2023 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER) | 978-1-6654-5278-6/23/$31.00 ©2023 IEEE | DOI: 10.1109/SANER56733.2023.0003 1

2023 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)

In-Situ Concolic Testing of JavaScript

1%t Zhe Li
Portland State University
Portland, Oregon, USA

z13@pdx.edu

Abstract—JavaScript (JS) has evolved into a versatile and
popular programming language for not only the web, but also a
wide range of server-side and client-side applications. Effective,
efficient, and easy-to-use testing techniques for JS scripts are in
great demand. In this paper, we introduce a holistic approach
to applying concolic testing to JS scripts in-situ, i.e., JS scripts
are executed in their native environments as part of concolic
execution and test cases generated are directly replayed in these
environments. We have implemented this approach in the context
of Node.js, a JS runtime built on top of Chrome’s V8 JS engine,
and evaluated its effectiveness and efficiency through application
to 180 Node.js libraries with heavy use of string operations. For
85% of these libraries, it achieved statement coverage ranging
between 75% and 100%, a close match in coverage with the
hand-crafted unit test suites accompanying their NPM releases.
Our approach detected numerous exceptions in these libraries.
We analyzed the exception reports for 12 representative libraries
and found 6 bugs in these libraries, 4 of which are previously
undetected. The bug reports and patches that we filed for these
bugs have been accepted by the library developers on GitHub.

I. INTRODUCTION

Since its inception as a scripting language for dynamic
web elements, JavaScript (JS) has seen its popularity balloon
and has become a versatile and widely used application pro-
gramming language. The Node.js runtime [1], which is built
upon Chrome’s V8 JS engine [2], allows developers to build
various server-side and client-side browser-less applications
in pure JavaScript. A whole ecosystem of Node.js libraries
is developed, available through the Node Package Manager
(NPM) [3], and widely used in application building. NPM is
considered the largest package manager based on the number
of packages it manages [4]. This number is still growing at an
average rate of 996 more packages per day in the past year [5].

Many developers consider JS scripts (either browser or
Node.js based) a major security vulnerability because of its
growing popularity in today’s systems [6]. Common security
issues of browser-based JS scripts include cross-site scripting
(XSS) [7], SQL injection (SQLi) [8], etc. Errors and failures
in JS scripts running on Node.js can lead to server crashes
or compromises. The most common Node.js security issues
include NPM phishing [9] and regular expressions denial of
service (DoS) [10]. NPM allows developers to create and
upload JS libraries for reuse purposes. This flexibility enables
developers to build applications very easily by leveraging li-
braries already implemented by others. However, this extensive
cross-dependencies among JS libraries further exacerbate the
security threats [11]. Studies also show on average 6.8% of the

27 Fei Xie
Portland State University
Portland, Oregon, USA

xie@pdx.edu

code from a Node.js application is the original code and 93.2%
of the code is from other JS libraries [4]. And only 45.2% of
those JS libraries have test suites provided [12]. Thus, there is
a great need for developers to craft high-coverage test suites
that detect bugs and security vulnerabilities early. However,
handcrafting such test suites has become costly endeavours
and bottlenecks for software development [13].

A powerful technique for automatically generating test cases
and finding bugs in real-world software is symbolic execution,
which executes a program with symbolic values, accumulates
program path conditions as symbolic expressions, and gen-
erates test cases exploring these paths by solving symbolic
path conditions [14]. Concolic testing is a hybrid verification
technique that alleviates path explosion that often bogs down
symbolic execution [15]. Concolic testing utilizes symbolic
execution to only explore the branches along a concrete
execution path of the program under test, therefore, narrowing
down the search space for path exploration [16]. Traditional
symbolic or concolic execution engines mostly target C/C++,
low-level intermediate representation (LLVM) [17] or binary
code, e.g., KLEE [18], BitBlaze [19], S2E [20], DART [21],
CUTE [22], SAGE [23], and CRETE [24].

Although early applications of symbolic execution for test-
ing JS scripts have shown some promise, they never reach the
same scale and effectiveness as those for C/C++ applications.
Generally speaking, JS scripts are not statically compiled,
but are interpreted by an interpreter. A simple JS statement
can encapsulate complex operations that, in lower-level lan-
guages, would be implemented in tens, if not hundreds, lines
of codes [25]. This complexity makes naive applications of
traditional symbolic execution engine to JavaScript intractable
and can easily lead to path explosion. Consequently, efforts in
applying symbolic execution to JavaScript have been focused
on building JS-specific symbolic engines which typically take
JS scripts out of their native execution environments and ana-
lyze them in artificial test harnesses. For example, the Kudzu
engine addresses the problem of client-side code injection
vulnerabilities for JavaScript [26]. It involves modifying the
JS interpreter to build a new symbolic execution engine, which
requires significant efforts in implementation and maintenance.
Such JS-specific symbolic engines have not demonstrated the
effectiveness and efficiency that warrants wide adoption [27].

In this paper, we introduce a new approach to applying con-
colic testing to JS scripts in-situ, i.e., JS scripts are executed in
their native environments as part of concolic execution and test

2640-7574/23/$31.00 ©2023 IEEE 236
DOI 10.1109/SANERS56733.2023.0003 1
Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on December 01,2023 at 16:54:08 UTC from IEEE Xplore. Restrictions apply.

cases generated are directly replayed in these environments.
We have implemented this approach in the context of Node.js
and its V8 JS engine. As a JS script is executed on Node.js,
its binary-level execution trace is captured and later analyzed
through symbolic execution for test generation. This brings
the power of binary-level concolic testing to JavaScript. We
have evaluated the effectiveness and efficiency of this approach
through application to 180 Node.js libraries with heavy use of
the string operations. For 85% of the libraries, it achieved
the statement coverage between 75% and 100% and for 61%
of the libraries, it achieves the statement coverage between
85% and 100%, which is a close match in coverage with the
hand-crafted unit test suites by the developers in their NPM
distributions. This shows our approach can help reduce the
efforts needed for developing unit test suites. Our approach
has detected many exceptions in these libraries. We analyzed
the exception reports for 12 representative libraries, and found
6 clear-cut bugs, 4 of which are previously undetected. The
bug reports and patches that we filed for these bugs have been
accepted by the library developers on GitHub. This shows that
our approach can detect bugs missed by handcrafted test suites.

II. BACKGROUND
A. Concolic Execution

Symbolic execution exercises a program under test with
symbolic inputs, which can potentially lead to path explosion,
i.e., too many feasible program paths to be explored efficiently.
One effective technique to cope with path explosion is concolic
execution, which integrates concrete and symbolic execution.
It uses symbolic execution to only explore the branches along
a concrete execution path of the program under test, therefore,
narrowing down the path exploration space.

To enable concolic execution of JS scripts, we build
on CRETE, a binary-level concolic testing framework [24].
CRETE features an open and highly extensible architecture
allowing easy integration of concrete execution front-ends and
symbolic execution engine back-ends.

