Fast Triangle Counting

David A. Bader*
Department of Data Science
New Jersey Institute of Technology
Newark, New Jersey, USA
bader @njit.edu

Abstract—Listing and counting triangles in graphs is a key
algorithmic kernel for network analyses including community
detection, clustering coefficients, k-trusses, and triangle central-
ity. We design and implement a new serial algorithm for triangle
counting that performs competitively with the fastest previous
approaches on both real and synthetic graphs, such as those from
the Graph500 Benchmark and the MIT/Amazon/IEEE Graph
Challenge. The experimental results use the recently-launched
Intel Xeon Platinum 8480+ and CPU Max 9480 processors.

Index Terms—Graph Algorithms, Triangle Counting, High
Performance Data Analytics

I. INTRODUCTION

Triangle listing and counting is a highly-studied problem in
computer science and is a key building block in various graph
analysis techniques such as clustering coefficients [1], k-truss
[2], and triangle centrality [3]. The MIT/Amazon/IEEE Graph
Challenge [4], [5] includes triangle counting as a fundamental
method in graph analytics. There are at most (g) = @(ng)
triangles in a graph G = (V, E) with n = |V vertices and
m = |E| edges. The focus of this paper is on sequential
triangle counting algorithms for sparse graphs that are stored
in compressed, sparse row (CSR) format, rather than adjacency
matrix format. The naive approach using triply-nest loops to
check if each triple (u,v,w) forms a triangle takes O (n?)
time and is inefficient for sparse graphs. It is well-known that
listing all triangles in G is {2 m%) time [6], [7].
The main contributions of this paper are:
e A new triangle algorithm that combines the tech-
niques of cover-edges, forward, and hashing and runs in
O (m - a(G)), where a(G) is the arboricity of the graph;

o An experimental study of an implementation of this novel
triangle counting algorithm on real and synthetic graphs;
and

o Freely-available, open-source software for more than 20

triangle counting algorithms and variants in the C pro-
gramming language.

A. Related work

There are faster algorithms for triangle counting, such as the
work of Alon, Yuster, and Zwick [8] that require an adjacency
matrix for the input graph representation and use fast matrix
multiplication. As this is infeasible for large, sparse graph,

“This research was partially supported by NSF grant number CCF-
2109988.

their and other fast multiply methods are outside the scope of
this paper.

Latapy [7] provides a survey on triangle counting algorithms
for very large, sparse graphs. One of the earliest algorithms,
tree-listing, published in 1978 by Itai and Rodeh [6] first finds
a rooted spanning tree of the graph. After iterating through the
non-tree edges and using criteria to identify triangles, the tree
edges are removed and the algorithm repeats until there are
no edges remaining. This approach takes O (m%) time (or
O (n) for planar graphs).

The most common triangle counting algorithms in the
literature include vertex-iterator [6], [7] and edge-iterator
[6], [7] approaches that run in O (m - dmax) time [6], [9],
[10], where dmax is the maximum degree of a vertex in the
graph. In vertex-iterator, the adjacency list N (v) of each vertex
v € V is doubly-enumerated to find all 2-paths (u, v, w) where
u,w € N(v). Then, the graph is searched for the existence
of the closing edge (u,w) by checking if w € N(u) (or if
u € N(w)). Arifuzzaman ef al. [11] study modifications of the
vertex-iterator algorithm based on various methods for vertex
ordering.

In edge-iterator, each edge (u,v) in the graph is examined,
and the intersection of N (u) and N (v) is computed to find tri-
angles. A common optimization is to use a direction-oriented
approach that only considers edges (u,v) where u < v. The
variants of edge-iterator are often based on the algorithm used
to perform the intersection. When the two adjacency lists
are sorted, then MergePath and BinarySearch can be used.
MergePath performs a linear scan through both lists counting
the common elements. Makkar, Bader and Green [12] give an
efficient MergePath algorithm for GPU. Mailthody et al. [13]
use an optimized two-pointer intersection (MergePath) for set
intersection. BinarySearch, as the name implies, uses a binary
search to determine if each element of the smaller list is found
in the larger list. Hash is another method for performing the
intersection of two sets and it does not require the adjacency
lists to be sorted. A typical implementation of Hash initializes
a Boolean array of size m to all false. Then, positions in Hash
corresponding to the vertex values in N(u) are set to true.
Then N (v) is scanned, looking up in ©(1) time whether or not
there is a match for each vertex. Chiba and Nishizeki published
one of the earliest edge iterator with hashing algorithms for
triangle finding in 1985 [14]. The running time is O (a(G)m),

where a(G) is defined as the arboricity of G, which is
upper-bounded a(G) < [(2m + n)z /2] [14]. In 2018, Davis
rediscovered this method, which he calls tri_simple in his
comparison with SuiteSparse GraphBLAS [15]. According to
Davis [15]: this algorithm “is already a non-trivial method.
It requires expert knowledge of how Gustavson’s method can
be implemented efficiently, including a reduction of the result
to a single scalar”” Mowlaei [16] gave a variant of the edge-
iterator algorithm that uses vectorized sorted set intersection
and reorders the vertices using the reverse Cuthill-McKee
heuristic.

In 2005, Schank and Wagner [9], [10] designed a fast
triangle counting algorithm called forward (see Algorithm 1)
that is a refinement of the edge-iterator approach. Instead of
intersections of the full adjacency lists, the forward algorithm
uses a dynamic data structure A(v) to store a subset of the
neighborhood N(v) for v € V. Initially each set A() is
empty, and after computing the intersection of the sets A(u)
and A(v) for each edge (u,v) (with u < v), u is added to
A(v). This significantly reduces the size of the intersections
needed to find triangles. The running time is O (m - dmax)-
However, if one reorders the vertices in decreasing order
of their degrees as a ©(nlogn) time pre-processing step,
the forward algorithm’s running time reduces to O gmg .
Donato et al. [17] implement the forward algorithm for shared-
memory. Ortmann and Brandes [18] survey triangle counting
algorithms, create a unifying framework for parsimonious im-
plementations, and conclude that nearly every triangle listing
variant is in O (m - a(Q)).

