulation that allows for

the implementation of the model identification strategy using artificial neural networks

and discusses practical matters related to implementation. Results are given in Sect. 4

where we illustrate the proposed technique through a simple dynamical model along

with a more complicated illustration in a model that captures neural spiking behav-

ior before using adaptive phase-isostable reduction in conjunction with the proposed

framework to emulate full model dynamics of a neuron population. Section 5 provides

a discussion of the proposed strategy in the context of the results and gives concluding

remarks.

2 Background

2.1 Phase and Isostable Coordinates

To begin, consider a general dynamical system of the form (1)

ẋ = F(x, u(t)),

y = Fout(x) (1)

where x ∈ R
N is the system state, F represents the nominal dynamics, Fout maps

the state to the single observable output y ∈ R, and the system ẋ = F(x, u(t)) has a

stable limit cycle xγ (p0, t) that emerges when holding u(t) ∈ R constant at p0. One

can define a phase θ ∈ [0, 2π) valid for all locations on the limit cycle that results

when u(t) is held constant at the nominal value p0. The phase is generally scaled so

that dθ/dt = 2π/T = ω. Phase can be defined in the entire basin of attraction of the

limit cycle using the notion of isochrons which are defined such that when u(t) = p0,

for any initial condition a(0) ∈ xγ (p0, t), the isochron associated with a(0) is defined

to be the set of all b(0) where b(0) is in the basin of attraction of xγ (p0, t) such that

lim
t→∞

||a(t) − b(t)|| = 0, (2)
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where || · || can be any vector norm. Using the isochron-based definition of phase,

we can encode for the infinite time behavior of solutions. To effectively capture the

transient decay of solutions toward the periodic orbit, it is also useful to consider the

amplitude dynamics. This is possible using Floquet theory (Jordan and Smith 2007).

First define �x(t) = x(t)− xγ (p0, t) so that to a linear approximation, the dynamics

of Eq. (1) are

�ẋ = J�x, (3)

where J is the time-varying Jacobian of F evaluated at both xγ (p0, t) and u = p0.

Letting � be the monodromy matrix defined such that �x(T ) = ��x(0), consider

the eigenvalues and associated left and right eigenvectors of � denoted by λ j , w j

and v j , respectively. Letting λ1 be the nonunity eigenvalue (i.e., Floquet multiplier)

of largest magnitude, it is possible to define a set of isostable coordinates valid in the

basin of attraction of the limit cycle according to Wilson and Ermentrout (2018)

ψ1(x) = lim
k→∞

[

wT
1 (ν(tk

Ŵ, x) − x0) exp(−κ1tk
Ŵ)

]

, (4)

where tk
Ŵ denotes the time of the kth transversal of the θ = 0 isochron, ν(t, x) gives the

flow of Eq. (1) under the constant application of u = p0, x0 is the intersection of the

periodic orbit and the θ = 0 isochron, and κ1 = log(λ1)/T is the associated Floquet

exponent. The explicit definition in Eq. (4) is only generally valid for the slowest

decaying isostable coordinate, but additional isostable coordinates ψ2, . . . , ψN−1 can

be defined implicitly by considering level sets of Koopman eigenfunctions associated

with the nonunity Floquet multipliers of the linearized dynamics. A detailed discussion

about the relationship of isostable coordinates to the Koopman operator can be found

in Kvalheim and Revzen (2021), Mezić (2019).

2.2 Model Order Reduction Using Phase-Amplitude Coordinates

By assuming that both u(t)− p0 and x − xγ (p0, t) are order ǫ terms at all times where

0 < ǫ ≪ 1 and p0 = 0, one can asymptotically expand Eq. (1) about xγ (p0, t) to

yield

ẋ = F(x, p0) +
∂ F

∂u
U (t) + O(ǫ2), (5)

where the partial derivative is evaluated at both xγ (p0, t) and p0 and U (t) = u(t)− p0

is the input. Changing to phase and isostable coordinates via the chain rule as in Wilson

and Moehlis (2016), Wilson and Ermentrout (2018) gives

θ̇ =
∂θ

∂x

T (

F(x, p0) +
∂ F

∂u
U (t)

)

+ O(ǫ2)

= ω + Z(θ)U (t) + O(ǫ2), (6)

ψ̇ j =
∂ψ j

∂x

T (

F(x, p0) +
∂ F

∂u
U (t)

)

+ O(ǫ2)
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= κ jψ j + I j (θ)U (t) + O(ǫ2),

j = 1, . . . , β, (7)

where Z(θ) = ∂θ
∂x

· ∂ F
∂u

and I j (θ) =
∂ψ j

∂x
· ∂ F
∂u

are the phase and isostable response curves.

It is often possible to ignore isostable coordinates ψ j for which the corresponding

Floquet exponents κ j are large in magnitude so that they decay rapidly (Monga et al.

2019; Wilson and Ermentrout 2019; Wilson 2020b); in this work, only β isostable

coordinates are considered so that the resulting model has a lower dimensionality than

the full model.

Although standard phase reduction has been used extensively in literature for model

reduction of systems with periodic orbits, it has its own set of drawbacks. The main

limitation of the phase-based framework is its inability to account for large inputs,

which makes it unusable in many real applications. As a workaround to this limitation,

one can consider amplitude coordinates in conjunction with the phase dynamics. Here,

a slight modification of the phase-amplitude coordinates from Wilson (2020c) is used

to yield the reduced-order model of the form

θ̇ = ω + Z(θ, ψ1, . . . , ψβ)U (t),

ψ̇ j = κ jψ j + I j (θ, ψ1, . . . , ψβ)U (t),

j = 1, . . . , β,

y(p0, θ, ψ1, . . . , ψβ) = y(xγ (p0, θ)) + G(θ, ψ1, . . . , ψβ), (8)

where Z(θ, ψ1, . . . , ψβ) ∈ R and I j (θ, ψ1, . . . , ψβ) ∈ C provides an approxima-

tion for the phase and isostable response curves for arbitrary orders of accuracy

in an expansion of isostable coordinates centered at the periodic orbit xγ (p0, θ).