Configuration + Target
Binary

Symbolic Execution
Engine

CRETE Runner CRETE Replayer

A '
selected traces: new test case:
capture traces ; v

-------------- CRETE Manager

QEMU Guest OS

CRETE Tracer

Fig. 1: Architecture of CRETE

As shown in Figure 1, CRETE uses a configuration file
to mark symbolic and concrete inputs in the CRETE runner.
As the target program is concretely executed in a modified
QEMU virtual machine [28], the CRETE tracer, a QEMU
extension, captures concrete execution traces. These traces
are in the form of LLVM bytecode augmented to indicate
the execution paths induced by the concrete inputs [17]. If a
path contains a symbolic variable marked in the configuration
file, CRETE feeds the captured trace of the path to its

237

symbolic execution engine (in this case KLEE [18]), to run
it symbolically via CRETE replayer. CRETE extends KLEE
to avoid forking unnecessary states and generates test cases
only for feasible branches confined by concrete traces. This
results in fewer paths exercised symbolically. CRETE uses
a Dynamic Taint Analysis (DTA) algorithm to implement
selective tracing [29]. It only captures the execution traces
relevant to the marked symbolic values using DTA. CRETE
uses tainted memories to represent memories relevant to the
variables initially marked as symbolic. For example, if variable
“a” is marked as symbolic, when there is an assignment
operation involving “a”, such as “b=a”, the memory slot that
“b” possesses is also marked as symbolic. So CRETE will
capture any execution trace involving memory slots of “a”
and “b”. CRETE provides two helper interface functions:
crete_make_symbolic and crete_start_tracing
to allow users to mark symbolic variables and initiate tracing
of concrete execution. We leverage these interface functions
to implement our approach.

B. Node.js Runtime and V8 JS Engine

1) Node.js Runtime: Node.js is an open-source, Cross-
platform JS runtime environment. It builds around the V8 JS
engine and enables high-performance execution of JavaScript.
Node.js provides a broad set of asynchronous I/O primitives to
the application, which enables it to run unblocked. Node.js al-
lows extensions to its functionalities through addon libraries.
Such libraries are typically written in C/C++ and can be loaded
into Node.js as ordinary Node.js modules using require ()
statements in JavaScript.

2) V8 JS Engine: V8 is Google’s high-performance JS and
WebAssembly engine [2]. V8 can run standalone or can be
embedded in C++ applications such as Node.js and Chrome.
As shown in Figure 2, V8 supports two modes for executing
a JS script: (1) interpreted mode where the JS bytecode [30]

Abstract
Syntax Tree

+Optimize ™"~

\\\~

"...._ Deoptimize ---.

Bytecode

Ignition
Bytecode
Handlers
I 2
Optimized
Machine Code

Machine
Code

Fig. 2: How V8 runs a JS Script: Interpreted vs Optimized
translated from the JS script is interpreted by its interpreter,

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on December 01,2023 at 16:54:08 UTC from IEEE Xplore. Restrictions apply.

Ignition [31]; (2) optimized just-in-time compilation mode
where the bytecode is compiled by V8 engine into optimized
machine code using its just-in-time compiler, Turbofan [32],
and then executed on the target machine. As Ignition interprets
a bytecode statement, it invokes the corresponding bytecode
handler for this statement that is pre-compiled to the machine
code of the target host. If a piece of bytecode is being
interpreted repeatedly, the Ignition interpreter may decide that
it deserves further optimization. It sends this piece of bytecode
and its runtime information from the prior interpretation to
Turbofan. Turbofan will then analyze the bytecode and its
runtime information to generate further optimized machine
code that is then executed in place of the bytecode.

Builtin functions in V8 are intrinsic functions that handle
common operations without the need to invoke the optimizing
compiler. They are designed to provide internal functionality,
or to implement the functions of builtin objects in JavaScript
such as String.Prototype and String.Map. In V8§,
these builtin functions are implemented in CodeStubAssembler
(CSA). CSA provides efficient low-level functionality that is
very close to the assembly language, but also offers an exten-
sive library of higher-level functionality. For example, CSA as
part of V8’s builtins can load data from a specified address,
and it can modify the internal data of JavaScript objects [33].
Ignition’s bytecode handlers are also implemented in CSA. A
key advantage of CSA is that it makes V8’s builtin functions
platform-independent and those builtin functions are compiled
into the binaries for a target platform by V8’s unified code
generation as shown in Figure 3. CSA allows us to create

Ignition Turbofan
Builtins ~ poeroieeoeoooog Optimizing WASM Compiler
Bytegggig o Compiler

"Sea of Nodes"
Graph

CodeStubAssembler

CodeAssembler

Control Flow
Graph

Scheduler

Instruction Selector
V8 Unified Code
Generation
Architecture

Register Allocator

Code Generator

Fig. 3: V8’s Unified Code Generation

new V8 builtin functions to extend V8’s functionality [32].
We leverage this feature to integrate concolic execution into
the V8 engine.

238

III. OUR APPROACH
A. Overview

JavaScript, as one of the most popular scripting languages
for both client side and server-side applications, is often
deeply embedded in its execution platform, e.g., web browsers
and Node.js runtime. Although taking a JS script out of
its native environment and analyzing it in an artificial test
environment through modeling would make the analysis more
tractable [34], the analysis often becomes less accurate. Test
cases generated are not able to fully reflect realistic use
cases and can only represent part of the use cases that are
accurately modeled [35], and bugs detected may also be false
positives [36]. Thus, it is strongly desirable to analyze a JS
script in its native environment under its normal usages.

Our approach conducts concolic testing on JS scripts in-
situ, as illustrated in Figure 4. The concrete execution step
of concolic testing as indicated by the dashed box on top is
conducted in the native execution environment for JS scripts,
where the trace of this concrete execution is captured. The
trace is then analyzed in the symbolic execution step of
concolic testing to generate test cases and these test cases
are then fed back into the native concrete execution to drive
further test case generation.

Concrete Execution

Test Harness

JavaScript

JS execution engine

JavaScript Execution Trace

Execution Tracer }—>
.) 1

Engine

J

!
‘ :

: !

Symbolic Execution : '
: !

H '

!

!

P Yoo i
Testcases | Path Explosion : .

Fig. 4: Workflow for Concolic Testing of JavaScript

Central to our approach is the quality of the captured
concrete execution traces of JS scripts in terms of correctness
and precision. If the traces captured are incorrect, the test cases
generated in symbolic execution will often be misguided, thus
not effective. On the other hand, if the traces captured are not
concise, they are often unnecessarily complex and lead to path
explosion in symbolic execution, thus not efficient. Therefore,
while developing our approach, we focus on how to capture
the concrete execution trace of a JS script under test from its
native execution environment so that the captured trace is both
correct and concise. To obtain such traces, we must address
two major challenges as follows:

e Sheer complexities of native execution environmentsThe
embedding environments for JS scripts, web browsers or
Node.js, are often quite complex, not only the runtimes
themselves, but with their numerous extensions available.

o JS scripts are heavily optimized. Both client-side and
server-side JS scripts are often optimized just-in-time to

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on December 01,2023 at 16:54:08 UTC from IEEE Xplore. Restrictions apply.

achieve the best performance. Such optimizations tend to
obfuscate the execution flows of these JS scripts [37].

Due to the popularity of the Node.js runtime and its embedded
V8 JS engine, we address the above challenges in this context.
The solutions are readily generalized to other JS runtimes
and engines. We have explored two methods for tracing the
concrete execution of JS scripts running in the Node.js runtime
as follows:

o Shallow Integration of Tracing in Node.js. Tracing of
the concrete execution of a JS script is invoked within
Node.js, but outside V8. The V8 engine is treated as a
black box.

o Deep Integration of Tracing in V8. Tracing of the concrete
execution is invoked inside V8; therefore, irrelevant parts
of Node.js are not traced.