Algorithm 1 Forward Triangle Counting [9], [10]

Input: Graph G = (V, E)
Output: Triangle Count 7'

1: T+ 0

2:VveV

3 Aw) 0

4: Y(u,v) € E

5 if (u < v) then

6: Yw € A(u) N A(v)
7: T+T+1

8 A(v) + A(v) U {u}

The forward-hashed algorithm [9], [10] (also called
compact-forward [7]) is a variant of the forward algorithm
that uses the hashing described above for the intersections of
the A() sets, see Algorithm 2. Shun and Tangwongsan [19]
parallelize the forward and forward-hashed algorithms for mul-
ticore systems. Low et al. [20] derive a linear-algebra method
for triangle counting that does not use matrix multiplication.
Their algorithm results in the forward-hashed algorithm.

II. ALGORITHM

Recently, we presented Algorithm 3 [21] as a new method
for finding triangles. This approach finds a subset of cover
edges from E such that every triangle contains at least one
cover edge.

This algorithm uses breadth-first search (BFS) to find a
reduced cover-edge set consisting of edges (u,v) where the

Algorithm 2 Forward-Hashed Triangle Counting [9], [10]

Input: Graph G = (V, E)
Output: Triangle Count T’

1: T+ 0

2: VveV

3 A() <« 0

4: Y(u,v) € E

5 if (u < v) then

6: Yw € A(u)

7: Hash[w] < true
8 Yw € A(v)

9: if Hash[w] then
10: T+ T+1
11: Yw € A(u)
12: Hash[w] < false
13: A(v) + A(v) U {u}

Algorithm 3 Cover-Edge Triangle Counting [21]

Input: Graph G = (V, E)
Output: Triangle Count T’
1: T+0
2:YveV
if v unvisited, then BFS(G, v)
: V(u,v) € E
if (L(u) = L(v)) A (u<wv)
Yw € N(u) N N(v)
if (L(u) # L(w)) V ((L(u) = L(w)) A (v < w)) then
T+T+1

> (u,v) is horizontal

A

levels of vertices u and v are the same, i.e., L(u) = L(v).
From the result in [21], each triangle must contain at least
one of these horizontal edges. Then each edge in the cover
set is examined, and Hash is used to find the vertices w in
the intersection of N(u) and N(v). A triangle (u,v,w) is
found based on logic about w’s level. The breadth-first search,
including determining the level of each vertex and marking
horizontal-edges, requires O (n 4+ m) time. The number of
horizontal edges is O (m). The intersection of each pair

of vertices costs O (dmax). Hence, Alg. 3 has complexity
O (m - dinax)-

Algorithm 4 Fast Triangle Counting

Input: Graph G = (V, E)
Output: Triangle Count T°

I: YveV

2: if v unvisited, then BFS(G, v)

3: V(u,v) € E

4: if (L(u) = L(v)) then > (u,v) is horizontal
5: Add (u,v) to GO

6: else

7: Add (u,v) to G1

8: T < TC_forward-hashed(GO0) > Alg. 2
9: Vu € VG1

10 Vv € Ngi(u)

11: Hash[v] < true

12: Yv € Ngo(u)

13: if (u < v) then

14: Yw € Ngi(v)

15: if Hash[w] then

16: T+ T+1

17 Vv € Ngi(uw)

18: Hash[v] <+ false

In this paper, we present our new triangle counting algo-
rithm (Alg. 4), called fast triangle counting. This new triangle

counting algorithm is similar with cover-edge triangle counting
in Alg. 3 and uses BFS to assign a level to each vertex in lines
1 and 2. Next in lines 3 to 7, the edges E of the graph are
partitioned into two sets £/0 — the horizontal edges where both
endpoints are on the same level — and E'1 — the remaining tree
and non-tree edges that span a level. Thus, we now have two
graphs, GO = (V, E0) and G1 = (V, E1), where E = EOUE1
and E0 N E1 = (). Triangles that are fully in GO are counted
with one method and triangles not fully in GO are counted
with another method. For GO, the graph with horizontal edges,
we count the triangles efficiently using the forward-hashed
method (line 8). For triangles not fully in GO, the algorithm
uses the following approach to count these triangles. Using
(G1, the graph that contains the edges that span levels, we use a
hashed intersection approach in lines 9 to 18. As per the cover-
edge triangle counting, we need to find the intersections of the
adjacency lists from the endpoints of horizontal edges. Thus,
we use GO to select the edges, and perform the hash-based
intersections from the adjacency lists in graph G'1. The proof
of correctness for cover-edge triangle counting is given in [21].
Alg. 4 is a hybrid version of this algorithm, that partitions the
edge set, and uses two different methods to count these two
types of triangles. The proof of correctness is still valid with
these new refinements to the algorithm. The running time of
Alg. 4 is the maximum of the running time of forward-hashing
and Alg. 3. Alg. 4 uses hashing for the set intersections. For
vertices © and v the cost is min(d(u), d(v)) since the algorithm
can check if the neighbors of the lower-degree endpoint are
in the hash set of the higher-degree endpoint. Over all (u,v)
edges in E, these intersections take O (m - a(G)) expected
time. Hence, Alg. 4 takes O (m - a(G)) expected time.

Similar with the forward-hashed method, by pre-processing
the graph by re-ordering the vertices in decreasing order of
degree in O(nlogn) time often leads to a faster triangle
counting algorithm in practice.