G(θ, ψ1, . . . , ψβ) ∈ R
N provides a good approximation for y(p0, θ, ψ1, . . . , ψβ) −

y(xγ (p0, θ)). Considering the Taylor expansion of Z , Ik and G in a basis of the

nontruncated isostable coordinates near the periodic orbit, one finds

Z(θ, ψ1, . . . , ψβ ) ≈ Z(θ) +

β
∑

k=1

[

ψk Z k (θ)
]

+

β
∑

j=1

j
∑

k=1

[

ψ j ψk Z jk (θ)
]

+

β
∑

i=1

i
∑

j=1

j
∑

k=1

[

ψi ψ j ψk Z i jk (θ)
]

+ . . . ,

(9)

In(θ, ψ1, . . . , ψβ ) ≈ In(θ) +

β
∑

k=1

[

ψk I k
n (θ)

]

+

β
∑

j=1

j
∑

k=1

[

ψ j ψk I
jk

n (θ)
]

+

β
∑

i=1

i
∑

j=1

j
∑

k=1

[

ψi ψ j ψk I
i jk
n (θ)

]

+ . . . ,

(10)

G(θ, ψ1, . . . , ψβ ) ≈

β
∑

k=1

[

ψk gk (θ)
]

+

β
∑

j=1

j
∑

k=1

[

ψ j ψk g jk (θ)
]

+

β
∑

i=1

i
∑

j=1

j
∑

k=1

[

ψi ψ j ψk gi jk (θ)
]

+ . . . , (11)

for n = 1, . . . , β. Note that in the reduced-order model (8) given above, it is assumed

that both U (t) and each isostable coordinate ψ1, . . . , ψβ are order O(ǫ) terms. There-

fore, In(θ), I k
n (θ), I

jk
n (θ) as well as Z(θ), Z k(θ), Z jk(θ) from the expansion (10)

and (9) are commonly referred to as first-, second-, third-order terms, respectively, of

the reduced-order model. Likewise, from Eq. (11), gk(θ), g jk(θ) and gi jk(θ) will be

referred to as the first-, second-, and third-order terms, respectively, with this conven-

tion also being followed for higher orders.
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3 Problem Formulation and General Approach

3.1 Problem Description

It is possible to directly solve for each of the gi jk...(θ), Z i jk...(θ) and I
i jk...
n (θ) terms

from Eqs. (9), (10), (11) if the underlying model equations from (1) are known as

described in Wilson (2020c). In case the model dynamics are unknown, the necessary

terms must be identified using data-driven methods. Our proposed framework trains an

artificial neural network through gradient descent by considering a collection of output

measurements y1(t), y2(t), . . . , yn(t) that result from the application of an arbitrary

collection of applied inputs U1(t), U2(t), . . . , Un(t) for t ∈ [t0, t1] on a general system

of the form of Eq. (1). Using this strategy, we infer the unknown terms from Eqs. (9),

(10) and (11) to arbitrary orders of accuracy in the expansion of phase and isostable

coordinates. We emphasize that Sect. 3 assumes that the value of p0 is fixed, i.e., that

the resulting terms of the reduction in Eqs. (9), (10), (11) are associated with a single

periodic orbit xγ (p0, t). The resulting model inference strategy can be repeated for

different values of p0 if necessary.

3.2 Reframing the Dynamics for the Neural Network

Using the phase-amplitude coordinate-based reduction of the form (8), we reframe

the problem so that neural networks can provide an appropriate solution. Each of the

terms Z i jk...(θ), gi jk...(θ) and I
i jk...
n (θ) from Eqs. (9), (10), (11) will be written as a

series of Fourier coefficients, i.e.,

X(θ) ≈ aX0 +

m
∑

j=1

[aX j sin( jθ) + bX j cos( jθ)], (12)

where X ∈ [Z i jk..., I
i jk...
n , gi jk...] and m is the number of Fourier coefficients consid-

ered. By learning the coefficients of these terms to a desired order of accuracy in both

the isostable coordinate and the Fourier series expansion, a reduced order model can

be obtained that accurately replicates nonlinear behaviors of the underlying system

(1). Letting � = [ψ1, . . . , ψβ ]T and considering the phase and isostable dynamics,

we can use a forward Euler method of solution with a timestep of �t to represent the

phase and isostable coordinates as well as the corresponding outputs at t + �t as

θ(t + �t) = f (θ(t), �(t), U (t))

= θ(t) + ω�t + Z(θ(t))U (t)�t +

k
∑

j=1

[ψk(t)Z1
k (θ(t))]U (t)�t + . . . ,

= θ(t) + ω�t +

⎡

⎣aZ0 +

m
∑

j=1

[aZ j sin( jθ(t)) + bZ j cos( jθ(t))]

⎤

⎦ U (t)�t
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+

β
∑

k=1

⎡

⎣aZ1
k 0 +

m
∑

j=1

[aZ1
k j sin( jθ(t)) + bZ1

k j cos( jθ(t))]

⎤

⎦ψk(t)U (t)�t + . . . ,

ψk(t + �t) = hk(θ(t), �(t), U (t))

= (1 + κk�t)ψk(t) + Ik(θ(t))U (t)�t +

k
∑

j=1

[ψk(t)I 1
k (θ(t))]U (t)�t + . . . ,

= (1 + κk�t)ψk(t) +

⎡

⎣aIk 0 +

m
∑

j=1

[aIk j sin( jθ(t)) + bIk j cos( jθ(t))]

⎤

⎦ U (t)�t

+

β
∑

k=1

⎡

⎣aI 1
k 0 +

m
∑

j=1

[aI 1
k j sin( jθ(t)) + bI 1

k j cos( jθ(t))]

⎤

⎦ψk(t)U (t)�t + . . . ,

k = 1, . . . , β,

y(t) − y(xγ (p0, θ(t))) = ĝ(θ(t), �(t)),

=

β
∑

k=1

⎡

⎣agk 0 +

m
∑

j=1

[agk j sin( jθ(t)) + bgk j cos( jθ(t))]

⎤

⎦ψk(t)

+

β
∑

l=1

l
∑

k=1

⎡

⎣aglk 0 +

m
∑

j=1

[aglk j sin( jθ(t)) + bglk j cos( jθ(t))]

⎤

⎦ψl (t)ψk(t) + . . . .

(13)

Above, the functions h1, . . . , hβ and f consider the current phase and isostable

coordinates as well as the perturbation input and map to the phase and isostable

coordinates �t time units later. Each hk with associated IRC Ik and f associated

with PRC Z , defined according to the Taylor expansion in (9) and (10), respectively,

is linear in a basis of lifted coordinates consisting of both the state and input. For

instance, when using only one isostable coordinate (i.e., when β = 1), one can write

ψ1(t + �t) = (1 + κ1�t)ψ1(t) + I1(θ(t))U (t)�t + I 1
1 (θ(t))ψ1(t)U (t)�t . . . ,

= (1 + κ1�t)ψ1(t) +

⎡

⎣aI10 +

m
∑

j=1

[aI1 j sin( jθ(t)) + bI1 j cos( jθ(t))]

⎤

⎦ U (t)�t

+

⎡

⎣aI 1
1 0 +

m
∑

j=1

[aI 1
1 j sin( jθ(t)) + bI 1

1 j cos( jθ(t))]

⎤

⎦ ψ1(t)U (t)�t + . . . , (14)