B. Shallow Integration of Tracing in Node.js

As shown in Figure 5, in order to use concolic execution to
test a JS script, we need to extract the execution trace of this
script as it is running on Node.js with an execution tracer, and
then feed the execution trace to a symbolic execution engine to
generate test cases. Addons in Node.js are dynamically-linked

>{ ‘executiontracing Iibraries‘ ‘
' A

Shallow tracing interface C/(?:J' function call
C++ addons o

exported as shared library

Execution Tracer

(ie. gemu) ---capture traces---» Symbolic Execution Engine
*

traces in detail @
N

:Executlon traces for JS : S
:trace of Node.js -
:trace of V8
:trace of Ignition
1 :trace of bytecode Interpretation
:trace of Turbofan

traces cap(hred for JavaScript

i
: :trace of code optimization
! :trace of code generation

::trace of Node.js Add-on
1 :trace of memory copying

Fig. 5: Shallow Integration of Tracing in Node.js

shared libraries written in C++. This addons feature offers an
interface between the JavaScript and C/C++ libraries. A library
of execution tracers for concolic testing can be made available
to the JS script as Node.js modules by leveraging the addons
feature. Such a library needs to support two general functions:
make_symbolic and start_tracing respectively. The
make_symbolic function allows us to mark the variables
as symbolic in the execution. The start_tracing function
allows us to take control of the underlying execution tracer
so that we can start tracing for symbolic execution when
necessary. We use this library to initiate concolic execution
for a JS script under test, which is typically done in the test
harness to avoid modifications to the JS script itself. This
initiation involves setting symbolic variables and informing
the execution tracer of when to trace.

239

As shallow integration of tracing is invoked in Node.js
which builds around V8, it has the disadvantage of capturing
overly complicated execution traces. The execution tracer, e.g.,
the CRETE tracer in QEMU, treats Node.js as a whole binary
program and captures all of its traces once tracing starts.
Furthermore, V8 includes a JavaScript interpreter (Ignition)
and a JavaScript just-in-time compiler (Turbofan). Hence,
when JavaScript runs on top of Node.js, the execution tracer
will capture the execution traces of the entire Node.js, which
includes not only traces of the JS script under test, but also
traces of Ignition, Turbofan, other parts of V8 and Node.js.
The resulting trace is often massive and contains unnecessary
execution trace segments. After feeding it to the symbolic
execution engine, the engine essentially analyzes the JS script
under test and all parts of Node.js and V8 that are in-
volved. This may cause path explosion for symbolic execution.
However, such integration of tracing for concolic execution
using Node.js addons has the advantage of simplicity, i.e.,
requiring no modification to Node.js and particularly the V8
engine. It is our baseline tracing method to enabling concolic
execution for JavaScript.

C. Deep Integration of Tracing in V8

The part of an execution trace that is of the highest relevancy
to test case generation using symbolic execution is the binary
code that is directly corresponding to the bytecode of JS script
under test. Therefore, the best place to trace such binary code
is inside the V8 engine. As shown in Figure 6, for deep integra-
tion of tracing, we move the interface for interacting with the
execution tracer from the Node.js using C++ addons into the
V8 engine using CSA runtime builtin functions. This interface
allows us to only capture the execution traces representing the
interpretation of JS bytecode instead of the execution traces of
the entire Node.js captured by shallow integration in Figure 5.

__|r+ start_tracing()
|- make_symbolic()

inleﬁace in detail : 5
. C/C++ function call

| i) (o)

In-stu tracing interface || T

v
‘ ‘execution tracing libraries ‘ ‘
A

e mmmmmebmmm e —————

exported as shared library

Execution Tracer [capture

traces--» Symbolic Execution Engine
(gemu)
traces of JS execution binary captured within Ignition_..._._.. traces in detail \ C ,,,,,,,,,,,,,,,,,,,
Execution traces for JS

Fig. 6: Deep Integration of Tracing in V8

JS bytecode interpretation happens in V8’s Ignition in-
terpreter. As shown in Figure 7, for each JS statement in
bytecode, there is a corresponding bytecode handler in Ignition
for its interpretation [38]. Ignition bytecode handlers are
compiled at V8 build time and embedded into the binary.
Interpretation of JS bytecode means that the bytecode handlers
themselves are executed. Hence, in order to get an execution

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on December 01,2023 at 16:54:08 UTC from IEEE Xplore. Restrictions apply.

trace that closely represents JS bytecode, we defer tracing till
the interpretation of JS bytecode starts, using deep integra-
tion of tracing. More specifically, this deep tracing interface
captures traces of the execution of Ignition bytecode handlers
during interpretation, which closely matches JS bytecode. This
way we also avoid capturing the execution traces of the code
generation and the optimization in Turbofan. This process of
deep integration of tracing is illustrated in the green dashed
box of Figure 7. On the contrary, the shallow integration of
tracing with Node.js addons will capture the whole execution
traces for every component as shown in Figure 7. Thus,

, JavaScript

{ Parser J

Abstract

equivientin CFG Syntax Tree

v

} --Opimize ===~k
1

. Bytecode

{ Ignition

Y.
Optimized |
Machine Code !

te
34 le Deoptimize

icallRuntime [start trace]
{TestBqualStrict r0, [0]
-»JumpIfFalse [5] 22
TestGreaterThan r0, [1]
iConstant Pool:] ¥
i Ignition
Bytecode
Handlers

equivientin CFG

Ignition Handlers:

> lling In-situ interface
IGNITION_HANDLER (TestEqualStrict i

TGNITION_HANDLER (JumpIfFalse) ;

IGNITION_HANDLER (TestGreaterThan) !

'SA Runtim

situ tracing interfar
tart_tracing()
ake_symbolic()

1

1

1

1

1

1

1

1

1

1

I % [IGNITION HANDLER(CallRuntime)
[
1

1

1

1

1

1

1

1

Machine
The Most Concise Execution Traces for JS Codc)

Fig. 7: How Deep Integration of Tracing Captures the Most
Concise Execution Traces
our deep tracing interface embedded in V8 can reduce the
problem of path explosion when applying symbolic execution
on JavaScript by having a precise execution trace that closely
matches the JS bytecode.

IV. IMPLEMENTATION
A. Overview

In our implementation, we use CRETE as our concolic
execution engine. CRETE provides two interface functions for
accessing its execution tracer: crete_start_tracingand
crete_make_symbolic. Through these functions, devel-
opers can gain control over when to start tracing and what to
capture through the execution tracer. In order to trace the JS
library under test, we expose CRETE’s tracing control inter-
faces to the JS script. Our implementation of shallow tracing is
to achieve this through Node.js addons. We implement a new
addon library in C++, which is later loaded into the Node.js
runtime during JS script execution. This addon library wraps
around the CRETE’s tracing control interfaces and provides
them to the JS script running on Node.js. This implementation
requires no modification on Node.js, but only introducing a
new addon library for tracing control. The JS script under
test can invoke the tracing control library as it invokes any

240

other Node.js modules. Our shallow tracing implementation
contains 527 lines of C++. This implementation treats the V8
JS engine as a whole; thus, in addition to traces of the JS script,
it may also capture extensive traces from the V8 engine.

