
In-Situ Concolic Testing of JavaScript

1st Zhe Li

Portland State University

Portland, Oregon, USA

zl3@pdx.edu

2nd Fei Xie

Portland State University

Portland, Oregon, USA

xie@pdx.edu

Abstract—JavaScript (JS) has evolved into a versatile and
popular programming language for not only the web, but also a
wide range of server-side and client-side applications. Effective,
efficient, and easy-to-use testing techniques for JS scripts are in
great demand. In this paper, we introduce a holistic approach
to applying concolic testing to JS scripts in-situ, i.e., JS scripts
are executed in their native environments as part of concolic
execution and test cases generated are directly replayed in these
environments. We have implemented this approach in the context
of Node.js, a JS runtime built on top of Chrome’s V8 JS engine,
and evaluated its effectiveness and efficiency through application
to 180 Node.js libraries with heavy use of string operations. For
85% of these libraries, it achieved statement coverage ranging
between 75% and 100%, a close match in coverage with the
hand-crafted unit test suites accompanying their NPM releases.
Our approach detected numerous exceptions in these libraries.
We analyzed the exception reports for 12 representative libraries
and found 6 bugs in these libraries, 4 of which are previously
undetected. The bug reports and patches that we filed for these
bugs have been accepted by the library developers on GitHub.

I. INTRODUCTION

Since its inception as a scripting language for dynamic

web elements, JavaScript (JS) has seen its popularity balloon

and has become a versatile and widely used application pro-

gramming language. The Node.js runtime [1], which is built

upon Chrome’s V8 JS engine [2], allows developers to build

various server-side and client-side browser-less applications

in pure JavaScript. A whole ecosystem of Node.js libraries

is developed, available through the Node Package Manager

(NPM) [3], and widely used in application building. NPM is

considered the largest package manager based on the number

of packages it manages [4]. This number is still growing at an

average rate of 996 more packages per day in the past year [5].

Many developers consider JS scripts (either browser or

Node.js based) a major security vulnerability because of its

growing popularity in today’s systems [6]. Common security

issues of browser-based JS scripts include cross-site scripting

(XSS) [7], SQL injection (SQLi) [8], etc. Errors and failures

in JS scripts running on Node.js can lead to server crashes

or compromises. The most common Node.js security issues

include NPM phishing [9] and regular expressions denial of

service (DoS) [10]. NPM allows developers to create and

upload JS libraries for reuse purposes. This flexibility enables

developers to build applications very easily by leveraging li-

braries already implemented by others. However, this extensive

cross-dependencies among JS libraries further exacerbate the

security threats [11]. Studies also show on average 6.8% of the

code from a Node.js application is the original code and 93.2%

of the code is from other JS libraries [4]. And only 45.2% of

those JS libraries have test suites provided [12]. Thus, there is

a great need for developers to craft high-coverage test suites

that detect bugs and security vulnerabilities early. However,

handcrafting such test suites has become costly endeavours

and bottlenecks for software development [13].

A powerful technique for automatically generating test cases

and finding bugs in real-world software is symbolic execution,

which executes a program with symbolic values, accumulates

program path conditions as symbolic expressions, and gen-

erates test cases exploring these paths by solving symbolic

path conditions [14]. Concolic testing is a hybrid verification

technique that alleviates path explosion that often bogs down

symbolic execution [15]. Concolic testing utilizes symbolic

execution to only explore the branches along a concrete

execution path of the program under test, therefore, narrowing

down the search space for path exploration [16]. Traditional

symbolic or concolic execution engines mostly target C/C++,

low-level intermediate representation (LLVM) [17] or binary

code, e.g., KLEE [18], BitBlaze [19], S2E [20], DART [21],

CUTE [22], SAGE [23], and CRETE [24].

Although early applications of symbolic execution for test-

ing JS scripts have shown some promise, they never reach the

same scale and effectiveness as those for C/C++ applications.

Generally speaking, JS scripts are not statically compiled,

but are interpreted by an interpreter. A simple JS statement

can encapsulate complex operations that, in lower-level lan-

guages, would be implemented in tens, if not hundreds, lines

of codes [25]. This complexity makes naı̈ve applications of

traditional symbolic execution engine to JavaScript intractable

and can easily lead to path explosion. Consequently, efforts in

applying symbolic execution to JavaScript have been focused

on building JS-specific symbolic engines which typically take

JS scripts out of their native execution environments and ana-

lyze them in artificial test harnesses. For example, the Kudzu

engine addresses the problem of client-side code injection

vulnerabilities for JavaScript [26]. It involves modifying the

JS interpreter to build a new symbolic execution engine, which

requires significant efforts in implementation and maintenance.

Such JS-specific symbolic engines have not demonstrated the

effectiveness and efficiency that warrants wide adoption [27].

In this paper, we introduce a new approach to applying con-

colic testing to JS scripts in-situ, i.e., JS scripts are executed in

their native environments as part of concolic execution and test

236

2023 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)

2640-7574/23/$31.00 ©2023 IEEE
DOI 10.1109/SANER56733.2023.00031

2
0
2
3
 I

E
E

E
 I

n
te

rn
at

io
n
al

 C
o
n
fe

re
n
ce

 o
n
 S

o
ft

w
ar

e
A

n
al

y
si

s,
 E

v
o
lu

ti
o
n
 a

n
d
 R

ee
n
g
in

ee
ri

n
g
 (

S
A

N
E

R
)

| 9
7
8
-1

-6
6
5
4
-5

2
7
8
-6

/2
3
/$

3
1
.0

0
 ©

2
0
2
3
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/S

A
N

E
R

5
6
7
3
3
.2

0
2
3
.0

0
0
3
1

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on December 01,2023 at 16:54:08 UTC from IEEE Xplore. Restrictions apply.

cases generated are directly replayed in these environments.

We have implemented this approach in the context of Node.js

and its V8 JS engine. As a JS script is executed on Node.js,

its binary-level execution trace is captured and later analyzed

through symbolic execution for test generation. This brings

the power of binary-level concolic testing to JavaScript. We

have evaluated the effectiveness and efficiency of this approach

through application to 180 Node.js libraries with heavy use of

the string operations. For 85% of the libraries, it achieved

the statement coverage between 75% and 100% and for 61%

of the libraries, it achieves the statement coverage between

85% and 100%, which is a close match in coverage with the

hand-crafted unit test suites by the developers in their NPM

distributions. This shows our approach can help reduce the

efforts needed for developing unit test suites. Our approach

has detected many exceptions in these libraries. We analyzed

the exception reports for 12 representative libraries, and found

6 clear-cut bugs, 4 of which are previously undetected. The

bug reports and patches that we filed for these bugs have been

accepted by the library developers on GitHub. This shows that

our approach can detect bugs missed by handcrafted test suites.

II. BACKGROUND

A. Concolic Execution

Symbolic execution exercises a program under test with

symbolic inputs, which can potentially lead to path explosion,

i.e., too many feasible program paths to be explored efficiently.

One effective technique to cope with path explosion is concolic

execution, which integrates concrete and symbolic execution.

It uses symbolic execution to only explore the branches along

a concrete execution path of the program under test, therefore,

narrowing down the path exploration space.

To enable concolic execution of JS scripts, we build

on CRETE, a binary-level concolic testing framework [24].

CRETE features an open and highly extensible architecture

allowing easy integration of concrete execution front-ends and

symbolic execution engine back-ends.