Keeping this in consideration, each hk can be taken as the composition of two functions

hk = wk ◦ n I , (15)

for k = 1, . . . , β, where n I : S × C
β × R → C

̺, wk : C
̺ → C, and ̺ is the size

of the lifted basis. For example, when β = 1 and taking the asymptotic expansion

to third order of accuracy in the isostable coordinate with first-order Fourier series

expansion,
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n I (θ, ψ1, U ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ψ1

U

sin(θ)U

cos(θ)U

ψ1U

sin(θ)ψ1U

cos(θ)ψ1U

ψ2
1 U

sin(θ)ψ2
1 U

cos(θ)ψ2
1 U

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, w1 = n I (θ, ψ1, U )T

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 + κ1�t

aI10�t

aI11�t

bI11�t

aI 1
1 0�t

aI 1
1 1�t

bI 1
1 1�t

aI 11
1 0�t

aI 11
1 1�t

bI 11
1 1�t

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (16)

The terms ψ3
1 U and I 111

1 (θ) and higher terms are truncated at third order of accu-

racy as U and ψ1 are both O(ǫ). The coefficients that comprise each wk need to be

learned alongside the corresponding coefficients for both Z and G in order to obtain

the reduced-order model representations. Similarly, f can also be written as the com-

position of two functions as

f = wZ ◦ nZ , (17)

where nZ : S×C
β ×R → C

̺+1, wZ : C
̺+1 → R. Here, ̺+1 is the size of the lifted

basis. As done before, taking the asymptotic expansion to third order of accuracy for

one isostable coordinate with first-order Fourier series expansion,

nZ (θ, ψ1, U ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

θ

ω

U

sin(θ)U

cos(θ)U

ψ1U

sin(θ)ψ1U

cos(θ)ψ1U

ψ2
1 U

sin(θ)ψ2
1 U

cos(θ)ψ2
1 U

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, wZ = nZ (θ, ψ1, U )T

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

�t

aZ0�t

aZ1�t

bZ1�t

aZ1
10�t

aZ1
11�t

bZ1
11�t

aZ11
1 0�t

aZ11
1 1�t

bZ11
1 1�t

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (18)

Finally, we can consider ĝ as the composition of two additional functions as well

ĝ = wG ◦ nG, (19)

where nG : S × C
β → C

̺−1, wG : C
̺−1 → R. Here, ̺ − 1 is the size of the lifted

basis. Taking the asymptotic expansion to third order of accuracy with one isostable
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coordinate with first-order Fourier series expansion,

nG(θ, ψ1) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ψ1

sin(θ)ψ1

cos(θ)ψ1

ψ2
1

sin(θ)ψ2
1

cos(θ)ψ2
1

ψ3
1

sin(θ)ψ3
1

cos(θ)ψ3
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, wG = nG(θ, ψ1)
T

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ag10

ag11

bg11

ag110

ag111

bg111

ag1110

ag1111

bg1111

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (20)

For a general system of the form (1), the nonlinear functions nZ , n I and nG are known

once the order of accuracy along with the number of isostable coordinates is specified.

On the other hand, the functions wZ , w1, . . . , wβ and wG are linear and contain the

unknown coefficients that need to be learned and are comprised of the Fourier series

coefficients of the terms Z i jk...(θ), I
i jk...
n (θ) and gi jk...(θ) from Eqs. (9), (10) and

(11), respectively. Hence, the phase and isostable coordinate update rules from (13)

are specified through the identification of these unknown Fourier series coefficients.

3.3 A Data-Driven Approach for Model Identification of Oscillatory Dynamics

Using Neural Networks

Ultimately, the goal is to infer the Fourier series coefficients comprising the unknown

terms from Eqs. (15), (17) and (19) as described in Sect. 3.2, along with the decay

rates κ1, . . . , κβ using discrete sets of observable measurements [y j (t0), y j (t0 +

�t), . . . , y j (t0 +η�t)] that result when applying inputs [U j (t0), U j (t0 +�t), . . . , U j

(t0 + (η − 1)�t)] to the system for j = 1, . . . , ν, yielding a reduced order model

of the form in Eq. (8). Here, ν is the number of distinct input profiles, U (t) and

each of these input profiles has η measurements. Also, it is assumed that at time

t0, the system state is on the limit cycle with initial phase and isostable coordinates

θ(t0) = ψ1(t0) = ψ2(t0) = · · · = ψβ(t0) = 0.

The implementation for the reduced-order phase-amplitude coordinate-based rep-

resentation is done using a multi-layer simple feed-forward network architecture

structured for model learning purposes. A representation of the network structure is

shown in Fig. 1 which is based on the mathematical formulation from Sect. 3.2. First,

the neural network’s input layer accepts a concatenation of the phase coordinate θ(t0),

isostable coordinates �(t0) and the applied input U (t0) which is then fed to a nontrain-

able function layer for both phase and isostable coordinate. This layer lifts the input

layer variables to a higher dimension implementing the (known) functions nZ and n I .

The lifted states are passed through two respective hidden layers that implement the

linear functions wZ and w1, . . . , wβ to yield both the updated isostable coordinate

�(t0 + �t) and the updated phase θ(t0 + �t). This intermittent state, comprised of

the phase and isostable coordinate update, is then fed through another nontrainable

function layer which implements the lifting described by nG . This second lifted state is
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Fig. 1 General architecture for the proposed neural network-based strategy

fed through a fully connected trainable output layer that implements wG and results in

an intermediate output denoted by ĝ(θ,�). Another intermediate output is generated

by a nontrainable function layer containing the parametric function of the system’s

periodic orbit; this layer takes the phase coordinate update as the input. Summing up

both these intermediate inputs ultimately generates the final output.

The obtained observable estimate at a given time is denoted as ŷ j (t) and compared

with a system measurement y j (t) that results from the application of the input U j (t).

Then, we use the current approximation for the update function, for a given set of

input–output measurements y j and U j , from Eq. (13) to yield a set of approximations

ŷD = [ŷ j (t0), ŷ j (t0 + �t), . . . , ŷ j (t0 + η�t)]. For computing the error between the

estimate and the ground function, the mean squared error (MSE) is taken as the loss

function

MSE =
1

νη

ν
∑

j=1

η
∑

i=1

(y j (t0 + i�t) − ŷ j (t0 + i�t))2. (21)

Note that ν represents the number of inputs while η denotes the number of timesteps

for each input. During backpropagation, the weights of the trainable layers, i.e., wZ ,

w1, . . . , wβ and wG are updated. In the examples presented in this work, we assume

that isostable coordinates are real and the weights are updated accordingly during

backpropagation. To ensure that the network learns a solution that is generalizable

for a variety of input profiles, the neural network is trained using mini-batch gradient

descent which allows us to train on multiple inputs simultaneously.