Our implementation of the deep tracing is to integrate the
tracing control interface into the V8 JS engine to gain more
precise control over tracing. We achieve the implementation by
extending V8 builtin functions to integrate the tracing control
interface for symbolic execution in V8. V8 builtin functions
allow developers to extend the internal functionalities of the
V8 engine. These builtin functions are implemented in V8’s
CodeStubAssembler and provide accesses to CRETE’s
tracing interface. They are compiled into binary by V8’s
unified code generation and integrated into the Ignition in-
terpreter. The JS script under test can then invoke CRETE’s
tracing interface through these builtin functions. This deep
tracing implementation provides better control for tracing the
JS script by only tracing the bytecode handlers within V8
which are corresponding to the bytecode of the JS script, but
not other parts of V8. V8’s mechanism of builtin functions
allows precise accesses to the bytecode handlers. Our deep
tracing implementation contains 2041 lines of C++, 463 lines
of JavaScript and 178 lines of bash.

Also note that everything in JavaScript is represented as an
object. As we make inputs to the JS script symbolic, we must
make sure that the objects that we set symbolic remains valid
objects during symbolic execution.

B. Shallow Tracing Interface as C++ Addons

Figure 8 illustrates our implementation of the shallow
tracing interface as a Node.js addon library, which sup-
ports two tracing control functions: start_tracing and
make_symbolic. Node.js provides a standard way of im-

- N
Object Model in JS
Object {

valuet;

] -
)

4 '

«: start_tracing()

CIC++ function call
v
lexecution tracing libraries
H :: crete_start_tracing()
! _.--> | crete_make_symbolic()

memory address of the copy of value2

interface in detail

; toV8internal

*< __| /Shallow tracing interface Symbolic Execution Engine
/ limited access C++ addons e

CRETE Replayer
CRETE Runner :

exported as shared library &
QEMU Guest OS 4

selected traces new test cases
H v

CRETE Tracer [-capture traces--->» CRETE Manager

l¢---new test case ------ |

traces in detail

\Execution traces for js [N
i:trace of Node.js

| :trace of V8

traces captured for JavaScript

strace of Ignition
:trace of bytecode Interpretation

1
1

1

e I 1
:trace of Turbofan]
1

1

1

1

i
i :trace of code optimization
1 :trace of code generation

titrace of Node.js Add-on

| :trace of memory copying

Fig. 8: Implementation of Shallow Tracing using Addons
plementing an addon library in C++. The addon library can
be loaded as a Node.js module using require () statements
in the JS script. The two tracing control interface functions

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on December 01,2023 at 16:54:08 UTC from IEEE Xplore. Restrictions apply.

are first exported from CRETE execution tracer and can later
be invoked from the JS script to mark symbolic variables and
initiate tracing through the addon library. This is done in
the test harness of the JS script under test so that the JS
script itself is not modified. Although the addons library, as
part of Node.js, offer a bridge between JavaScript and C/C++
libraries, it has the following drawbacks in tracing for concolic
execution:

o Separate address spaces: As shown in Figure 9, the
addon library has a different address space from V8
while V8 allocates JS variables within its own address
space as storage cells [39]. Therefore, when a JS script
invokes the addon library in Node.js, it involves memory
translations in between. Due to the fact that CRETE
uses Dynamic Taint Analysis, which will capture relevant
traces of memory translations related to symbolic vari-
ables, symbolic execution may get lost among memory
address translations between the addon library and V8.

Node.js Process Space (C++)

V8 Runtime (C++)

Node.js Code ,
Isolate's memory store

var addon_= require ("addon");
var obj = storage cell |}

- ’Heap

addon.mutate (obj) ;

C++ addons

void mutate (const FunctionCallbackInfo<Value>& args)
{

Isolate *iso = argé.GetIsolate();

Local<Object>| target|= args[0].TooObject () ;

}

Fig. 9: Memory System for C++ Addons

o Limited V8 internal access: The addon library has
limited access to V8 internals. Thus, when implementing
make_symbolic, the addon library cannot access the
runtime memory address on heap for a variable in the
JS script, but a copy of its value. We can only get the
memory address of this copy. As a result, the execution
traces CRETE captured may contain irrelevant traces of
underlying value copying during the execution of the JS
script, thus, it is not a close match to the JS bytecode.

o Tracing inside Node.js but outside of V8: Through the
addon library, tracing is initiated inside Node.js. CRETE
tracer will treat V8 as a black box binary and trace
its entire execution including the execution of Turbofan
and other Node.js modules after the tracing starts. Such
tracing captures the entire execution trace that contains
the redundant execution traces indicated by line 5 to 9
listed below.

1 :trace of Node.is

2 :trace of V8

3 :trace of Ignition

4 :trace of bytecode Interpretation
5 :trace of Turbofan
6
7
8
9

:trace of code optimization
:trace of code generation
:trace of C++ addon
:trace of memor

translation

241

The parts of the trace closely corresponding to the JS
script are indicated by line 2 to 4.

C. Deep Tracing Interface as V8 Builtins

Figure 10 illustrates how we implement the deep tracing
interface of start_tracing and make_symbolic as
builtin functions, which reside inside the V8 engine and have
access to the JS interpretation by Ignition. (We have explained
the technical feasibility in Section II-B2, V8 JS Engine). V8

éyrnbollc Object Model in JS\
Object {
valuet;

value2; //symbolic value

J runtime memory address of value2

= start_tracing()

| [Emake_symbolic() ‘

CIC++ function call
v
lexecution tracing libraries
-3 [crete_start_tracing()
:: crete_make_symbolic()

Symbolic Execution Engine

CRETE Replayer
x -

JavaScript

v

Node js interface in detail

A%
o

Deep tracing interface || | __.--
CSA runtime_builtin

/direct access t0
/' V8internal

exported as shared library
(In-situ) :

CRETE Runner ; : :
selected traces new test cases
QEMU Guest 0S ‘] v

CRETE Manager

CRETE Tracer --capture traces----- >/

<= new test case -+

traces in detail %}

Execution traces for Js

traces captured for JavaScript

: trace of bytecode Interpretation

Execution traces captured are greatly reduced compared to Fig. 8

Fig. 10: Deep Tracing Interface in V8

allows developers to extend the set of builtin functions with
new ones written in CodeStubAssembler. The new builtin
functions are compiled into the binary of the target host by
the V8’s unified code generation and directly embedded into
V8. Implementing the tracing interface as V8 builtin functions
enables the control of CRETE execution tracer from within
V8. Hence, we are able to defer tracing till JavaScript bytecode
interpretation starts. This way we can keep the captured execu-
tion trace confined within the JavaScript interpretation. What'’s
more, builtin functions have access to V8 internals and can be
called from Ignition. Therefore, it is able to get the runtime
address of an object or one of its fields. V8 runtime builtin
functions can be called directly from JavaScript through a %-
prefix with the flag ——allow-natives-syntax as shown
in line 3 and line 4 of Listing 1. The deep tracing interface
allows precise tracing of the JS bytecode execution by tracing
Ignition bytecode handlers. To avoid tracing of just-in-time
code generation and optimization in Turbofan, we turn off
Turban while tracing.