CRETE Manager

CRETE Runner

Configuration + Target

Binary

CRETE Tracer

QEMU Guest OS

CRETE Replayer

Symbolic Execution

Engine

capture traces

new test case

selected traces new test case

Fig. 1: Architecture of CRETE

As shown in Figure 1, CRETE uses a configuration file

to mark symbolic and concrete inputs in the CRETE runner.

As the target program is concretely executed in a modified

QEMU virtual machine [28], the CRETE tracer, a QEMU

extension, captures concrete execution traces. These traces

are in the form of LLVM bytecode augmented to indicate

the execution paths induced by the concrete inputs [17]. If a

path contains a symbolic variable marked in the configuration

file, CRETE feeds the captured trace of the path to its

symbolic execution engine (in this case KLEE [18]), to run

it symbolically via CRETE replayer. CRETE extends KLEE

to avoid forking unnecessary states and generates test cases

only for feasible branches confined by concrete traces. This

results in fewer paths exercised symbolically. CRETE uses

a Dynamic Taint Analysis (DTA) algorithm to implement

selective tracing [29]. It only captures the execution traces

relevant to the marked symbolic values using DTA. CRETE

uses tainted memories to represent memories relevant to the

variables initially marked as symbolic. For example, if variable

“a” is marked as symbolic, when there is an assignment

operation involving “a”, such as “b=a”, the memory slot that

“b” possesses is also marked as symbolic. So CRETE will

capture any execution trace involving memory slots of “a”

and “b”. CRETE provides two helper interface functions:

crete_make_symbolic and crete_start_tracing

to allow users to mark symbolic variables and initiate tracing

of concrete execution. We leverage these interface functions

to implement our approach.

B. Node.js Runtime and V8 JS Engine

1) Node.js Runtime: Node.js is an open-source, cross-

platform JS runtime environment. It builds around the V8 JS

engine and enables high-performance execution of JavaScript.

Node.js provides a broad set of asynchronous I/O primitives to

the application, which enables it to run unblocked. Node.js al-

lows extensions to its functionalities through addon libraries.

Such libraries are typically written in C/C++ and can be loaded

into Node.js as ordinary Node.js modules using require()

statements in JavaScript.

2) V8 JS Engine: V8 is Google’s high-performance JS and

WebAssembly engine [2]. V8 can run standalone or can be

embedded in C++ applications such as Node.js and Chrome.

As shown in Figure 2, V8 supports two modes for executing

a JS script: (1) interpreted mode where the JS bytecode [30]

JavaScript
Parser

Abstract

Syntax Tree

Ignition

Bytecode

Optimized

Machine Code

Turbofan

Optimize

Ignition

Bytecode

Handlers

Machine

Code

Deoptimize

Interpreted Optimized

Fig. 2: How V8 runs a JS Script: Interpreted vs Optimized

translated from the JS script is interpreted by its interpreter,

237

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on December 01,2023 at 16:54:08 UTC from IEEE Xplore. Restrictions apply.

Ignition [31]; (2) optimized just-in-time compilation mode

where the bytecode is compiled by V8 engine into optimized

machine code using its just-in-time compiler, Turbofan [32],

and then executed on the target machine. As Ignition interprets

a bytecode statement, it invokes the corresponding bytecode

handler for this statement that is pre-compiled to the machine

code of the target host. If a piece of bytecode is being

interpreted repeatedly, the Ignition interpreter may decide that

it deserves further optimization. It sends this piece of bytecode

and its runtime information from the prior interpretation to

Turbofan. Turbofan will then analyze the bytecode and its

runtime information to generate further optimized machine

code that is then executed in place of the bytecode.

Builtin functions in V8 are intrinsic functions that handle

common operations without the need to invoke the optimizing

compiler. They are designed to provide internal functionality,

or to implement the functions of builtin objects in JavaScript

such as String.Prototype and String.Map. In V8,

these builtin functions are implemented in CodeStubAssembler

(CSA). CSA provides efficient low-level functionality that is

very close to the assembly language, but also offers an exten-

sive library of higher-level functionality. For example, CSA as

part of V8’s builtins can load data from a specified address,

and it can modify the internal data of JavaScript objects [33].

Ignition’s bytecode handlers are also implemented in CSA. A

key advantage of CSA is that it makes V8’s builtin functions

platform-independent and those builtin functions are compiled

into the binaries for a target platform by V8’s unified code

generation as shown in Figure 3. CSA allows us to create

CodeStubAssembler

RawMachineAssembler

CodeAssembler

Instruction Selector

Code Generator

Register Allocator

Scheduler
Control Flow

Graph

Turbofan
Optimizing
Compiler

WASM Compiler

"Sea of Nodes"
Graph

V8 Unified Code
Generation

Architecture

C++ DSL

ARM,MIPS...

Ignition

Bytecode
Builtins

Fig. 3: V8’s Unified Code Generation

new V8 builtin functions to extend V8’s functionality [32].

We leverage this feature to integrate concolic execution into

the V8 engine.

III. OUR APPROACH

A. Overview

JavaScript, as one of the most popular scripting languages

for both client side and server-side applications, is often

deeply embedded in its execution platform, e.g., web browsers

and Node.js runtime. Although taking a JS script out of

its native environment and analyzing it in an artificial test

environment through modeling would make the analysis more

tractable [34], the analysis often becomes less accurate. Test

cases generated are not able to fully reflect realistic use

cases and can only represent part of the use cases that are

accurately modeled [35], and bugs detected may also be false

positives [36]. Thus, it is strongly desirable to analyze a JS

script in its native environment under its normal usages.

Our approach conducts concolic testing on JS scripts in-

situ, as illustrated in Figure 4. The concrete execution step

of concolic testing as indicated by the dashed box on top is

conducted in the native execution environment for JS scripts,

where the trace of this concrete execution is captured. The

trace is then analyzed in the symbolic execution step of

concolic testing to generate test cases and these test cases

are then fed back into the native concrete execution to drive

further test case generation.

Concrete Execution

Symbolic Execution

Test Harness

JavaScript

Execution Tracer

JavaScript Execution Trace

JS execution engine

Symbolic Execution

Engine

Test cases

Constraint Solver

Path Explosion

Path Constraint

Fig. 4: Workflow for Concolic Testing of JavaScript

Central to our approach is the quality of the captured

concrete execution traces of JS scripts in terms of correctness

and precision. If the traces captured are incorrect, the test cases

generated in symbolic execution will often be misguided, thus

not effective. On the other hand, if the traces captured are not

concise, they are often unnecessarily complex and lead to path

explosion in symbolic execution, thus not efficient. Therefore,

while developing our approach, we focus on how to capture

the concrete execution trace of a JS script under test from its

native execution environment so that the captured trace is both

correct and concise. To obtain such traces, we must address

two major challenges as follows:

• Sheer complexities of native execution environments.The
embedding environments for JS scripts, web browsers or

Node.js, are often quite complex, not only the runtimes

themselves, but with their numerous extensions available.

• JS scripts are heavily optimized. Both client-side and

server-side JS scripts are often optimized just-in-time to

238

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on December 01,2023 at 16:54:08 UTC from IEEE Xplore. Restrictions apply.

achieve the best performance. Such optimizations tend to

obfuscate the execution flows of these JS scripts [37].