As we are learning weights of a linear function, we use a linear activation function

in the artificial neural network. A nonlinear reduced-order model of the form (9)–

(11) can be obtained based upon the learned weights of the network once training

is done that is independent of the artificial neural network. Note that in Eq. (13),

the Fourier series expansion of both Z(θ) and In(θ) for n = 1, . . . , β is multiplied

by �t ; as such, the learned Fourier coefficients for the terms Z(θ), Z k(θ), . . . and
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In(θ), I k
n (θ), . . . will be proportional to �t . Therefore, appropriate scaling of the

learned coefficients is required during conversion between the discrete time update

rule (13) and the continuous reduced-order model (9)–(11).

Figure 1 illustrates a layer level diagram representing the neural network’s general

architecture employed in this work. Starting from the input layer, it is comprised of

the phase and isostable coordinates value at the current timestep, i.e., θ(t), �(t), as

well as the input, U (t). These input layer components are then passed through the

functions, n I and nZ that transforms these components to the lifted coordinate basis

for both isostable and phase coordinates, respectively, denoted by the nontrainable

function layer. Following that, both the isostable and phase coordinate update rules

from Eq. (13) are implemented by multiplying the lifted coordinate basis with the

coefficients comprising w1, . . . , wβ and wZ ; these coefficients are the weights asso-

ciated with the respective hidden layers in the neural network and are learned through

training. The updated phase-amplitude coordinates, θ(t +�t) and �(t +�t), are then

computed through the two hidden layers. The updated values are recursively fed back

into the input layer of the network to generate further updates at successive timesteps.

Once all phase and isostable coordinate updates are obtained, these are passed through

nG , to transform �(t +�t) and θ(t +�t) to a second set of lifted coordinates obtained

through another nontrainable function layer. A transitional output, shown as ĝ(θ,�),

is generated though mapping from the phase and isostable coordinates to the state

from Eq. (13) where wG contains the associated weights. Another intermediate output

is generated by a nontrainable function layer containing the periodic orbit function.

Finally, the output layer is comprised of the summation of both of these intermediary

outputs. The predicted outputs [ŷ(t0), ŷ(t0+�t), ŷ(t0+2�t), . . . ] are identified recur-

sively and compared with the full model output [y(t0), y(t0 + �t), y(t0 + 2�t), . . . ]

to compute the prediction error needed for training through backpropagation. The

next section details the specific steps required for the training process and the network

implementation.

3.4 Implementation of theModel Identification Strategy Using a Neural Network

Implementation for our neural network-based approach for model identification

described in Sect. 3.3 is detailed here; the network structure is feed-forward with no

recurrent connections. Keras is used for building the neural network on top of Tensor-

flow, a machine learning platform within python; Keras is a deep learning application

programming interface (API) written in python. Furthermore, the training data, i.e., the

phase and isostable coordinates, needs to be generated simultaneously as the learning

proceeds. This is different from conventional supervised learning methods which have

the training data readily available. The process for the model identification strategy is

outlined below. At the start of this procedure, it is assumed that a dataset of outputs

y1(t), . . . , yn(t) generated by inputs U1(t), . . . , Un(t) has been measured from the

full model. Also, the initial phase and isostable coordinates are taken to be zero and

thus, each of the measured outputs are taken at the periodic orbit xγ (p0, θ) at θ = 0.

Finally, for the system under consideration, the representation for its periodic orbit as

well as its natural frequency ω is obtained prior to training the neural network.
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Step (1) Initially, specify the number of isostable coordinates β. Measure the periodic

orbit for the full model and the natural frequency ω. Also, set the order of the

Fourier series expansion for each of the terms of Z , Ik , and G denoted by m.

To avoid overfitting, one should generally use the fewest isostable coordinates

possible. Define functions for the nontrainable function layers that implement

the lifting functions n I , nZ and nG from (15), (17) and (19). Also, define the

layer containing the representation of the periodic orbit.

Step (2) Define the artificial neural network’s structure based on the order of accuracy

(in the expansion in isostable coordinates) and the Fourier series expansion of

the functions f , h1, . . . , hβ and ĝ from Eq. (13). To ensure that the trained

weights directly correspond to the Fourier series coefficients from Eqs. (16),

(18) and (20), linear activation functions are used in the network layers.

Step (3) Define an auxiliary function that uses the current network weights to compute

the forward Euler step from Eq. (13). Output predictions ŷD(t) for training the

network are also generated by this function.

Step (4) Initialize network weights, specify an optimizer, a loss function and a learning

rate. Mean square error loss from (21) is used for the approach.

Step (5) Every epoch consists of two loops. The first loop calculates the phase and

isostable coordinate update for a given input U (t) by implementing the forward

Euler update rule from Eq. (13). The data generated by the first loop is fed

into the second loop which updates the weights of the trainable layers. It is

assumed that the system starts at the limit cycle, i.e., θ(t0) = 0, ψk(t0) = 0 for

k = 1, . . . , β; all subsequent coordinate updates are generated while training

without the need of direct measurements. Finally, an outer loop iterates over

the epochs until the training loss converges.

Step (6) The trained neural network weights correspond to Fourier series coefficients of

the Taylor expanded terms from Eqs. (9), (10) and (11) along with decay rates

and the natural frequency. The learned weights are independent of the training

network and can be extracted to yield a reduced-order model of the form (8).

Note that the proposed approach learns the Fourier series coefficients for each of

the terms of Z , I and G from Eqs. (9), (10) and (11) to provide a good characterization

of the full model dynamics but will not necessarily match with the true Z , I and G

functions obtained, for instance, using the adjoint method (Monga et al. 2019) or

other direct numerical strategies. For the training procedure detailed above, a few

general notes about its implementation are given. The weight initialization in Step 4

can sometimes cause the proposed model identification strategy to perform poorly.

As such, it is generally useful to initially train the network using small magnitude

inputs, finding the Fourier series coefficients for the first-order terms Z(θ), In(θ) and

gn(θ), along with the Floquet exponents κn for n = 1, . . . , β. For higher-order models,

one can use larger magnitude inputs to obtain data for training by using the learned

first-order coefficients for weight initialization from Step 4 in the procedure above. To

ensure that these baseline first-order coefficients do not deviate substantially from their

linear order values that were already fit to the lower-order model, weight regularization

can be used during learning for the higher-order weights and added as a penalty term

to the loss function. For first-order accuracy, the isostable response curves are unique
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to constant scaling. As such, the coefficients must be constrained. A regularization

scheme is incorporated within the strategy that forces the sum of squares of the learned

weights to be equal to 1 by penalizing the network training if their sum is far from 1.