D. Symbolic JS Object for V8

In this sub-section, we explain how we make a JS Object
symbolic for V8. V8 builtin functions allow us to access the
runtime memory address of a JS object, which is allocated
on heap when V8 creates a HeapOb ject. For safety reason,
a HeapObject is pointed to by a pointer inside a handle
in V8’s C++ implementation [40]. As shown in Figure 11,
a String object is a HeapObject that is allocated on

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on December 01,2023 at 16:54:08 UTC from IEEE Xplore. Restrictions apply.

the heap during runtime. Since CRETE captures execution
traces based on the memory addresses of the initial variables
set as symbolic. We set the memory address that holds the
actual value for the St ring allocated at runtime as symbolic.
Therefore, the trace that CRETE captures is relevant to this
String object. In V8’s implementation, we are given the
interfaces to use the Handle to access objects in JavaScript.
Figure 11 shows how we get the memory address of the value
in the String on heap using Handle. By setting symbolic
inputs this way, we only set the memory address containing
the actual value of an Object symbolic during symbolic
execution to explore branches related to the value. It does
not mark memory of other fields of the Object symbolic;
otherwise, the object may be invalid. We mainly focus on
JavaScript’s String type because strings are popular inputs
to JS scripts and making string variables symbolic leads to
many valuable test cases.

C++ Heap

Handle Object String

Object location Address ptr_ value

Memory address for
C::I variable being set
symbolic

Fig. 11: V8 Object Memory Model

We encountered four cases when attempting to retrieve the
memory address of the actual value of the St ring object for
symbolic execution [41], they are listed as below:

o SeqOneByteString: The simplest form, containing a few
header fields and then the string’s bytes (which are not
UTF-8 encoded and can only contain characters among
the first 256 unicode code points).

o SeqTwoByteString: Similar form, but with two bytes for
each character (using surrogate pairs to represent unicode
characters that cannot be represented in two bytes).

o SlicedString: A substring of some other string, containing
a pointer to the “parent” string and an offset and length.

o ConsString: The result of concatenating two strings (if
over a certain size), containing pointers to both strings
(which may themselves be any types of strings).

Listing 1 and Listing 2 show an example JS script and
its bytecode during interpretation. CRETE only captures the
trace related to the runtime memory address of the actual
value of str_var, which is a String object in V8. The
runtime address is 0x34ecf6d42849 as shown at line 26
of Listing 2. The actual value stored in this runtime address is
loaded at line 5 of Listing 2 and this runtime address is later
marked as symbolic at line 7. After StartTracing is called
at line 8, CRETE captures the traces for all bytecode related
to the symbolic runtime address, which are highlighted by the
underscores in Listing 2, as the concrete execution trace. The
captured trace also preserves all constraints corresponding to
the JS script of Listing 1. Thus, the traces captured with our
method are concise and accurate for symbolic execution.

242

var str_var = "init";
$MakeSymbolic (str_var);
$StartTracing () ;

if(str_var === "tests")
return "tests";

if(str_var > "testsl"){
10 return "testsl";
1 telse(
12 return "tests2"

13 }

Listing 1: A Simple Example of JavaScript and Calling
Convention of In-Situ Tracing Interfaces

Parameter count 6
Frame size 8

1
2
3
4
5
6
7
8
9

0x40b8ec2c9a StackCheck

0x40b8ec2c9b LdaConstant [0]

0x40b8ec2c9d Star r0

0x40b8ec2c9f CallRuntime [MakeSymbolic],r0-r0

0x40b8ec2cad4 CallRuntime [StartTracing
0x40b8ec2ca9 LdaConstant [1]
0x40b8ec2cab TestEqualStrict r0, [0]
10 0x40b8ec2cae JumpIfFalse [5] (0x40b8ec2cb3)
11 0x40b8ec2cb0 LdaConstant [1]
12 0x40b8ec2cb2 Return
13 0x40b8ec2cb3 LdaConstant [2]
14 0x40b8ec2cb5 TestGreaterThan r0, [1]
15 0x40b8ec2cb8 JumpIfFalse [5] (0x40b8ec2cbd)
16 0x40b8ec2cba LdaConstant [2]
17 0x40b8ec2cbc Return
18 0x40b8ec2cbd LdaConstant [3]
19 0x40b8ec2cbf Return
20 0x40b8ec2ccO0 LdaUndefined
21 0x40b8ec2ccl Return
22 Constant pool (size = 4)
23 — map: 0x0leccde023cl <Map>
24 - length: 4
25 0: 0x34ecf6d42849 <Stringl[4] init>
26 1: 0x0040b8ec2949 <String[5]: tests>
27 2: 0x0040b8ec2969 <String[6]: testsl>
28 3: 0x0040b8ec2989 <String[6]: tests2>

Listing 2: Bytecode for JS Script in Listing 1
V. EVALUATION

A. Overview

For our evaluation, we target Node.js libraries that are avail-
able on NPM. We install these libraries through NPM and their
source code is also downloaded so we can access their unit
test suites for comparison purposes. We apply our approach to
in-situ concolic testing, both shallow tracing and deep tracing,
on these libraries, and compare them in terms of performance.
We have also evaluated the code coverage achieved by our
automatically generated test cases with coverage achieved by
hand-crafted unit test suites of these libraries as reference. This
evaluation is carried out on an Ubuntu OS Version 18.04 with
4-core Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz and 16G
memory.

In order to apply our approach to these libraries, we built a
test harness to systematically exercise all exported (public)
methods in a given library with arguments whose type is
String. The seed test cases are generated randomly within
the test harness. We implemented an automation pipeline that

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on December 01,2023 at 16:54:08 UTC from IEEE Xplore. Restrictions apply.

helps set up the concolic testing environment in CRETE for
each Node.js library automatically. With the test harness and
automation pipeline we can set up concolic testing for Node.js
libraries conveniently and have applied our approach to 995
Node.js libraries which include approximately 9000 JS files.
Our current study focuses on string-intensive libraries due to
their popularity in Node.js applications. We randomly pull
libraries from NPM. If the majority of a library’s functions
process strings, we select it. We set string-type parameters
symbolic and non-string parameters to random concrete values
in the test harness for each library. If a library contains no
exported function with string-type parameters, we skip it.
The overall statement coverage on all 995 Node.js libraries
for shallow tracing and deep tracing is shown in Figure 12.
Figure 12d and Figure 12b show that deep tracing via V8
builtin functions performs significantly better than shallow
tracing via Node.js addons in terms of statement coverage.
The darker shadow between 75% and 100% in Figure 12d
indicates that more libraries achieved the coverage between
75% and 100% with deep tracing. Figure 12a and Figure 12c
show the exact number of libraries in each coverage range.

W 0-25% M 25-50% © 50-75%

300
75 i
200
50
100
2
0 0

(a) Shallow Tracing: Number of (b) Shallow Tracing: Statement
libs in each coverage range coverage distribution

®025% W 2550% W 5075% M 7585% 100 Tl

= 75-85% M 85-100% 100

= 85100%

(c) Deep Tracing: Number of (d) Deep Tracing: Statement
libs in each coverage range coverage distribution

Fig. 12: Coverage on All 995 Node.js Libraries

Due to the sheer volume of libraries and JS files, we
randomly select 180 libraries to conduct a deep-dive analysis
of coverage achieved by shallow tracing and deep tracing
methods respectively. Coverage for all JavaScript libraries
are calculated using istanbul, a popular JS coverage tools
used by V8 [42] and compatible with most JavaScript testing
frameworks, e.g., Mocha [43] and Node-Tap [44]. Coverage
may vary slightly due to the randomness of the seed test case
generation. By default, the coverage that we show in this eval-
uation is statement coverage. Table I shows the demographics

Metric Range Average
Line of Code [93, 16910] 1687
Weekly Downloads | [3, 37491350] | 9552965
Dependencies [3, 18154] 282

TABLE I: Demographics for Libraries under Test
of the selected libraries. The LoC (lines of code) for a library

243

under test is calculated with github-loc [45]. The number of
weekly downloads of a library under test is calculated with
npm-stats-api [46]. The number of dependencies is the number
of dependent libraries that the library under test has. We
calculated it with dependent-counts [47].