Due to the popularity of the Node.js runtime and its embedded

V8 JS engine, we address the above challenges in this context.

The solutions are readily generalized to other JS runtimes

and engines. We have explored two methods for tracing the

concrete execution of JS scripts running in the Node.js runtime

as follows:

• Shallow Integration of Tracing in Node.js. Tracing of

the concrete execution of a JS script is invoked within

Node.js, but outside V8. The V8 engine is treated as a

black box.

• Deep Integration of Tracing in V8. Tracing of the concrete

execution is invoked inside V8; therefore, irrelevant parts

of Node.js are not traced.

B. Shallow Integration of Tracing in Node.js

As shown in Figure 5, in order to use concolic execution to

test a JS script, we need to extract the execution trace of this

script as it is running on Node.js with an execution tracer, and

then feed the execution trace to a symbolic execution engine to

generate test cases. Addons in Node.js are dynamically-linked

capture traces Symbolic Execution Engine

exported as shared library

Execution Tracer

(i.e. qemu)

JavaScript

Node.js

V8

Ignition Turbofan

C/C++ function call

execution tracing libraries

Shallow tracing interface

C++ addons

Execution traces for JS

:trace of Node.js

 :trace of V8

 :trace of Ignition

 :trace of bytecode Interpretation

 :trace of Turbofan

 :trace of code optimization

 :trace of code generation

:trace of Node.js Add-on

 :trace of memory copying

traces in detail

traces captured for JavaScript

Fig. 5: Shallow Integration of Tracing in Node.js

shared libraries written in C++. This addons feature offers an

interface between the JavaScript and C/C++ libraries. A library

of execution tracers for concolic testing can be made available

to the JS script as Node.js modules by leveraging the addons

feature. Such a library needs to support two general functions:

make_symbolic and start_tracing respectively. The

make_symbolic function allows us to mark the variables

as symbolic in the execution. The start_tracing function

allows us to take control of the underlying execution tracer

so that we can start tracing for symbolic execution when

necessary. We use this library to initiate concolic execution

for a JS script under test, which is typically done in the test

harness to avoid modifications to the JS script itself. This

initiation involves setting symbolic variables and informing

the execution tracer of when to trace.

As shallow integration of tracing is invoked in Node.js

which builds around V8, it has the disadvantage of capturing

overly complicated execution traces. The execution tracer, e.g.,

the CRETE tracer in QEMU, treats Node.js as a whole binary

program and captures all of its traces once tracing starts.

Furthermore, V8 includes a JavaScript interpreter (Ignition)

and a JavaScript just-in-time compiler (Turbofan). Hence,

when JavaScript runs on top of Node.js, the execution tracer

will capture the execution traces of the entire Node.js, which

includes not only traces of the JS script under test, but also

traces of Ignition, Turbofan, other parts of V8 and Node.js.

The resulting trace is often massive and contains unnecessary

execution trace segments. After feeding it to the symbolic

execution engine, the engine essentially analyzes the JS script

under test and all parts of Node.js and V8 that are in-

volved. This may cause path explosion for symbolic execution.

However, such integration of tracing for concolic execution

using Node.js addons has the advantage of simplicity, i.e.,

requiring no modification to Node.js and particularly the V8

engine. It is our baseline tracing method to enabling concolic

execution for JavaScript.

C. Deep Integration of Tracing in V8

The part of an execution trace that is of the highest relevancy

to test case generation using symbolic execution is the binary

code that is directly corresponding to the bytecode of JS script

under test. Therefore, the best place to trace such binary code

is inside the V8 engine. As shown in Figure 6, for deep integra-

tion of tracing, we move the interface for interacting with the

execution tracer from the Node.js using C++ addons into the

V8 engine using CSA runtime builtin functions. This interface

allows us to only capture the execution traces representing the

interpretation of JS bytecode instead of the execution traces of

the entire Node.js captured by shallow integration in Figure 5.

JS execution binary

Symbolic Execution Engine

exported as shared library

capture traces
Execution Tracer

(qemu)

JavaScript

Node.js

V8

Ignition Turbofan

C/C++ function call

execution tracing libraries

Execution traces for JS

...

: trace of bytecode Interpretation

...

interface in detail

In-stu tracing interface

:: start_tracing()

:: make_symbolic()

traces in detail

Execution traces captured are greatly reduced

traces of JS execution binary captured within Ignition

Fig. 6: Deep Integration of Tracing in V8

JS bytecode interpretation happens in V8’s Ignition in-

terpreter. As shown in Figure 7, for each JS statement in

bytecode, there is a corresponding bytecode handler in Ignition

for its interpretation [38]. Ignition bytecode handlers are

compiled at V8 build time and embedded into the binary.

Interpretation of JS bytecode means that the bytecode handlers

themselves are executed. Hence, in order to get an execution

239

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on December 01,2023 at 16:54:08 UTC from IEEE Xplore. Restrictions apply.

trace that closely represents JS bytecode, we defer tracing till

the interpretation of JS bytecode starts, using deep integra-

tion of tracing. More specifically, this deep tracing interface

captures traces of the execution of Ignition bytecode handlers

during interpretation, which closely matches JS bytecode. This

way we also avoid capturing the execution traces of the code

generation and the optimization in Turbofan. This process of

deep integration of tracing is illustrated in the green dashed

box of Figure 7. On the contrary, the shallow integration of

tracing with Node.js addons will capture the whole execution

traces for every component as shown in Figure 7. Thus,

CSA Runtime_builtin

equivlent in CFG

JavaScript

Parser

Abstract

Syntax Tree

Ignition

Bytecode

Optimized

Machine Code

TurbofanOptimize

Ignition

Bytecode

Handlers

Machine

Code

Deoptimize

Interpreted Optimized

equivlent in CFG

JS Bytecode:

...

CallRuntime [start_trace]

TestEqualStrict r0, [0]

JumpIfFalse [5] 22

TestGreaterThan r0, [1]

...

Constant Pool:

...

Ignition Handlers:

...

IGNITION_HANDLER(TestEqualStrict)

IGNITION_HANDLER(JumpIfFalse)

IGNITION_HANDLER(TestGreaterThan)

...
In-situ tracing interface

::start_tracing()

::make_symbolic()

The Most Concise Execution Traces for JS

calling In-situ interface
IGNITION_HANDLER(CallRuntime)

Fig. 7: How Deep Integration of Tracing Captures the Most

Concise Execution Traces

our deep tracing interface embedded in V8 can reduce the

problem of path explosion when applying symbolic execution

on JavaScript by having a precise execution trace that closely

matches the JS bytecode.

IV. IMPLEMENTATION

A. Overview

In our implementation, we use CRETE as our concolic

execution engine. CRETE provides two interface functions for

accessing its execution tracer: crete_start_tracing and

crete_make_symbolic. Through these functions, devel-

opers can gain control over when to start tracing and what to

capture through the execution tracer. In order to trace the JS

library under test, we expose CRETE’s tracing control inter-

faces to the JS script. Our implementation of shallow tracing is

to achieve this through Node.js addons. We implement a new

addon library in C++, which is later loaded into the Node.js

runtime during JS script execution. This addon library wraps

around the CRETE’s tracing control interfaces and provides

them to the JS script running on Node.js. This implementation

requires no modification on Node.js, but only introducing a

new addon library for tracing control. The JS script under

test can invoke the tracing control library as it invokes any

other Node.js modules. Our shallow tracing implementation

contains 527 lines of C++. This implementation treats the V8

JS engine as a whole; thus, in addition to traces of the JS script,

it may also capture extensive traces from the V8 engine.