III. EXPERIMENTAL RESULTS

We implemented more than 20 triangle counting algorithms
and variants in C and use the Intel Development Cloud
for benchmarking our results on a GNU/Linux node.
The compiler is Intel(R) oneAPI DPC++/C++ Compiler
2023.1.0 (2023.1.0.20230320) and ‘-02° is used as a
compiler optimization flag. For benchmarking we compare
the performance using two recently-launched Intel Xeon
processors (Sapphire Rapids launched Q1°23) with two types
of memory (DDRS5 and HBM). The first node is a dedicated
2.00 GHz 56-core (112 thread) Intel(R) Xeon(R) Platinum
8480+ processor (formerly known as Sapphire Rapids) with
105M cache and 1024GB of DDRS RAM. The second
node is a dedicated 1.90 GHz 56-core (112 thread) Intel(R)
Xeon(R) CPU Max 9480 processor (formerly known as
Sapphire Rapids HBM) with 112.5M cache and 256GB of
high-memory bandwidth (HBM) memory.

Following the best practices of experimental algorithmics
[22], we conduct the benchmarking as follows. Each algorithm
is written in C and has a single argument — a pointer to the

graph in a compressed sparse row (CSR) format. The input
is treated as read-only. If the implementation needs auxiliary
arrays, pre-processing steps, or additional data structures, it
is charged the full cost. Each implementation must manage
memory and not contain any memory leaks — hence, any
dynamically allocated memory must be freed prior to returning
the result. The output from each implementation is an integer
with the number of triangles found. Each algorithm is run
ten times, and the mean running time is reported. To reduce
variance for random graphs, the same graph instance is used
for all of the experiments. The source code is sequential C
code without any explicit parallelization. The same coding
style and effort was used for each implementation.

Experimental results are presented in Table I for the Intel
Xeon Platinum 8480+ processor with DDRS memory and in
Table II for the Intel Xeon Max 9480 processor with HBM
memory. For each graph, we give the number of vertices (n),
the number of edges (m), the number of triangles, and k — the
percentage of graph edges that are horizontal after running
BFS from arbitrary roots. The algorithms tested are

IR : Treelist from Itai-Rodeh [6]
\" : Vertex-iterator

VD : Vertex Iterator (direction-oriented)

EM : Edge Iterator with MergePath for set intersection

EMD : Edge Iterator with MergePath for set intersection
(direction-oriented)

EB : Edge Iterator with BinarySearch for set intersection

EBD : Edge Iterator with BinarySearch for set intersection

(direction-oriented)
EP : Edge Iterator with Partitioning for set intersection
EPD : Edge Iterator with Partitioning for set intersection
(direction-oriented)
: Edge Iterator with Hashing for set intersection
: Edge Iterator with Hashing for set intersection
(direction-oriented)
F : Forward
FH : Forward with Hashing
FHD : Forward with Hashing and degree-ordering
TS : Tri_simple (Davis [15])

EH
EHD

LA : Linear Algebra (CMU [20])

CE : Cover Edge (Bader, [21])

CED : Cover Edge with degree-ordering (Bader, [21])
Bader : this paper

BaderD this paper with degree-ordering

While all of the algorithms tested have the same asymptotic
worst-case complexity, the running times range by orders of
magnitude between the approaches. In nearly every case where
edge direction-orientation is used, the performance is typically
improved by a constant factor up to two. The vertex-iterator
and Itah-Rodeh algorithms are the slowest across the real
and synthetic datasets. The timings between the Intel Xeon
Platinum 8480+ and Intel Xeon Max 9480 are consistent, with
the 8480+ a few percent faster than the 9480 processor. This
is likely due to the fact that we are using single-threaded code

on one core, and that the 8480+ is clocked at a slightly higher
rate (2.00GHz vs 1.90GHz).

In general, the forward algorithms and its variants tend to
perform the fastest, followed by the edge-iterator, and then
the vertex-iterator methods. The new fast triangle counting
algorithm is competitive with the forward approaches, and may
be useful when the results of a BFS are already available from
the analyst’s workflow, which is often the case.

The performance of the road network graphs (roadNet-CA,
roadNet-PA, roadNet-TX) are outliers from the other graphs.
Road networks, unlike social networks, often have only low
degree vertices (for instance, many degree four vertices), and
large diameters. The percentage of horizontal edges (k) of
these road networks is under 15% and we see less benefit of
the new approach due to this low value of k. In addition, the
sorting of vertices by degree for the road network significantly
harms the performance compared with the default ordering of
the input. This may be due to the fact that there are few unique
degree values, and sorting decimates the locality in the graph
data structure.

The linear algebra approach [20] does not typically perform
as well on the real and synthetic social networks. For example,
on a large RMAT graph of scale 18, the linear algebra
algorithm method takes seconds, whereas the new algorithm
runs in under a second. However, the linear algebra approach
performs well on the road networks.

IV. CONCLUSIONS

In this paper we design and implement a novel, fast triangle
counting algorithm, that uses new techniques to improve the
performance. It is the first algorithm in decades to shine new
light on triangle counting, and use a wholly new method of
cover-edges to reduce the work of set intersections, rather than
other approaches that are variants of the well-known vertex-
iterator and edge-iterator methods. We provide extensive per-
formance results in a parsimonious framework for benchmark-
ing serial triangle counting algorithms for sparse graphs in a
uniform manner. The results use one of Intel’s latest processor
families, the Intel Sapphire Rapids (Platinum 8480+) and Sap-
phire Rapids HBM (CPU Max 9480) launched in the 1st quar-
ter of 2023. The new triangle counting algorithm can benefit
when the results of a BFS are available, which is often the case
in network science. Additionally, this work will inspire much
interest within the Graph Challenge community to implement
versions of the presented algorithms for large-shared memory,
distributed memory, GPU, or multi-GPU frameworks.

V. FUTURE WORK
The fast triangle counting algorithm (Alg. 4) can be readily
parallelized using a parallel BFS, partitioning the edge set in
parallel, and using a parallel triangle counting algorithm on
graph G0, and parallelizing the set intersections for graph G1.
In future work, we will implement this parallel algorithm and
compare its performance with other parallel approaches.

VI. REPRODUCIBILITY
The sequential triangle counting source code is open source
and available on GitHub at https://github.com/Bader-Research/

triangle-counting. The input graphs are from the Stanford
Network Analysis Project (SNAP) available from http://snap.
stanford.edu/.