B. Results from Shallow Tracing Using Node.js Addons

For evaluation of concolic testing with shallow tracing of
JavaScript libraries via the Node.js addon method, we wrap
the 180 randomly selected libraries with our test harness,
in which the shallow tracing is invoked through the tracing
control interface made available via the Node.js addon. As
shown in Figure 13a, the statement coverage achieved between
85% and 100% only accounts for 9.93% of the libraries under
test, the coverage between 75% and 85% accounts for 14.89%
of the libraries, the coverage between 50% and 75% accounts
for 17.73% of the libraries, the coverage between 25% and
50% accounts for 35.46% of the libraries, and the coverage
below 25% accounts for 21.99% of the libraries. We can
see the overall performance of shallow tracing by looking at
Figure 13b where most of the dots representing the coverage
appear below the line of 75%. As we analyzed more libraries,
the proportion of libraries that fall into a higher coverage range
do not seem to improve, indicated by a mostly flat line in
Figure 14, which shows the average coverage growth trends
when the number of libraries grows. It can be observed from
Figure 12a and Figure 13a that the overall coverage on 995
libraries closely resembles that of 180 representative libraries
randomly selected.

W 0~25% M 25~50% © 75~85% M 75~85% WM 85~100% 10 - =

50

- N L e, %
7 . .
50 - - .
25 o “ - R
IR - L. s .
0 o -

(a) Number of libraries in each (b) Statement coverage distribu-
coverage range tion

Fig. 13: Coverage Achieved by Shallow Tracing

= 0~25% = 25~50% 50~75% = 75~85% = 85~100%

80
60
40

20

0

v 499 998 1998 2998 3998 4998 5998 6998 7998

Number of Javascript files
Fig. 14: Coverage Growth Trend with Shallow Tracing

C. Results from Deep Tracing with V8 Builtins

To evaluate the method of deep tracing with V8 builtins,
we apply it to the same set of 180 Node.js libraries. For each

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on December 01,2023 at 16:54:08 UTC from IEEE Xplore. Restrictions apply.

025% M 2550% = 50-75% M 75-85% M 85100%

(a) Number of Libraries in Each (b) Statement Coverage Distri-
Coverage Range bution

Fig. 15: Coverage Achieved by Deep Tracing

library, in its test harness, we invoke deep tracing through the
tracing control interface made available via the V8 builtins. We
can see an overview of the deep tracing method’s performance
in Figure 15b. Most of the dots indicating the coverage appear
above the line of 75%. Only one library achieved a coverage
below 25% and the reason is that it is a function with multiple
arguments of String type, which can be made symbolic.
Our test harness did not catch all of the arguments and only
managed to set one of them as symbolic input. Therefore,
it only explored the branches that are related to that one
argument we set as symbolic input within the test harness.

As shown in Figure 15a, it is clear that the deep tracing
method is able to achieve the coverage between 85% and
100% for most libraries indicated by the right most bar. This
performance gain comes from the ability of being able to
run symbolic analysis on a more precisely captured trace that
closely corresponds to the JS bytecode, which has been ex-
plained in detail in Sections IV-C and I'V-D. It can be observed
from Figure 12c¢ and Figure 15a that the overall coverage
on 995 libraries closely resembles that of 180 representative
libraries randomly selected.

D. Comparisons

1) Test Coverage Achieved by NPM Test Suites: A system-
atic investigation on test coverage of hand-craft test suites in
NPM [48] is illustrated in Figure 16. The blue line (the lower
line) represents statement coverage achieved by test suites
found in the packages released in NPM registry where only
4.2% of the libraries in the evaluation set have statement cov-
erage above 80%, 6.0% of the libraries have coverage above
20%, and 6.6% of the libraries contain tests with coverage
barely above zero. This result shows that most libraries do
not have unit tests at all in their releases in NPM. Only a
small number of the libraries has high-quality unit tests. The
green line (the upper line) represents the tests included in the
latest commit of the master branch of the library repositories.
We can see that the number of libraries in each coverage range
has improved. However, those libraries that have coverage in
the range of 80% to 100% are still inadequate. Our method can
automatically achieve similar and even better coverage for JS
library than the manually crafted test suites by its developers. It
can significantly reduce the efforts in equipping these libraries
with high-quality unit tests.

2) Performance Comparison between Shallow and Deep
Tracing: For comparison, it can be observed from Figure 17a
and Figure 17b that the number of libraries achieving code

244

= npm registry = latest commit in repository

200

150

100

50

Number of NPM libraries

20 40 60

Statement coverage

80 100

Fig. 16: Coverage by Hand-Crafted NPM Test Suites

Addon ® CSA Addon ® CSA

N —

o Su've e &0y
go0e® STV ot et o

0~25 25-50 50~75 7585 85~100 0

(a) Number of Libraries in Each (b) Statement Coverage Distri-
Coverage Range bution

Fig. 17: Coverage Comparison: Shallow vs. Deep Tracing

coverage above 85% using deep tracing is significantly higher
than that of shallow tracing. And the number of libraries
achieving code coverage between coverage 75% and 85% is
also higher. This indicates that the deep tracing method has
the ability to achieve higher coverage in JavaScript libraries
at the cost of extending the V8 engine with new builtins.

3) Comparison with Related Work: We have compared our
approach with an existing tool, ExpoSE [49]. ExpoSE has been
evaluated on 4 JS libraries shown in Figure 18. We selected
the same libraries for comparison. ExpoSE specifically targets
solving regular expression problems for its symbolic execution
engine JALANGI and detected a new bug in the “minimist”
library. Our method of deep tracing via V8 builtin achieved
better coverage consistently. This comparison partially reflects
our method’s ability in achieving higher coverage.

B ExpoSE ® Addon CSA
100 8919 90.1
85.1
77.4
75 66.1
55.2
50 40.14
34.78
25
0
0

minimist validator semver querystring

Fig. 18: Comparison with ExpoSE

E. Bugs and Exceptions

For the 180 libraries we selected for evaluation, on average,
4 exceptions are thrown per library on the generated tests. We
had time to carefully analyze 12 libraries for their exceptions.

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on December 01,2023 at 16:54:08 UTC from IEEE Xplore. Restrictions apply.

In total, 9 distinct exceptions are encountered for the 12
libraries. Among those exceptions, we identified 6 as clear-cut
bugs: 2 are previously known bugs that have been fixed while 4
are previously unknown. After we filed these bugs on Github,
they have been accepted and patched by their developers. The
bugs we filed are all due to unhandled exceptions.

Node.js lib Bugs Known
benchmarkify | No boundary check for empty string | No
msgpack5 No NULL check for function args No
is-regex Unhandled input syntax error No
validator Mishandled country code No
chalk Deprecated constructor invoked Yes
stringify Incorrect parsing of separators Yes

TABLE II: Bugs Detected in 12 NPM Libraries

Table II shows a summary of the bugs that we discovered.
The bug from benchmarkify is a missing boundary check
for empty string. It causes the formatNumber function to
return a NULL object. When another function is later invoked
on this NULL Object, it throws a TypeError exception. In
the encodeDate function of msgpack5, a parameter, dt,
is used directly without checking for NULL value. In is-
regex, an input syntax error is not handled in the regexExec
function. In validator, a particular country code is not handled
and it leads the execution to an error catch block in the
isVAT function. In chalk, a deprecated constructor is
used in an else branch in the chalkClass function,
causing an unhandled exception. In stringify, incorrect parsing
of separators in the st ringi fy function causes an unhandled
exception.