Our implementation of the deep tracing is to integrate the

tracing control interface into the V8 JS engine to gain more

precise control over tracing. We achieve the implementation by

extending V8 builtin functions to integrate the tracing control

interface for symbolic execution in V8. V8 builtin functions

allow developers to extend the internal functionalities of the

V8 engine. These builtin functions are implemented in V8’s

CodeStubAssembler and provide accesses to CRETE’s

tracing interface. They are compiled into binary by V8’s

unified code generation and integrated into the Ignition in-

terpreter. The JS script under test can then invoke CRETE’s

tracing interface through these builtin functions. This deep

tracing implementation provides better control for tracing the

JS script by only tracing the bytecode handlers within V8

which are corresponding to the bytecode of the JS script, but

not other parts of V8. V8’s mechanism of builtin functions

allows precise accesses to the bytecode handlers. Our deep

tracing implementation contains 2041 lines of C++, 463 lines

of JavaScript and 178 lines of bash.

Also note that everything in JavaScript is represented as an

object. As we make inputs to the JS script symbolic, we must

make sure that the objects that we set symbolic remains valid

objects during symbolic execution.

B. Shallow Tracing Interface as C++ Addons

Figure 8 illustrates our implementation of the shallow

tracing interface as a Node.js addon library, which sup-

ports two tracing control functions: start_tracing and

make_symbolic. Node.js provides a standard way of im-

new test case

selected traces

CRETE Manager

CRETE Runner

Symbolic Execution Engine

new test cases

CRETE Replayer

QEMU Guest OS

exported as shared library

capture tracesCRETE Tracer

JavaScript

traces captured for JavaScript
Execution traces for js

:trace of Node.js

 :trace of V8

 :trace of Ignition

 :trace of bytecode Interpretation

 :trace of Turbofan

 :trace of code optimization

 :trace of code generation

:trace of Node.js Add-on

 :trace of memory copying

Node.js

V8

Ignition Turbofan

interface in detail

X

Shallow tracing interface

C++ addons

C/C++ function call

 :: start_tracing()

Object Model in JS

Object {

 value1;

 }
value2;

memory address of the copy of value2

:: make_symbolic()

execution tracing libraries

:: crete_start_tracing()

:: crete_make_symbolic()

traces in detail

limited access

to V8 internal

Fig. 8: Implementation of Shallow Tracing using Addons

plementing an addon library in C++. The addon library can

be loaded as a Node.js module using require() statements

in the JS script. The two tracing control interface functions

240

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on December 01,2023 at 16:54:08 UTC from IEEE Xplore. Restrictions apply.

are first exported from CRETE execution tracer and can later

be invoked from the JS script to mark symbolic variables and

initiate tracing through the addon library. This is done in

the test harness of the JS script under test so that the JS

script itself is not modified. Although the addons library, as

part of Node.js, offer a bridge between JavaScript and C/C++

libraries, it has the following drawbacks in tracing for concolic

execution:

• Separate address spaces: As shown in Figure 9, the

addon library has a different address space from V8

while V8 allocates JS variables within its own address

space as storage cells [39]. Therefore, when a JS script

invokes the addon library in Node.js, it involves memory

translations in between. Due to the fact that CRETE

uses Dynamic Taint Analysis, which will capture relevant

traces of memory translations related to symbolic vari-

ables, symbolic execution may get lost among memory

address translations between the addon library and V8.

Node.js Process Space (C++)

V8 Runtime (C++)

C++ addons

...

var addon = require ("addon");

var obj = {x: 2};

addon.mutate(obj);

...

Node.js Code

void mutate(const FunctionCallbackInfo<Value>& args)

{

 Isolate *iso = args.GetIsolate();

 Local<Object> target = args[0].ToObject();

}

storage cell

Heap

Isolate's memory store

Fig. 9: Memory System for C++ Addons
• Limited V8 internal access: The addon library has

limited access to V8 internals. Thus, when implementing

make_symbolic, the addon library cannot access the

runtime memory address on heap for a variable in the

JS script, but a copy of its value. We can only get the

memory address of this copy. As a result, the execution

traces CRETE captured may contain irrelevant traces of

underlying value copying during the execution of the JS

script, thus, it is not a close match to the JS bytecode.

• Tracing inside Node.js but outside of V8: Through the

addon library, tracing is initiated inside Node.js. CRETE

tracer will treat V8 as a black box binary and trace

its entire execution including the execution of Turbofan

and other Node.js modules after the tracing starts. Such

tracing captures the entire execution trace that contains

the redundant execution traces indicated by line 5 to 9

listed below.

1 :trace of Node.js

2 :trace of V8

3 :trace of Ignition

4 :trace of bytecode Interpretation

5 :trace of Turbofan

6 :trace of code optimization

7 :trace of code generation

8 :trace of C++ addon

9 :trace of memory translation

The parts of the trace closely corresponding to the JS

script are indicated by line 2 to 4.

C. Deep Tracing Interface as V8 Builtins

Figure 10 illustrates how we implement the deep tracing

interface of start_tracing and make_symbolic as

builtin functions, which reside inside the V8 engine and have

access to the JS interpretation by Ignition. (We have explained

the technical feasibility in Section II-B2, V8 JS Engine). V8

Symbolic Object Model in JS

Object {

 value1;

}

new test case

CRETE Manager

selected traces new test cases
CRETE Runner

Symbolic Execution Engine

CRETE Replayer

QEMU Guest OS

exported as shared library

capture tracesCRETE Tracer

JavaScript

Node.js

 V8

Ignition Turbofan

execution tracing libraries

:: crete_start_tracing()

:: crete_make_symbolic()

interface in detail

Deep tracing interface

CSA runtime_builtin

Execution traces for JS

...

: trace of bytecode Interpretation

...

C/C++ function call

 :: start_tracing()

runtime memory address of value2

:: make_symbolic()

value2; //symbolic value

traces in detail

Execution traces captured are greatly reduced compared to Fig. 8

direct access to

V8 internal

(In-situ)

traces captured for JavaScript

Fig. 10: Deep Tracing Interface in V8

allows developers to extend the set of builtin functions with

new ones written in CodeStubAssembler. The new builtin

functions are compiled into the binary of the target host by

the V8’s unified code generation and directly embedded into

V8. Implementing the tracing interface as V8 builtin functions

enables the control of CRETE execution tracer from within

V8. Hence, we are able to defer tracing till JavaScript bytecode

interpretation starts. This way we can keep the captured execu-

tion trace confined within the JavaScript interpretation. What’s

more, builtin functions have access to V8 internals and can be

called from Ignition. Therefore, it is able to get the runtime

address of an object or one of its fields. V8 runtime builtin

functions can be called directly from JavaScript through a %-

prefix with the flag --allow-natives-syntax as shown

in line 3 and line 4 of Listing 1. The deep tracing interface

allows precise tracing of the JS bytecode execution by tracing

Ignition bytecode handlers. To avoid tracing of just-in-time

code generation and optimization in Turbofan, we turn off

Turban while tracing.