REFERENCES

[1] D.J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’
networks,” Nature, vol. 393, no. 6684, pp. 440-442, 1998.

[2] J. Cohen, “Trusses: Cohesive subgraphs for social network analysis,”
National Security Agency Technical Report, vol. 16, no. 3.1, 2008.

[3] P. Burkhardt, “Triangle centrality,” CoRR, vol. abs/2105.00110, 2021.
[Online]. Available: https://arxiv.org/abs/2105.00110

[4] S. Samsi, V. Gadepally, M. Hurley, M. Jones, E. Kao, S. Mohindra,
P. Monticciolo, A. Reuther, S. Smith, W. Song, D. Staheli, and J. Kepner,
“GraphChallenge.org: Raising the bar on graph analytic performance,” in
2018 IEEE High Performance Extreme Computing Conference (HPEC),
2018, pp. 1-7.

[51 S. Samsi, J. Kepner, V. Gadepally, M. Hurley, M. Jones, E. Kao, S. Mo-
hindra, A. Reuther, S. Smith, W. Song, D. Staheli, and P. Monticciolo,
“Graphchallenge.org triangle counting performance,” in 2020 IEEE High
Performance Extreme Computing Conference (HPEC), 2020, pp. 1-9.

[6] A. Itai and M. Rodeh, “Finding a minimum circuit in a graph,” SIAM
Journal on Computing, vol. 7, no. 4, pp. 413-423, 1978.

[7]1 M. Latapy, “Main-memory triangle computations for very large (sparse
(power-law)) graphs,” Theoretical Computer Science, vol. 407, no. 1,
pp. 458-473, 2008.

[8] N. Alon, R. Yuster, and U. Zwick, “Finding and counting given length
cycles,” Algorithmica, vol. 17, no. 3, pp. 209-223, 1997.

[9] T. Schank and D. Wagner, “Finding, counting and listing all triangles

in large graphs, an experimental study,” in Proceedings of the 4th

International Conference on Experimental and Efficient Algorithms, ser.

WEA’05. Berlin, Heidelberg: Springer-Verlag, 2005, p. 606—-609.

T. Schank, “Algorithmic aspects of triangle-based network analysis,”

Ph.D. dissertation, Karlsruhe Institute of Technology, 2007.

S. Arifuzzaman, M. Khan, and M. Marathe, “Fast parallel algorithms

for counting and listing triangles in big graphs,” ACM Trans. Knowl.

Discov. Data, vol. 14, no. 1, Dec 2019.

D. Makkar, D. A. Bader, and O. Green, “Exact and parallel triangle

counting in dynamic graphs,” in 24th IEEE International Conference

on High Performance Computing, HiPC 2017, Jaipur, India, December

18-21, 2017. Los Alamitos, CA: IEEE Computer Society, 2017, pp.

2-12.

V. S. Mailthody, K. Date, Z. Qureshi, C. Pearson, R. Nagi, J. Xiong, and

W.-m. Hwu, “Collaborative (cpu + gpu) algorithms for triangle counting

and truss decomposition,” in 2018 IEEE High Performance Extreme

Computing Conference (HPEC), 2018, pp. 1-7.

N. Chiba and T. Nishizeki, “Arboricity and subgraph listing algorithms,”

SIAM Journal on Computing, vol. 14, no. 1, pp. 210-223, 1985.

T. A. Davis, “Graph algorithms via suitesparse: Graphblas: triangle

counting and k-truss,” in 2018 IEEE High Performance Extreme Com-

puting Conference (HPEC), 2018, pp. 1-6.

S. Mowlaei, “Triangle counting via vectorized set intersection,” in 2017

IEEE High Performance Extreme Computing Conference (HPEC), 2017,

pp. 1-5.

E. Donato, M. Ouyang, and C. Peguero-Isalguez, “Triangle counting

with a multi-core computer,” in 2018 IEEE High Performance Extreme

Computing Conference (HPEC), 2018, pp. 1-7.

M. Ortmann and U. Brandes, “Triangle listing algorithms: Back from the

diversion,” in Proceedings of the Meeting on Algorithm Engineering &

Expermiments. USA: Society for Industrial and Applied Mathematics,

2014, p. 1-8.

[19] J. Shun and K. Tangwongsan, “Multicore triangle computations without

tuning,” in 2015 IEEE 31st International Conference on Data Engineer-

ing. 1EEE, 2015, pp. 149-160.

T. M. Low, V. N. Rao, M. Lee, D. Popovici, F. Franchetti, and S. McMil-

lan, “First look: Linear algebra-based triangle counting without matrix

multiplication,” in 2017 IEEE High Performance Extreme Computing

Conference (HPEC), 2017, pp. 1-6.

D. A. Bader, F. Li, A. Ganeshan, A. Gundogdu, J. Lew, O. A.

Rodriguez, and Z. Du, “Triangle counting through cover-edges,” in The

27th Annual IEEE High Performance Extreme Computing Conference

(HPEC), Virtual, September 25-29, 2023, 2023.