F. Discussions and limitations

The reason why our approach achieves the results above is
that deep tracing via V8 builtin gets a most concise execution
trace which is a close match to JavaScript bytecode. However,
some bytecode might later become hot and is sent to Tur-
boFan’s optimizing compiler [37]. Under such circumstances,
our approach becomes less effective due to the optimization
conducted by Turbofan and will require new filters on tracing
that are aware of the optimization.

Our implementation is based on CRETE which uses QEMU
as its tracing platform [28]. This makes it less portable to
browser-based JavaScript. We strive to lift this limitation.
JavaScript execution in Node.js works in an event loop which
includes a main thread and worker threads. CRETE captures
concrete traces from a process, unless instructed otherwise,
CRETE captures all binary code from the process, multi-
threaded or not. Such a naive application may cause path
explosion in symbolic analysis. In our study, we targeted
unit testing of Node.js libraries. Our test harness separated
functions in a NPM library and ran each function individ-
ually. The libraries we used do not have async or callback
functions so traces are restricted to one thread. Conceptually,
our approach can run and test a multi-threaded JS program
since CRETE captures traces from all threads within a process.
However, additional algorithms are needed to handle multi-

245

threaded executions to prevent path explosion, which is not
the focus of this paper.

VI. RELATED WORK

Our approach is closely related to work on symbolic exe-
cution for JavaScript. Commonly targeted JS scripts include
the browser-based ones and those running on browser-less
runtimes, e.g., Node.js. Most of symbolic execution methods
for JavaScript required building application-specific symbolic
execution engines or significantly modifying JavaScript exe-
cution engines to apply symbolic execution. As an example
of symbolic execution targeting browser-based JavaScript,
SymlJS is a framework for testing client-side JS script [50].
It modifies Rhino JS engine for symbolic execution [51].
For browser-less JavaScript, JALANGI is a framework for
writing heavy-weight dynamic analysis, which can be en-
abled on JavaScript as a symbolic execution engine [52].
COSETTE is another symbolic execution engine for JavaScript
using an intermediate representation, namely JSIL, translated
from JavaScript [53]. ExpoSE applies symbolic execution on
standalone JavaScript and uses JALANGI as its symbolic
execution engine. ExpoSE’s contribution is in addressing the
limitation that JALANGI does not readily support regular
expressions for JavaScript [49]. Kudzu targeted AJAX appli-
cations by implementing a dynamic symbolic interpreter that
takes a simplified intermediate language for JavaScript [26]. To
the best of our knowledge, no symbolic execution framework
for JavaScript has directly utilized existing powerful binary-
level concolic execution engines [54].

Another related approach to testing JavaScript is fuzzing.
There are a few fuzzers for JS, e.g., jsfuzz [55] and js-fuzz [56],
which are largely based on the fuzzing logic of AFL (Ameri-
can fuzzy lop) [57] and re-implemented it for JavaScript. We
view fuzzing and symbolic/concolic testing as complementing
techniques: fuzzing for broader exploration of JS scripts while
symbolic/concolic testing for deeper exploration.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel approach to in-situ
concolic testing of JS scripts. It enables concolic execution for
JS scripts in their native environments and can automatically
generate test cases that achieve comparable code coverage
than manually crafted test suites for Node.js libraries and
discovered previously unknown bugs.

We will further extend this approach to support a wider
range of JS scripts, e.g., browser-based JS scripts. We will
optimize the tracing mechanism, e.g., further reducing the
complexities of binary-level traces captured for the JS script
under test and subsequently reducing the overheads of sym-
bolic execution and generating more effective test cases. In
addition to optimizing the tracing mechanism, we aim to
remove the dependency on the QEMU virtual machine.

ACKNOWLEDGMENTS

This research received financial support in part from Na-
tional Science Foundation (Grant #: 1908571).

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on December 01,2023 at 16:54:08 UTC from IEEE Xplore. Restrictions apply.

[1
[2
3
[4

[11]

(12

[13]

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on December 01,2023 at 16:54:08 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

“Node.js,” https://nodejs.org/en/, 2021.

“v8,” https://v8.dev/, 2021.

“Npm,” https://www.npmjs.com/, 2021.

I. Koishybayev and A. Kapravelos, “Mininode: Reducing the attack
surface of node.js applications,” in 23rd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID 2020). San Sebas-
tian: USENIX Association, Oct. 2020, pp. 121-134. [Online]. Available:
https://www.usenix.org/conference/raid2020/presentation/koishybayev

] “Module counts,” http://www.modulecounts.com/, 2022.

A. Decan, T. Mens, and E. Constantinou, “On the impact of
security vulnerabilities in the npm package dependency network,” in
Proceedings of the 15th International Conference on Mining Software
Repositories, ser. MSR ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 181-191. [Online]. Available:
https://doi.org/10.1145/3196398.3196401

S. Lekies, B. Stock, and M. Johns, ‘25 million flows later:
Large-scale detection of dom-based xss,” in Proceedings of the
2013 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’13. New York, NY, USA: Association for
Computing Machinery, 2013, p. 1193-1204. [Online]. Available:
https://doi.org/10.1145/2508859.2516703

L. K. Shar and H. B. K. Tan, “Predicting sql injection and
cross site scripting vulnerabilities through mining input sanitization
patterns,” Information and Software Technology, vol. 55, no. 10, pp.
1767-1780, 2013. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0950584913000852

M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel, “Small
world with high risks: A study of security threats in the
npm ecosystem,” in 28th USENIX Security Symposium (USENIX
Security 19). Santa Clara, CA: USENIX Association, Aug. 2019,
pp. 995-1010. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity 19/presentation/zimmerman

J. C. Davis, C. A. Coghlan, F. Servant, and D. Lee, “The impact of
regular expression denial of service (redos) in practice: An empirical
study at the ecosystem scale,” ser. ESEC/FSE 2018. New York,
NY, USA: Association for Computing Machinery, 2018, p. 246-256.
[Online]. Available: https://doi.org/10.1145/3236024.3236027

N. van Ginkel, W. De Groef, F. Massacci, and F. Piessens, “A server-
side javascript security architecture for secure integration of third-party
libraries,” Security and Communication Networks, vol. 2019, 2019.

R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab,
“Why do developers use trivial packages? an empirical case study on
npm,” 08 2017, pp. 385-395.

S. Mirshokraie, A. Mesbah, and K. Pattabiraman, “Jseft: Automated
javascript unit test generation,” in 2015 IEEE 8th International Confer-
ence on Software Testing, Verification and Validation (ICST). 1EEE,
2015, pp. 1-10.

J. C. King, “Symbolic execution and program testing,” Communications
of the ACM, vol. 19, no. 7, pp. 385-394, 1976.

S. Krishnamoorthy, M. S. Hsiao, and L. Lingappan, “Tackling the
path explosion problem in symbolic execution-driven test generation for
programs,” in 2010 19th IEEE Asian Test Symposium. 1EEE, 2010, pp.
59-64.