D. Symbolic JS Object for V8

In this sub-section, we explain how we make a JS Object

symbolic for V8. V8 builtin functions allow us to access the

runtime memory address of a JS object, which is allocated

on heap when V8 creates a HeapObject. For safety reason,

a HeapObject is pointed to by a pointer inside a handle

in V8’s C++ implementation [40]. As shown in Figure 11,

a String object is a HeapObject that is allocated on

241

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on December 01,2023 at 16:54:08 UTC from IEEE Xplore. Restrictions apply.

the heap during runtime. Since CRETE captures execution

traces based on the memory addresses of the initial variables

set as symbolic. We set the memory address that holds the

actual value for the String allocated at runtime as symbolic.

Therefore, the trace that CRETE captures is relevant to this

String object. In V8’s implementation, we are given the

interfaces to use the Handle to access objects in JavaScript.

Figure 11 shows how we get the memory address of the value

in the String on heap using Handle. By setting symbolic

inputs this way, we only set the memory address containing

the actual value of an Object symbolic during symbolic

execution to explore branches related to the value. It does

not mark memory of other fields of the Object symbolic;

otherwise, the object may be invalid. We mainly focus on

JavaScript’s String type because strings are popular inputs

to JS scripts and making string variables symbolic leads to

many valuable test cases.

C++

Handle

Object location

Heap

Memory address for

variable being set

symbolic

Object

Address ptr_

String

value

Fig. 11: V8 Object Memory Model

We encountered four cases when attempting to retrieve the

memory address of the actual value of the String object for

symbolic execution [41], they are listed as below:

• SeqOneByteString: The simplest form, containing a few

header fields and then the string’s bytes (which are not

UTF-8 encoded and can only contain characters among

the first 256 unicode code points).

• SeqTwoByteString: Similar form, but with two bytes for

each character (using surrogate pairs to represent unicode

characters that cannot be represented in two bytes).

• SlicedString: A substring of some other string, containing

a pointer to the “parent” string and an offset and length.

• ConsString: The result of concatenating two strings (if

over a certain size), containing pointers to both strings

(which may themselves be any types of strings).

Listing 1 and Listing 2 show an example JS script and

its bytecode during interpretation. CRETE only captures the

trace related to the runtime memory address of the actual

value of str_var, which is a String object in V8. The

runtime address is 0x34ecf6d42849 as shown at line 26

of Listing 2. The actual value stored in this runtime address is

loaded at line 5 of Listing 2 and this runtime address is later

marked as symbolic at line 7. After StartTracing is called

at line 8, CRETE captures the traces for all bytecode related

to the symbolic runtime address, which are highlighted by the

underscores in Listing 2, as the concrete execution trace. The

captured trace also preserves all constraints corresponding to

the JS script of Listing 1. Thus, the traces captured with our

method are concise and accurate for symbolic execution.

1 var str_var = "init";

2

3 %MakeSymbolic(str_var);

4 %StartTracing();

5

6 if(str_var === "tests")

7 return "tests";

8

9 if(str_var > "tests1"){

10 return "tests1";

11 }else{

12 return "tests2"

13 }

Listing 1: A Simple Example of JavaScript and Calling

Convention of In-Situ Tracing Interfaces

1 Parameter count 6

2 Frame size 8

3 0x40b8ec2c9a StackCheck

4 0x40b8ec2c9b LdaConstant [0]

5 0x40b8ec2c9d Star r0

6 0x40b8ec2c9f CallRuntime [MakeSymbolic],r0-r0

7 0x40b8ec2ca4 CallRuntime [StartTracing]

8 0x40b8ec2ca9 LdaConstant [1]

9 0x40b8ec2cab TestEqualStrict r0,[0]

10 0x40b8ec2cae JumpIfFalse [5](0x40b8ec2cb3)

11 0x40b8ec2cb0 LdaConstant [1]

12 0x40b8ec2cb2 Return

13 0x40b8ec2cb3 LdaConstant [2]

14 0x40b8ec2cb5 TestGreaterThan r0,[1]

15 0x40b8ec2cb8 JumpIfFalse [5](0x40b8ec2cbd)

16 0x40b8ec2cba LdaConstant [2]

17 0x40b8ec2cbc Return

18 0x40b8ec2cbd LdaConstant [3]

19 0x40b8ec2cbf Return

20 0x40b8ec2cc0 LdaUndefined

21 0x40b8ec2cc1 Return

22 Constant pool (size = 4)

23 - map: 0x01eccde023c1 <Map>

24 - length: 4

25 0: 0x34ecf6d42849 <String[4]: init>

26 1: 0x0040b8ec2949 <String[5]: tests>

27 2: 0x0040b8ec2969 <String[6]: tests1>

28 3: 0x0040b8ec2989 <String[6]: tests2>

Listing 2: Bytecode for JS Script in Listing 1

V. EVALUATION

A. Overview

For our evaluation, we target Node.js libraries that are avail-

able on NPM. We install these libraries through NPM and their

source code is also downloaded so we can access their unit

test suites for comparison purposes. We apply our approach to

in-situ concolic testing, both shallow tracing and deep tracing,

on these libraries, and compare them in terms of performance.

We have also evaluated the code coverage achieved by our

automatically generated test cases with coverage achieved by

hand-crafted unit test suites of these libraries as reference. This

evaluation is carried out on an Ubuntu OS Version 18.04 with

4-core Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz and 16G

memory.

In order to apply our approach to these libraries, we built a

test harness to systematically exercise all exported (public)

methods in a given library with arguments whose type is

String. The seed test cases are generated randomly within

the test harness. We implemented an automation pipeline that

242

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on December 01,2023 at 16:54:08 UTC from IEEE Xplore. Restrictions apply.

helps set up the concolic testing environment in CRETE for

each Node.js library automatically. With the test harness and

automation pipeline we can set up concolic testing for Node.js

libraries conveniently and have applied our approach to 995

Node.js libraries which include approximately 9000 JS files.

Our current study focuses on string-intensive libraries due to

their popularity in Node.js applications. We randomly pull

libraries from NPM. If the majority of a library’s functions

process strings, we select it. We set string-type parameters

symbolic and non-string parameters to random concrete values

in the test harness for each library. If a library contains no

exported function with string-type parameters, we skip it.

The overall statement coverage on all 995 Node.js libraries

for shallow tracing and deep tracing is shown in Figure 12.

Figure 12d and Figure 12b show that deep tracing via V8

builtin functions performs significantly better than shallow

tracing via Node.js addons in terms of statement coverage.

The darker shadow between 75% and 100% in Figure 12d

indicates that more libraries achieved the coverage between

75% and 100% with deep tracing. Figure 12a and Figure 12c

show the exact number of libraries in each coverage range.

(a) Shallow Tracing: Number of
libs in each coverage range

(b) Shallow Tracing: Statement
coverage distribution

(c) Deep Tracing: Number of
libs in each coverage range

(d) Deep Tracing: Statement
coverage distribution

Fig. 12: Coverage on All 995 Node.js Libraries

Due to the sheer volume of libraries and JS files, we

randomly select 180 libraries to conduct a deep-dive analysis

of coverage achieved by shallow tracing and deep tracing

methods respectively. Coverage for all JavaScript libraries

are calculated using istanbul, a popular JS coverage tools

used by V8 [42] and compatible with most JavaScript testing

frameworks, e.g., Mocha [43] and Node-Tap [44]. Coverage

may vary slightly due to the randomness of the seed test case

generation. By default, the coverage that we show in this eval-

uation is statement coverage. Table I shows the demographics

Metric Range Average

Line of Code [93, 16910] 1687

Weekly Downloads [3, 37491350] 9552965

Dependencies [3, 18154] 282

TABLE I: Demographics for Libraries under Test

of the selected libraries. The LoC (lines of code) for a library

under test is calculated with github-loc [45]. The number of

weekly downloads of a library under test is calculated with

npm-stats-api [46]. The number of dependencies is the number

of dependent libraries that the library under test has. We

calculated it with dependent-counts [47].