C. C. McGeoch, A Guide to Experimental Algorithmics, 1st ed. USA:

Cambridge University Press, 2012.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[20]

(21]

[22]

9565000 TETS00'0 86L¥10°0 11Z€10°0 $TS610°0 86¥600°0 6515000 LIT1S00°0 £70810°0 £72010°0 LET0TO'0 8786810 EF8YSE0 QIOA-IM

66£€20°0 Sr6120°0 €SLTVO0 9TTEV00 £09€90°0 6191500 092€20°0 6866100 9¥ET0°0 £99870°0 €9¥001°0 €EFILY0 TPLES'T [suourdz-50s
L6T60€°0 99¥7S1°0 6¥C0r1°0 8TCTSO'0 869LT0°0 TEISE00 €11801°0 879200 88€TCO0 ¥Tere0’0 8¥0LY00 9105900 6CILITO XL-1eNpeol
$998¥T°0 rL8TI°0 Too1To [0} 8¥€TCO0 0268200 89¢¥80°0 1611200 1608100 TLLLTOO S€€8€0°0 611€50°0 0965600 Vd-12Npeol
Y8YTHT0 09€TET°0 91960T°0 90€180°0 9¥L6£0°0 L101S0°0 YOPTLI0 $6T8€0°0 €6LTEO'0 6LE6Y00 +86L90°0 0¥TE600 LYPL9T°0 VO-1eNprot
+9Tr90°0 96£9¥0°0 SSE160°0 LY¥PLO0 +886L0°0 156881°0 60L950°0 SYL6E00 €T1S80°0 9S9SL1°0 08985€°0 L19090°T SLLOYST B[[EMOD-20]
81T€10°0 €£9800°0 895S10°0 0181100 8891100 LSSET00 6900100 £99900°0 €EST10°0 0€8€10°0 01+920°0 LOLTSTO €0TT9T0 AYFUEG-20]
LEYBLTO T8E0ET°0 £PP80T0 TEISST0 91TLOTO 1L60LT°0 0SSSH1°0 ST1080°0 1TLP1ro YOLTF10 8L900€°0 €ITIF6'0 891SLYT 109Quozeure
8€68LI0 €610€1°0 68$80T°0 TOLYST'0 +96901°0 0012L1°0 8SE9F1°0 L88LO0 €L9ETT0 L9EEPT0 P9T0€°0 9¥9Tr6°0 6L6089'T Sosouozewre
81L881°0 LEEO6TIO $SI1861°0 €6LLYT0 §€6001°0 1€6¥91°0 60S6£1°0 1€5SL00 $89L01°0 6EVLETO 86968T°0 $£9888°0 68YLLS'T Clgouozeure
0160900 TLLEYOO £€67990°0 ITIPP0°0 £96220°0 LY6LEDO SEEIF00 7890200 9TTrT0’0 L9LTEO0 019¥90°0 Sr160T°0 TLerieo 0gouozewre
[eS X T98L06°0 £50888°C 8LT60S'E 9S8EVL'E W9I1LS6'E 1190 9626060 08CSH8y L96€TS Y [2UARY STEILT¥S 915996°¢6 81 IVINY
£EE6VT0 LLYOEE0 SLSIOT'T 088L6Y'T 09er8Y'1 SELISH'I OLTISTO IPLYEED 6£8798'1 1800¥9°1 1S795T'¢ §969ST'1T S608S1°LE L1 IVINYE
768600 EEBIT0 L908¥S°0 8SS7€9°0 12rE85°0 6ST0S°0 8¥71960°0 6S611°0 80S01L°0 €TTYIS0 6L0SSO'T €LSYOT'S 8L918EFI 91 IVINY
LOLEFO'O €80870°0 $889¢T°0 8TF9T0 $€88CT0 §TS191°0 TET8ED0 0€910°0 8ECILTO ¥T8EST'0 LL6OTEO 6£ET8T'E 9ITII9S ST IVINY
0900200 8L6020°0 9€€101°0 699€11°0 €€1060°0 £65950°0 TE910°0 9688100 8EEVOT'0 0689500 PLESTT'O €601¥T 1 169L61°T 1 IVINY
07,6000 L89600°0 8YTHP00 6876700 1265€0°0 10¥120°0 0€rLO00 0r1800°0 LS90F00 LS¥TTO0 OLLYYO0 9ESLLYO 1182680 €1 IVINYG
6677000 £€8€100°0 $€6810°0 6801200 181100 §LT800°0 20£€00°0 0TS€000 +89S10°0 8¥6800°0 TYILIOO 6T8Y81°0 TISTEE0 Tl IVINY
0112000 €00200°0 T66L00°0 0668000 £09500°0 6T€00°0 09+100°0 8TS100°0 +S1900°0 9LSE000 S+0L00°0 TLTILOO 9€T6C1°0 1T IVINI
LE6000°0 860000 $62£00°0 $8LE000 L81T00°0 §ST100°0 8990000 9590000 98£T00°0 6271000 0¥8200°0 T0TLT00 69L6¥0°0 01 IVINY
£1¥000°0 6010000 SEE100°0 951000 8951000 0160000 7950000 8750000 0IL100°0 8011000 1022000 18L610°0 8S£9£0°0 6 LVINY
LL10000 910000 0150000 0¥9000°0 60£000°0 1810000 €11000°0 110000 $€€000°0 0€2000°0 L9¥000°0 0S6£00°0 90€L00°0 8 IVINY
0110000 §T1000°0 9€£000°0 950000 L61000°0 0210000 €L0000°0 8900000 9120000 0L10000 SLEO00'0 18L200°0 $0TS00°0 L IVINY
1200000 200000 00000 600000 £20000°0 £20000°0 9100000 100000 £€0000°0 1£0000°0 900000 670000 8260000 9 IVINY
0100000 6000000 600000°0 9000000 2000000 $00000°0 L00000°0 000000 #00000°0 $00000°0 600000°0 §10000°0 £€0000°0 Qerey
arpeg Jopeg asn a0 V1 SL aHd HA El aHa HA add dd ydern
(249 617171°0 9PLY8TO 6191900 £08€T1°0 LOYSLI'O PPLLTO'T 1£996¥°0 68£809 T9L001 L6T8 SI0A-DIM
€€s 650TSS°0 S880TI'I 8TLYOE0 SE8YI9°0 £99€08°1 6EVELO9 9er 198y 1871C91 0rLSOY 888SL [suouidg-50s
0¥l LY9Y00 8100L0°0 6TSTF00 £€91990°0 §682T0°0 £90880°0 88750 69878 0991261 £8€€6ET XL-1aNpeot
9¥1 L¥S8€0°0 1818600 L9900 8E01°0 6SL9€0°0 8€€8LO0 1LE6TE0 0STLY 8681%S1 0260601 Vd-12Npeol
Syl 016,900 608201°0 SILT90°0 9965600 £09T€0°0 ¥910L0°0 €17885°0 9L90TT L0999LT 18T1L61 VO-1eNprol
808 681£65°0 SYTLTT] 800S€0°T 1€9280°C 08sT19°¢ 6LLOOETT $BEOEE'S 8EI€LTT LTEOS6 165961 B[[EMOD-00]
ey TSTLROO 0609L1°0 €T6LS0°0 S98S11°0 SEISET0 17028Y°0 9v08€S°0 8TLY6Y 8LOVIT 8TT8S AYBUE-20]
8T8 60770$°0 9692L0'T $0899¢°0 6T80SL°0 080S+°0 POESHY 1 SLLLER'T L0S986¢ 80¥EVHT 6EE0Y 109Quozeure
LTS 1052080 008690°T 8SYLIE0 6£VESL0 rS6EPY 0 6LETPST €L81TO'T £€90156€ LEVOEYT 9€201Y Sosouozewre
TS SELILY0 €LSE00°T TSLBYE0 8I1TYILO 8€¥S0°0 [LLIEET 9rS101°T L9¥989¢ 69861€C LTLOOY Clgouozewre
Ty 600600 0S6061°0 T6¥90°0 YIELETO 180500 L606£T0 60T82E°0 6ILLIL T6L668 111292 0gouozewre
€09 £66TLY'8E LSLIIS'8L 6£S9L6'ET £20€91°81 6£8201 1T 665886°0681 185€90°599 68L0€6101 POEY61Y 7129 81 IVINY
879 €9ELLI'ST £66876°0€ SI8¥01°6 SSLSOE8T 9120L9'¥Tl SYT8IT6vS 169989°00C 8€96EYIY TSIL60T TLotel LT IVINYE
§S9 SEVPILL'S LSBEIL'TT YLYPEY'E 8LLIT69 LBLBIY'SE L681CT'LST 8L6VCT 09 TLLEETIT 9LS8F01 9€5S9 91 IVINY
'89 LY16€€T TLLIVLY 8TI66T'1 LELSTOT POEFIS 0T 8E19¢°SY 8€6L8¢'81 0089LS6 88THCS 89LTE ST IVINY
SoL 65T688°0 SOETOLT 0L888%7°0 £96786°0 YOOrET'E 1018L0°€T §T0€0S°S 81¥SSey r129C +8€91 1 IVINY
6L SEF09€°0 $69STL0 6£0S81°0 TOYTLED EEIR0 LSESEL'E 98LE0L'T 018861 TLOTET 618 €1 IVINY
SLL 9$8TH1°0 L8SL8TO £68690°0 2SO0 99999T°0 008€80°1 YSYITS0 +TT968 9€6S9 960t Tl IVINY
'8 £20€S0°0 LOTLOT'O 8099200 9rES0°0 192LLOO [UES4E0) T66891°0 9L880% 89LTE 80T 1T IVINI
8T8 9¥$TT00 L1¥$%0°0 0800100 £6€020°0 176€£20°0 10L£60°0 £€8¥S0°0 SS8L81 +8¢91 201 0l IVINY
L 002S10°0 6£90€0°0 LSELOOO SOLYI00 0TEr100 8¥0¥S0°0 0T0L10'0 0L¥98 618 8 6 LVINY
9'L8 062€00°0 1999000 L¥¥100°0 §98200°0 SLSTO00 €L0600°0 6££S00°0 2096€ 960t 95T 8 IVINY
606 902000 80S¥00°0 101000 100200°0 6951000 675000 6¥7€00°0 SS881 80T 8Tl L IVINY
8'€6 T6£000°0 8280000 1020000 00000 62£000°0 91L100°0 6650000 0016 201 9 9 IVINY
6°S¢ 6000000 8100000 9000000 2100000 L00000°0 6100000 0800000 St 8L 43 Qerey
(%) 2 agda a4 andg WH aa A i1 so[3ueLn # w u ydern