Furthermore, to yield a reduced model that can generalize to novel inputs, the training

dataset consists of multiple batches corresponding to different inputs. A single batch

is comprised of the total number of timesteps for a specific input–output pair, and thus,

through the mini-batch stochastic gradient descent algorithm, training on all network

inputs in each epoch is important for the network. As indicated previously, periodically

updating the training dataset is crucial as the inputs for subsequent timesteps depend

on the network itself; it is done after each epoch in the presented approach using the

current weight updates. As the network inputs themselves are generated from incorrect

updates, there is no need to reach convergence before updating weights. However, for

a more generalizable solution, training is allowed to occur on all input–output pairs

by waiting for an entire epoch.

4 Results

4.1 Illustration in aModelWith Dynamics Near a Hopf Bifurcation

We consider the modified version of the radial isochron clock (Winfree 2001) illus-

trating the proposed phase-amplitude model identification strategy

ẋ1 = Cσ x1(μ − x2
1 − x2

2 ) − x2(1 + ρ(x2
1 + x2

2 − μ)) + u(t),

ẋ2 = Cσ x2(μ − x2
1 − x2

2 ) + x1(1 + ρ(x2
1 + x2

2 − μ)),

y(t) = x1(t), (22)

where u(t) is an external input applied directly to the x1 variable and C = 2π
T

with

T = 24.2. Above, we choose the parameters σ = 0.04, ρ = 0.12 and μ = 1. Here,

μ is a bifurcation parameter; when μ = 0, a Hopf bifurcation occurs resulting in a

stable limit cycle for μ > 0. With these parameters, the model has a limit cycle at

x2
1 + x2

2 = 1 when taking u(t) = 0.

The neural network model is trained on data from output measurements considering

a single isostable coordinate for the reduced model; Fig. 1 shows the general archi-

tecture for the associated neural network. For optimizing and learning the weights,

adaptive moment estimation (ADAM) optimizer is used with an MSE loss of the form

(21) and a learning rate of 0.001. For the update rule from (13), the time step is taken

to be �t = 0.05. For training, a summation of step inputs of the form

u(t) =

5
∑

i=0

ǫi+1(ξ(t − ti ) − ξ(t − ti+1)), (23)

is used where ξ(t) is the Heaviside step function. Meanwhile, ǫ1, . . . , ǫ6 sets the

magnitude of the respective components of the input, and finally, t0, . . . , t6 controls
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the duration of the input application. It should be noted that each of the successive

duration is greater than the previous one by a certain amount, i.e., t6 > · · · > t0.

For this example, one hundred training inputs are generated using ǫn = a + (b −

a)rand(0, 1) with n = 1, . . . , 6 by randomly taking values between a = −0.030 and

b = 0.030 drawn from a uniform distribution for first-order accuracy. Meanwhile,

the input durations are assigned using tn = a1 + (b1 − a1)rand(0, 1) + tn−1 for

n = 1, . . . , 6 with t0 = 0 by drawing from a random distribution between 0 and 1 and

choosing randomly between a1 = 10 and b1 = 20 with each successive time value

greater than the previous one.

Considering expansion of isostable coordinates to first order of accuracy around the

limit cycle, a total of 36 coefficients are learned with a single isostable coordinate and

fifth order of Fourier series expansion for each of the terms of Z , I and G. The natural

frequency for the model is specified to be 0.2596 and the functional representation for

the periodic orbit is given by y(t) = sin(θ); this is done before training the model as

specified in Sect. 3.4. The learned first-order coefficients are then used for initialization

of weights and fixed as a baseline through regularization for subsequent training of

higher-order models up to third order of accuracy. The learning rate is kept at the same

value of 0.001 for higher-order models.

The second-order model is trained by generating a set of inputs with same range

of magnitude and input duration as done for the first order. For the third-order model,

another set of one hundred training inputs of the form (23) is generated at random

such that ǫn = a + (b − a)rand(0, 1) with n = 1, . . . , 6 by taking values between

a = −0.032 and b = 0.032 and input duration, i.e., tn = a1+(b1−a1)rand(0, 1)+tn−1

for n = 1, . . . , 6 with t0 = 0 generated within the values of a1 = 10 and b1 = 20.

The set with larger magnitude inputs is used here to drive the state far from the limit

cycle so that the contribution from nonlinear terms can be captured efficiently. In terms

of training time, the first-, second- and third-order reduced models take 92, 147 and

225 s, respectively, to achieve convergence using a desktop computer with a midgrade

processor. The subsequent increase in learning time for the higher order accuracy

models can be attributed to the increasing number of coefficients at higher orders of

accuracy, i.e., that comprise the Taylor expansions from Eqs. (9), (10) and (11).

For validation, three test inputs of the form u(t) = α(1 − ξ(t − ts)) are used with

α ∈ {0.020, 0.030, 0.040} and ts = 24.2. In Fig. 2, Panels A, B and C show outputs

in response to these test inputs (shown in Panel G, H and I). Panels D, E and F show

the associated magnitudes of the error. For all the step inputs shown, the third-order

model has substantially smaller error than the first and second-order accurate models.

One can see that for the test input results shown in Panel A, the predicted outputs

for all orders of accuracy are nearly identical to the full model output. The difference

between the first to third-order accuracy models and the full model output is more

apparent in panel B; error for first-order accuracy is the highest followed by second

order with third-order accuracy error being the lowest. For higher magnitude inputs in

panels H and I, the error plots in panel E and F follow the same trend even though the

error magnitudes increase. This increase in error is also evident in the outputs shown

in panels B and C when compared to panel A.
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Fig. 2 The proposed model identification algorithm is applied to Eq. (22). For this illustration, a single

isostable coordinate is considered and models of the form (8) are obtained that are valid to first through

third orders of accuracy in the expansion in the isostable coordinates. Three inputs of varying magnitudes

shown in panel (G)-(I) are applied and the obtained outputs from full and phase-amplitude-coordinate-based

models are compared in panels (A)–(F)

For additional validation of the learned models, a sinusoidal test input of the form

u(t) = 0.03 sin(0.1t) is used. The obtained results are shown in Fig. 3. Panels A and

Panel B follow the same pattern as observed in Fig. 2.