B. Results from Shallow Tracing Using Node.js Addons

For evaluation of concolic testing with shallow tracing of

JavaScript libraries via the Node.js addon method, we wrap

the 180 randomly selected libraries with our test harness,

in which the shallow tracing is invoked through the tracing

control interface made available via the Node.js addon. As

shown in Figure 13a, the statement coverage achieved between

85% and 100% only accounts for 9.93% of the libraries under

test, the coverage between 75% and 85% accounts for 14.89%

of the libraries, the coverage between 50% and 75% accounts

for 17.73% of the libraries, the coverage between 25% and

50% accounts for 35.46% of the libraries, and the coverage

below 25% accounts for 21.99% of the libraries. We can

see the overall performance of shallow tracing by looking at

Figure 13b where most of the dots representing the coverage

appear below the line of 75%. As we analyzed more libraries,

the proportion of libraries that fall into a higher coverage range

do not seem to improve, indicated by a mostly flat line in

Figure 14, which shows the average coverage growth trends

when the number of libraries grows. It can be observed from

Figure 12a and Figure 13a that the overall coverage on 995

libraries closely resembles that of 180 representative libraries

randomly selected.

(a) Number of libraries in each
coverage range

(b) Statement coverage distribu-
tion

Fig. 13: Coverage Achieved by Shallow Tracing

Fig. 14: Coverage Growth Trend with Shallow Tracing

C. Results from Deep Tracing with V8 Builtins

To evaluate the method of deep tracing with V8 builtins,

we apply it to the same set of 180 Node.js libraries. For each

243

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on December 01,2023 at 16:54:08 UTC from IEEE Xplore. Restrictions apply.

(a) Number of Libraries in Each
Coverage Range

(b) Statement Coverage Distri-
bution

Fig. 15: Coverage Achieved by Deep Tracing

library, in its test harness, we invoke deep tracing through the

tracing control interface made available via the V8 builtins. We

can see an overview of the deep tracing method’s performance

in Figure 15b. Most of the dots indicating the coverage appear

above the line of 75%. Only one library achieved a coverage

below 25% and the reason is that it is a function with multiple

arguments of String type, which can be made symbolic.

Our test harness did not catch all of the arguments and only

managed to set one of them as symbolic input. Therefore,

it only explored the branches that are related to that one

argument we set as symbolic input within the test harness.

As shown in Figure 15a, it is clear that the deep tracing

method is able to achieve the coverage between 85% and

100% for most libraries indicated by the right most bar. This

performance gain comes from the ability of being able to

run symbolic analysis on a more precisely captured trace that

closely corresponds to the JS bytecode, which has been ex-

plained in detail in Sections IV-C and IV-D. It can be observed

from Figure 12c and Figure 15a that the overall coverage

on 995 libraries closely resembles that of 180 representative

libraries randomly selected.

D. Comparisons

1) Test Coverage Achieved by NPM Test Suites: A system-

atic investigation on test coverage of hand-craft test suites in

NPM [48] is illustrated in Figure 16. The blue line (the lower

line) represents statement coverage achieved by test suites

found in the packages released in NPM registry where only

4.2% of the libraries in the evaluation set have statement cov-

erage above 80%, 6.0% of the libraries have coverage above

20%, and 6.6% of the libraries contain tests with coverage

barely above zero. This result shows that most libraries do

not have unit tests at all in their releases in NPM. Only a

small number of the libraries has high-quality unit tests. The

green line (the upper line) represents the tests included in the

latest commit of the master branch of the library repositories.

We can see that the number of libraries in each coverage range

has improved. However, those libraries that have coverage in

the range of 80% to 100% are still inadequate. Our method can

automatically achieve similar and even better coverage for JS

library than the manually crafted test suites by its developers. It

can significantly reduce the efforts in equipping these libraries

with high-quality unit tests.

2) Performance Comparison between Shallow and Deep

Tracing: For comparison, it can be observed from Figure 17a

and Figure 17b that the number of libraries achieving code

Fig. 16: Coverage by Hand-Crafted NPM Test Suites

(a) Number of Libraries in Each
Coverage Range

(b) Statement Coverage Distri-
bution

Fig. 17: Coverage Comparison: Shallow vs. Deep Tracing

coverage above 85% using deep tracing is significantly higher

than that of shallow tracing. And the number of libraries

achieving code coverage between coverage 75% and 85% is

also higher. This indicates that the deep tracing method has

the ability to achieve higher coverage in JavaScript libraries

at the cost of extending the V8 engine with new builtins.

3) Comparison with Related Work: We have compared our

approach with an existing tool, ExpoSE [49]. ExpoSE has been

evaluated on 4 JS libraries shown in Figure 18. We selected

the same libraries for comparison. ExpoSE specifically targets

solving regular expression problems for its symbolic execution

engine JALANGI and detected a new bug in the “minimist”

library. Our method of deep tracing via V8 builtin achieved

better coverage consistently. This comparison partially reflects

our method’s ability in achieving higher coverage.

Fig. 18: Comparison with ExpoSE

E. Bugs and Exceptions

For the 180 libraries we selected for evaluation, on average,

4 exceptions are thrown per library on the generated tests. We

had time to carefully analyze 12 libraries for their exceptions.

244

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on December 01,2023 at 16:54:08 UTC from IEEE Xplore. Restrictions apply.

In total, 9 distinct exceptions are encountered for the 12

libraries. Among those exceptions, we identified 6 as clear-cut

bugs: 2 are previously known bugs that have been fixed while 4

are previously unknown. After we filed these bugs on Github,

they have been accepted and patched by their developers. The

bugs we filed are all due to unhandled exceptions.

Node.js lib Bugs Known

benchmarkify No boundary check for empty string No

msgpack5 No NULL check for function args No

is-regex Unhandled input syntax error No

validator Mishandled country code No

chalk Deprecated constructor invoked Yes

stringify Incorrect parsing of separators Yes

TABLE II: Bugs Detected in 12 NPM Libraries

Table II shows a summary of the bugs that we discovered.

The bug from benchmarkify is a missing boundary check

for empty string. It causes the formatNumber function to

return a NULL object. When another function is later invoked

on this NULL Object, it throws a TypeError exception. In

the encodeDate function of msgpack5, a parameter, dt,

is used directly without checking for NULL value. In is-

regex, an input syntax error is not handled in the regexExec

function. In validator, a particular country code is not handled

and it leads the execution to an error catch block in the

isVAT function. In chalk, a deprecated constructor is

used in an else branch in the chalkClass function,

causing an unhandled exception. In stringify, incorrect parsing

of separators in the stringify function causes an unhandled

exception.

F. Discussions and limitations

The reason why our approach achieves the results above is

that deep tracing via V8 builtin gets a most concise execution

trace which is a close match to JavaScript bytecode. However,

some bytecode might later become hot and is sent to Tur-

boFan’s optimizing compiler [37]. Under such circumstances,

our approach becomes less effective due to the optimization

conducted by Turbofan and will require new filters on tracing

that are aware of the optimization.