“YAAY0-9TYDAA HLIM YAdVd SIHL :9aavy "¥advd SIHL
qgavyg (JHA¥0-99¥04dd) 90dyg YHA0D :dHD "d0dH YHA0D "D (NND) VIFIDTY AVANIT VT (SIAVQA) ATdNIS 14], :S L "(YHAY0-49¥DHA) ONIHSYVH HLIM AIVMIO] :dHA “ONIHSVH HLIM
AQIVMIOY ‘H "advMia0H : "(AQELNAINO-NOLLOTYIA) ONIHSVH HLIM JOLVIHAL] 30dY :JHH "ONIHSVH HLIM YOLVIAL] 4549 :HH "(A4LNAINO-NOLLOFY¥Id) ONINOLLLLYVJ HLIM YOLVIAL] 90ag
:ddd "ONINOILILIV] HLIM JOLVYAL] 49a9 :dd (A4LNIIMO-NOILOFYIA) HOYVASAYVNIFG HLIM YOLVYAL] 45d :dgd "HOMVASAIVNIG HLIM JOLVIAL] 49d] :gH "(AHLNAINO-NOILOHIIA)
HLVJaDYIIN HLIM YOLVIAL] 90T NG "HLVJadDIAN HLIM JOLVIAL] 40dH :JNH “(AELNEINO-NOLLOFYUIA) YOLVIAL] XALIAA ‘A “JOLVIALI-XHILNIA A "HAAOY-IVL] Y] AT
'08%8 NOTX TALN] ¥0d (SANODIS NI) GNIL NOILNDIXH
1 4 T1dVL