4.2 Spike Rates of Neural Populations

As a second example, a more complicated system is considered for our proposed model

identification strategy. The system consists of a large, coupled population of neurons

that captures spiking rates in response to external inputs. Dynamical equations are

based on a model for thalamic neurons from Rubin and Terman (2004):

Cm V̇k = −IL(Vk) − INa(Vk, hk) − IK(Vk, hk) − IT(Vk, rk)

+ I b
k − 0.2

N
∑

j=1

(Vk − V j ) + ik(t),

ḣk = (h∞(Vk) − hk)/τh(Vk),

ṙk = (r∞(Vk) − rk)/τr (Vk),
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Fig. 3 Results are illustrated for the proposed model identification strategy when a sinusoidal input shown

in panel (C) is applied to the radial isochron clock model from Eq. (22). The obtained outputs for first to

third-order accuracy phase-isostable reduced models are compared with the full model output in panel (A)

and the reduced model errors are shown in panel (B). The results follow the same trend as shown in Fig. 2

y(t) =
1

N

N
∑

j=1

(V j (t)). (24)

For the model above, N = 10 total neurons are considered in the population while Vk ,

hk and rk represent the transmembrane voltage and two gating variables, respectively,

that determine the ionic currents for neuron k. Cm = 1 µF/cm2 and ik(t) = υku(t)

where υk is a sensitivity parameter for the model incorporated through the input

given by υk = 1 + 0.05k for k = 1, . . . , N . The baseline current of the kth neuron,

I b
k , is defined by using I b

k = 5 + 0.35k for k = 1, . . . , N . Finally, u(t) represents

a transmembrane current applied identically to each neuron. Reference (Rubin and

Terman 2004) contains a full description of the remaining ionic currents and gating

variables. For the neural model, we consider the mean of the transmembrane voltage

of all the ten neurons as the observable; this is represented by y(t) in (24).

In the limit as time approaches infinity, taking u = 0, the system observable

exhibits dynamics that settle to a nearly periodic orbit. We apply our proposed model

identification strategy using multiple isostable coordinates to derive a reduced phase-

amplitude model of the form (8). This reduced model is identical to the one obtained

in Sect. 4.1 except that we consider multiple isostable coordinates up to first-order

accuracy for model identification. The network is based upon the architecture repre-

123



   15 Page 18 of 28 Journal of Nonlinear Science            (2024) 34:15 

Fig. 4 The proposed model identification algorithm is applied to the neural model from Eq. (24). Models of

the form (8) are obtained for one, two and three isostable coordinates that are valid to first order of accuracy

in the expansion in the phase-amplitude coordinates. Panel (A) shows the response to the applied input from

panel (C). Panel (B) shows the corresponding error between the full- and reduced-order models

sented in Fig. 1. To generate the training dataset, a set of hundred inputs of the form

u(t) = ǫ(1 − ξ(t − ts)) for t ∈ [0, 50] are considered where ξ(t) is the Heaviside step

function, ǫ represents the input magnitude, and ts defines the input duration. For our

set of one hundred trials, both the input magnitude and duration are chosen randomly

according to ǫ = a2 + (b2 − a2)rand(0, 1) and ts = a3 + (b3 − a3)rand(0, 1) with

a2 = −0.6, b2 = 0.6, a3 = 2 and b3 = 8. Once the resulting outputs have been

extracted, the ADAM optimizer is used for training with MSE loss function from (21)

and taking the learning rate to be 0.001. Also, the timestep for the update rule from

Eq. (13) is taken to be �t = 0.05 ms. The training follows the same implementation

as described in Sect. 3.4.

The results for the neural model are illustrated through two different setups. In the

first setup, the number of isostable coordinates is varied from one to three and the

Fourier series expansion of the periodic functions is taken to first order. Meanwhile,

the second setup employs a single isostable coordinate with the order of the Fourier

expansions of the periodic functions varying from 1st to third order. For both setups,

coefficients for one isostable taken to first-order Fourier expansion are obtained first

and subsequently used for initialization when training models for subsequent Fourier

expansions and isostable coordinates. As observed for the model in Sect. 4.1, training

times gradually increase as the number of isostables employed for the model increases
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Fig. 5 The proposed model identification algorithm is applied to the neural model from Eq. (24). One

isostable coordinate valid to first order of accuracy expansion is considered and models of the form (8) are

obtained when considering first-, second- and third-order Fourier expansions for the reduced-order model

terms. Panel (A) shows the response to the applied input from panel (C). Panel (B) shows the corresponding

error

or higher Fourier series expansions are considered. For example, using a midgrade

processor on a desktop computer, training reduced models with one, two and three

isostable coordinates took 154, 190 and 227 s, respectively, to achieve convergence.

Figures 4 and 5 show the obtained results. All the learned models are validated

using a test stimulus u(t) = 1.7(1 − ξ(t − 5.8)); note that the magnitude of the input

used for validation is outside the magnitude range of the training inputs. In Fig. 4,

Panel A shows the one, two and three isostable coordinate-based reduced-order model

outputs compared to the full-order model output in response to the input from panel

C. Panel B shows the associated error. The one isostable-based model has a MSE

value of 48.9; considering two isostables subsequently reduces the MSE to 31.8 with

three isostables giving the lowest error value of 3.8. Similarly, in Fig. 5, outputs from

a single isostable coordinate-based reduced-order model valid to first-, second- and

third-order Fourier series expansion are compared to the full-order model output when

input from panel C is applied. Panel B shows the resulting error. The model with first-

order Fourier expansion has a MSE value of 48.9; considering a second-order Fourier

series expansion subsequently reduces the MSE to 38.5 with third-order Fourier series

based model giving the lowest error value of 4.2.
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Fig. 6 Two sawtooth inputs applied for different durations to both the neural model from Eq. (24) and the

reduced models are shown in panel (E) and (F). Varying number of isostable coordinates from one to three

are considered for the reduced models through the proposed model identification algorithm and the resulting

outputs are compared with the full model output in panels (A) and (B). To illustrate how effectively the

reduced models can approximate the full model dynamics, error between the full model and the reduced

model outputs is presented in panels (C) and (D)

To show that the proposed approach is valid for test inputs significantly dif-

ferent from the ones used for training, a saw tooth input of the form u(t) =

−2
(

t
2π

−
[

1
2

+ t
2π

])

and varying between −1 and 1 is applied for two different dura-

tions of ts = 5.85 and ts = 23.85 before being turned off as shown in Fig. 6. For the

smaller duration test input in panel E, the reduced models are able to approximate the

full model output as evident from panel A and the error shown in panel C. However,

the difference in the reduced models for different number of isostable coordinates

becomes more apparent when the longer duration input from panel F is applied. As

seen in panels B and D, the one (resp., three) isostable reduced model has the highest

(resp., lowest) error.