Our implementation is based on CRETE which uses QEMU

as its tracing platform [28]. This makes it less portable to

browser-based JavaScript. We strive to lift this limitation.

JavaScript execution in Node.js works in an event loop which

includes a main thread and worker threads. CRETE captures

concrete traces from a process, unless instructed otherwise,

CRETE captures all binary code from the process, multi-

threaded or not. Such a naı̈ve application may cause path

explosion in symbolic analysis. In our study, we targeted

unit testing of Node.js libraries. Our test harness separated

functions in a NPM library and ran each function individ-

ually. The libraries we used do not have async or callback

functions so traces are restricted to one thread. Conceptually,

our approach can run and test a multi-threaded JS program

since CRETE captures traces from all threads within a process.

However, additional algorithms are needed to handle multi-

threaded executions to prevent path explosion, which is not

the focus of this paper.

VI. RELATED WORK

Our approach is closely related to work on symbolic exe-

cution for JavaScript. Commonly targeted JS scripts include

the browser-based ones and those running on browser-less

runtimes, e.g., Node.js. Most of symbolic execution methods

for JavaScript required building application-specific symbolic

execution engines or significantly modifying JavaScript exe-

cution engines to apply symbolic execution. As an example

of symbolic execution targeting browser-based JavaScript,

SymJS is a framework for testing client-side JS script [50].

It modifies Rhino JS engine for symbolic execution [51].

For browser-less JavaScript, JALANGI is a framework for

writing heavy-weight dynamic analysis, which can be en-

abled on JavaScript as a symbolic execution engine [52].

COSETTE is another symbolic execution engine for JavaScript

using an intermediate representation, namely JSIL, translated

from JavaScript [53]. ExpoSE applies symbolic execution on

standalone JavaScript and uses JALANGI as its symbolic

execution engine. ExpoSE’s contribution is in addressing the

limitation that JALANGI does not readily support regular

expressions for JavaScript [49]. Kudzu targeted AJAX appli-

cations by implementing a dynamic symbolic interpreter that

takes a simplified intermediate language for JavaScript [26]. To

the best of our knowledge, no symbolic execution framework

for JavaScript has directly utilized existing powerful binary-

level concolic execution engines [54].

Another related approach to testing JavaScript is fuzzing.

There are a few fuzzers for JS, e.g., jsfuzz [55] and js-fuzz [56],

which are largely based on the fuzzing logic of AFL (Ameri-

can fuzzy lop) [57] and re-implemented it for JavaScript. We

view fuzzing and symbolic/concolic testing as complementing

techniques: fuzzing for broader exploration of JS scripts while

symbolic/concolic testing for deeper exploration.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel approach to in-situ

concolic testing of JS scripts. It enables concolic execution for

JS scripts in their native environments and can automatically

generate test cases that achieve comparable code coverage

than manually crafted test suites for Node.js libraries and

discovered previously unknown bugs.

We will further extend this approach to support a wider

range of JS scripts, e.g., browser-based JS scripts. We will

optimize the tracing mechanism, e.g., further reducing the

complexities of binary-level traces captured for the JS script

under test and subsequently reducing the overheads of sym-

bolic execution and generating more effective test cases. In

addition to optimizing the tracing mechanism, we aim to

remove the dependency on the QEMU virtual machine.

ACKNOWLEDGMENTS

This research received financial support in part from Na-

tional Science Foundation (Grant #: 1908571).

245

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on December 01,2023 at 16:54:08 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] “Node.js,” https://nodejs.org/en/, 2021.
[2] “v8,” https://v8.dev/, 2021.
[3] “Npm,” https://www.npmjs.com/, 2021.
[4] I. Koishybayev and A. Kapravelos, “Mininode: Reducing the attack

surface of node.js applications,” in 23rd International Symposium on

Research in Attacks, Intrusions and Defenses (RAID 2020). San Sebas-
tian: USENIX Association, Oct. 2020, pp. 121–134. [Online]. Available:
https://www.usenix.org/conference/raid2020/presentation/koishybayev

[5] “Module counts,” http://www.modulecounts.com/, 2022.
[6] A. Decan, T. Mens, and E. Constantinou, “On the impact of

security vulnerabilities in the npm package dependency network,” in
Proceedings of the 15th International Conference on Mining Software

Repositories, ser. MSR ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 181–191. [Online]. Available:
https://doi.org/10.1145/3196398.3196401

[7] S. Lekies, B. Stock, and M. Johns, “25 million flows later:
Large-scale detection of dom-based xss,” in Proceedings of the

2013 ACM SIGSAC Conference on Computer and Communications

Security, ser. CCS ’13. New York, NY, USA: Association for
Computing Machinery, 2013, p. 1193–1204. [Online]. Available:
https://doi.org/10.1145/2508859.2516703

[8] L. K. Shar and H. B. K. Tan, “Predicting sql injection and
cross site scripting vulnerabilities through mining input sanitization
patterns,” Information and Software Technology, vol. 55, no. 10, pp.
1767–1780, 2013. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0950584913000852

[9] M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel, “Small
world with high risks: A study of security threats in the
npm ecosystem,” in 28th USENIX Security Symposium (USENIX

Security 19). Santa Clara, CA: USENIX Association, Aug. 2019,
pp. 995–1010. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity19/presentation/zimmerman

[10] J. C. Davis, C. A. Coghlan, F. Servant, and D. Lee, “The impact of
regular expression denial of service (redos) in practice: An empirical
study at the ecosystem scale,” ser. ESEC/FSE 2018. New York,
NY, USA: Association for Computing Machinery, 2018, p. 246–256.
[Online]. Available: https://doi.org/10.1145/3236024.3236027

[11] N. van Ginkel, W. De Groef, F. Massacci, and F. Piessens, “A server-
side javascript security architecture for secure integration of third-party
libraries,” Security and Communication Networks, vol. 2019, 2019.

[12] R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab,
“Why do developers use trivial packages? an empirical case study on
npm,” 08 2017, pp. 385–395.

[13] S. Mirshokraie, A. Mesbah, and K. Pattabiraman, “Jseft: Automated
javascript unit test generation,” in 2015 IEEE 8th International Confer-

ence on Software Testing, Verification and Validation (ICST). IEEE,
2015, pp. 1–10.

[14] J. C. King, “Symbolic execution and program testing,” Communications

of the ACM, vol. 19, no. 7, pp. 385–394, 1976.
[15] S. Krishnamoorthy, M. S. Hsiao, and L. Lingappan, “Tackling the

path explosion problem in symbolic execution-driven test generation for
programs,” in 2010 19th IEEE Asian Test Symposium. IEEE, 2010, pp.
59–64.

[16] K. Sen, “Concolic testing,” in Proceedings of the twenty-second

IEEE/ACM international conference on Automated software engineer-

ing, 2007, pp. 571–572.
[17] C. Lattner and V. Adve, “Llvm: a compilation framework for lifelong

program analysis transformation,” in International Symposium on Code

Generation and Optimization, 2004. CGO 2004., 2004, pp. 75–86.
[18] C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: unassisted and automatic

generation of high-coverage tests for complex systems programs.” in
OSDI, vol. 8, 2008, pp. 209–224.