6929000 L¥LSO0'0 186S10°0 L6EYIO0 SSTITO0 SPE010'0 S¥9500°0 L8SS00'0 SP9610°0 011100 €9L1T0°0 L89LOTO 609L8¢°0 AOA-HIM

TIeseoo 88200 §TTSHO'0 887LY00 LTIOLO'O 6818500 6087200 €87120°0 96LL90°0 6017500 L98011°0 6065560 0P8¥LY'T [suorudg-00s
0Or1081°0 TLS880'0 801¥S1°0 TS0T90°0 1801€0°0 000700 [U48¥aN0) £060£0°0 6LST00 £906£0°0 8L8TSO0 PEITLO0 €L9LTT°0 X.L-1aNpeor
Lyy1v1'0 ¥SLOLOO 6111C1°0 6€L870°0 ELLYTO'0 67TTE00 0697600 €8LYC0°0 L06020°0 60100 8S9T¥0°0 0808500 8LLYOT'O Vd-1eNpeol
10129T°0 POLIFT'O LOOTETO 6155600 €9€570°0 816500 STI61'0 109t70°0 9TLLEOO 819500 TS69L0°0 §5Te01°0 TOLYRI'0 VO-lNpeos
L29690°0 1SL6¥0°0 TETE600 LSTOLOO +99¥80°0 1T€561°0 6L8950°0 0r80+0°0 $88880°0 TLTLRTO TTELLEO €TP6TTT 120LS0°€E B[[EMOD-00]
T96€£10°0 9t¥600°0 89100 6062100 tPLTIO0 01LY100 89L010°0 992LO00 0rSTI00 TPOST00 £65820°0 9L1991°0 6LSS8TO ANY3E-20]
+TLT61°0 88FPF1°0 0€ILITO LYPS91°0 Tr8601°0 T989L1°0 1¥98¥1°0 €6¥6L0°0 6£SE1T°0 LLISYT 0 €6TI1E0 815001 061L08°T 1090uozewe
0S12T61°0 SE8IVI0 96€LITO 629651°0 085601°0 STP991°0 61€0S1°0 S008L0°0 082110 69tSH1°0 829670 0LT900°T T6L08L'T Sosouozewre
TS9S81°0 SOELELO YIILOTO 1162810 £98€01°0 1S€6S1°0 £TEEYI0 LITSLOO £65901°0 PL86E10 LOLS8T0O STSLY6'0 9891L9'1 Tlgouozewe
£€1890°0 8609¥0°0 L8L990°0 8095700 §98€20°0 1268£0°0 612Tr0°0 YIL1200 17L¥T0°0 95€£€0°0 €81%90°0 819LST°0 $0910€°0 cogouozewe
0816290 6189€6°0 TeLoTl'e T°UL8Y06'E Y6LLIOY PTELTO'S 9L6S09°0 696260 0€6S81°S S08€60°S 11€68L°01 LOBERH'8S 609€T9°€01 81 LVINY
6£867C0 9109¢€°0 $8986¢"1 LTLTO9'T 8S9LLS'T 1TrSLY T ILEEYTO 6007E€°0 951€86'1 9966691 8ECOEY'E 6L8T80°€T 8165£S°01 LT IVINYA
6€1LOT°0 ciLero TELT6S0 9ILYL8YO €81879°0 TI¥8CS0 TI1860°0 ccieero S6899L°0 §98TSS0 86T6€1'T §STITo'8 6709 ST 91 IVINY
SrPLY0'0 €1LTSO0 T699ST°0 LIT6T 0 0TLLYTO €58L91°0 0LSO¥0'0 0¥T6r00 9E9¥6T0 S6Tr91°0 $€65£€°0 Lyyeor'e 0501819 ST IVINY
SYLITO0 LY1€200 8€S0I1°0 120210 €9€860°0 0¥8650°0 LYOLTOO 09+020°0 TISEI1°0 9991900 1LSETT0 6820S€°T 8ST06£T 1 LVINY
9€€010°0 8€S010°0 81€8¥0°0 200¥50°0 9S16£0°0 €96220°0 T90800°0 €16800°0 L6THY00 8EEYTO0 8618100 LTTO6ISO 06LLT60 €1 IVINYG
8L6+00°0 168¥00°0 0990200 1+0€20°0 SHPS10°0 €86800°0 TE9£00°0 018€00°0 T80LI00 0L9600°0 0606100 LOT10T0 TTLI9E0 1 IVINY
90€£200°0 9812000 698000 6¥8600°0 9019000 T95€00°0 6LS1000 £99100°0 8699000 988€00°0 8€9L00°0 809LLO0 99L0¥1°0 1T LVINY
T€0100°0 L60100°0 109€00°0 0S1+00°0 +8€T00°0 0LET000 £0L000°0 62L000°0 £09200°0 8651000 €11€00°0 2096200 0vTrsoo 01 IVINY
LLY000'0 £9¥000°0 wr100°0 0ZL1000 $06000°0 8€S000°0 81€000°0 91£000°0 1860000 +¥9000°0 $8T100°0 8TEI10°0 9980200 6 LVINY
6610000 L81000°0 1650000 $L9000°0 8€££000°0 610000 9210000 LTI000°0 L9£000°0 6¥2000°0 1150000 90€¥00°0 996L00°0 8 LVINY
0210000 €€1000°0 8S€000°0 LS¥000°0 020000 1€1000°0 1800000 €L£0000°0 0€2000°0 LLT0O000 86£000°0 862000 6875000 L IVINY
€20000°0 £20000°0 9¥0000°0 LS0000°0 LT0000'0 §20000°0 L10000°0 9100000 £0000°0 £€0000°0 1£0000°0 T€S000°0 101000 9 IVINY
1100000 6000000 6000000 900000°0 2000000 $00000°0 8000000 +00000°0 000000 900000°0 6000000 §10000°0 £0000°0 derey
atopeg Jopeg aad a0 V1 SL aHd Hd ES ang HA add dd ydein
€S 160vS1°0 06660€°0 0LOL900O 61LYELD 629161°0 1crort TIPSO 68£809 T9L001 L6T8 AOA-HIM
£es 912090 LLI9TT'1 8€9TEE0 9910L9°0 8ESLEY'T €1£019°9 1676767 187T91 0rLSOY 888SL [suoudg-00s
ol 6951500 TITLLOO L8ELYO'O LL6TLO'O LTSSTO'0 95€TS0°0 STER6Y'0 69878 0991261 £8€€6€E1 X.L-1aNpeot
9rl LTETVO'0 6127900 0T16£0°0 0900 €LTIT00 LOLYF0'0 S8E19€°0 0STLY 8681%S1 0260601 Vd-1eNpeol
Syl 896SL0°0 880%11°0 026900 SELIOT'O 86€LE0°0 €0€8L0°0 6LSESH0 9L90TT L0999LT 18T1L61 VO-leaNprol
808 SHS1¥9°0 6£0LIETT 6S6TCI1 867STT +291€6'¢ YELILTTI S90L8L'S 8EI€LTT LTEOS6 165961 B[[2M0D-00]
(434 8T6¥60°0 €69161°0 T80£90°0 TS6STI°0 S6ELYT 0 86T€09°0 1L9€85°0 8TLY6Y 8LOVIT 8TT8S ABPY3E-20]
8TS 86£979°0 €THOIT'T PITI8E0 YO8TLLO 9TH89Y°0 Ts01EST 686¥98°1 L0S986¢ 80¥EVHT 6EE0Y 1090uozewe
LS 99+82S°0 €89901°1 EY1T8E0 EI8YLLO 6S91LY°0 919¢+S'1 12LES6'T £90156€ LEVOEYT 9€201Y Sosouozewre
TS 9E1P6Y°0 L9S9£0°1 9TTTIE0 SYEPEL'0 8810€H°0 SovLIY'T 061¥¥1°T L9¥989¢ 6986F€T LTLOOY Clgouozewre
(444 8S6£60°0 88LT610 §9¥990°0 808S€1°0 9789500 W6¥SSE0 8188£€°0 6ILLIL T6L668 111292 cogouozewe
€09 67P06L 1Y LELOEY'S8 6510T°9C LOLEIT'ES 8YLIYE'LSY 86091€°6591 IEI1L1'89TL 68L0€6101 POEY61Y 7179 81 LVINY
879 0€I91%'91 P0611€°¢E T9LESY'6 $86016°61 T6L6SO'SEL SECLLS'S8Y POISEL'SLE 8€96EYIY TSIL60T cTLotel L1 IVINYA
§'s9 I8€1LT9 001+CLTI T1szeL’e OPLBIS'L 62966'8¢ LSLILT'ILT 9¥9679°S9 TLLEETIT 9LS8FOT 9€5S9 91 IVINY
7’89 6T6¥PS'T 8YEIPI'S €8ITIF'T 0€T6£8'T TT1S0STT T6SLBE 61 8€F0€0°0T 0089LS6 88THCS 89LTE ST IVINY
soL TrL896'0 TI6156'1 Tciceso €€S690°1 16T111'€ 9501€T ¥ 765009 R1849%34 7129 8€91 I IVINI
6L 0EFTOEE0 €1868L°0 62020T°0 L9¥POY'0 0910960 192890% 19L568°1 01+8861 TLOTET 618 €1 IVINYG
SLL 9998S1°0 LETEIE0 LS09L00 66LTS1°0 0rh06T°0 1SH081°T 98£995°0 77968 9€6S9 960t 71 IVINY
s 188LS0°0 SE89IT0 0S6820°0 9LI8SO0 €S1+80°0 0S9THE0 Sr6E81°0 9L880% 89LTE 80T 1T LVINY
8T8 209200 £TS6Y0°0 6v6010°0 LL61TO0 8509200 9PSTLIO 0568500 SS8L81 +8€91 201 01 LVINY
TL 8€L800°0 SLSLIO0 112000 TEP800°0 L61800°0 L60£0°0 1LE810°0 0L¥98 618 [6 LVINY
9'L8 €85€00°0 992L00°0 6951000 LTIE00°0 §€9200°0 9LL6000 185000 2096€ 960t 95T 8 LVINY
606 S9€T00°0 SrLY00'0 §90100°0 1212000 1691000 9LLSO00 8L9€00°0 SS881 80T 8Tl L IVINY
8'€6 9270000 6980000 610000 T6£000°0 1620000 °¢Er100°0 £59000°0 0016 201 9 9 IVINY
6'S¢ 6000000 8100000 900000°0 2100000 L00000°0 6100000 +80000°0 St 8L 43 derey
() o agd a9 ang Wa aa A Rt so[SueLn # w u ydein