K. Sen, “Concolic testing,” in Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineer-
ing, 2007, pp. 571-572.

C. Lattner and V. Adve, “Llvm: a compilation framework for lifelong
program analysis transformation,” in International Symposium on Code
Generation and Optimization, 2004. CGO 2004., 2004, pp. 75-86.

C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: unassisted and automatic
generation of high-coverage tests for complex systems programs.” in
OSDI, vol. 8, 2008, pp. 209-224.

D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena, “Bitblaze: A
new approach to computer security via binary analysis,” in International
Conference on Information Systems Security. Springer, 2008, pp. 1-25.
V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A platform for in-
vivo multi-path analysis of software systems,” Acm Sigplan Notices,
vol. 46, no. 3, pp. 265-278, 2011.

P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated
random testing,” in Proceedings of the 2005 ACM SIGPLAN conference

246

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]
[44]
[45]
[46]

[47]

on Programming language design and implementation, 2005, pp. 213—
223.

K. Sen, D. Marinov, and G. Agha, “Cute: A concolic unit testing engine
for ¢,” ACM SIGSOFT Software Engineering Notes, vol. 30, no. 5, pp.
263-272, 2005.

P. Godefroid, M. Y. Levin, and D. Molnar, “Sage: whitebox fuzzing for
security testing,” Communications of the ACM, vol. 55, no. 3, pp. 40-44,
2012.

B. Chen, C. Havlicek, Z. Yang, K. Cong, R. Kannavara, and F. Xie,
“Crete: A versatile binary-level concolic testing framework,” in Funda-
mental Approaches to Software Engineering, A. Russo and A. Schiirr,
Eds. Cham: Springer International Publishing, 2018, pp. 281-298.

S. Bucur, J. Kinder, and G. Candea, “Prototyping symbolic execution
engines for interpreted languages,” in Proceedings of the 19th interna-
tional conference on Architectural support for programming languages
and operating systems, 2014, pp. 239-254.

P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song, “A
symbolic execution framework for javascript,” in 2010 IEEE Symposium
on Security and Privacy, 2010, pp. 513-528.

S. Siislii and C. Csallner, “Spejs: A symbolic partial evaluator for
javascript,” in Proceedings of the Ist International Workshop on
Advances in Mobile App Analysis, ser. A-Mobile 2018. New York,
NY, USA: Association for Computing Machinery, 2018, p. 7-12.
[Online]. Available: https://doi.org/10.1145/3243218.3243220

F. Bellard, “Qemu, a fast and portable dynamic translator.” in USENIX
annual technical conference, FREENIX Track, vol. 41. Califor-nia,
USA, 2005, p. 46.

E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to
know about dynamic taint analysis and forward symbolic execution (but
might have been afraid to ask),” in 2010 IEEE Symposium on Security
and Privacy, 2010, pp. 317-331.

“Understanding v8’s bytecode,” https://medium.com/dailyjs/
understanding-v8s-bytecode-317d46c¢94775, 2021.
“Firing up the ignition interpreter,”
ignition-interpreter, 2021.

“Turbofan: A new code generation architecture for
https://docs.google.com/presentation/d/1_eL1Vzcj94_G4r9j9d_
LjSHRKFnq6jgpuPJtnmIBs88/htmlpresent, 2021.
“Codestubassembler builtins,” https://v8.dev/docs/csa-builtins, 2021.

S. Sapra, M. Minea, S. Chaki, A. Gurfinkel, and E. Clarke, “Finding
errors in python programs using dynamic symbolic execution,” vol.
8254, 11 2013, pp. 283-289.

A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris,
and E. Kohler, “The scalable commutativity rule: Designing scalable
software for multicore processors,” ACM Trans. Comput. Syst., vol. 32,
no. 4, jan 2015. [Online]. Available: https://doi.org/10.1145/2699681
M. Canini, D. Venzano, P. Peresini, D. Kosti¢, and J. Rexford, “A
NICE way to test openflow applications,” in 9th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 12). San
Jose, CA: USENIX Association, Apr. 2012, pp. 127-140. [Online].
Available: https://www.usenix.org/conference/nsdil2/technical-sessions/
presentation/canini

M. Selakovic and M. Pradel, “Performance issues and optimizations in
javascript: an empirical study,” in Proceedings of the 38th International
Conference on Software Engineering, 2016, pp. 61-72.

“Ignition: V8 interpreter,” https://docs.google.com/document/
d/11T2CRex9hXx0JwbYqVQ32yIPMhOuouUZLdyrtmMoL44/
mobilebasic, 2016.

https://v8.dev/blog/

V8

“How (not) to access v8 memory from a node.js
c++ addon’s worker thread,” https://nodeaddons.com/
how-not-to-access-node-js-from-c- worker-threads, 2021.

“V8’s object model using well-defined
c++,” https://docs.google.com/document/d/1_

w49sakC1XM10ptjTurBDqO86NE16FH8LwbeUAtrbCo/edit, 2019.
“V8 stringobject,” https://v8docs.nodesource.com/node-0.8/d9/d38/
classv8_1_1_string_object.html, 2016.

“Istanbul,” https://istanbul.js.org/, 2021.

“Mocha: simple, flexible, fun,” https://mochajs.org/, 2021.

“Node-tap,” https://node-tap.org/, 2021.

“github-loc,” https://www.npmjs.com/package/github-loc, Jun. 2021.
“npm-stats-api,” https://www.npmjs.com/package/npm-stats-api, Jun.
2021.

“dependent-counts,” https://www.npmjs.com/package/dependent-counts,
Jun. 2021.

[48]

[49]

[50]

[51]

[52]

H. Sun, A. Rosa, D. Bonetta, and W. Binder, “Automatically assess-
ing and extending code coverage for npm packages,” arXiv preprint
arXiv:2105.06838, 2021.

B. Loring, D. Mitchell, and J. Kinder, “Expose: practical symbolic
execution of standalone javascript,” in Proceedings of the 24th ACM
SIGSOFT International SPIN Symposium on Model Checking of Soft-
ware, 2017, pp. 196-199.

G. Li, E. Andreasen, and I. Ghosh, “Symjs: automatic symbolic testing
of javascript web applications,” in Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, 2014, pp. 449-459.

X.-0. JIN, B.-y. ZHONG, and X. LI, “Research and implementation of
interpreting javascript dynamic web page based on rhino engine [j],”
Computer Technology and Development, vol. 2, no. 002, 2008.

K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: A selective

247

[53]

[54]

[55]

[56]
[57]

record-replay and dynamic analysis framework for javascript,” ilPro-
ceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, 2013, pp. 488-498.

J. F. Santos, P. Maksimovi¢, T. Grohens, J. Dolby, and P. Gardner, “Sym-
bolic execution for javascript,” in Proceedings of the 20th International
Symposium on Principles and Practice of Declarative Programming
2018, pp. 1-14.

Y.-F. Li, P. K. Das, and D. L. Dowe, “Two decades of web application
testing—a survey of recent advances,” Information Systemsvol. 43, pp.
20-54, 2014.

“Jsfuzz: coverage-guided fuzz testing for javascript,” https://github.com/
fuzzitdev/jsfuzz, Jan. 2022.

“js-fuzz,” https://github.com/connor4312/js-fuzz, Jan. 2022.

“Afl: American fuzzy lop,” http://lcamtuf.coredump.cx/afl/, Jan. 2022.

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on December 01,2023 at 16:54:08 UTC from IEEE Xplore. Restrictions apply.