[19] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena, “Bitblaze: A
new approach to computer security via binary analysis,” in International

Conference on Information Systems Security. Springer, 2008, pp. 1–25.
[20] V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A platform for in-

vivo multi-path analysis of software systems,” Acm Sigplan Notices,
vol. 46, no. 3, pp. 265–278, 2011.

[21] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated
random testing,” in Proceedings of the 2005 ACM SIGPLAN conference

on Programming language design and implementation, 2005, pp. 213–
223.

[22] K. Sen, D. Marinov, and G. Agha, “Cute: A concolic unit testing engine
for c,” ACM SIGSOFT Software Engineering Notes, vol. 30, no. 5, pp.
263–272, 2005.

[23] P. Godefroid, M. Y. Levin, and D. Molnar, “Sage: whitebox fuzzing for
security testing,” Communications of the ACM, vol. 55, no. 3, pp. 40–44,
2012.

[24] B. Chen, C. Havlicek, Z. Yang, K. Cong, R. Kannavara, and F. Xie,
“Crete: A versatile binary-level concolic testing framework,” in Funda-

mental Approaches to Software Engineering, A. Russo and A. Schürr,
Eds. Cham: Springer International Publishing, 2018, pp. 281–298.

[25] S. Bucur, J. Kinder, and G. Candea, “Prototyping symbolic execution
engines for interpreted languages,” in Proceedings of the 19th interna-

tional conference on Architectural support for programming languages

and operating systems, 2014, pp. 239–254.
[26] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song, “A

symbolic execution framework for javascript,” in 2010 IEEE Symposium

on Security and Privacy, 2010, pp. 513–528.
[27] S. Süslü and C. Csallner, “Spejs: A symbolic partial evaluator for

javascript,” in Proceedings of the 1st International Workshop on

Advances in Mobile App Analysis, ser. A-Mobile 2018. New York,
NY, USA: Association for Computing Machinery, 2018, p. 7–12.
[Online]. Available: https://doi.org/10.1145/3243218.3243220

[28] F. Bellard, “Qemu, a fast and portable dynamic translator.” in USENIX

annual technical conference, FREENIX Track, vol. 41. Califor-nia,
USA, 2005, p. 46.

[29] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to
know about dynamic taint analysis and forward symbolic execution (but
might have been afraid to ask),” in 2010 IEEE Symposium on Security

and Privacy, 2010, pp. 317–331.
[30] “Understanding v8’s bytecode,” https://medium.com/dailyjs/

understanding-v8s-bytecode-317d46c94775, 2021.
[31] “Firing up the ignition interpreter,” https://v8.dev/blog/

ignition-interpreter, 2021.
[32] “Turbofan: A new code generation architecture for v8,”

https://docs.google.com/presentation/d/1 eLlVzcj94 G4r9j9d
Lj5HRKFnq6jgpuPJtnmIBs88/htmlpresent, 2021.

[33] “Codestubassembler builtins,” https://v8.dev/docs/csa-builtins, 2021.
[34] S. Sapra, M. Minea, S. Chaki, A. Gurfinkel, and E. Clarke, “Finding

errors in python programs using dynamic symbolic execution,” vol.
8254, 11 2013, pp. 283–289.

[35] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris,
and E. Kohler, “The scalable commutativity rule: Designing scalable
software for multicore processors,” ACM Trans. Comput. Syst., vol. 32,
no. 4, jan 2015. [Online]. Available: https://doi.org/10.1145/2699681

[36] M. Canini, D. Venzano, P. Perešı́ni, D. Kostić, and J. Rexford, “A
NICE way to test openflow applications,” in 9th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 12). San
Jose, CA: USENIX Association, Apr. 2012, pp. 127–140. [Online].
Available: https://www.usenix.org/conference/nsdi12/technical-sessions/
presentation/canini

[37] M. Selakovic and M. Pradel, “Performance issues and optimizations in
javascript: an empirical study,” in Proceedings of the 38th International

Conference on Software Engineering, 2016, pp. 61–72.
[38] “Ignition: V8 interpreter,” https://docs.google.com/document/

d/11T2CRex9hXxoJwbYqVQ32yIPMh0uouUZLdyrtmMoL44/
mobilebasic, 2016.

[39] “How (not) to access v8 memory from a node.js
c++ addon’s worker thread,” https://nodeaddons.com/
how-not-to-access-node-js-from-c-worker-threads, 2021.

[40] “V8’s object model using well-defined
c++,” https://docs.google.com/document/d/1
w49sakC1XM1OptjTurBDqO86NE16FH8LwbeUAtrbCo/edit, 2019.

[41] “V8 stringobject,” https://v8docs.nodesource.com/node-0.8/d9/d38/
classv8 1 1 string object.html, 2016.

[42] “Istanbul,” https://istanbul.js.org/, 2021.
[43] “Mocha: simple, flexible, fun,” https://mochajs.org/, 2021.
[44] “Node-tap,” https://node-tap.org/, 2021.
[45] “github-loc,” https://www.npmjs.com/package/github-loc, Jun. 2021.
[46] “npm-stats-api,” https://www.npmjs.com/package/npm-stats-api, Jun.

2021.
[47] “dependent-counts,” https://www.npmjs.com/package/dependent-counts,

Jun. 2021.

246

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on December 01,2023 at 16:54:08 UTC from IEEE Xplore. Restrictions apply.

[48] H. Sun, A. Rosà, D. Bonetta, and W. Binder, “Automatically assess-
ing and extending code coverage for npm packages,” arXiv preprint

arXiv:2105.06838, 2021.
[49] B. Loring, D. Mitchell, and J. Kinder, “Expose: practical symbolic

execution of standalone javascript,” in Proceedings of the 24th ACM

SIGSOFT International SPIN Symposium on Model Checking of Soft-

ware, 2017, pp. 196–199.
[50] G. Li, E. Andreasen, and I. Ghosh, “Symjs: automatic symbolic testing

of javascript web applications,” in Proceedings of the 22nd ACM

SIGSOFT International Symposium on Foundations of Software Engi-

neering, 2014, pp. 449–459.
[51] X.-o. JIN, B.-y. ZHONG, and X. LI, “Research and implementation of

interpreting javascript dynamic web page based on rhino engine [j],”
Computer Technology and Development, vol. 2, no. 002, 2008.

[52] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: A selective

record-replay and dynamic analysis framework for javascript,” inPro-

ceedings of the 2013 9th Joint Meeting on Foundations of Software

Engineering, 2013, pp. 488–498.
[53] J. F. Santos, P. Maksimović, T. Grohens, J. Dolby, and P. Gardner, “Sym-

bolic execution for javascript,” in Proceedings of the 20th International

Symposium on Principles and Practice of Declarative Programming,
2018, pp. 1–14.

[54] Y.-F. Li, P. K. Das, and D. L. Dowe, “Two decades of web application
testing—a survey of recent advances,” Information Systems, vol. 43, pp.
20–54, 2014.

[55] “Jsfuzz: coverage-guided fuzz testing for javascript,” https://github.com/
fuzzitdev/jsfuzz, Jan. 2022.

[56] “js-fuzz,” https://github.com/connor4312/js-fuzz, Jan. 2022.
[57] “Afl: American fuzzy lop,” http://lcamtuf.coredump.cx/afl/, Jan. 2022.

247

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on December 01,2023 at 16:54:08 UTC from IEEE Xplore. Restrictions apply.