“YAAY0-9TYDAA HLIM YAdVd SIHL :9aavy "¥advd SIHL
qgavyg (JHA¥0-99¥04dd) 90dyg YHA0D :dHD "d0dH YHA0D "D (NND) VIFIDTY AVANIT VT (SIAVQ) HTdNIS 1Y], :S L "(YHAY0-49¥DHA) ONIHSVH HLIM AIVMIO] :dHA “ONIHSVH HLIM
AQIVMIOY ‘H "advMiI0H : "(AQ4LNAINO-NOLLOTYIA) ONIHSVH HLIM JOLVIHAL] 39dY :JHH "ONIHSVH HLIM YOLVIAL] 39dq :HH "(A4LNAINO-NOLLOFY¥IA) ONINOLLLLYVJ HLIM YOLVIdL] 90ag
:ddd "ONINOILILIV] HLIM JOLVIAL] 49a :dd (A4LNIIMO-NOILOFYIA) HOYVASAYVNIFG HLIM YOLVYIAL] 45dq :dgd "HOMVASAIVNIG HLIM JOLVIAL] 99d] :gH "(AILNAINO-NOILOHIIA)
HLVJIDIIIN HLIM YOLVIAL] 90T NG "HLVJaADIAN HLIM JOLVIAL] 40dH :JNH “(AQELNEINO-NOLLOFUIA) YOLVIAL] XALIAA A "JOLVIALI-XHILNIA A "HAAOY-IVL] Y] AT
'08%6 XVIN NOTX TALN] ¥0d (SANODHS NI) ANIL NOILNDIXH
II 4 1dVL