4.3 Model Reduction of Spike Rates of Neural Populations Using Adaptive

Phase-Isostable Reduction

For the final illustration, the neural model from Eq. (24) is considered with the proposed

model identification strategy in conjunction with the adaptive phase-amplitude reduc-

tion discussed in “Appendix 1.” The only difference in the model is in ik(t) = υku(t)
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Fig. 7 The proposed model identification algorithm is combined with adaptive phase-amplitude reduction

before being applied to the neural model from Sect. 4.2. Three isostable coordinates valid to first order of

accuracy expansion are considered for the adaptive phase-amplitude reduction and then compared with the

standard phase reduction as well as output from the proposed strategy alone. Panel (A) shows the respective

responses to the applied input from panel (C). Panel (B) shows the corresponding error

for υk = 1 + 0.05k and k = 1, . . . , N where the adaptive parameter is now incor-

porated into the model though the applied input from a range of allowable values

u ∈ [−3, 0] in order to ultimately generate data for adaptive phase-amplitude reduc-

tion. When implementing the proposed model inference strategy, we consider three

discrete, constant values of p = {−3,−1.5, 0} and learn the corresponding phase and

isostable response curves with the neural network following the same procedure as

detailed in Sect. 3.4 for each discrete value of p. The terms D(θ, p) and Q(θ, p) are

computed through the process described in “Appendix 1.” Once training is finished,

the terms of the resulting reduced-order model (A4) are interpolated for p ∈ [0, 3]

using the information inferred for the discrete values p = {−3,−1.5, 0}. We use the

update rule

G p = V †(−R(u − p)) − ζ V ∗�, (25)

where � =
[

ψ1 ψ2 ψ3

]T
, R =

[

I1 I2 I3

]T
, V =

[

Q1 Q2 Q3

]T
, and † represents the

pseudoinverse. This update rule is similar to one used previously in Wilson (2022b)

and is chosen to keep the amplitude coordinates small as discussed in “Appendix 1.”
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The derived update rule can then be used in conjunction with the rest of the equations

from (A4) to obtain the adaptive phase-amplitude reduced model representation. The

resulting model is validated by applying a step input of the form u(t) = −2.5(1−ξ(t −

30)) for t ∈ [0, 50] where ξ is the Heaviside function. To evaluate the performance

of the proposed strategy combined with the adaptive reduction in approximating the

full model dynamics, the output from the adaptive phase-amplitude reduced model is

compared against standard phase reduction of the form shown in (6) where only phase

information is used to approximate the full model output and also, with the standalone

proposed strategy output which considers three isostable coordinates, valid to first

order of accuracy around the limit cycle and expanded to fifth order of Fourier series

expansion, without combining it with the adaptive reduction.

Figure 7 illustrates the results obtained when the input from Panel C is applied to the

models. Looking at Panel A, the proposed strategy plus adaptive reduction performs

far better than the other two strategies. Meanwhile, the standard phase reduction is

limited to considering only small inputs and does not perform well. The proposed

strategy without adaptive reduction performs moderately better than the standard phase

reduction but fails as well due to the fact that it only considers the nominal periodic

orbit which makes it unable to replicate the full model output effectively. Also, the

magnitude of the applied input is much larger than what the proposed approach’s

reduced model form, shown in (8), can handle. Standard phase reduction has the highest

MSE value of 142.1 followed by the proposed strategy without adaptive reduction with

a MSE value of 126.4. The lowest MSE value of 17.6 is generated by the combination

of proposed strategy and adaptive reduction.

5 Discussion and Conclusion

In this work, we propose a data-driven reduced-order model identification strategy for

limit cycle oscillators using phase and isostable coordinates. We start by considering

a phase-amplitude coordinate-based reduced model, shown in Eq. (8), to represent

the full model dynamics in a low order basis. Equations (9), (10) and (11) show how

the unknown terms are then Taylor expanded in the basis of isostable coordinates and

then transformed into a lifted basis comprised of Fourier series coefficients that need

to be learned. To facilitate learning, these equations are then written as a composition

of known nonlinear functions and unknown linear functions containing the Fourier

coefficients. Based upon this reframing, one can utilize an artificial neural network by

using the training data to learn and identify an accurate approximation for the unknown

weights of the linear relationships. The proposed model identification strategy is illus-

trated through a collection of nonlinear models and also utilized in conjunction with

adaptive phase reduction while considering the dynamics of a synaptically coupled

neuronal population.

Previous work Ahmed et al. (2022) presented a related model identification strategy

for nonlinear dynamical systems with a stable fixed point. Our proposed strategy is an

extension of the work from Ahmed et al. (2022) in that it is specifically developed for

systems with oscillatory dynamics. To accomplish this, our proposed strategy must find

unknown Fourier series coefficients comprising the terms from Eqs. (9), (10) and (11)
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greatly increasing the number of coefficients needed to be learned as compared to the

approach in Ahmed et al. (2022) for the same order of accuracy. Comparing the method

from the current work with the strategy from prior work (Ahmed et al. 2022), the neural

network for this proposed work requires more layers to account for the non-static

phase coordinate including the nontrainable layer for the functional approximation

of the periodic orbit. To account for this added complexity, Fourier expansion of

the unknown model reduction coefficients is considered through deriving a non-trivial

lifted basis involving the phase and isostable coordinates with the input U (t) as shown

in Eqs. (16), (18) and (20). The proposed strategy provides a reduced-order model for

capturing the full model oscillatory dynamics while requiring relatively small amounts

of training data. All the models considered as examples were trained using only a

set of hundred random inputs and then tested using an input that was qualitatively

different from the training set. This showcases the proposed strategy’s ability to learn

a generalized reduced-order model representation despite limited availability of data.

Furthermore, both the phase and isostable coordinates embedded within the neural

network as functions of state space do not require prior estimates.

To improve the effectiveness and accuracy of the proposed strategy, a number of

extensions could be considered. For example, during training when the inner loop

is implemented where ŷ(t) is obtained by evaluating the relation (13) in a recursive

manner, any initial errors arising at early timesteps are propagated and potentially

amplified as training proceeds toward later timesteps. To limit this error propagation,

it could be worthwhile to consider modifying the loss function in such a way that it

gives more importance to initial solutions. This can be done by, for example, adding

an additional weighting term of the form
∑η

i=1 ϑ(i)(y(t0 + i�t) − ŷ(t0 + i�t))2

where ϑ(i) is the weighting factor. Furthermore, although the MSE loss as defined in

Eq. (21) provides adequate performance for the presented examples, it still has a few

notable shortcomings. For instance, when the natural frequency ω is not approximated

accurately, the MSE loss is unable to account for any discrepancy in the frequency and

hence, the predicted reduced model output does not match the frequency of the full

model output. To mitigate this issue, it might be worthwhile to investigate loss functions

that take the frequency of the oscillations into account. Another improvement could

be realized by devising a method to infer both phase and isostable coordinates directly

from the observable which could then be used for learning the coefficients through

training the neural network. This might also help mitigate the error propagation issue

caused by generating the phase and isostable coordinates from the network itself as

indicated in Step 5 in Sect. 3.4. A similar idea was used in strategies presented in

Wilson (2020a), Ahmed and Wilson (2021) for extracting both the phase and isostable

coordinates utilizing time-delay embeddings of observables.

Considering improvements from a deep learning perspective, it might be worthwhile

to consider a more generalized training dataset with more samples containing inputs

of different types, especially when training high-dimensional models. Additionally,

for all the dynamical systems considered in this work, systematic weight initialization

is not considered for the neural networks. Various works have shown that appropri-

ate weight initialization improves the neural network’s convergence rate significantly

(Kumar 2017; Yam and Chow 2000). This can have a significant impact, especially

when a large number of coefficients need to be learned for the reduced model. Batch
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normalization could also be used which makes the network more stable during training

and converge faster as shown in Santurkar et al. (2018), Ioffe and Szegedy (2015). To

incorporate normalization into the current implementation, a workaround would need

to be devised in such a way that the phase-isostable-based network structure is not

altered. Using the previous timestep’s output as an input for the next timestep, as done

in our proposed approach, is one of the key ideas in recurrent neural networks which

are primarily used in deep learning for time series forecasting and natural language

processing. Error accumulation as training proceeds from one timestep to the next is

quite common in these neural networks and can contribute to issues with either explod-

ing or vanishing gradients (Pascanu et al. 2013). This gradient issue can potentially

cause the network to stop learning in case of vanishing gradients; in case of exploding

gradients, it poses a serious memory bottleneck. Traditional approaches to solve this

gradient problem use weight regularization by introducing a penalty term within the

loss function or by doing proper neural network initialization at the start of training.

Such techniques from deep learning literature can be adapted to improve our proposed

approach for future works.

This material is based upon work supported by the National Science Foundation

Grant No. CMMI-2140527.

Appendix A Adaptive Phase-Isostable Reduction

Adaptive phase-amplitude reduction is able to provide reduced model representations

that are valid far beyond the weakly perturbed limit by considering a collection of peri-

odic orbits that results from a change in a given parameter. Following the formulation

in Wilson (2022a), start by considering a set of additional variables to those in Eq. (1),

represented by p ∈ R. Assume that the system’s differential equation ẋ = F(x, p) has

a stable periodic orbit xγ (θ, p) if the value of p is held constant and chosen from a set

of allowable p. A set of isostable coordinates denoted by ψ1(x, p), . . . , ψβ(x, p) and

corresponding phase θ(x, p) is also defined for each periodic orbit xγ (θ, p). For each

xγ (θ, p), the associated phase coordinates are unique up to a constant shift. To define

the set of equations for adaptive reduction, one can rewrite the dynamics ẋ = F(x, u)

as

ẋ = F(x, p) + Ue(x, u, p), (A1)

where

Ue(x, u, p) = F(x, u) − F(x, p)

=
∂ F

∂u
(u − p) + O(||u − p||2), (A2)

where all partial derivatives above are evaluated at x where u = p. Above, F(x, p)

from (A1) represents the nominal behavior of the system when u is held at p. The

term Ue(x, u, p) can be thought of as an effective input. Letting p be non-static and
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changing the variables to phase and isostable coordinates yields

d

dt
θ(x, p) =

∂θ

∂x
·

dx

dt
+

∂θ

∂ p
·

d p

dt
,

d

dt
ψ j (x, p) =

∂ψ j

∂x
·

dx

dt
+

∂ψ j

∂ p
·

d p

dt
,

j = 1, . . . , β,

d p

dt
= G p(p, θ, ψ1, . . . , ψβ), (A3)

where G p determines how p changes in time. As described in Wilson (2022a), to

consider both phase and amplitude dynamics simultaneously like in (A3), limits must

be placed on how the magnitude of the input changes especially when considering

large magnitude inputs which can take the state far from the nominal periodic limit

cycle. The equation for the parameter p in (A3) allows the user to keep the state close

to the periodic orbit by updating and choosing the adaptive parameter p along with the

corresponding nominal periodic orbit from the set defined by the allowable values of p

while keeping the amplitude dynamics, i.e., the isostable coordinates small. To simplify

Eq. (A3) further, one can note that ∂θ
∂x

· ∂x
∂t

and each
∂ψ j

∂x
· ∂x

∂t
capture the phase and

isostable dynamics, respectively, when p is kept constant and hence, can be replaced

with the terms from standard phase-amplitude reduction, i.e., ω(p)+ Z(θ, p)(u − p)

for phase and κ j (p)ψ j + I j (θ, p)(u − p) for isostable coordinates. Similarly, the

remaining terms can be identified as in Wilson (2022a) to yield the set of equations

for the adaptive phase-isostable reduction

θ̇ = ω(p) + Z(θ, p)(u − p) + D(θ, p) ṗ,

ψ̇ j = κ j (p)ψ j + I j (θ, p)(u − p) + Q j (θ, p) ṗ,

j = 1, . . . , β,

ṗ = G p(p, θ, ψ1, . . . , ψβ). (A4)

As shown in Wilson (2022a), for a given value of p held constant, the D(θ, p) ∈ R

term is given by − ∂xγ

∂ p
· ∂θ

∂x
where ∂xγ

∂ p
|θ0,p ≡ lima→0(xγ (θ0, p + a) − xγ (θ0, p))/a

and ∂θ
∂x

is evaluated in reference to x
γ
p . Similarly, Q j (θ, p) ∈ R is given by − ∂xγ

∂ p
·
∂ψ j

∂x

where
∂ψ j

∂x
is evaluated with reference to xγ (θ, p). As described in Wilson (2023),

one can rewrite D(θ, p) as

D(θ, p) = −H(θ, p) − c1(p), (A5)

where c1(p) is a constant. As discussed in Wilson (2023), the term H(θ, p) can be

found by substituting θ = ωt along the limit cycle according to

H(ωt, p) =

∫ T

0

M̄(ωs, p)ds, (A6)
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where M̄(ωt, p) = Z(ωt, p)− Z̄(p) and Z̄(p) = 1
T

∫ T

0 Z(ωs, p)ds. Note that above,

the period T depends on p, which is constant in the integration. Similarly, for the Q j

term, as shown in Wilson (2023)

Q j (θ, p) = −ψ j,ss(θ, p), (A7)

where ψ j,ss(θ, p) is given by

ψ j,ss(θ, p) = −
b0

κ j

+

∞
∑

i=1

[

−
ai κ j sin(iθ)

κ2
j + ω2i2

−
ai iω cos(iθ)

κ2
j + ω2i2

−
bi iω sin(iθ)

κ2
j + ω2i2

−
bi κ j cos(iθ)

κ2
j + ω2i2

]

,

(A8)

where b0, ai and bi are the Fourier coefficients of the isostable response curve I j (θ, p).

Additionally, κ j is the Floquet exponent and ω is the frequency from Eq. (A4), both

of which are functions of p. A more detailed derivation is found in Wilson (2023).

It is important to mention that the adaptive reduction model, shown in Eq. (A4),

is specified by using the first-order terms of the standard phase-isostable reduction.

Finally, in order to approximate the state when using reduced-order dynamics from

Eq. (A4), one can write

x = xγ (θ, p) +

N−1
∑

j=1

ψ j g
j (θ, p), (A9)

where g j (θ, p) is the Floquet eigenfunction associated with the periodic orbit

xγ (θ, p).
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